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Abstract  

Sphingosine kinases (isoforms SK1 and SK2) catalyse the formation of a bioactive 

lipid, sphingosine 1-phosphate (S1P).  S1P is a well-established ligand of a family of 

five S1P-specific G protein coupled receptors but also has intracellular signaling 

roles.  There is substantial evidence to support a role for sphingosine kinases and 

S1P in health and disease.  This review summarises recent advances in the area in 

relation to receptor-mediated signaling by S1P and novel intracellular targets of this 

lipid.  New evidence for a role of each sphingosine kinase isoform in cancer, the 

cardiovascular system, central nervous system, inflammation and diabetes is 

discussed.  There is continued research to develop isoform selective SK inhibitors, 

summarised here.  Analysis of the crystal structure of SK1 with the SK1-selective 

inhibitor, PF-543, is used to identify residues that could be exploited to improve 

selectivity in SK inhibitor development for future therapeutic application. 

 

1. Introduction 

Sphingosine 1-phosphate (S1P) is a pleiotropic lipid that has a wide variety of physiological and 

pathophysiological roles [1-3].  It is one of a multitude of sphingolipids and glycosphingolipids 

that are readily synthesised and/or inter-converted in a spatial and temporal manner in response 

to environmental change and stimuli [4, 5]. These, in turn, are integrated with the wider cellular 

metabolic network [6].  S1P is synthesised by two distinct isoforms of sphingosine kinase (SK1 

and SK2) and elicits cellular responses through well-established receptor-mediated 

mechanisms and by affecting a number of intracellular target proteins.  In general, the effects of 

S1P (proliferation, migration, cell survival etc.) are largely opposed to those of ceramide 

(apoptosis, senescence, growth arrest etc.) and the concept of the ‘sphingolipid rheostat’ was 

proposed, whereby the inter-conversion of ceramide, via sphingosine, to intracellular S1P 

contributes to cellular fate [7, 8].  However, it is now apparent that the situation is far more 

complex and a more advanced model incorporates the autocrine and paracrine effects of S1P 
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(acting via its receptors), amplification loops whereby S1P activates pathways that enhance its 

own formation and signaling as well as the intracellular effects of S1P, mediated by its target 

proteins [4, 9].  Furthermore, it is recognised that ceramides of differing acyl chain and 

sphingoid base composition may have distinct roles [10] and act independently of S1P in a 

membrane- and target-specific manner.  For example, ceramide-enriched microdomains affect 

mitochondrial function [11] whereas ceramide-activated target molecules include protein 

phosphatases (PP1, PP2A and PP2C), protein kinase Cこ and AKT [12].  Moreover, ceramides 

with different fatty acid chain length can exert opposing cellular effects in a given cell type (e.g. 

C16 ceramide promotes proliferation whereas C18 ceramide mediates cell death) [13].  Recent 

advances in lipidomics and cell surface analysis of lipids is likely to progress our understanding 

here [14, 15] but will need to be coupled with the development of biosensors for S1P and for 

specific molecular species of ceramide.  Importantly, other sphingolipids (such as 

dihydroceramides) and sphingolipid derivatives (such as trans-2-hexadecenal, a breakdown 

product of the irreversible cleavage of S1P by S1P lyase [16]) that were previously believed to 

be biologically inactive are also now recognised signaling molecules, which require further 

investigation [17, 18] (Fig. 1).  However, the focus of this article is on some of the more recent 

advances in relation to S1P and, particularly, the function of SK1 and SK2 in health and 

disease. 

 

2. Sphingosine kinases 

S1P is produced by the ATP-dependent phosphorylation of sphingosine, catalysed by SK1 and 

SK2.  Recent comprehensive reviews on these enzymes are available [19, 20].  Therefore, only 

key features are included here. The two enzymes exhibit partial redundancy since Sk1-/- or Sk2-/- 

mice are phenotypically normal whereas elimination of both genes is embryonic lethal due to 

neurological and vascular defects [21].  SK1 and SK2 contain five conserved domains (C1–C5) 

with the catalytic domain formed within C1-C3 and the ATP binding domain located in the C2 

region [22].  These well characterised enzymes, which differ in their biochemical properties, 

sub-cellular distribution and physiological roles, are regulated in a spatial and temporal manner 
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by post-translational modification and interaction with specific proteins and lipids (for review see 

[4]).  For example, while both enzymes can be phosphorylated by extracellular signal-regulated 

kinases (ERK-1/2) in response to agonists [23, 24], the activation of SK1 is more pronounced 

and coupled with its translocation, in a calcium and integrin-binding protein 1 (CIB1)-dependent 

manner [25] from the cytoplasm to the plasma membrane (where S1P could be available for 

export).  In contrast, SK2, which can localise to the endoplasmic reticulum or is associated with 

mitochondria [26] also contains both nuclear localisation and nuclear export sequences and 

shuttles in and out of the nucleus, being exported upon phosphorylation by protein kinase D 

[27]. S1P generated in the nucleus has the potential to regulate gene expression (see 4 

Intracellular targets of S1P and novel roles of sphingosine kinases). 

 

Both enzymes are expressed as multiple spliced variant forms although the functional 

significance of this is yet to be fully established.  In general, studies of SK employ the shortest 

isoforms (SK1a, NM_001142601, 384 amino acids and SK2a, AF245447, 654 amino acids) and 

it should be borne in mind that these might not necessarily be the most physiologically relevant 

forms in a particular cell system studied.  Interestingly, the 36 amino acid N-terminally extended 

SK2b isoform has higher catalytic activity, using FTY720 and sphingosine as substrates, 

compared with the SK2a isoform, indicating that the N terminus may contribute to a 

conformation with improved catalytic activity [28].  Moreover, SK1b (which contains an 

additional N-terminal 86 amino-acids) is more resistant to removal from cells via the proteasome 

(compared with SK1a).  For example, the treatment of androgen-sensitive LNCaP cells with a 

catalytic inhibitor of SK1, SKi (SKI-II, 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole) [29], 

induced the proteasomal degradation of SK1a and SK1b, accompanied by a reduction in S1P 

and an increase in sphingosine and C22:0 and C24:0 ceramides, and induction of apoptosis 

[30].  A similar proteasomal degradation of SK1a was observed in androgen-independent 

LNCaP-AI cells whereas SK1b was resistant (possibly due to a compensatory increase in SK1b 

mRNA levels), associated with a lack of increase in C22:0 and C24:0 ceramides and resistance 

to apoptosis [30, 31].  These studies suggest distinct functional roles for SK1a and SK1b and 
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support the concept that SK1b might play a more prevalent role in the acquisition of chemo-

resistance in cancers.  Sensitivity to apoptosis can be restored to these cells by either using the 

allosteric inhibitor, (S)-FTY720 vinylphosphonate [32] or by combined treatment with SK1 siRNA 

(to prevent mRNA translation of SK1a and significantly, SK1b) and SKi [30].  Stabilisation of 

SK1b might also be afforded by competing acetylation at a GK rich motif (GGKGK), thereby 

preventing its ubiquitination and thus, evasion from the proteasome [33].  If this was the case, 

the N-terminal extension of SK1b would have to render the GGKGK motif more accessible in 

SK1b as it is common to both SK1a and SK1b isoforms.  It is also possible that other potential 

post-translational modifications of the N terminal extension of SK1b provide protein stabilisation.  

Alternatively, the N terminal extension of SK1b could provide distinct protein/protein interaction 

sites that allow it to evade the proteasome and/or to regulate non-overlapping signaling 

pathways compared with SK1a.  SK1 interacts with a number of proteins [19] and recent studies 

have demonstrated that SK1a and SK1b can form complexes with different proteins to 

potentially affect distinct cell biology.  For instance, protein phosphatase 2A was identified as a 

SK1a-interacting protein whereas allograft inflammatory factor 1-like protein, the latent-

transforming growth factor く-binding protein, and dipeptidyl peptidase 2 were found to associate 

exclusively with SK1b [34]. 

