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a b s t r a c t

The inverse Finite Element Method (iFEM) is a state-of-the-art methodology originally introduced by

Tessler and Spangler for real-time reconstruction of full-field structural displacements in plate and shell

structures that are instrumented by strain sensors. This inverse problem is commonly known as shape

sensing. In this effort, a new four-node quadrilateral inverse-shell element, iQS4, is developed that

expands the library of existing iFEM-based elements. This new element includes hierarchical drilling

rotation degrees-of-freedom (DOF) and further extends the practical usefulness of iFEM for shape sensing

analysis of large-scale structures. The iFEM/iQS4 formulation is derived from a weighted-least-squares

functional that has Mindlin theory as its kinematic framework. Two validation problems, (1) a

cantilevered plate under static transverse force near the free tip, and (2) a short cantilever beam under

shear loading, are solved and discussed in detail. Following the validation cases, the applicability of

the iQS4 element to more complex structures is demonstrated by the analysis of a thin-walled cylinder.

For this problem, the effects of noisy strain measurements on the accuracy of the iFEM solution are

examined using strain measurements that involve five and ten percent random noise, respectively.

Finally, the effect of sensor locations, number of sensors, the discretization of the geometry, and the

influence of noise on the strain measurements are assessed with respect to the solution accuracy.

� 2016 The Authors. Publishing services by Elsevier B.V. on behalf of Karabuk University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Structural health monitoring (SHM) is a procedure that obtains

precise real-time information from a structure regarding its global

or local structural state. The main objective of SHM is the detection

of unusual structural behaviors, which pinpoint failure or an

unhealthy structural condition [12]. Detection of an unhealthy

condition not only contributes to the detailed inspection plan of

the structure, but also reduces uncertainty concerning the struc-

ture that is being monitored. The exercise of SHM serves to both

increase human and environmental safety while at the same time

reducing maintenance costs. As a consequence, it is necessary to

develop a SHM system that uses the measured data obtained from

the on-board sensors for any type of practical engineering applica-

tions such as bridges, ships, aerospace vehicles etc.

Dynamic tracking of the three-dimensional displacement field

of a structure, known as ‘‘shape sensing”, is essential to the SHM

procedure. Tessler and Spangler [33] indicated that full-field struc-

tural deformations, strains and stresses can be reconstructed from

the strain data obtained from a network of on-board strain sensors

located at various sites of a structure. A regularization term which

guarantees a confident smoothness degree to solve this inverse

problem was introduced by Tikhonov and Arsenin [35] and most

of the inverse methods use some type of Tikhonov’s regularization

(refer to [19,21,20,24] and references therein).

Many shape sensing studies have been performed to solve the

bending problem of a beam. Davis et al. [7] regenerated a simple

static-beam response from a set of discrete strain data by using

optimized trial functions and weights. Their approach requires

many trial functions and strain sensors when more complicated

deformations are predicted. Kang et al. [16] reconstructed the

response of a beam, which was subjected to dynamic excitation,

by using vibration mode shapes. Since their approach calculates

the modal coordinates by using the strain–displacement relation-

ship matrix and measured surface strain measurements, the

number of estimated mode shapes is restricted only to the number
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of strain sensors placed on the beam. Based on the classical beam

theory, Kim and Cho [17] and Ko et al. [18] integrated discretely

measured strains to calculate the continuous beam deflection.

Kim and Cho [17] performed regression analysis of experimental

strain data to obtain a continuous strain curvature function that

leads to evaluation of the deformed shape of the beam. Ko et al.

[18] computed the deflection and cross-section twist of an aircraft

wing by using a load-independent method that approximates the

beam curvature with piece-wise polynomials. Derkevorkian et al.

[8] not only experimentally and computationally investigated

the shape-estimation methodology proposed by Ko et al. [18],

but also compared the methodology with the classical modal-

based estimation approach. Chierichetti [5] used a numerical

approach, called load confluence algorithm (LCA), to reconstruct

dynamic response of two beams connected with a nonlinear spring

by using the experimental measurements obtained from a few

locations. However, LCA requires a numerical estimation of a load-

ing case that corresponds to equivalent external loads applied to

the system, before the regeneration of the displacement field.

In addition to the studies concerning the shape sensing of beam

type structures, the real-time monitoring of plate structures has

been considered by several authors. Jones et al. [15] used a least-

squares formulation to solve the shape sensing problem of a

cantilever honeycomb plate under arbitrary loading conditions.

