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ABSTRACT 

A new peridynamic formulation is developed for cubic polycrystalline materials. The new approach can be a 

good alternative to traditional techniques such as finite element method and boundary element method. The 

formulation is validated by considering a polycrystal subjected to tension loading condition and comparing the 

displacement field obtained from both peridynamics and finite element method. Both static and dynamic loading 

conditions for initially damaged and undamaged structures are considered and the results of plane stress and 

plane strain configurations are compared. Finally, the effect of grain boundary strength, grain size, fracture 

toughness and grain orientation on time-to-failure, crack speed, fracture behaviour and fracture morphology are 

investigated and the expected transgranular and intergranular failure modes are successfully captured. To the 

best of the authors’ knowledge, this is the first time that a peridynamic material model for cubic crystals is given 

in detail. 

 

Keywords: transgranular fracture; polycrystalline materials; peridynamics; dynamic fracture; crack 

branching; intergranular fracture 

 

1   INTRODUCTION  

   Polycrystalline materials, such as common metals, rocks and many ceramics, are solids 

constituted by crystals (or grains) that can have different shape, size and random orientation 

and are attached to each other through their grain boundaries. As argued in [1], 

polycrystalline materials are among the most common materials used in practical engineering 

applications. Hence, in order to build safe structures without relying on excessive overdesign, 

it is necessary to fully understand the fracture behaviour of these materials. However, owing 

to the fact that the fracturing of polycrystalline materials is often influenced by the 

characteristics of its microstructure (e.g. grain size, differences in physical properties between 

grain and its boundaries, crystallographic orientation and the presence of flaws of different 

size, shape and orientation), the task is often challenging. 

    Several experimental approaches are available to study the fracture behaviour of this class 

of materials [2-4]. Unfortunately, despite the resulting valuable information provided by 

experimental approaches, these techniques are not always viable due to the necessity of 
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expensive equipment and complex and time consuming procedures for material preparation 

and analysis [1]. Therefore, computational approaches represent a precious complement for 

understanding the fracturing of polycrystalline materials. In this regard, several 

computational techniques have been employed to date and many of them are based on the 

cohesive zone model (CZM) implemented within the framework of the finite element method 

(FEM) [5-8]. On the other hand, Sukumar et al. [9] investigated the intergranular and 

transgranular fracturing of brittle polycrystalline materials by using the extended finite 

element method (XFEM), whereas the boundary element method (BEM) coupled with CZM 

was used for the modelling of fracture in alumina [10] and SiC [11] and for the 

polycrystalline modelling of fcc nickel [12], SiC [1] and various cubic polycrystal systems 

[13]. As argued by [10], despite the valuable results obtained by the latest numerical studies, 

the mathematical modelling of the transition from microscopic defects to macroscopic cracks 

is not entirely understood at present and, as a result, the current design codes and standards 

prescribe the use of safety factors to compensate this lack of understanding and predicting 

capability [14]. As pointed out by [15], one of the main reasons for this difficulty is given by 

the mathematical formulation of classical continuum mechanics (CCM) (i.e. the theory 

behind several computational techniques used for structural analysis), which employs partial 

differential equations and assumes that the body remains continuous as it deforms. Moreover, 

as argued by [10], continuum damage mechanics is not suitable for predicting the initiation 

and propagation of micro-cracks at small scales, especially in the case of polycrystalline 

materials [11, 14]. Other reasons for the difficulty of modelling the fracturing of 

polycrystalline materials by using computational techniques based on CCM are specific to the 

particular numerical approach employed. For instance, as mentioned in [16], the solution 

obtained from the XFEM lacks accuracy in proximity of the crack tip and as a consequence, 

according to [15], the XFEM is not suitable for the prediction of complex fracture scenarios 

where multiple cracks initiate, grow and interact. Concerning the numerical techniques based 

on the coupling of FEM with CZM, it is well-known that the FEM leads to crack growth 

predictions that are dependent on the mesh size, no matter which numerical crack growth 

strategy is used [17]. Moreover, as pointed out in [15], the stiffness of FEM models is also 

dependent on the mesh size, owing to the fact that a decrement of mesh size often 

corresponds to an increment of the number of cohesive elements present in the model. Lastly, 

the nucleation of micro-cracks leads to modifications of the elastic stiffness of FEM models, 

which eventually results in ill-posed problems [10]. 
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    With the aim of overcoming some of the above mentioned issues concerning the prediction 

of material failure shown by numerical techniques based on CCM, peridynamics (PD), a non-

local generalisation of CCM based on integral equations rather than partial differential 

equations, was introduced by Silling in [18]. An extensive review of PD studies is given in 

[15]. Askari et al. [19] performed PD simulations of granular fracture in a silicon polycrystal 

(cubic system); they investigated the effect of the grain boundary strength on the fracture 

mechanisms. Recently, Ghajari et al. [20] applied PD for modeling the dynamic fracture 

response of alumina (hexagonal system).  

    In this study, a new PD model is proposed for cubic crystals and the parameters of the PD 

material model are obtained by equating the PD and the CCM strain energy density 

expressions of a body subjected to simple loading conditions. The proposed model is 

validated by considering a polycrystal subjected to tension loading and comparing the 

displacement field obtained from both PD and FEM. Both static and dynamic loading 

conditions for initially damaged and initially undamaged structures are considered and the 

results of plane stress and plane strain configurations are compared. Finally, the effect of the 

grain boundary strength, grain size, fracture toughness and grain orientation on time-to-

failure, crack speed, fracture morphology and fracture behaviour of the material are 

investigated and the expected transgranular and intergranular failure modes are successfully 

captured. To the best of authors’ knowledge, this is the first time that a PD material model for 

cubic crystals is given in detail.  

2   PERIDYNAMIC THEORY 

    As mentioned earlier, the equation of motion of a material point in CCM can be expressed 

in the form of a partial differential equation which can be written as 

                                                              , ,t t  x u x b x                                            (1) 

where   x  and  , tu x denote the density and acceleration of the material point x  at time t, 

respectively. In Eq. (1),   represents the stress tensor and the term  , tb x is the body force 

acting on material point x  at time t. The operator   represents a divergence operator. 