 

3. S1P receptors and S1P release 

S1P-specific G protein-coupled receptors, S1P1-S1P5 [35, 36] have specific physiological roles, 

such as in the cardiovascular, immune and nervous systems in the modulation of vascular 

barrier integrity, vascular tone and trafficking of lymphocytes, respectively [37].  However, S1P 

receptors also participate in the pathophysiology of autoimmunity, inflammatory diseases and 

cancer.  Therefore, the S1P receptor family is of significant therapeutic interest.  Indeed, a 

sphingosine-like molecule, FTY720 (or fingolimod, formulated as GilenyaTM), is being exploited 

therapeutically as the first oral treatment for relapsing and remitting multiple sclerosis.  This pro-

drug is phosphorylated by SK2 and the resulting FTY720-phosphate is released from cells to 

agonise S1P receptors (S1P2 being an exception).  Chronic exposure to FTY720 (acting as 
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FTY720-phosphate) down-regulates S1P1, thereby limiting S1P1-mediated inflammatory T cell 

invasion of the CNS and ameliorating symptoms of multiple sclerosis. FTY720 also reduces 

astrogliosis and supports nerve remyelination and recovery [38].  

 

There is intense interest in developing receptor selective agonists/antagonists and an S1P-

sequestering monoclonal antibody, some of which are in clinical trials [39].  The design of 

receptor-selective small molecules has been spurred on by elucidation of the crystal structure of 

S1P1, in complex with an antagonist, which suggests that S1P accesses the binding pocket of 

the receptor by lateral movement within the plane of the lipid bilayer and between two 

transmembrane helices [40].  Sources of extracellular S1P in plasma include platelets (which 

lack S1P lyase), erythrocytes and vascular endothelial cells.  The manner in which S1P is 

released differs between these cell types.  For example, platelets require activation and employ 

distinct calcium-dependent and ATP-dependent transporters of S1P whereas erythrocytes, 

which are a major source of S1P, constitutively release S1P in an ATP-dependent manner, 

likely involving an ABC type transporter [41].  In contrast, the Spns2 transporter passively 

exports S1P from vascular endothelial cells [42] (reviewed in [43]).  Indeed, Spns2 knockout 

mice exhibit protection from inflammation in a number of disease models including airway 

inflammation, colitis, arthritis and experimental autoimmune encephalopathy (EAE), suggesting 

that inhibitors of Spns2 may be useful in the treatment of inflammatory diseases [44].  S1P is 

associated with carrier proteins, such as albumin and high density lipoprotein (HDL) (Fig. 2).  

Interestingly, Apom-/- mice have been used to demonstrate that the proportion of circulating S1P 

that is bound to ApoM in high density lipoprotein, rather than to albumin, is dispensable for 

lymphocyte trafficking yet restrains lymphopoiesis through a S1P1-mediated effect on bone 

marrow lymphocyte precursor cells [45].  Additionally, S1P1 signaling in endothelial cells is more 

sustained in response to HDL-bound S1P compared to that of albumin-bound S1P [46].  This 

appears to be associated with entrapment of the HDL-bound S1P-S1P1 receptor at the plasma-

membrane with selective and distinct signaling, resulting in attenuation of TNFg-induced 

activation of NF-せB and ICAM-1 expression.  In contrast, albumin-bound S1P-S1P1 receptor is 
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internalised and operates via endocytosed Gi-mediated signaling [47].  The entrapment of HDL-

bound S1P-S1P1 receptor at the plasma membrane suggests that this ligand bound form of the 

receptor might be associated with an accessory protein that prevents its endocytosis and 

therefore originates a plasma membrane-directed S1P1 receptor signaling programme, which is 

anti-inflammatory.  Therefore, distinct pools of plasma S1P exist, with differing physiological 

roles.  This raises the possibility of targeting these distinct ligand-bound S1P1 receptor pools for 

therapeutics.  Indeed, it has been shown previously that the signaling from S1P1 can be 

specified by its formation with other proteins in a complex, such as the platelet-derived growth 

factor receptor β (PDGFRβ) [48].  S1P1-PDGFβ receptor complex function involves, Gi, β-

arrestin and PDGFRβ tyrosine kinase activity as multipliers of signal output from the complex 

and these signalosomes are retained in endosomes to regulate the ERK pathway in the 

cytoplasm to promote cell migration [49]. 

 

Further insight into the role of S1P pools and its specific receptor-mediated signaling will be 

facilitated by the recent development of two types of transgenic S1P1 reporter mice.  One of 

these employs a GFP expression reporter following activation of a S1P1/transcription factor 

fusion protein that is cleaved by a β-arrestin/protease fusion protein [50].  The other makes use 

of the differential internalisation of a competent S1P1/GFP fusion protein versus a non-binding 

S1P1:RFP fusion protein [51].  It is anticipated that these S1P1 reporter mice will allow the 

tissue-specific interrogation of S1P1 activation, including in disease models, and assessment of 

the relative amounts of local extracellular signaling S1P and whether this becomes deregulated 

in, for instance, vascular disease.  Additional S1P receptor sub-type-specific transgenic reporter 

mice could prove to be powerful tools in furthering our understanding of the different S1P 

receptors in health and disease. 
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4. Intracellular targets of S1P and novel roles of sphingosine kinases 

There are a number of intracellular target proteins of S1P which are differentially regulated by 

SK1 and SK2; likely due to the differential subcellular localisation of the two SK isoforms (see 

Table 1).  For example, SK1-derived cytoplasmic S1P acts as a cofactor for the E3 ligase 

activity of TNF receptor associated factor 2 (TRAF2) (which associates with and enhances SK1 

activity [52]), which catalyses the Lys63-polyubiquitination of the protein kinase RIP1.  RIP1 is a 

signaling platform in the NF-κB pathway [53] and regulates cell survival, inflammatory and 

immune responses.  In support of this, the interaction of TRAF2 with TRAF-interacting protein 

(TRIP) (which attenuates the E3 ligase activity of TRAF2 and thereby reduces pro-inflammatory 

cytokine production) reduces the binding of S1P to the TRAF2 RING domain [54].  However, the 

role of SK1 in TRAF2-NFκB signaling is controversial as others have obtained contrasting 

results.  For example, TNFα-mediated activation of NF-κB and cytokine production is unaffected 

in macrophages lacking both SK1 and SK2 [55].  In addition, TNFα-mediated NF-κB signaling 

was disrupted in keratinocytes devoid of TRAF2 but unaffected in the absence of SK1 [56] and 

siRNA knockdown of SK1 was without effect on TNFα-stimulated activation of NF-κB, nuclear 

translocation of p65/RelA or NF-κB-mediated transcription in HeLa cells [57]. 

 

Recently, a novel role for SK1/S1P in regulating correct endosomal processing/endocytic 

signaling and neurotransmission has been reported [58].  Artificially altering the 

cholesterol/sphingomyelin balance in the plasma membrane induces the formation of clusters of 

narrow endocytic tubular invaginations that are positive for N-BAR proteins. SK1 is co-localised 

in these tubules (and, physiologically to early endosomes and enriched in exocytotic and 

endocytotic compartments in nerve terminals) by interaction of a hydrophobic patch on the 

enzyme surface in a curvature-sensitive manner with the lipid bilayer.  Moreover, knockdown of 

SK1 produces endocytic recycling defects and only wild type SK1, but not a hydrophobic patch 

mutant V268Q-SK1, rescued loss-of-function mutant neurotransmission defects [58].  The role 

of SK1 in regulating endosomal signaling might impact currently held views concerning ‘inside-
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out’ signaling [59].  Thus, internalisation of constitutively active S1P receptor (i.e. in the absence 

of bound S1P ligand) might be facilitated by curvature-sensitive SK1 endosomal regulation 

without necessity for the release of S1P from cells or binding of S1P to S1P receptors at the cell 

surface. 

 

Intracellular S1P can affect gene expression.  For example, nuclear SK2 is in a repressor 

complex with histone H3 and histone deacetylase 1 and 2 (HDAC 1/2) at the promoters of 

genes such as the cyclin-dependent kinase inhibitor p21 and the transcriptional regulator c-fos.  

The resulting S1P inhibits HDAC 1/2, thereby sustaining histone acetylation at specific lysine 

residues and enhancing transcription of, for example, p21 and c-fos [60].  Nuclear SK2-

phosphorylated FTY720 is reported to similarly inhibit HDAC and, acting independently of S1P 

receptors, can suppress breast cancer development, restore oestrogen receptor alpha (ERα) 

expression and increase therapeutic sensitivity to tamoxifen in mouse models of breast cancer 

[61].  Recently, cytoplasmic S1P has been suggested to bind to the transcription factor, 

peroxisome proliferator-activated receptor gamma (PPARγ), thereby recruiting the PPARγ co-

activator (PGC1β) and enhancing expression of PPARγ target genes in endothelial cells [62].  