According to classical bending assumptions, the axial strain was

fitted with a cubic polynomial and integrated with the use of

approximate boundary conditions at the clamped end. Shkarayev

et al. [25,26] used an inverse interpolation formulation that

involves a parametric approximation of the loading and is based

on a least-squares algorithm. The methodology requires the recov-

ery of the applied loading based on spatial distribution functions,

and then reconstructs the displacement field. Bogert et al. [3]

discussed an inverse algorithm, which uses the deformation of

the structure and strain modes together with the discrete strain

data to regenerate the deformed shape of plates subjected to arbi-

trary static loading. Although numerically and experimentally

obtained results of their plate specimen agree well, this approach

requires the use of a large number of natural vibration modes.

Therefore, a computationally expensive eigenvalue analysis has

to be performed, especially if the method is implemented

using a high-fidelity mesh. Nishio et al. [22] used a weighted-

least-squares formulation to reconstruct the deflection of a

composite cantilever plate from measured strain data. It is difficult

to generalize their approach since the weighting coefficients in the

least-square terms are computed to resolve inherent errors in the

strain-sensor data by considering the given data-acquisition tool,

the load condition, and the test specimen.

Most of the aforementioned inverse methods do not take into

account the complexity of boundary conditions and structural

topology. Moreover, they also require adequately precise loading

and/or material information. Therefore, they are not powerful

enough for on-board SHM procedures. A new state-of-the-art

methodology named as the inverse Finite Element Method (iFEM),

which satisfies the necessities of a SHM procedure, was developed

by Tessler and Spangler [31,33]. The iFEM algorithm reconstructs

the structural deformations from experimentally measured strains

based on the minimization of a weighted-least-squares functional.

Unlike the other inverse methods, the iFEM methodology is

generally applicable to complex structures subjected to compli-

cated boundary conditions in real-time [33]. The iFEM framework

is precise, powerful and sufficiently fast for real-time applications

of any type of static and dynamic loading, as well as a wide range

of elastic materials since only the strain–displacement relationship

is used in the formulation [10,11]. A U.S. patent (US 8,515,675 B2)

is obtained for a system that performs shape sensing of a downhole

structure by using the iFEM methodology [27].

Based on iFEM and its shape-sensing analysis capability, the

structural domain can be discretized by beam, frame, plate, or shell

‘‘inverse” finite elements. The original iFEM development, by

Tessler and Spangler [32], used Mindlin (first-order shear deforma-

tion) theory to develop a robust and highly efficient three-node

inverse shell element (iMIN3) capable of modeling arbitrary plate

and shell structures. The predictive capability of the iMIN3

element was initially assessed on numerically generated strain

data, by Tessler and Spangler [32], but later was also demonstrated

using experimentally measured strains, by Quach et al. [23] and

Vazquez et al. [37]. Recently, Cerracchio et al. [4] and Gherlone

et al. [9–11] developed a computationally efficient inverse-

frame finite element based on the kinematic assumptions of

Timoshenko beam theory. Their iFEM applications are tailored

toward one-dimensional structures such as trusses, beams, and

frames. The shape-sensing analyses of three-dimensional frame

structures undergoing static or damped harmonic excitations used

both numerically generated and experimentally measured strain

data and showed superior predictive capabilities.

The main focus of this work is to expand the library of iFEM-

based inverse shell elements, which presently includes only

iMIN3, by developing a robust and computationally efficient

four-node quadrilateral inverse-shell element, iQS4. This new ele-

ment includes hierarchical drilling rotation degrees-of-freedom

(DOF) and further extends the practical usefulness of iFEM for

shape sensing analysis of large-scale structures. The iFEM formula-

tion is based on the minimization of a weighted-least-squares

functional utilizing Mindlin theory as its kinematic framework.

Several validation and demonstration problems are presented.

They are: (1) a cantilever rectangular plate subjected to bending

force, (2) a short cantilever beam under transverse shear loading,

and (3) a thin-walled cylinder. For this problem, the effects of noisy

strain measurements on the accuracy of the iFEM solution are

examined using strain measurements that involve five and ten

percent random noise, respectively. Experimentally measured

strains are simulated by strains obtained from a high-fidelity finite

element solution using an in-house finite element code. In addi-

tion, several types of discretization strategies are examined and

comparisons of the reconstructed iFEM and direct FEM displace-

ment solutions are provided. By exploiting the weighting constants

within the iFEM least-squares functional, it is confirmed that a

relatively accurate deformed structural shape can be reconstructed

in the absence of a large number of in-situ strain data. Finally,

the effects of sensor locations, number of sensors, the degree of

discretization refinement, and the influence of noise in the strain

measurements are assessed with respect to the solution accuracy.