Although Eq. (1) has been successfully applied to many different problems of solid 

mechanics, the derivatives in space are not defined if there is any discontinuity in the 

material. This problem can be overcome by replacing the divergence term in Eq. (1) with an 

integration as [18] 
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          , , , , dV ,
H

t t t t     
x

xx u x f u x u x x x b x                             (2) 

where  , tu x  denotes the displacement of the material point x  at time t and 

    , , ,t t  f u x u x x x  represents the PD force between material points x  and x  (also 

called mechanical response function), respectively. According to this new formulation, a 

material point can interact with other material points not only within its nearest 

neighbourhood, but also with material points in a larger neighbourhood. Since the strength of 

the interaction between material points decreases as the distance between them increases, an 

influence domain, named horizon, Hx
, can be defined for each material point as shown in Fig. 

1. Therefore, the material point x can only interact with material points within this domain. 

The radius of the horizon,  , is chosen depending on the nature of the problem in such a way 

that the model is able to fairly represent the physical mechanisms of interest [21]. 

    In the case of an elastic material, the peridynamic force between material points x  and x , 

can be expressed as: 

                                                             c s
 


 

y y
f

y y
                                                              (3)                         

where y represents the location of the material point x  in the deformed configuration, i.e. 

 y x u  and c  is the bond constant  which can be related to material constants of CCM. In 

Eq. (3), the stretch parameter s  is defined as: 

                                                         s
   




y y x x

x x
                                                         (4) 

In the case of brittle material behaviour, the peridynamic force and the stretch relationship are 

shown in Fig. 2. 

    The parameter 0s , in Fig. 2, is called critical stretch and if the stretch of a peridynamic 

bond exceeds this critical value, then the peridynamic interaction (bond) is broken. Hence, 

the peridynamic force between the two material points reduces to zero.  
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3   PERIDYNAMIC MICRO-MECHANICAL MODEL FOR CUBIC CRYSTALS 

    In this study, a microscopic material model is used to represent the behaviour of a 

polycrystalline structure with random texture. For this purpose, a new peridynamic material 

model is developed to express the deformation response of each crystal. For simplicity, the 

bond-based PD framework has been chosen over the more advanced state-based version of 

PD, which allows to overcome the restriction to 1/3 (2D) and 1/4 (3D) of the value of the 

Poisson’s ratio. However, for the materials considered in this study, the bond-based PD is 

suitable. The polycrystalline structure is generated by using the Voronoi tessellation method 

(Fig. 3).  

    The micro-mechanical PD model for cubic crystals is constituted by the following two 

types of PD bonds (Fig. 4): 

 Type-1 bonds (dashed green lines) – exists in all directions (i.e. 0 2   ) 

 Type-2 bonds (solid red lines) – exists only for the following directions:  

3 5 7
, , ,

4 4 4 4

      

Note that the angle   is defined with respect to the orientation of the crystal. In the special 

case shown in Fig. 5, the crystal orientation Ȗ equals ʌ/4 and it is always measured with 

respect to the x-axis, while, in general, an algorithm is used to assign a random orientation Ȗ 

to the grain. As a result of this procedure, when a polycrystalline system of random texture is 

represented by this model, type-2 bonds will exist in many different directions according to 

the random orientations of the crystals. 

    The bond constants for type-1 and type-2 PD bonds can be expressed in terms of the 

material constants of a cubic crystal, ijC , by following a procedure similar to that explained 

in [22]. In the case of plane stress condition, the bond constants can be expressed as: 

 
2 2 2

11 11 12 11 12 12 11
1 23

11 11

12( ) 4(3 2 )
,T T

A B

c c c c c c c
c c

h c c   
  

 


              (5) 

where h  is the thickness of the structure. The quantities A  and B  can be expressed as  

1

Aq

A ij j

j

V 


    ,   
1

Bq

B ij j

j

V 


                                               (6) 
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where subscript A is associated with directions 
5

,
4 4

  , whilst subscript B is associated 

with directions 
3 7

,
4 4

   . 

    In Eq. (6), i  and j  refer to a generic particle and its neighbour, respectively, jV  denotes 

the volume of particle j , ij  is the initial length of the bond between particles i  and j , and 

Aq  and Bq  represent the number of PD bonds along the directions associated with A and B, 

respectively. Similarly, in the case of plane strain condition, the bond constants can be 

expressed as: 

 
11 12 12 11

1 23

12( ) 4(3 )
,T T

A B

c c c c
c c

h   
 

 


                             (7) 

    The detailed derivation of type-1 and type-2 PD bond constants for both plane stress and 

plane strain configuration is given in Appendix A. The model was fully validated by using 

the FEM’s deformation field as a reference and a good agreement between the two 

approaches was observed as shown in Section 5.1 and 5.2. The critical stretch parameter for 

PD bonds was obtained based on the expression given in [15]: 

0

4

9

cG
s

E




                                                                 (8) 

where E is the Young’s modulus. In case of linear elastic material, the critical energy release 

rate cG  can be obtained from the fracture toughness, IcK , for plane stress and plane strain 

configurations, respectively, as follows [17]: 

                                                               
E

K
G Ic

c

2

                                                                (9a) 

                                                               
2

2
1Ic

c

K
G

E
                                                      (9b) 

    In order to investigate various fracture modes typical of polycrystalline materials, a grain 

boundary coefficient (GBC) is defined as follows: 

0

0

GB

GI

s
GBC

s
                                                             (10) 
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where 0 GBs  and 0 GIs  represent the critical stretch of the PD bonds that cross the grain 

boundaries of the material and the critical stretch of the PD bonds that are fully included 

within the grains, respectively (GB stands for grain boundary, while GI stands for grain 

interior). 

4   MATERIAL DATA 

    Two materials are employed in this study. Iron crystals are considered for the static 

analyses (Section 5.1 and Section 5.2), while AISI 4340 steel is considered for the dynamic 

analyses (Section 5.3, Section 5.4 and Section 5.5). The chemical composition of AISI 4340 

steel is summarised in Table 1 [23]: 

    The fracture toughness of AISI 4340 steel is considered to be 4.58
Ic

K MPa m  [24]. 