Thus, addition of exogenous S1P enhanced the expression of plasminogen-activated inhibitor-1 

and PGC1β in a receptor-independent manner.  In addition, S1P was shown to directly bind to 

PPARγ in vitro and mutation of His323 (predicted to hydrogen bond with the phosphate head 

group of S1P by in silico docking with the ligand binding domain of PPARγ) reduced binding of 

PPARγ to a S1P-affinity matrix and decreased S1P-induced PPARγ activation when expressed 

in cells.  S1P-regulation of PPARγ was suggested to be involved in vascular development, 

which is reduced in Sk1-/-/Sk2+/- mice, and may be targeted therapeutically to manipulate 

neovascularisation.  However, the identity of the SK isoform responsible for the S1P-dependent 

regulation of PPARγ remains to be identified.   
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At the mitochondria, SK2-derived S1P binds to the predominantly inner mitochondrial 

membrane protein, prohibitin 2 (PHB2), which regulates mitochondrial assembly and function. 

Depletion of SK2 or of PHB2 results in dysfunctional mitochondrial respiration at the level of 

cytochrome-c oxidase (complex IV of the electron transport chain) [63].  Moreover, the hearts of 

Sk2-/- mice are not protected from ischaemic injury by preconditioning, unlike wild type mice, 

and knockdown of SK2 or PHB2 or cytochrome c oxidase in cardiomyocytes similarly abolished 

cytoprotection by preconditioning [64].  These data suggest that interaction of mitochondrial S1P 

with homomeric PHB2 is important for cytochrome-c oxidase assembly, mitochondrial 

respiration and cytoprotection.  In contrast, SK2-derived S1P has been reported to cooperate 

with the mitochondrial protein, BAK, to affect mitochondrial outer membrane potential and 

cytochrome c release during apoptosis [65].  Therefore, the role of mitochondrial S1P may be 

cell context dependent. 

 

Interestingly, the phosphorylation of ezrin (of the ezrin-radixin-moesin family of adapter 

molecules, required for cancer cell invasion) in response to epidermal growth factor (EGF), 

requires SK2 and intracellular S1P2.  This intracrine action of intracellular S1P is supported by 

the failure of EGF to stimulate S1P release from cells and the inability of the S1P antibody 

sphingomab to inhibit phosphorylation of ezrin in response to EGF.  However, there is a 

requirement for SK2 and Spns2 [66] and it is possible that close proximity localization of Spns2 

with the S1P2 receptor might enable delivery of S1P to the receptor via lateral diffusion through 

the lipid membrane in endosomes.  This model raises the possibility that other S1P receptors 

may be similarly activated in endosomes and identifies new targets for therapeutic intervention 

in cancer. 

 

An additional role of SK2-derived S1P is the stabilisation of human telomerase reverse 

transcriptase (hTERT), the catalytic subunit of telomerase, which maintains telomeres and is 

often enhanced in activity in cancer cells (Fig. 3).  S1P, formed by SK2, binds to hTERT at the 

nuclear periphery in human and mouse fibroblasts. Computer modelling and mutagenesis 
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demonstrated that the C’3-OH of S1P binds with D684 in hTERT and that mutation of this 

residue or depletion of SK2 decreased hTERT stability, reduced telomere integrity and 

promoted senescence. The binding of S1P to hTERT prevents the interaction of hTERT with 

makorin ring finger protein 1 (MKRN1), an E3 ubiquitin ligase that tags hTERT for degradation.  

Importantly, wild type hTERT, but not S1P-binding deficient hTERT restores tumor growth when 

SK2 was pharmacologically inhibited.  S1P binding to hTERT was suggested to mimic its 

phosphorylation, which normally stabilises telomerase to enhance cell proliferation and tumor 

growth [67].  Therefore, targeting SK2 with inhibitors may be effective in cancer therapeutics to 

eliminate replicative immortality. 

The β-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1), which is the rate-

limiting enzyme for amyloid-β peptide (Ab) production, is also a target of intracellular S1P [68].  

S1P specifically binds to BACE1 and increases its proteolytic activity.  Moreover, BACE1 activity 

was decreased by either pharmacological inhibition of SK1/SK2 or knockdown of SK1 or SK2 

whereas overexpression of S1P degrading enzymes had the opposite effect.  Notably, SK2 

activity was upregulated in the brains of patients with Alzheimer’s disease and may be a 

potential therapeutic target in this disease. 

 

5. Sphingosine kinases in disease 

 

5.1 Role of sphingosine kinases in cancer 

5.1.1  Sphingosine kinase 1 

SK1 is functionally linked with some of the hallmarks of cancer.  For instance, the over-

expression of SK1 enhances the Ras-dependent transformation of fibroblasts into fibrosarcoma 

[69].  Indeed, K-RasG12V is a common mutation in cancer and, through SK1, increases the 

production of S1P and decreases ceramide levels. Over-expression of the K-RasG12V 

oncogene signaling promotes translocation of SK1 from the cytoplasm to the plasma membrane 
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via Raf/MEK/ERK signaling.  Indeed, constitutively active B-Raf or MEK1 activate SK1 [70].  

Therefore, SK1 can function within the context of oncogenic transformation.  SK1 activation and 

localization to the plasma membrane and subsequent activation of S1P2 by released S1P 

(‘inside-out’ signaling) also regulates transferrin receptor 1 (TFR1) expression [71].  This is 

important as inhibition of TFR1 prevents SK1-induced cell proliferation, survival and neoplastic 

transformation of NIH3T3 fibroblasts. Knockout of Sk1 or Sk2 also reduces tumor progression 

and high expression of SK1 and SK2 in tumors is associated with poor clinical prognosis in 

cancer patients (reviewed in [72]).  

 

SK1 is also functionally linked with inflammation and the subsequent development of cancer.  

Thus, S1P enhances colitis associated cancer via a malicious amplification loop involving SK1, 

S1P1, NFκB, STAT3 and IL-6 [73, 74].  Furthermore, inhibition/down-regulation of SK1 blocks 

the Warburg effect; a phenomenon where cancer cells are addicted to high rates of aerobic 

glycolysis for ATP production and anabolic metabolism [75].  SK1 is also be involved in the 

neovascularisation of tumors involving paracrine angiogenesis and lymphangiogenesis.  Thus, 

siRNA knockdown of SK1 in breast and glioma cancer cells reduced migration and tube 

formation in an experimental system where these cancer cells are co-cultured with vascular or 

lymphatic endothelial cells. S1P also induces endothelial cell sprouting in 3-dimensional 

collagen matrices [76].  Finally, cancer stem cells are recognised as being important in initiating 

cancer progression and SK1 via S1P3 and Notch signaling promotes cancer stem cell 

proliferation to increase tumorigenesis in nude mice [77]. 

 

There are many examples which provide additional evidence for a role of SK1 in cancer.  For 

instance, SK1 is overexpressed head and neck squamous cell carcinoma (HNSCC) (stages I-

IV).  The knockout of SK1 reduces S1P generation and decreases tumor incidence, multiplicity, 

and volume in 4-NQO-induced HNSCC carcinogenesis. This was associated with reduced cell 

proliferation, increased apoptosis and reduction in phosphorylated AKT levels [78].  SK1/S1P 

also prevents proteasomal degradation of Bcr-Abl1 protein to increase its stability.  Thus, siRNA 
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knockdown of SK1 in imatinib-resistant K562/IMA-3 cells, or Sk1-/- MEFs exhibit reduced Bcr-

Abl1 stability.  S1P formed by SK1 is released to act on the S1P2 receptor to inactivate PP2A 

and prevent dephosphorylation of Bcr-Abl.  Pharmacological intervention with the sphingosine 

like compound, FTY720 which inhibits SK1 and reactivates PP2A restores sensitivity to imatinib 

or nilotinib in primary CD34+ mononuclear cells obtained from chronic phase and blast crisis 

CML patients [79].  In addition, certain myeloproliferative neoplasms are characterized by the 

expression of the Jak2(V617F) oncogene, which inactivates PP2A.  Thus, reactivation of PP2A 

(and possibly inhibition of SK1) by FTY720 reduces Jak2(V617F) activity and decreases 

leukemic allelic burden and splenomegaly and increases Jak2(V617F) leukemic mice survival.  