2. Inverse finite element formulation for shells

2.1. Quadrilateral inverse-shell element

The four-node quadrilateral inverse-shell element, labeled iQS4,

is developed on the basis of a weighted-least-squares iFEM formu-

lation, and has six displacement DOF per node (refer to Fig. 1). The

beneficial aspects of this new element are such that, due to the

inclusion of drilling rotations, singular solutions can be simply

avoided when modeling complex shell structures and, moreover,

for membrane problems, iQS4 has less tendency toward shear

locking. The generic way to obtain the element formulation,

writing local membrane and bending matrices for a flat geometry

and adding them together, is followed because it is a satisfactory

approach in terms of iFEM methodology.

The first step is to define a set of convenient coordinate

frames of reference to guarantee the geometric uniqueness of the

assembled shell structure. A local coordinate system ðx; y; zÞ serves

as the element frame of reference, with its origin ð0; 0; 0Þ located at
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the centroid of the mid-plane quadrilateral. It is assumed that the

shell element has a uniform thickness 2h, and that z 2 ½�h;þh�

defines the thickness coordinate (refer to Fig. 1). With the element

nodes referred to the global coordinates ðX; Y; ZÞ, suitable transfor-

mation matrices defining the local to global transformations are

readily established in accordance with standard finite element

procedures to assemble element matrices into a global system of

equations (e.g., refer to [2]).

The ðx; yÞ reference plane of the iQS4 quadrilateral element

can be uniquely defined in terms of bilinear isoparametric shape

functions Niðs; tÞ and the element local nodal coordinates

ðxi; yiÞ ði ¼ 1� 4Þ, where s and t are dimensionless isoparametric

coordinates (refer to Fig. 2). The mapping functions can be

expressed as follows:

xðs; tÞ � x ¼
X

4

i¼1

Nixi ð1aÞ

yðs; tÞ � y ¼
X

4

i¼1

Niyi ð1bÞ

where the Ni shape functions are summarized in Appendix A. The

nodal DOF, consisting of positive x translations ui, positive y trans-

lations v i, and positive clockwise drilling rotations hzi, define the u

and v membrane displacements by

uðx; yÞ � u ¼
X

4

i¼1

Niui þ
X

4

i¼1

Lihzi ð2aÞ

vðx; yÞ � v ¼
X

4

i¼1

Niv i þ
X

4

i¼1

Mihzi ð2bÞ

where Li and Mi are the shape functions that define the interaction

between the hierarchical drilling rotation DOF and the membrane

displacements of the element. These shape functions have been

previously discussed by Cook [6]; their explicit forms are given in

Appendix A.

The transverse displacement and two bending rotations w, hx,

and hy are defined by the DOF of positive z translation wi and

positive counter clockwise rotations around the x- and y-axes, hxi
and hyi. These kinematic variables are interpolated using the

anisoparametric shape functions developed by Tessler and Hughes

[28] for a four-node quadrilateral plate element, MIN4 (Mindlin-

type, four-nodes). These interpolations are given as

wðx; yÞ � w ¼
X

4

i¼1

Niwi �
X

4

i¼1

Lihxi �
X

4

i¼1

Mihyi ð3aÞ

hxðx; yÞ � hx ¼
X

4

i¼1

Nihxi ð3bÞ

hyðx; yÞ � hy ¼
X

4

i¼1

Nihyi ð3cÞ

Utilizing Eqs. (2) and (3), the three components of the displace-

ment vector of any material point within the element can be

described as:

uxðx; y; zÞ � ux ¼ uþ zhy ð4aÞ

uyðx; y; zÞ � uy ¼ v � zhx ð4bÞ

uzðx; y; zÞ � uz ¼ w ð4cÞ

where ux and uy are the in-plane displacements and uz is the

transverse displacement (deflection) across the uniform shell

thickness.