The crystals are assumed to have Ƚ-ferrite structure with bcc lattice. As described in [25], the 

local stiffness matrix of each individual crystal can be written as: 

 C



























44

44

44

111212

121112

121211

00000

00000

00000

000

000

000

c

c

c

ccc

ccc

ccc

                                            (11) 

In order to take into account the polycrystalline nature of the material, the values of the 

elastic moduli 
ij

C  are found by applying an axial tension to a microscopic AISI 4340 steel 

specimen and then fitting experimental and numerical results as described in [26]. The 

resulting microscopic material properties are: 

GPa797GPa4126GPa9208 441211 ...  ccc                    (12) 

Concerning iron crystal, the considered microscopic material properties are [25]: 

 11 12 44231.4 GPa 134.7 GPa 116.4 GPac c c                  (13) 

5   NUMERICAL RESULTS AND DISCUSSION 

    In this section, the results obtained from static and dynamic PD analyses are presented, and 

comparisons with FEM results are also provided. Concerning the static analyses, firstly 
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(Section 5.1), a single cubic crystal is considered and the PD and FEM displacement fields 

are compared. Secondly (Section 5.2), a cubic polycrystal constituted by 100 grains is 

analysed and, again, the PD and FEM displacement fields are compared. Concerning the 

dynamic analyses, first the influence of the horizon and peridynamic discretization on results 

is evaluated (Section 5.3.1). Secondly (Section 5.3.2), the effect of the grain size and grain 

orientation on the time-to-failure and fracture behaviour is investigated. Thirdly (Section 

5.3.3), the impact of GBC on the crack speed is examined. Finally, a comparison of fracture 

morphology is provided for different values of 
ICK  (Section 5.3.4) and for plane stress/strain 

conditions (Section 5.3.5). 

5.1   Static analysis of a cubic crystal 

    The cubic crystal considered in this study has a length of 15.24 Ɋm and a width of 7.62 Ɋm 

(Fig. 5). The number of particles along the horizontal and vertical directions is 240 and 120 

respectively. The left edge of the crystal is fully fixed, while the right edge is subjected to a 

horizontal loading of P = 156 MPa. 

    Three layers of virtual particles are placed along the right edge of the plate to impose the 

tension loading boundary condition. Three additional layers of virtual particles are also 

placed along the left edge of the plate with the aim to constrain the model. The values of grid 

spacing and horizon radius are 26.35 10x    Ɋm and 219.14 10   Ɋm, respectively.  

    Fig. 6 and Fig. 7 show the comparison between the results obtained with FEM and PD 

analyses concerning the displacement field of the cubic crystal in plane stress configuration 

with orientation 0° (i.e. the orientation of the crystal coincides with the x-direction) and 

orientation 45°, respectively. 

    Fig. 8 and Fig. 9 show the comparison between the results obtained with FEM and PD 

concerning the displacement field of the cubic crystal in plane strain configuration with 

orientation 0° (i.e. the orientation of the crystal coincides with the x-direction) and orientation 

45°, respectively. 

    The same simulations have been carried out considering also other static loading 

conditions; in all cases, a good agreement was found between FEM and PD results. 

Therefore, in conclusion, the micro-mechanical PD model for cubic crystals presented in this 

paper agrees well with the FEM for plane stress configuration, for plane strain configuration, 

for different grain orientation and for different static loading conditions. 

5.2   Static analysis of a cubic polycrystal 
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    The cubic polycrystal considered in this section is constituted by 100 randomly oriented 

grains and has a length of 5 mm and a width of 2.5 mm (Fig. 10). Similar to the previous 

analysis (Section 5.1), the number of particles along the horizontal and vertical direction is 

240 and 120 respectively. The left edge of the polycrystal is fully fixed while the right edge is 

subjected to a horizontal loading of P = 150 MPa. Three layers of virtual particles are placed 

along the right edge of the plate to impose the tension loading boundary condition. Three 

additional layers of virtual particles are also placed along the left edge of the plate with the 

aim to constrain the model. The values of grid spacing and horizon radius are 

52.083 10x    m and 56.281 10   m, respectively.  

    As shown in Fig. 11 and Fig.12, a good agreement between FEM and PD was found 

concerning the final displacement field of the cubic polycrystal in plane stress (Fig.11) and 

plane strain configurations (Fig.12). 

 

5.3 Dynamic analysis of AISI 4340 polycrystals 

5.3.1 Selection of the horizon size 

    The aim of this analysis is to investigate the effect of the horizon size and peridynamic 

discretization on the fracture pattern predicted by our PD model. For this purpose, an AISI 

4340 polycrystal in plane strain condition with dimensions of 5 mm by 5 mm is considered as 

shown in Fig. 13. Both left and right edges of the polycrystal are subjected to a horizontal 

velocity boundary condition of V = 25 m/s. Three layers of virtual particles are placed along 

the left and right edges of the plate to impose the velocity boundary condition. Moreover, in 

order to ensure the external load to be transferred properly to the internal part of the plate, a 

no-fail zone is imposed on the virtual particles and their neighbours. The length of the two 

initial cracks at the bottom and top edges of the polycrystal is 0.4 mm (see Fig. 13). An 

explicit central difference scheme is used for the time integration with a time step size of 

2 nsdt  . The total simulation time is 2.4 Ɋs corresponding to 1200 time steps. This study 

considers three different GBC values (0.5, 1.0 and 2.0), three different values of average 

grain size (333 Ɋm, 416 Ɋm and 714 Ɋm) and five different values of horizon size, ߜ (202.7 Ɋm, 100 Ɋm, 50 Ɋm, 37.5 Ɋm and 30 Ɋm) for a total of 45 simulations (see Figs. 14-16). The 

horizon size is calculated as 3.015 x   . Therefore, its value is controlled indirectly by 

changing the PD discretization, i.e. 74 x 74 particles, 150 x 150 particles, 300 x 300 particles, 

400 x 400 particles and 500 x 500 particles, respectively.  