The effects of FTY720 require a PP2A interacting protein SET K209. These findings are 

important in establishing an interplay between the S1P signaling pathway, SET2-PP2A and 

Jak2 in driving in myeloproliferative neoplasm [80].  SK1 is also involved in tumor-induced 

hemangiogenesis and lymphangiogenesis. Treatment of a murine model of breast cancer 

metastasis with the selective SK1 inhibitor SK1-I ((2R,3S,4E)-N-methyl-5-(4-pentylphenyl)-2-

aminopent-4-ene-1,3-diol (BML-258)) suppresses S1P levels, reduces metastases to lymph 

nodes and lungs, and decreases overall tumor burden.  Moreover, hemangiogenesis and 

lymphangiogenesis is inhibited by this SK1-I in the primary tumor and lymph nodes [81]. 

 

We have also shown that the siRNA knockdown of SK1 reduces S1P3 expression and ERK-1/2 

activation in response to S1P in MCF-7 breast cancer cells.  These findings indicate that SK1 

and S1P3 function in an amplification loop to promote ER positive breast cancer progression 

[82].  S1P binding to the S1P3 receptor also increases translocation of SK1 from the cytoplasm 

to plasma-membrane of MCF-7 cells, suggesting that there is a balance between intracellular 

and extracellular S1P that requires SK1 to function as a sensor to coordinate a tightly regulated 

cell migration response [82].  Recent evidence also provides a strong case for S1P functioning 

with the context of metastasis, which is responsible for mortality in cancer patients.  S1P formed 

systemically by SK1 rather than from tumor-derived S1P promotes metastasis. Thus, reduced 

systemic, but not tumor SK1 prevents S1P elevation, and inhibits TRAMP-induced prostate 
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cancer growth in TRAMP+/+ Sk1-/- mice, or lung metastasis of multiple cancer cells in Sk1-/- mice. 

The S1P formed by SK1 binds to the S1P2 receptor and prevents induction of the metastasis 

suppressor, Brms1 (breast carcinoma metastasis suppressor 1).  Thus, sequestration of 

systemic S1P with the anti-S1P monoclonal antibody, Sphingomab, attenuated lung metastasis 

and this was reversed by Brms1 knockdown [83].  In addition, the migration of melanoma cells 

is dependent of SK1 expressed in fibroblasts that are found in the stroma surrounding tumors.  

Indeed, local tumor growth and dissemination is enhanced more efficiently by co-injection of 

wild-type skin fibroblasts compared with fibroblasts from Sk1-/- mice [84, 85].  SK1 is also 

released as a catalytically active enzyme in vesicles shed by human breast carcinoma 8701-BC 

cells. The enzyme substrate sphingosine is present in shed vesicles where it is produced by 

neutral ceramidase. Shed vesicles are therefore a site for S1P production in the extracellular 

medium that can potentially drive metastatic conversion of tumor cells [86].  TGF-β also induces 

an increase in SK1 expression and this can be correlated with metastasis and increased viability 

of MDA-MB-231 cells, suggesting that TGF-β and the SK1/S1P axis might have a critical role in 

promoting metastasis [87].  SK1 is also involved in the acquisition of chemotherapeutic 

resistance.  For instance, osteoblastic-derived S1P induces resistance of prostate cancer cells 

to therapeutics including chemotherapy and radiotherapy.  Bone metastases from prostate 

cancer cells are associated with osteoblastic differentiation resulting in abnormal bone 

formation. S1P/S1P3 signaling is important during differentiation to mature osteoblasts and 

regulates expression of Runx2; a key transcription factor involved in osteoblastic maturation 

[88].    

 

In addition to promoting cancer progression, SK1 might also be associated with the 

development of oncogene tolerance dependent on the genetic background of the cancer.  In 

this context, SK1 functions in a protective role to reduce cancer cell migration.  For instance, 

human EGF receptor 2 (HER2) increases SK1 expression in estrogen receptor-positive (ER+) 

MCF-7 HER2 cells. SK1, in turn, limits HER2 expression in a negative-feedback manner. The 
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HER2-dependent increase in SK1 expression reduces p21-activated protein kinase 1 (p65 

PAK1) and ERK-1/2 signaling via a desensitisation/HER2 tolerance mechanism (Fig. 4). This is 

correlated with improved prognosis in patients who have a low HER1-3/SK1 expression ratio in 

their tumors compared to patients that have a high HER1-3/SK1 expression ratio [82].  

Therefore, therapeutic targeting of SK1 in cancer should be informed by stratification of patient 

populations in order to establish whether the nature of the biochemical functioning of the 

enzyme is conducive to intervention.  This contrasts with the interaction of HER2 with the S1P4 

receptor where there is a positive functional interaction to increase signaling gain resulting in 

enhanced activation in response to S1P [89].  This is of importance as HER2/ERK signaling has 

been linked with metastasis. 

 

5.1.2 Sphingosine kinase 2 

Treatment of various cancer cell lines with SK1 or SK2 siRNA elicited differential effects on p53, 

p21, ERK1, ERK2, FAK, and VCAM1.  These findings indicate that SK1 and SK2 exhibit non-

overlapping and non-redundant functions in tumor cells. Moreover, loss of SK2 from these cells 

produced stronger anti-cancer effects compared with the loss of SK1 [90].  ABC294640 (3-(4-

chlorophenyl)-adamantane-1-carboxylic acid (pyridin-4-ylmethyl)amide) is a SK2 selective 

inhibitor (Ki = 10 µM [91]) and exhibits no inhibition of SK1 activity at concentrations as high as 

100 µM (see 6 Sphingosine kinase inhibitors and Table 2).  ABC294640 treatment of early 

stage and advanced prostate cancer cells induces a reduction in Myc and androgen receptor 

(AR) expression. This corresponds with significant inhibition of growth, proliferation, and cell 

cycle progression. Oral treatment of mice with ABC294640 also reduced xenograft tumor growth 

[92].  However, there are recognised off-target effects of ABC294640 (see 6 Sphingosine kinase 

inhibitors), including promoting the ubiquitin-proteasomal degradation of SK1 [93]. 

 

The influence of SK2 on Myc is a common regulatory mechanism in a number of different 

cancers.  For instance SK2 has a role in B-cell acute lymphoblastic leukemia (B-ALL) by 



16 

 

influencing expression of Myc.  Knockout of Sk2 reduced leukemia development in a mouse 

model of ALL and pharmacologic inhibition extends survival of mice in xenograft models of 

human disease. The mechanism by which SK2 regulates Myc expression in leukemic cells may 

involve S1P-dependent inhibition of HDAC1/2 activity.  Thus, decreased levels of acetylated 

histone H3 within the Myc gene promoter were detected; significant as Myc is a prognostic 

marker of B-ALL disease progression and severity [94].  

 

Other SK2 inhibitors have been used to interrogate the role of SK2 in cancer.  For instance, (R)-

FTY720 methylether (ROMe) has a Ki = 16 µM [95] for SK2 inhibition and lacks activity against 

SK1 at concentrations as high as 100 µM [95].  ROMe induces the autophagic death of T-ALL 

cell lines (reversed by autophagy inhibitors but not apoptotic inhibitors) as evidenced by the 

accumulation of lipidated LC3-II) and patient lymphoblasts [96].  Significantly, ROMe also 

reduces phosphorylated AKT and c-Myc levels in T-ALL cells, which are prognostic markers for 

T-ALL disease progression [96].  These findings provide a rationale for targeting SK2 in T-ALL.  

This is further supported by the finding that SK2 inhibitor genetic signatures are correlated with 

publicly available gene expression datasets derived from paediatric ALL patients [94]. 