The linear strain–displacement relations of linear elasticity

theory are given as

exx ¼
@ux

@x
¼

@u

@x
þ z

@hy

@x
ð5aÞ

eyy ¼
@uy

@y
¼

@v

@y
� z

@hx

@y
ð5bÞ

cxy ¼
@uy

@x
þ
@ux

@y
¼

@v

@x
þ
@u

@y
þ z

@hy

@y
�
@hx

@x

� �

ð5cÞ

cxz ¼
@uz

@x
þ
@ux

@z
¼

@w

@x
þ hy ð5dÞ

cyz ¼
@uz

@y
þ
@uy

@z
¼

@w

@y
� hx ð5eÞ

Note that the plane-stress assumption rzz ¼ 0 within the theory

implies that the transverse-normal strain ezz does not contribute to

the strain energy.

Introducing Eqs. (3) into Eqs. (5) results in the strain–

displacement relations expressed in terms of the element nodal

displacement vector, ue, as

exx
eyy
cxy

8

>

<

>

:

9

>

=

>

;

� eðueÞ þ zkðueÞ ¼ Bmue þ zBbue ð6aÞ

cxz
cyz

( )

� gðueÞ ¼ Bsue ð6bÞ

where

ue ¼ ue
1 ue

2 ue
3 ue

4½ �
T ð6cÞFig. 2. (a) Mid-plane (x,y)-reference surface and nodal coordinates of iQS4 element;

(b) parent element in isoparametric coordinates.

Fig. 1. (a) Four-node quadrilateral inverse-shell element, iQS4, depicted within

global (X,Y,Z) and local (x,y,z) frames of reference; (b) nodal degrees-of-freedom

corresponding to local (element) coordinates (x,y,z).

A. Kefal et al. / Engineering Science and Technology, an International Journal xxx (2016) xxx–xxx 3

Please cite this article in press as: A. Kefal et al., A quadrilateral inverse-shell element with drilling degrees of freedom for shape sensing and structural

health monitoring, Eng. Sci. Tech., Int. J. (2016), http://dx.doi.org/10.1016/j.jestch.2016.03.006

http://dx.doi.org/10.1016/j.jestch.2016.03.006


ue
i ¼ ui v i wi hxi hyi hzi½ �

T
ði ¼ 1;2;3;4Þ ð6dÞ

and where the matrices Bm, Bb, and Bs contain derivatives of the

shape functions (refer to Appendix B).

Since the membrane strains eðueÞ, are associated with the

stretching of the middle surface, the Bm matrix contains the deriva-

tives of the shape functions that are associated with the membrane

behavior. Moreover, the bending curvatures and transverse shear

strains are represented as kðueÞ and gðueÞ, respectively. Accord-

ingly, the Bb and Bs matrices contain the corresponding derivatives

of the shape functions that define the element bending response.

The expressions for Bm, Bb, and Bs are summarized in Appendix B.

2.2. Input data from in-situ strain sensors

Discrete in-situ strain measures that are obtained from

on-board sensors are crucial according to the iFEM formulation.

Conventional strain rosettes or embedded fiber-optic sensor

networks such as fiber Bragg grating (FBG) sensors can be used

to collect a large amount of on-board strain data. In order to

compute the reference plane strains and curvatures, the necessary

orientation of the in-situ strain rosettes on the surface of iQS4

elements is illustrated in Fig. 3.

The experimentally measured (in-situ) membrane section

strains eei and curvatures k
e
i that correspond to their analytic coun-

terparts, eðueÞ and kðueÞ given by Eq. (6), can be determined from

the measured surface strains at n discrete locations ðxi ¼ xi; yi;�hÞ

ði ¼ 1; . . . ;nÞ located within the element. These in-situ section

strains are computed as follows [33]

eei ¼
1

2

eþxx þ e�xx
eþyy þ e�yy
cþxy þ c�xy

8

>

<

>

:

9

>

=

>

;

i

ði ¼ 1;nÞ ð7aÞ

and

k
e
i ¼

1

2h

eþxx � e�xx
eþyy � e�yy
cþxy � c�xy

8

>

<

>

:

9

>

=

>

;

i

ði ¼ 1;nÞ ð7bÞ

where the measured surface strains are denoted by ðeþxx; e
þ
yy; c

þ
xyÞi

and ðe�xx; e
�
yy; c

�
xyÞi, with the superscripts ‘+’ and ‘�’ denoting the

quantities that correspond to the top and bottom surface locations,

respectively.