(c) ASME



 

10 

 

    As depicted in Fig. 14, for the polycrystal with average grain size of 333 Ɋm, a horizon 

size of 202.7 Ɋm (top red square with arrow) is sufficient to reproduce the main features of 

the fracture pattern. Indeed, in all five simulations, the major cracks propagate from the initial 

notch and the fragmentation of the central part of the plate is similar despite the poor 

resolution of the results obtained with higher horizon sizes and lower number of particles. In 

other words, the horizon size and the PD discretization affect the resolution of the results, but 

not the overall fracture pattern. This is not true for higher values of average grain size. For 

the simulations with average grain size of 416 Ɋm and 714 Ɋm, the convergent horizon values 

are 100 Ɋm (middle red square with arrow) and 50 Ɋm (bottom red square with arrow), 

respectively. This can be explained by noting that if the dimensions of the plate are kept 

constant as in this case, the smaller the grain size the higher the possibility that a grain 

boundary exists in proximity of the initial crack tip. If the grain boundary is weak with 

respect to the bulk of the crystal (like in this case since GBC = 0.5), the initial notch is further 

encouraged to propagate and form a major crack despite the coarse mesh. 

    The simulations that considered higher horizon values and lower number of particles than 

the convergent ones failed to capture the right location of the major cracks. Therefore, when 

GBC = 0.5, the value of the convergent horizon size is dependent on the grain size. As it can 

be seen in Figs. 15-16, this is not true for GBC = 1.0 and GBC = 2.0. In these cases, the grain 

boundaries do not correspond to the part of weak points anymore and, as a result, in both 

cases, the grain size does not influence the value of the convergent horizon (red squares with 

arrow), which can be considered to be 50 Ɋm (300 x 300 particles) for all values of grain size 

considered. Moreover, the fracture patterns in Fig. 15-16 are very similar and the failure 

mode is transgranular. This is in contrast with the results for GBC = 0.5 (Fig. 14), where the 

fracture patterns are different with respect to Fig. 15-16 and the failure mode is intergranular. 

A more detailed analysis of the effect of GBC is provided in Section 5.3.3 and Section 5.3.4. 

5.3.2 Grain size effect on time-to-failure and fracture behaviour 

    The aim of this section is to investigate the effect of the grain size on the time-to-failure, 

i.e. the time-lapse between the application of the load and the propagation of the initial notch, 

and fracture behaviour. For this purpose, a double-edge notched plate, shown in Fig. 13, with 

300 x 300 particles and GBC = 0.5 is considered. Same boundary conditions, time step size, 

time integration scheme and values of grain size are used as in Section 5.3.1. For each of the 

three values of grain size, ten simulations are performed (each one with random grain 
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orientation) for a total of twenty data points for each grain size, i.e. two data points for each 

simulation since the plate has two notches. This is done to distinguish our conclusions on the 

effect of the grain size from the effect of the grain orientation. 

    As already mentioned in Section 5.3.1, if the dimensions of the plate remain the same, the 

smaller the grain size the higher the volume fraction of grain boundaries and the higher the 

probability that a grain boundary exists in proximity of the initial crack tip. Therefore, if we 

define the occurrence as the event in which the initial notch propagates to form a major crack 

(see Fig. 17), it is expected that the smaller the grain size the higher the number of 

occurrences.  

    However, PD results contradict to this expectation. As shown in Fig. 18, the percentage of 

occurrences (i.e. the number of occurrences divided by 20) is approximately the same for all 

values of grain size considered in this study. More precisely, it has a slight tendency to 

increase as the grain size increases. The video of the simulations have also helped in shedding 

some light on this unexpected result. According to the authors, there are two competing 

mechanisms in place. The first one is the mechanism mentioned earlier and it was expected 

before running the simulations, i.e the smaller the grain size the higher the probability that a 

grain boundary exists in proximity of the initial crack tip, which encourages the propagation 

of the initial notch (see bottom notch in Fig. 17) and raises the number of occurrences. The 

second mechanism can be described as follows: the smaller the grain size, the higher the 

volume fraction of grain boundaries, the higher the number of weak points within the 

material and, as a result, the higher the probability of new cracks nucleating, propagating and 

protecting/shielding the initial notch from the external load. This second mechanism can be 

visualized in Fig. 17, where the top notch is clearly shielded by the nucleation and 

propagation of two adjacent cracks. In contrast, no crack nucleates in proximity of the bottom 

notch. Hence, the notch is not shielded, and propagates and leads to the formation of a major 

crack. 

    This finding reminds us a particular toughening mechanism called microcrack cloud. As 

described by Lawn in [27], this is a mechanism induced by the occurrence of microcraks in 

proximity of the crack tip (see Fig. 19), which act as stress relievers and impose a dilatant 

closure field on the crack. This phenomenon is an open research topic in the field of fracture 

of polycrystalline materials and quantitative prediction techniques are not well-established 

due to the extremely complex nature of the phenomenon [28, 29]. As argued in [30], 
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experimental techniques such as TEM are affected by detectability limitations, while 

theoretical models cannot fully clarify the mechanical degradation produced by the formation 

and interaction of microcraks. Analytical, semi-analytical and numerical studies are available 

(e.g. [31-33]), but they always require artificial conditions [33]. As mentioned in [32], they 

often assume fixed and already nucleated microcrack configurations and do not consider the 

polycrystalline nature of the material. We quote from page 216 in [27]: …The issue of 

microcrack toughening raises two fundamental questions: what are the condition that a 

microcrack cloud should initiate in the field of a primary crack?; given that these conditions 

are met, what is the toughness increment?... Returning to our PD results, it would be 

interesting to understand why only the top notch in Fig. 17 benefits from the shielding effect. 

According to the authors, several factors could be responsible for this situation, e.g. the grain 

orientation, the value of GBC, the grain size, the magnitude of the load, the type of load and 

the morphology of the crystals. For this study, we limit ourselves to report this finding and a 

detailed investigation of these effects will be considered as future work. 

    The results concerning the effect of the grain size on the time-to-failure is presented in Fig. 