 

SK2 is also involved in enabling tumor cells to evade the immune system.  SK2 deficient MCF-7 

breast cancer cells display retarded growth in vivo and tumor associated macrophages are 

directed toward an anti-tumor phenotype exhibiting increased expression of pro-inflammatory 

mediators such as NO, TNFα, IL-12 and MHCII and a low expression of anti-inflammatory IL-10 

and CD206 [97].  These findings indicate that tumor SK2 might direct polarisation of 

macrophages toward an M2 phenotype, thereby allowing the cancer cells to evade M1 driven 

pro-inflammatory responses that impede cancer progression. 
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5.2 Role of sphingosine kinases in the cardiovascular system 

Hypoxia which induces pulmonary arterial hypertension is associated with increased expression 

of SK1 in human arterial pulmonary smooth muscle cells [98] and this might therefore underlie 

the mechanism for vascular remodelling in pulmonary arterial hypertension (PAH).  Indeed, SK1 

expression is increased in lungs from patients with PAH and Sk1-/- mice are protected from 

hypoxia-induced pulmonary hypertension [99].  The S1P formed by SK1 binds to the S1P2 

receptor to promote pulmonary arterial smooth muscle proliferation [99] (see Fig. 5).  A variety 

of cardiovascular diseases such as pulmonary hypertension lead to a compensatory adaptive 

increase in cardiac muscle mass e.g. hypertrophy.  However, this results in dysfunctional 

hypertrophy and the extensive apoptosis of cardiomyocytes, which results in heart failure and 

death [100]. Indeed, preventing apoptosis of cardiomyocytes is a major objective for the 

treatment of heart failure.   Other studies have shown that the SK1 inhibitor, PF-543 reduces 

post-myocardial infarction (MI) cardiac remodelling and dysfunction [101]. Moreover, inhibition 

of S1P lyase enhances cardiac remodelling and dysfunction. In addition, FTY720 (which down-

regulates S1P1 and also inhibits SK1 [32]) reduces cardiac SK1/S1P/S1P1 signalling and 

ameliorates chronic cardiac inflammation and cardiac remodelling and dysfunction in vivo post-

MI [101] (see Fig. 5).  Deletion of the Sk2 gene is also associated with a considerable increase 

in ischaemic reperfusion-induced injury and a reduction in the cardio-protective effect of 

ischemic preconditioning [102].  These findings suggest that SK2 exerts a beneficial function 

against heart failure.  Moreover, heart failure is associated with neurological deficits caused by 

cerebral vasoconstriction.  In this regard, TNFα via a SK1/S1P/S1P2 receptor-mediated 

mechanism enhances myogenic tone [103].  

 

SK1 also functions in the context of hyperoxia-dependent pathology.  For instance, SK1 

deficiency reduces hyperoxia-induced IL-6 accumulation and NADPH oxidase (NOX) 2 and 

NOX4 protein expression in lung.  Moreover, S1P stimulates ROS generation which is essential 

for the development of bronchopulmonary dysplasia [104].  SK1 is also involved in fibrotic 

disease.  Thus, S1P and SK1 expression levels are increased in patients with Idiopathic 
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pulmonary fibrosis (IPF) and S1P induces epithelial-mesenchymal transition via a mechanism 

involving the TGFβ-dependent regulation of S1P2/S1P3 and SMAD/RhoA signaling and which 

contributes to fibrosis [105]  

 

SK2 is also involved in thrombosis.  Thus, S1P levels are dramatically reduced in platelets from 

Sk2-/- mice and these platelets fail to secrete S1P and are less responsive to platelet 

aggregating agents.  Interestingly, Sk2-/- mice are protected from arterial thrombosis after 

vascular injury and significantly, exhibit normal bleeding times. However, other studies have 

reported that the loss of the Sk2 gene results in defective intravascular pro-platelet shedding at 

the final stage of thrombopoiesis and leading to thrombocytopenia [106]  

 

5.3 Role of sphingosine kinases in the central nervous system  

SK2/S1P has an important role in regulating the survival of the dopaminergic neurons, which is 

of relevance to the clinical development of Parkinson’s disease.  SK2 expression is markedly 

reduced in the substantia nigra region in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP)-induced Parkinson’s disease mouse model.  Interestingly, SK2 is localised 

predominantly in the mitochondria.  This might be significant as mitochondrial dysfunction is a 

feature of Parkinson’s disease.  Indeed, the inhibition of SK2 activity reduces the expression of 

PGC-1a (the coactivator of PPARγ), NRF-1 and mitochondrial transcription factor A (TFAM)-key 

genes involved in regulating mitochondrial function.  Inhibition of SK2 is associated with an 

oxidative stress response, which could be protected against by addition of exogenous S1P 

which acts via the S1P1 receptor [107].  

 

There is also evidence for a role for SK1 and SK2 in Alzheimer’s disease (AD).  Amyloid-く (Aく) 

induces neuronal apoptosis, a key step in the pathogenesis of AD.  Interestingly, beta-amyloid 

peptide fragment 25-35 (Aく25-35) toxicity is associated with a marked down-regulation of SK1 

expression.  Toxicity is due to reduced expression of pro-apoptotic Bax and enhanced 
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expression of anti-apoptotic Bcl2 and is protected by over-expression of SK1 [108].  Moreover, 

others have reported that siRNA knockdown of SK1 expression increases Aく load and worsens 

learning and memory ability in APP/PS1 mice [109].  In contrast, SK2 activity is up-regulated in 

brains from patients with AD and S1P formed by SK2 binds to full-length BACE1 and increases 

its proteolytic activity [68].  These findings suggest that intracellular S1P formed by SK2 directly 

modulates BACE1 activity and increases formation of toxic Aく.  SK activity is also reduced in 

Niemann-Pick type C disease (NP-C) patient fibroblasts and NP-C mouse Purkinje neurons due 

to defective vascular endothelial growth factor (VEGF) formation [110]. 

 

SK2 is also involved in nociception. Mice deficient in Sk2 exhibit substantially lower spinal S1P 

levels compared to wild-type C57BL/6 mice.  These mice demonstrate facilitation of nociceptive 

transmission during the late response in a formalin model of acute peripheral inflammatory pain. 

Chronic peripheral inflammation increased the relative mRNA expression of P2X4 receptor, 

brain-derived neurotrophic factor and inducible nitric oxide synthase in the ipsilateral spinal cord 

of wild-type but not in Sk2-/- mice [111]. 

 

5.4 Role of sphingosine kinases in inflammation 

SK1 has a pro-inflammatory role in cancer [73] and rheumatoid arthritis [112] but exerts a 

protective role on neuro-inflammation [113].  We therefore consider that rather than initiating 

inflammatory responses, SK1 functions to exert a modulatory role in a disease-specific manner.  

SK1 has been linked with the TNFα-dependent regulation of the NFκB which induces pro-

inflammatory mediators.  For instance, SK1 bind to TRAF-2 (purported to be a ring finger E3 

ligase) and S1P directly binds to and activates TRAF2 E3 ligase activity to catalyse the lysine-

63-linked polyubiquitination of RIP1, which functions as a signaling platform for recruitment and 

phosphorylation of IκB kinase, IκB degradation and NF-kappaB activation. These findings lead 

to the proposal that the regulation of K63 polyubiquitination by SK1/S1P represents a novel 

signaling paradigm in inflammation [53].  Indeed, IRF1 (interferon-regulatory factor 1) undergoes 
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a Lys63 (K63)-linked polyubiquitination mediated by the apoptosis inhibitor cIAP2 and S1P.  

This involves the formation of an activated complex between cIAP2, SK1 and IRF1 in response 

to IL-1 [114].  However, others have obtained results that dissociate SK1 from TRAF2-NFκB 

signaling.  Thus, macrophages deficient in both Sk1 and Sk2 do not display defects in TNFα-

mediated activation of NFκB or inflammatory responses [55].  Indeed, the only observable 

change is enhanced autophagic markers.  Moreover, the loss of SK1 potentiates induction of 

the chemokine RANTES which is regulated by TNFg via the NFせB pathway.  TNF-induced IKK 

phosphorylation, IせB degradation, nuclear translocation of NFせB subunits and transcriptional 

NFせB activity were not altered by the loss of SK1.  Therefore, SK1 exhibits an anti-inflammatory 

role as loss of SK1 ablates TNF-induced phosphorylation of p38 MAPK and increases RANTES 

and multiple chemokines and cytokine levels [57].  In addition, administration of the SK1 

inhibitor, PF-543 to mice increased disease progression in the EAE model of multiple sclerosis 

and this was associated with a considerable increase in the infiltration of CD4+ T-cells, CD11b+ 

monocytes and F4/80+ macrophages in the spinal cord.  These findings indicate that SK1 

functions in an anti-inflammatory manner, rather than a pro-inflammatory context in EAE [115].   

In contrast, Sk1 deficient mice are protected against development of TNFg-induced arthritis 

indicating that SK1 functions in a pro-inflammatory manner in this disease [112].  Genetic 

elimination of Sk2 did not significantly impact the severity or progression of inflammatory 

arthritis, while pharmacologic inhibition of SK2 with ABC294640 induced more severe arthritis. 

The authors concluded that SK2 functions in an anti-inflammatory role in this disease and 

therefore therapeutic approaches require isoform specific inhibitors in order to target SK1 [116]. 

 

SK2 also functions in the context of inflammation and graft injury after liver transplantation. 

Hepatic S1P levels are increased after liver transplantation and this can be abrogated by 

inhibition of SK2 activity with ABC294640.  The anti-inflammatory mechanism of SK2 involves 

reduced TLR4 expression, NF-せB activation, pro-inflammatory cytokine/chemokine production, 

adhesion molecule expression, infiltration of monocytes/macrophages and neutrophils, focal 
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necrosis and apoptosis.  ABC294640 also promotes survival from 25% to 85% and therefore 

this enzyme has been proposed to be a new therapeutic target for liver graft failure [117]. 