20. As already mentioned, ten simulations are performed (each simulation has a random grain 

orientation) for each grain size. Moreover, the damage index in proximity of the crack tip is 

monitored and 20 data points (i.e. the time-to-failure) for each grain size are collected, for a 

total of 60 data points. Fig. 20 is constructed by considering only the time-to-failure of 

occurrences, i.e. the value of the time-to-failure is only determined if the initial notch 

propagates and forms a major crack such as the bottom notch in Fig. 17. Since the number of 

occurrences depends on the grain size, the curves in Fig. 20 are constituted by a different 

number of data points. By observing Fig. 20, it can be concluded that the average time-to-

failure is influenced by the grain size. More precisely, the higher the grain size the higher the 

average time-to-failure. The first mechanism mentioned above, i.e. the smaller the grain size 

the higher the probability that a grain boundary happens to be in proximity of the initial crack 

tip, is probably responsible for this effect. In contrast, the second mechanism, i.e. microcrack 

shielding, is excluded here since only the time-to-failure data of occurrences is considered. 

Another important point is the amplitude of fluctuation of the curves in Fig. 20. It is observed 

that the lower the grain size the lower the amplitude. This behaviour is reasonable since a 

smaller grain size generally means a more homogeneous polycrystal, which is also supported 

by the findings reported in [11], where the mechanical behaviour of a SiC polycrystal in 

tension is analysed by using a boundary cohesive grain element formulation. The reason for 
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the fluctuations in Fig. 20 can be found by looking at the damage pattern of the polycrystal at 

the end of the simulation, i.e. time = 2.4 Ɋs as in Section 5.3.1. For example, let’s consider 

the lowest point of the blue curve. As can be seen in Fig. 21, the crack tip of the initial notch 

is located in proximity of one of the grain boundaries of the polycrystal. Hence, the value of 

the time-to-failure is lower than the average time-to-failure. In other words, the initial notch 

starts to propagate earlier. In contrast, if the peak value of the blue curve is considered and 

the final fracture pattern of the polycrystal shown in Fig. 22 is analyzed, it can be seen that 

the initial notch is further from the nearest grain boundary, leading to a delay in the onset of 

the propagation of the initial notch. 

5.3.3 GBC effect on crack propagation speed 

    The scope of this analysis is to investigate the effect of GBC on the crack propagation 

speed. For this purpose, same configuration is considered as in Section 5.3.2 with the 

following three modifications: 1) the bottom notch is removed from the model, 2) the length 

of the initial notch is increased from 0.4 mm to 1.4 mm and 3) the velocity boundary 

condition is substituted by an opening load applied instantaneously at the flanks of the initial 

notch as in the experimental study reported in [34] and in the numerical study reported in [35] 

and kept constant throughout the simulation. The reason for these modifications is that we 

want to reproduce a situation where a single crack propagates from the initial notch without 

any new crack nucleating in other parts of the plate, which would make more difficult to 

track the crack tip and the calculation of the crack speed is more ambiguous. Four different 

simulations are carried out by considering the following values of GBC: 0.7, 1, 5 and 10. The 

value of the applied loading is 1500 MPa, the total simulation time is 3.2 Ɋs, the average 

grain size is 333 Ɋm and the grain orientation is always the same in all four simulations. An 

ad-hoc algorithm is used to track the position of the crack tip, which is identified by a damage 

index value of 0.35. In the case of crack branching as seen in the first picture in Fig. 24, the 

longest branch is followed and considered for the calculation of the crack speed.  

    As can be seen in Fig. 23, the lower the GBC the lower the time-to-failure, i.e. the initial 

notch starts to propagate earlier, which is in agreement with our expectations. However, the 

time-to-failure of the simulations with GBC = 5 and GBC = 10 is about the same, meaning 

that the effect above mentioned may be active only in a limited range of GBC; further 

investigation concerning this range will be provided in a subsequent paper. After fracture 

initiation, the crack speed increases very quickly in all four cases and, after having reached a 
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peak value, it decreases sharply. The overall trend of the crack speed is in good qualitative 

agreement with the numerical results reported in [35-37], where PD is used to predict the 

failure of a single-edge notched specimen subjected to an impulsive opening load. Another 

important point is related with the peak value of the crack speed. As shown in Fig. 23, the 

lower the GBC the greater the peak value of the crack speed, which is logical since the weak 

grain boundaries are served as a path of preferential failure. The final important point is 

related with the significant difference in final crack speed between the simulation with GBC 

= 1 and the other three simulations (see Fig. 23). When GBC = 0.7, the crack is further 

slowed down by branching which allows the energy to be dissipated in multiple directions. 

The branching behaviour does not occur in the other three simulations. In contrast, for the 

cases GBC = 5 and GBC = 10, the crack is further slowed down by the augmented resistance 

of the grain boundaries, which hinder the crack propagation. 

5.3.4 The effect of ICK  on fracture morphology 

    The aim of this section is to investigate the effect of ICK  on fracture morphology. For this 

purpose, the same configuration analysed in Section 5.3.3 is considered with the only 

difference being the average grain size, which changes from 333 Ɋm to 416 Ɋm. Five 

different simulations are carried out by considering the same polycrystal with GBC = 1 and 

the following values of  : 0.2, 0.35, 0.5, 1 and 2 where    is defined as: 

*

IC

IC

K

K
                                                                         (14) 

In Eq. (14), *

ICK  is the effective value of fracture toughness used for the simulations 

whereas ICK  is the nominal fracture toughness of the material, i.e. 58.4 MPa m .  It is worth 

noting that, as given in Eqs. 7-9, there is a relationship between the fracture toughness and 

the critical stretch 0s . Therefore, as the fracture toughness, *

ICK , changes, the critical stretch, 

*

0s , used in our simulations also changes. As shown in Fig. 25, for the values of 0.5  , 

crack branching appears to be significant. Moreover, in this range of values of  , it is 

observed that the lower the value of   the higher the number of branches. This is in 

qualitative agreement with the finding reported by Espinosa and Zavattieri in [7], where a 

similar analysis in carried out for a polycrystalline material subjected to impact load by using 

FEM and cohesive elements. 
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5.3.5 Plane stress vs. plane strain and intergranular/transgranular fracture mode   

    The aims of this section are 1) to understand how the morphology of fracture changes 

when plane stress condition is considered rather than the plane strain condition and 2) to 

capture the intergranular/transgranular failure modes when the value of GBC is varied. For 

this purpose, a 5 mm x 5 mm double-edge notched polycrystal is constituted by considering 

150 randomly oriented grains. The peridynamic discretization is created with 150 x 150 

particles. An explicit central difference scheme is used for the time integration with the total 

simulation time of 4 Ɋs and the time step size of 2 nsdt  . Both left and right edges of the 

polycrystal are subjected to a horizontal velocity boundary condition of V = 50 m/s. Three 

layers of virtual particles are placed along the left and right edges of the plate to impose the 

velocity boundary condition. Moreover, in order to allow the external load to be transferred to 

the inside of the plate, a no-fail zone is imposed on the virtual particles and their neighbours. 

The values of grid spacing and horizon’s radius are 53.33 10x    m and 41.005 10   m, 

respectively. As shown in Fig. 13, the length of the two initial cracks at the bottom and top 

edge of the polycrystal is 0.4 mm. Three different values of GBC are considered to 

investigate the intergranular and transgranular fracture modes of the polycrystal. 

    As given in Eqs. 7-9, the only difference between plane stress and plane strain 

configurations in our PD model is the value of the critical stretch, which is lower in the case 

of plane strain configuration. Fig. 26-28 show the dynamic response of the polycrystal in 

plane stress condition at four different times for GBC = 0.5, GBC = 1.0 and GBC = 2.0, 

respectively. In contrast, Fig. 29-31 show the dynamic response of the polycrystal in plane 

strain condition at four different times for GBC = 0.5, GBC = 1.0 and GBC = 2.0, 

respectively. 

    The time-to-failure and the overall level of final damage of the structures in plane stress 

configuration and plane strain configuration with different values of GBC are comparable 

whereas the aspect of damage is different. Indeed, when GBC = 0.5, the fracture mode 

appears to be intergranular. On the other hand, when GBC = 1.0 and GBC = 2.0, the fracture 

mode is similar and prevalently transgranular, which is in qualitative agreement with [19], 

where PD is used to study the transition intergranular/transgranular failure mode in 

polycrystalline materials. Moreover, two major differences can be noticed when comparing 

the results of plane stress and plane strain configurations. Firstly, the gap between the flanks 

of the initial notch appears to be wider in case of plane stress configuration. Secondly, a 

greater level of fragmentation can be noticed in the case of plane strain configuration. Despite 
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the fact that the material employed in these simulations is the same, both the two previously 

mentioned features make the aspect of damage qualitatively more brittle in the case of plane 

strain configuration since the value of the critical stretch is lower in the case of plane strain 

configuration, which is in agreement with the findings of Section 5.3.4. 

6 CONCLUSION 

    In this paper, a novel peridynamic formulation for cubic crystals has been introduced and 

all the relevant derivations have been provided. Static analyses have been carried out by 

considering different grain orientations, different loading conditions and different 

configurations (plane stress and plane strain). In all cases, a good quantitative agreement has 

been found between PD and FEM results. Dynamic analyses have also been carried out for 

different specimen configurations and loading conditions with the aim to investigate the 

effect of grain size, grain orientation, grain boundary strength, plane stress/strain 

configuration and fracture toughness on crack speed, time-to-failure, fracture behaviour and 

fracture morphology. Complex fracture phenomena such as crack nucleation and crack 

branching have been modelled without using any external fracture criterion and qualitative 

comparison with other numerical results has been provided. The findings of this study can be 

summarized as follow: 

 For the configuration, specimen and conditions considered in Section 5.3.2, our PD 

model predicts lower values of time-to-failure and greater homogenization (lower 

variance) as the grain size decreases, which is in qualitative agreement with other 

numerical results. In contrast, the fracture behaviour (i.e. the number of occurrences) 

is less affected by the grain size and this is explained by the activation of a competing 

toughening mechanism called microcrack cloud, which is widely reported in the 

literature. 

 The analysis described in Section 5.3.3 concluded that the GBC can affect both the 

time-to-failure and the peak value of crack propagation speed, which increases as the 

GBC decreases. In contrast, the time-to-failure increases as the GBC increases, but 

this is only true in a limited GBC range. Finally, GBC also affects fracture 

morphology with crack branching encouraged at lower values of GBC. 

 In Section 5.3.4, it is observed that crack branching in polycrystalline materials is 

favoured at lower values of fracture toughness. Moreover, the number of branched 
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cracks increases as the fracture toughness decreases, which is in qualitative agreement 

with other numerical results. 

 The conclusions of Section 5.3.5 are such that the fracture morphology in plane strain 

configuration is more brittle than that in plane stress configuration, and this is in 

qualitative agreement with the experimental evidence.    

    Further improvements to the present study can be made by coupling the microstructural 

peridynamic model with methods such as electron backscatter diffraction [38] to measure 

crystal orientation with the aim to reproduce an equivalent polycrystalline model instead of 

producing a random texture. Secondly, experimental studies can be used to validate and 

refine the damage predictions of the PD model. Thirdly, an extension of the present 2D 

model to 3D will be considered in a subsequent paper. Fourthly, as already mentioned, ad-

hoc studies are necessary to better understand the shielding effect captured by our PD model 

(Section 5.3.2) and the GBC range where the time-to-failure is effectively influenced by the 

value of GBC (Section 5.3.3). Lastly, structures of greater dimension could be modelled by 

coupling the microscopic and macroscopic PD frameworks (i.e. multiscale analysis) and by 

taking advantage of parallel computing, which will allow for a drastic reduction of the 

computational time. 
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NOMENCLATURE 

 

CZM  cohesive zone model 

FEM  finite element method 

CCM  classical continuum mechanics 

PD  peridynamics 

fcc  face-centered cubic 

bcc  body-centered cubic 

H x   horizon of a generic particle x    
 

    radius of the horizon [m]    

f    mechanical response function 6[N / m ] 

c    bond constant 6[N / m ]  

s    bond stretch 

0s    critical stretch 

x    vector defining the position of a generic particle x  

'x    vector defining the position of a generic neighbour of particle x  

y    vector defining the position of particle x  in the deformed configuration 

'y    vector defining the position of particle 'x  in the deformed configuration 

 , tb x   body force density field 3[N / m ]   

ICK    fracture toughness [MPa m]   

h    plate’s thickness [m]   

E  Young’s modulus 2[N / m ]   

    Poisson’s ratio 

cG    critical energy release rate [N / m]  