 

5.5 Role of sphingosine kinases in diabetes 

Dysfunction of the endoplasmic reticulum (ER) leads to an unfolded protein response (UPR), 

aberrant lipid biosynthesis and insulin resistance. ER stress activators such as tunicamycin and 

lipopolysaccharides increase SK2 expression via an activation transcription factor 4 (ATF4)-

dependent mechanism.  Hepatic accumulation of lipid droplets by high fat diet is also reduced 

by the SK2-mediated up-regulation of fatty acid (FA) oxidizing genes and increased FA 

oxidation in liver. In addition, glucose intolerance and insulin resistance are reduced by 

improved hepatic insulin signaling in cells over-expressing SK2 [118].  On the other hand, 

lipotoxicity-induced loss of islet β-cells in type 2 diabetes is modulated by SK1.  Thus, genetic 

loss of Sk1 results in diabetes, with a 3-fold reduction in insulin levels compared with the WT 

mice and a 50% reduction in high fat fed Sk1-/- mice.  The over-expression of a dominant 

negative form of SK1 also markedly promoted palmitate-induced cell death in MIN6 and INS-1 

く-cell lines [119]  Moreover, overexpression of WT SK1 in high fat fed mice exhibit increased 

SK1 expression in the skeletal muscle and this was associated with reduced ceramide levels.  

Ceramide has been shown to induce insulin resistance, and insulin sensitivity was improved in 

the skeletal muscle of mice over-expressing SK1.  Therefore perturbation of the sphingolipid 

rheostat by SK2/SK1 appears to enhance fatty acid metabolism and protection against 

ceramide-induced β-cell death [120].   

 

6.  Sphingosine kinase inhibitors 

As both SK1 and SK2 have been implicated in various diseases [3, 39]; see 5 Sphingosine 

kinases in disease), there has been a drive to generate small molecule inhibitors that could be 

developed as novel therapeutics (reviewed by [121]).  To date, a number of isoform-selective 
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sphingosine competitive SK inhibitors have been identified whereas few ATP-competitive 

inhibitors have been reported (Table 2). 

 

High potency (nanomolar) sphingosine competitive SK1-selective inhibitors include PF-543 

[122] and Genzyme 51 [123]; although there are no reports of the in vivo effects of the latter.  

PF-543 induces the proteasomal degradation of SK1a in vitro, thereby demonstrating target 

engagement [124] but fails to inhibit DNA synthesis [124] or to reduce cell viability in cancer 

cells [122].  The latter may be due to a failure to increase apoptotic ceramide species despite an 

observed reduction in S1P levels [122].  However, PF-543 has been used to support a role for 

SK1 in sickle cell disease, where blood S1P levels are elevated [125] and erythrocyte SK1 

activity is regulated by activation of the adenosine A2B receptor [126].  PF-543 reduced sickling 

of red blood cells in vitro and in vivo [125] and SK1 may therefore provide a potential 

therapeutic target in this disease.  Additionally, PF-543 has been shown to ameliorate cardiac 

remodelling following myocardial infarction where SK1/S1P/S1P1 participates in cardiac 

inflammation and dysfunction [101].  However, PF-543 exacerbates disease progression in an 

EAE mouse model of relapsing and remitting multiple sclerosis, indicating that SK1 serves a 

protective, anti-inflammatory role in this disease [115]. 

 

Sphingosine competitive SK2-selective inhibitors include ABC294640, K145, SLR080811 and 

ROMe, which all have micromolar potency and some of which exhibit limited selectivity for SK2 

over SK1 (see Table 2).  Of these, ABC294640, induces cell death through both apoptotic and 

autophagic pathways [91, 127] and has been employed in numerous disease models including 

cancer [91], rheumatoid arthritis [128] and ulcerative colitis [129].  Indeed, ABC294640 is in 

phase I clinical trials for pancreatic cancer, solid tumors and refractory/relapsed diffuse large B 

cell lymphoma.  Although ABC294640 reduces S1P levels in plasma [130] and in tumors [91], 

thereby supporting target engagement, this compound also has anti-oestrogenic effects as it 

binds to the oestrogen receptor where it acts as a partial antagonist [131].  Moreover, we have 

found that ABC294640 induces the ubiquitin-proteasomal degradation of SK1 in androgen-
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independent LNCaP-AI prostate cancer via a mechanism that is independent of SK2 inhibition 

and involving oxidative stress.  Therefore, some of the effects of ABC294640 might in fact 

involve SK1 [93] and/or other off-target effects.  K145 reduced S1P levels, inhibited growth and 

suppressed ERK/AKT signaling in U937 cells and inhibited tumor growth in vivo [132] but has 

not been further investigated.  SLR080811 reduces S1P in leukemia cells in vitro yet increases 

blood S1P levels in vivo [133].  This is consistent with the elevated blood S1P levels of Sk2 

knockout mice [21], which may be due to a compensatory increase in SK1 expression [73].  

However, it was recently reported that i/p injection of SK2-selective inhibitors induced a rapid 

increase in blood S1P due to a decrease in the clearance of S1P [134].  Sk2 knockout mice also 

exhibited a reduced S1P clearance, suggesting that SK2 may have an additional function other 

than simply generating S1P in cells [134].  ROMe ((R)-FTY720-methyl-ether) inhibits DNA 

synthesis in breast cancer cells [95], induces the autophagic death of leukemic cell lines [96] 

and enhances endothelial barrier integrity [135] in vitro and prevents disease progression in an 

EAE mouse model of relapsing and remitting multiple sclerosis (unpublished), which supports a 

pro-inflammatory role of SK2 in this disease. 

 

Dual SK1/SK2 sphingosine-competitive inhibitors include SKI-II [29] and Amgen 82 [136].  SKI-II 

inhibits human SK1 and SK2 with micromolar potency [137], induces the proteasomal 

degradation of SK1a in cells [30], indicative of target engagement, and has been used for co-

crystallisation with SK1 [138].  In vivo actions include the reduction of tumor volume [139], 

attenuation of bronchial hyper-responsiveness [140], inhibition of cerebral preconditioning [141] 

and exacerbation of atherosclerosis in low-density lipoprotein receptor deficient (LDL-R-/-) mice 

[142].  However, it is suggested to have off-target effects including the indirect inhibition of 

dihydroceramide desaturase activity, resulting in elevated levels of dihydroceramides [30, 143].  

Amgen 82, developed using the crystal structure of SK1 with bound SKI-II [138], inhibits both 

human SK1 and human SK2 with nanomolar potency [136] yet failed to reduce tumor cell 

viability except at supramaximal concentrations, despite lowering cellular S1P levels [137].  In 

the absence of information on changes in other sphingolipids, including 
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ceramides/dihydroceramides, it is unclear what the relevance of the lack of cytotoxicity is with 

these compounds or how this relates to the well-defined importance of SK1 in regulating cancer 

cell survival.  Indeed, off-target effects on other sphingolipid metabolising enzymes, thereby 

preventing increases in ceramides/dihydroceramides, cannot be excluded.  Although reducing 

plasma S1P levels by ~70% in mice, Amgen 82 failed to reduce tumor volume in a mouse tumor 

xenograft model in vivo [137], suggesting that circulating S1P does not determine tumor growth.  

Notably, however, Amgen 82 does not inhibit mouse SK2 [136] and inhibition of both SK1 and 

SK2 may be required to elevate apoptotic ceramides and/or induce cell death. 

 

Recent advances include the development of an ATP-competitive inhibitor, MP-A08, which 

inhibits both human and mouse SK1 and SK2 with low micromolar potencies (Table 2; [144]).  

This was developed using homology modelling of the predicted ATP-binding pocket of SK1, 

using the solved crystal structures of the related bacterial lipid kinases, DgkB [145] and YegS 

[146, 147] and in silico small molecule docking.  MP-A08 reduces cellular S1P levels, elevates 

cellular ceramides, sphingosine and dihydrosphingolipids, induces apoptosis, and inhibits cell 

proliferation and colony formation in vitro.  Significantly, MP-A08 has minimal effect on 

apoptosis in SK1/SK2 double knockout mouse embryonic fibroblasts, thereby validating an ‘on-

target’ effect on SK1/2.  MP-A08 also has no significant inhibitory activity against a panel of 140 

kinases or against dihydroceramide desaturase. In vivo effects include the reduction of tumor 

burden, induction of tumor apoptosis, reduction in tumor S1P and inhibition of tumor 

angiogenesis [144].  Collectively, this data re-affirm the validity of targeting SK for therapeutic 

benefit in cancer.  The effect of MP-A08 has yet to be established in other animal disease 

models but is likely to prove very interesting in the future. 