Cij  elastic moduli of the local stiffness matrix 2[N / m ]  

[C]  local stiffness matrix 

x    grid spacing [m]  

1Tc   bond constant type-1 6[N / m ] 

2Tc   bond constant type-2 6[N / m ] 
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ij    undeformed bond length between particles i  and j  [m]  

ș  bond angle with respect to the crystal orientation angle [rad]   

jV    volume of a generic neighbouring particle j  3[m ]   

Aq    number of peridynamic bonds along A directions 

Bq    number of peridynamic bonds along B directions 

 , tu x   displacement field at x  [m]  

 , t'u x  displacement field at 'x  [m]  

  x    mass density at x  3[Kg / m ]   

 , tu x   acceleration vector field 2[m / s ]   

'dV
x

   volume represented by a generic neighbouring particle 'x   3[m ]   

GBC  grain boundary coefficient 
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APPENDIX A 

    The aim of this appendix is to describe the derivation of the expression for type-1 bond 

constant 
1Tc  and type-2 bond constant 

2Tc  used in the peridynamic micro-mechanical model 

for cubic crystals. 

    As already shown in Section 4, three independent material constants, namely C11, C12 and 

C44, are necessary to fully describe the micro-mechanical response of the cubic crystal. 

Therefore, three independent peridynamic material constants would be necessary.  

Nevertheless, for the sake of simplicity, the current peridynamic micro-mechanical model is 

described by two independent material constants only, namely 
1Tc  and 

2Tc . According to the 

procedure, a body under study is subjected to three independent loading conditions. The 

resulting PD and CCM strain energy density are equated and the solution of the resulting 

equations leads to the PD micro-mechanical properties 1Tc  and 2Tc . The following three 

subsections describe in detail the three different loading conditions and the relevant 

calculations. 

 

First loading condition 

    The first loading condition consists in the application of a constant strain along direction-1 

which, in this particular case, is equal to direction-x. (Fig. A.1): 

0.00.0001.0 122211    

Since 1 , 1)0cos()cos(   and 0)0sin()sin(  . By means of simple 

geometrical considerations, the bond length in the deformed configuration and the stretch can 

be calculated as shown in Fig. A.1: 

))(cos1()cos( 2   undefxundefdef lll                              (A.1) 

2cos ( )
def undef

undef undef

l ll
s

l l
 


                                      (A.2) 

As described in [39], the PD strain energy density associated with a generic material point 

can be written as: 
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 
xH

PD dVwW
2

1
                                                 (A.3) 

The micro-potential function w represents the strain energy accumulated in a single 

peridynamic bond due to the application of external loads on the body. It can be calculated by 

using the analogy of the well-known formula for the strain energy stored in a tensioned single 

spring as: 

2

undef

1

2
w c s l                                                (A.4) 

Considering a neighbourhood 
x

H of disk shape, whose thickness equals the thickness of the 

plate h, the infinitesimal volume has the following expression: 

hdddV   )(                                                 (A.5) 

Considering the contribution of both type-1 and type-2 bond constants, the expression of the 

peridynamic strain energy density for a generic material point i can be written as follows: 
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                          (A.6) 

Consider the definition of the following parameters A  and B : 

1

Aq

A ij j

j

V 


                                                       (A.7) 

1

Bq

B ij j

j

V 


                                                       (A.8) 
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where subscript A is associated with directions 
5

,
4 4

  , whilst subscript B is associated 

with directions 
3 7

,
4 4

   . In Eq. (A.7) and in Eq. (A.8), i  and j  refer to a generic particle 

and its neighbour respectively, jV  denotes the volume of particle j , ij  is the initial length of 

the bond between particles i  and j , and Aq  and Bq  represent the number of PD bonds along 

the directions associated with A and B , respectively.      

    By exploiting the definition of 
A  and 

B , the PD strain energy density can be rewritten 

as:                                          

3
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                                      (A.9) 

With few more simplifications, the final expression can be obtained as: 

3
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                                (A.10) 

The next step is to write the expression of the strain energy density according to CCM. In the 

case of a model with a two-dimensional simplification, the reduced global stiffness matrix 

[Q] of a cubic crystal can be written as: 
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                                          (A.11) 

According to CCM, the expression of strain energy density can be written as: 

11 11 22 22 12 12

1
( )

2
CCMW                                            (A.12) 

 

This can be rewritten for the first loading condition as: 
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2 2

11 11 11 11 11

1 1 1

2 2 2
CCMW Q Q                                      (A.13) 

 

The first equation of our system is obtained by equating PD and CCM strain energy density 

expressions:  

2 3 2 2

1 2 11
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T T A Bc h c Q                                   (A.14)  

 

Second loading condition 

    The second loading condition consists in the application of a constant strain along both 

direction-1 and direction-2 (Fig. A.2). In this particular case, direction-1 is equal to direction-

x and direction-2 is equal to direction-y. 

 

0.0001.0001.0 122211    

By means of simple geometrical considerations, it is possible to derive the following 

expression for the generic bond length and stretch in the deformed configuration: 
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Similar to (A.6), the PD strain energy density can be written as: 
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  (A.17) 

This can be further simplified as: 
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Recalling (A.12), CCM strain energy density can be written for this loading condition as: 

 2
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2
CCMW Q Q                               (A.19) 

By equating PD and CCM expressions, the second equation of our system can be written as: 
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Third loading condition 

    The third loading condition consists of the application of a constant simple shear strain 

(Fig. A.3): 
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Since 1 , 1)0cos()cos(   and 0)0sin()sin(  . By means of simple 

geometrical considerations, the bond length and stretch in the deformed configuration can be 

calculated as: 
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The PD strain energy density for this loading condition can be written as: 
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The calculation of the integrals leads to the following expression: 
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With few more simplification, it can be rewritten as: 

2 3 2

1 2

1 1
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48 16
PD T T A BW i c h c                                     (A.25) 

Recalling (A.12), CCM strain energy density for this loading condition can be written as: 
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CCMW Q                                          (A.26) 

By equating PD and CCM strain energy density, the third equation of the system can be 

written as: 
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The solution of the system constituted by the three equations (A.14), (A.20) and (A.27) leads 

to the following expressions for the peridynamic micro-mechanical material parameters: 
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In case of plane stress configuration: 
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Resulting in: 
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                 (A.30) 

In case of plane strain configuration: 

11 11 12 12,Q c Q c                                     (A.31) 

Resulting in: 
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                        (A.32) 

Since the quantities A  and B  depend on the grain orientation Ȗ, the mechanical behaviour 

of each crystal is potentially different with respect to that of its neighbouring crystals.  
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Figures 

 

Fig. 1. Peridynamic interactions. 

 

Fig. 2. Definition of bond constant and critical stretch for linear elastic brittle material. 

 

Fig. 3. Polycrystalline material model. 

(c) ASME



 

31 

 

 

Fig. 4. Type-1 (dashed green lines) and type-2 (solid red lines) bonds for the peridynamic micro-

mechanical model. 

 

Fig. 5. Iron crystal for static analysis. 

 

 

Fig. 6. Displacement field comparison between FEM and PD for the iron crystal in plane stress 

configuration and 0° orientation. 
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Fig. 7. Displacement field comparison between FEM and PD for the iron crystal in plane stress 

configuration and 45° orientation. 

 

 

Fig. 8. Displacement field comparison between FEM and PD for the iron crystal in plane strain 

configuration and 0° orientation. 

 

 
Fig. 9. Displacement field comparison between FEM and PD for the iron crystal in plane strain 

configuration and 45° orientation. 
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Fig. 10. Iron polycrystal considered for static analysis. 

 

 

Fig. 11. Displacement field comparison between FEM and PD for the iron polycrystal in plane 

stress configuration. 

 

 
Fig. 12. Displacement field comparison between FEM and PD for the iron polycrystal in plane 

strain configuration. 

 

 

Fig. 13. AISI 4340 polycrystal for convergence analysis (225 grains). 
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Fig. 14. GBC = 0.5, time = 2.4 Ɋs. Fracture pattern comparison of three polycrystals with 

different average grain size (333 Ɋm, 416 Ɋm and 714 Ɋm) and five different horizon values: 

from left to right, 202.7 Ɋm (74 x 74 particles), 100 Ɋm (150 x 150 particles), 50 Ɋm (300 x 300 

particles), 37.5 Ɋm (400 x 400 particles) and 30 Ɋm (500 x 500 particles). 

 

 

Fig. 15. GBC = 1, time = 2.4 Ɋs. Fracture pattern comparison of three polycrystals with different 

average grain size (333 Ɋm, 416 Ɋm and 714 Ɋm) and five different horizon values: from left to 

right, 202.7 Ɋm (74 x 74 particles), 100 Ɋm (150 x 150 particles), 50 Ɋm (300 x 300 particles), 37.5 Ɋm (400 x 400 particles) and 30 Ɋm (500 x 500 particles). 
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Fig. 16. GBC = 2, time = 2.4 Ɋs. Fracture pattern comparison of three polycrystals with different 

average grain size (333 Ɋm, 416 Ɋm and 714 Ɋm) and five different horizon values: from left to 

right, 202.7 Ɋm (74 x 74 particles), 100 Ɋm (150 x 150 particles), 50 Ɋm (300 x 300 particles), 37.5 Ɋm (400 x 400 particles) and 30 Ɋm (500 x 500 particles). 

 

 

Fig. 17. Meaning of occurrence: occurrence (bottom notch), non-occurrence (top notch). 
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Fig. 18. Grain size effect on the number of occurrences. 

 

 

Fig. 19. Microcrack cloud mechanism [27]. 

 

 
Fig. 20. Grain size effect on time-to-failure. 
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Fig. 21. Top half of the polycrystal: crack tip in proximity to the grain boundary (lowest point 

of the blue curve in Fig. 21). 

 

 
Fig. 22. Bottom half of the polycrystal: crack tip embedded inside the grain boundary (peak of 

the blue curve in Fig. 21). 

 

 

Fig. 23. Effect of GBC on crack propagation speed. 

 

 
Fig. 24. Effect of GBC on damage map at time = 3.2 Ɋs. From left to right: GBC = 0.7, GBC = 1, 

GBC = 5, GBC = 10.  
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Fig. 25. Effect of 
ICK on the morphology of damage (time = 3.2 Ɋs). From left to right: 

 ,  ,  ,    ,  . 

 

 

Fig. 26. Time evolution of damage in an initially-damaged polycrystal in plane stress 

configuration when GBC = 0.5. From left to right: time = 1 Ɋs, time = 2 Ɋs, time = 3 Ɋs and time 

= 4 Ɋs. 

 

 
Fig. 27. Time evolution of damage in an initially-damaged polycrystal in plane stress 

configuration when GBC = 1.0. From left to right: time = 1 Ɋs, time = 2 Ɋs, time = 3 Ɋs and time 

= 4 Ɋs. 

 

 
Fig.  28. Time evolution of damage in an initially-damaged polycrystal in plane stress 

configuration when GBC = 2.0. From left to right: time = 1 Ɋs, time = 2 Ɋs, time = 3 Ɋs and time 

= 4 Ɋs. 
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Fig. 29. Time evolution of damage in an initially-damaged polycrystal in plane strain 

configuration when GBC = 0.5. From left to right: time = 1 Ɋs, time = 2 Ɋs, time = 3 Ɋs and time 

= 4 Ɋs. 

 

 
Fig. 30. Time evolution of damage in an initially-damaged polycrystal in plane strain 

configuration when GBC = 1.0. From left to right: time = 1 Ɋs, time = 2 Ɋs, time = 3 Ɋs and time 

= 4 Ɋs. 

 

 
Fig. 31. Time evolution of damage in an initially-damaged polycrystal in plane strain 

configuration when GBC = 2.0. From left to right: time = 1 Ɋs, time = 2 Ɋs, time = 3 Ɋs and time 

= 4 Ɋs. 
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Fig. A.1. First loading condition 

 

 

Fig. A.2. Second loading condition 
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Fig. A.3. Third loading condition 
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Tables 

Table 1   AISI 4340 steel chemical composition 

C Si Mn P S Cu Mo Ni Cr

0.39% 0.27% 0.77% 0.018% 0.016% 0.14% 0.23% 1.38% 0.78%  
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