 

To date, there are no high potency SK2-specific inhibitors.  However, with the solved crystal 

structures of SK1 in the absence and presence of SK inhibitors (SKI-II [138], PF-543 [148] and 

Amgen 23 [136]) and with ADP [138], and the crystal structures of related bacterial lipid kinases 

DgkB [145] and YegS [146, 147], it has been possible to define the sphingosine substrate 
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binding site (named the ‘J-channel’ due to its shape), the nucleotide binding site and detail of 

the interaction of sphingosine-competitive inhibitors [136, 138, 148] and an ATP-competitive 

inhibitor [144].  Such analysis can be used to inform on the design of isoform-selective inhibitors 

by identifying and exploiting key differences between SK1 and SK2 as a crystal structure for 

SK2 has yet to be reported.  For example, co-crystallisation of SK1 with the nanomolar SK1 

selective inhibitor, PF-543, established it to be buried in the enclosed sphingosine binding ‘J-

channel’ ([148], consistent with its relatively long Koff t1/2 of 8.5 minutes [122]) which has a 

funnel-like opening that positions the primary alcohol of sphingosine proximal to the γ-

phosphate of bound ATP. Lipid entry is thought to involve a tunnelling mechanism whereby 

substrate enters tail first [138].  A key aspartic acid (Asp178; Asp308 in SK2) contributed by 

helix-α7 and a water networked sub-pocket at the mouth of the J-channel engages the 2-amino-

3-hydroxyalkan-1-ol head group of sphingosine � or the 2-(hydroxymethyl)pyrrolidine subunit of 

PF-543 — both in their protonated states.  

 

The absence of a crystal structure for SK2 makes definitive rationalisation of the observed 

SK1/SK2-selectivity profiles of established Sph-competitive inhibitors challenging.  Sequence 

comparison does hint at some likely differences between the enzymes that may contribute to 

discriminatory behaviour however. Inspection of the available crystal structures, illustrated in 

Fig. 6 for PF-543, reveals that some 20 residues contribute to the direct ligand binding surface 

of the J-channel.  Of these, SK2 differs at only 3 locations in the direct hydrophobic contact 

surface of the binding site: these are Val304, Leu517 and Cys533 in SK2, corresponding to 

Ile174, Met272 and Phe288, respectively, in SK1.  Ile174 and Met272 are located at a pinch 

point in the throat of the J-channel; their substitution by Val and Leu respectively may make this 

region of the J-channel slightly wider in SK2 than in SK1.  Thus, inhibitors that exert steric 

demand in this locus may potentially exhibit SK2-over-SK1 selectivity.  Phe288 stoppers the toe 

of the J-channel; its replacement by Cys in SK2 is likely to result in a longer J-channel than in 

SK1 and may potentially also confer greater surface plasticity in that region of SK2 due to 
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loosened packing against adjacent hydrophobic residues. Increased length and steric demand 

in subunits targeted to the toe of the J-channel may potentially also confer SK2-inhibitory 

selectivity therefore.  Indeed, structure activity analysis based on the SLR080811 scaffold 

supports a larger lipophilic binding cavity in SK2 compared to SK1 [149].  A further residue 

difference — Met312 of SK1, corresponding to Phe557 in SK2 — does not contribute directly to 

the J-channel but is sufficiently close that its substitution (depending on side chain rotation) 

might lead to differences in the ligand contact surface proximal to the sulfone oxygens of SK1-

bound PF-543.  This raises the question of whether J-channel surface encroachment in SK2 at 

that site might contribute to the pronounced SK1-inhibitory selective of this compound.  Two 

other residue differences, Ala175 and Ala339 (corresponding to Ser305 and Thr584 in SK2), are 

also likely to have some indirect impact on ligand binding.  In the PF-543 co-crystal structure, 

the backbone carbonyl of Ala339 is seen to hydrogen bond to a key structural water, labelled 

W1 in Fig. 6 that bridges to the hydroxymethyl group of the inhibitor.  This hydroxymethyl, in 

turn, hydrogen bonds to the aspartate (Asp178) on helix-α7 that, together with W1, normally 

serves to bind the 3-OH group of Sph substrate.  The second alanine, Ala175, is located on 

helix-α7 one turn along from Asp178 and forms part of the packing surface of the helix against a 

く-sandwich core skeleton in the protein.  Substitution of the two alanines by Ser305 and Thr584 

in SK2 is likely to lead to some alteration in the positioning of helix-α7 and thence in the 

proximal surface of the J-channel and presentation of the Asp178-cognate residue (Asp308) in 

SK2.  In principle, the side chain of Ser584 might be able to hydrogen bond to either Asp308 or 

to Thr584.  Although difficult to predict the precise detail of these substitutions, it is noteworthy 

that a nearby phenylalanine (Phe173 in SK1, conserved as Phe303 in SK2) on helix-α7 

contributes to the van der Waals contact surface for the methyl substituent attached to the 

central arene ring of PF-543.  Thus, slight repositioning of helix-α7 might lead to surface 

encroachment in SK2 at the site occupied by the methyl group of the, which might also be a 

contributory factor in the observed SK1 selectivity of PF-543.  These considerations suggest 

that a detailed understanding of the J-channel surface contour properties and plasticity will be 
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important for optimising the development of high potency isoform-selective SK inhibitors in the 

future, and the emergence of a crystal structure for SK2 would undoubtedly assist in this goal. 

 

7. Summary 

In the last 5 years that have been major advances in understanding the role of S1P and 

sphingosine kinases in healthy and diseased cells.  Major advances have included a realisation 

that the S1P receptors can exhibit biased signaling that might be altered by formation of 

complexes with other signaling proteins and chaperones of S1P.  Sphingosine kinases play a 

key role in catalysing formation of S1P, which has also been shown to regulate essential cellular 

processes e.g. replicative immortality in cancer cells, by binding to intracellular target proteins 

such as tHERT.  Key advances in the future will be the use of transgenic animals expressing 

fluorescent tagged S1P receptors (work in this area has already been initiated), sphingosine 

kinases and other sphingolipid metabolising enzymes, to establish mechanisms regulating these 

enzyme/receptor systems in vivo.  In addition, resolution of the atomic structures of these 

receptors and enzymes will enable structure-activity directed optimisation of inhibitors/activators 

that can be developed as therapeutics.  SK1 and SK2 exhibit some non-overlapping functions, 

and therefore there is a need to develop potent isoform selective inhibitors/activators.  This is 

essential, as there is ample evidence to clearly demonstrate a role for S1P, SK1 and SK2 in 

many diseases, as highlighted in this review. 

 

Figure Legends 

Fig. 1.  Sphingolipid metabolic pathways.  Ceramides can be derived from de novo 

synthesis, via dihydroceramides, or from hydrolysis of sphingomyelin or breakdown of 

glycosphingolipids.  Ceramide, sphingosine and S1P are interconverted and S1P irreversibly 

cleaved to hexadecenal and phosphoethanolamine.  The biological activities (blue dotted 

arrows) of the various sphingolipids are summarised.  Enzymes, which occur as multiple 

isoforms, are shown in red (Des, dihydroceramide desaturase; CDase, ceramidase; CerS, 
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ceramide synthase; SK, sphingosine kinase; S1PP, S1P phosphatase) and have specific 

subcellular localisations (not shown). 

Fig. 2. ApoM-S1P regulation of anti-inflammatory signaling.  HDL-ApoM containing S1P 

activates the S1P1 receptor and, through β-arrestin-mediated signaling, induces a profound anti-

inflammatory action against TNF-driven biology [47].  Interestingly, the HDL-S1P-S1P1 receptor 

is retained at the plasma-membrane.  However, S1P is known to drive Gi and β-arrestin-

dependent endocytosis of the S1P1 receptor leading to, for instance, activation of ERK-1/2 [49].  

Therefore, we speculate that an anchor protein binds HDL-S1P-S1P1 to entrap the receptor with 

β-arrestin at the plasma-membrane and to drive plasma-membrane directed anti-inflammatory 

signaling.  These studies, along with previous identification of S1P1-PDGFβ receptor complexes 

[49] (which direct migratory as opposed to growth effects, in response to PDGF) highlight the 

complexities of S1P1 receptor signaling in directing different biological programmes in cells and 

identifies new avenues for future research and therapeutic targeting. 

Fig. 3.  Regulation of telomerase by SK2-derived S1P.  S1P produced by nuclear SK2 

interacts with Asp684 of the catalytic subunit of telomerase, hTERT.  This mimics hTERT 

phosphorylation, prevents its interaction with MKRN1 and limits the proteasomal degradation of 

hTERT.  The resulting telomerase activity maintains the telomere and cell proliferation.  

Fig. 4. Functional interaction between HER2 and SK1 in estrogen receptor positive breast 

cancer cells.  HER2 substantially increases SK1 expression which, in turn, is associated with 

suppressed expression of HER2 and ablated migration of estrogen receptor positive breast 

cancer cells in response to S1P.  S1P3 regulation of PAK1 and localisation of activated ERK-1/2 

in lamellipodia are associated with a migratory phenotype.  However, the HER2-dependent 

increase in SK1 drives a putative S1P-dependent down-regulation of PAK1, thereby limiting the 

formation of actin enriched lamellipodia containing activated ERK-1/2 leading to ablated 

migration.  We have described this phenomenon as oncogene tolerance to reflect how SK1 

function in breast cancer cells can be altered in a HER2 oncogenic background. 
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Fig. 5.  Role of SK1 in pulmonary arterial hypertension (PAH).  SK1 functions to promote 

arterial smooth muscle proliferation via an S1P2-dependent mechanism that involves STAT3 

and ERK-1/2 signaling [99].  Indeed, inhibition of SK1 or Sk1 knockout mice are protected from 

PAH and this can be recapitulated with an S1P2 antagonist.  We have also demonstrated that 

the SK1 inhibitor, PF-543, protects against dysfunctional right ventricular hypertrophy (N. 

MacRitchie, S. Pyne and N.J. Pyne (unpublished data)) in a hypoxia-induced mouse model of 

PAH.  These findings are similar to the protective effect induced by PF-543 on post-MI cardiac 

remodelling [101]. 

Fig. 6. Binding mode detail for the SK1-selective inhibitor, PF-543.   (A) The overall tertiary 

structure and binding site disposition is shown for the co-crystal structure (PDB: 4V24) of SK1 

(ribbon) with bound PF-543 inhibitor (green surface) [148].  The binding site for Mg-ATP is 

defined (brown sphere / pink surface) by superimposition of Mg-ADP from its co-crystal 

structure (3VZD) with SK1 [138].  The binding site for the nucleotide lies in the N-terminal 

domain of the protein; the Sph substrate binding site, here occupied by PF-543, is hosted by the 

C-terminal domain.  Mg marks the position of the catalytic centre at the junction of the two 

domains.  The lipid substrate binding site comprises a J-shaped hydrophobic tube, the ‘J-

channel’ that is formed by packing of three loops (cyan, yellow and salmon ribbon) against one 

face of a core く-sandwich substructure in the C-terminal domain.  The reverse face of the く-

sandwich is occupied by a fourth loop (light green) that fulfils a regulatory function.  Access to 

the Sph binding site is thought to involve opening and closure of the cyan-coloured loop 

encompassing helices g-7/ g-8.   (B) Detail is shown for SK1-bound PF-543 (green stick) with 

Mg (brown sphere) and ADP (pink stick) superimposed as in (A).  The polar head group of the 

inhibitor is bound to Asp178 and a structural water (W1) that is networked by hydrogen bonds to 

Ser168, Ala339 and Gly342.  The tail of the inhibitor is curved to fit the fully enclosed J-channel.  

Three key residues contributing to the direct ligand binding surface — Ile174, Met272 and 

Phe288 (red surface) — differ in SK2. Three others that are not in the direct binding surface — 

Ala175, Met312 and Ala339 — also differ. Collectively the residue substitutions alter the binding 
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site sufficiently in SK2 to abrogate binding, possibly through J-channel surface encroachment  

(green arrows) on the inhibitor proximal to the methyl and sulfone groups (see text).  
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Table 1  Intracellular target proteins of S1P 

Abbreviation Name Comments 

 

BACE1 
β-site amyloid precursor protein 
(APP) cleaving enzyme-1 

S1P increases the proteolytic activity of BACE1 (the rate-limiting enzyme for amyloid-β peptide 
(Ab) production) [68] 

HDAC1/2 
Histone deacetylase 1/2 SK2-derived S1P enhances expression of genes which have SK2/HDAC1/2 associated with 

their promoter [60] 
PHB2 prohibitin 2 SK2-derived S1P regulates mitochondrial assembly and function [63] 

PPARγ peroxisome proliferator-activated 
receptor gamma 

S1P enhances expression of PPARγ target genes [62] 

hTERT 
human telomerase reverse 
transcriptase 

SK2-derived S1P stabilises this catalytic subunit of telomerase by preventing its interaction with 
makorin ring finger protein 1 (MKRN1), an E3 ubiquitin ligase [67] 

TRAF2 

TNF receptor associated factor 2  S1P enhances TRAF2 E3-ligase activity [53] 
TNF receptor-associated factor (TRAF)-interacting protein (TRIP) suppresses the TRAF2-S1P 
interaction [54] 
But genetic knockout of SK1/SK2 [55] or SK1 [56] or siRNA knockdown of SK1 [57] reported to 

not affect TNF-α-mediated responses 
   

 

 



Table 2  Properties of selected sphingosine kinase inhibitors 

Inhibitor Chemical name Ki for SK1 Ki for SK2 Examples of in vivo use Comments 

Sphingosine competitive     
PF-543 (R)-(1-(4-((3-Methyl-5-(phenylsulfonylmethyl) 

phenoxy)methyl)benzyl)-pyrrolidin-2-
yl)methanol 

3.6 nM [122] 
 

>100 fold 
selectivity 
over SK2 

Reduces red blood cell 
sickling [125] and post MI 
cardiac remodelling 
[101]; exacerbates 
symptoms in EAE mouse 
model [115] 

No effect on cell 
proliferation [122]; 
induces proteasomal 
degradation of SK1 [124]  

ABC294640 (3-(4-chlorophenyl)-adamantane-1-carboxylic 
acid (pyridin-4-ylmethyl)amide) 

No inhibition 
at 100 µM 

10 µM [91] Efficacious in animal 
models of cancer [92], 
rheumatoid arthritis [128], 
ulcerative colitis [129] 
etc. 

Off-target effects include 
antagonism of ERg [131] 
and proteasomal 
degradation of SK1 [93] 

ROMe ((R)-
FTY720 
methylether) 

(2R)-2-Amino-3-(O-methyl)-(2-(4ガ-n-
octylphenyl)ethyl)propanol 

No inhibition 
at 100 µM 

16 µM [95] N.D.  

SLR080811 [(S)-2-[3-(4-octylphenyl)-1,2,4-oxadiazol-5-yl] 
pyrrolidine-1-carboximidamide] 

12 µM [133] 1.3 µM [133] Increases blood S1P in 
wildtype mice [133] 

 

K145  3-(2-amino-ethyl)-5-[3-(4-butoxyl-phenyl)- 
propylidene]-thiazolidine-2,4-dione 

No inhibition 
at 10 µM 

6.4 µM [132] Efficacious in animal 
model of cancer [132] 

 

SKi (SKI-II) 2-(p-hydroxyanilino)-4-(p-chlorophenyl) 
thiazole 

16 µM [29] 6.7 µM [29]  Also inhibits 
dihydroceramide 
desaturase (Ki 0.3 µM) 
[143] 

Amgen 82 (2R,4S)-2-(hydroxymethyl)-1-(4-((4-(4-
(trifluoromethyl)phenyl)thiazol-2-
yl)amino)phenethyl)piperidin-4-ol 

IC50 20 nM 
(hSK1) 
IC50 nM 
(mSK1) 

[137] 

IC50 114 nM 
(hSK2) 

IC50 >5 µM 
(mSK2) 

[137] 

Reduces plasma S1P but 
does not reduce tumor 
volume [137] 

Cell viability affected only 
at high concentrations 
[137] 

ATP competitive      
MP-A08 4-methyl-N-[2-[[2- [(4-methylphenyl) 

sulfonylamino]phenyl]iminomethyl] phenyl] 
benzenesulfonamide 

27 µM [144] 6.9 µM [144] Efficacious in animal 
model of cancer [144] 
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