Although the experimentally measured surface strains can be

used to compute the in-situ membrane strains eei and bending

curvatures k
e
i , they cannot be directly used to calculate the

in-situ transverse shear strains gei . A smoothing procedure, called

the Smoothing Element Analysis [29,30], enables the first-order

derivatives of k
e
i to be accurately computed and subsequently used

to obtain the transverse shear strains gei . It is noted, however, that

in the deformation of thin shells, the contributions of gei are much

smaller compared to the bending curvatures k
e
i . Since most of the

practical engineering applications are generally suitable to be

modeled by using thin shells, the gei contributions can be safely

omitted in the iFEM formulation.

2.3. Weighted least-squares functional of inverse Finite Element

Method

The already defined iFEM reconstructs the deformed shape

of a discretized structure by minimizing a weighted least-

squares functional with respect to the nodal DOF of the entire

discretization. For an individual inverse element, this functional,

Ueðu
eÞ, accounts for the membrane, bending and transverse shear

deformations and is expressed according to [34] by

Ueðu
eÞ ¼ we eðueÞ � eek k

2
þwk kðueÞ � k

e�

�

�

�

2

þwg gðueÞ � gek k
2

ð8aÞ

The squared norms expressed in Eq. (8a) can be written in the

form of the normalized Euclidean norms

eðueÞ � eek k
2
¼

1

n

Z Z

Ae

X

n

i¼1

eðueÞi � eei
� �2

dxdy ð8bÞ

kðueÞ � k
e�

�

�

�

2
¼

ð2hÞ
2

n

Z Z

Ae

X

n

i¼1

kðueÞi � k
e
i

� �2
dxdy ð8cÞ

gðueÞ � gek k
2
¼

1

n

Z Z

Ae

X

n

i¼1

gðueÞi � gei
� �2

dxdy ð8dÞ

where Ae represents the mid-plane area of the element. The weight-

ing constants we, wk, and wg in Eq. (8a) are positive valued and are

associated with the individual section strains. They control the

complete coherence between the analytic section strains and their

experimentally measured values. Their proper usage is especially

critical for the problems involving relatively few locations of strain

gages. When every analytic section strain has a corresponding

measured in-situ value (eei , k
e
i , and gei ), the weighting constants

are set as we ¼ wk ¼ wg ¼ 1 in Eqs. (8b–d).

In the case of a missing in-situ strain component, the corre-

sponding weighting constant is set to be small, e.g., a ¼ 10�4, and

Eqs. (8b–d) take on the reduced form

eðueÞk k
2
¼

Z Z

Ae
eðueÞ

2
dxdy with ðwe ¼ aÞ ð9aÞ

kðueÞk k
2
¼ ð2hÞ

2

Z Z

Ae
kðueÞ

2
dxdy with ðwk ¼ aÞ ð9bÞ

gðueÞk k
2
¼

Z Z

Ae
gðueÞ

2
dxdy with ðwg ¼ aÞ ð9cÞ

where implementation of Eqs. (9) is performed on the component-

by-component basis.

Furthermore, iFEM also permits the use of ‘strain-less” inverse

elements – the type of elements that do not have any in-situ

section-strain measurements. For these ‘strain-less” elements, all

squared norms in Eqs. (9) are multiplied by the small weighting

constants we ¼ wk ¼ wg ¼ a ¼ 10�4. Therefore, an iFEM discretiza-

tion can have very sparse measured strain data, and yet the

necessary interpolation connectivity can still be maintained

between the elements that have strain-sensor data.
Fig. 3. Discrete surface strains measured by strain rosettes within iQS4 element at

xi ¼ ðxi; yi;�hÞ locations.
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By virtue of these assumptions, all strain compatibility relations

are explicitly satisfied so that Eq. (8a) can be minimized with

respect to the nodal displacement DOF, giving rise to

@Ueðu
eÞ

@ue
¼ k

e
ue � f

e
¼ 0 ð10aÞ

or simply

k
e
ue ¼ f

e
ð10bÞ

where k
e
is the element left-hand-side matrix, f

e
is the element

right-hand-side vector that is a function of the measured strain

values, and ue is the nodal displacement vector of the element.

The element k
e
matrix can be explicitly written in terms of the

Bm, Bb, and Bs matrices and their corresponding weighting

constants we, wk, and wg , and is given by

k
e
¼

Z Z

Ae
ðweðB

mÞ
T
Bm þwkð2hÞ

2
ðBbÞ

T
Bb þwgðB

sÞ
T
BsÞdxdy ð10cÞ

The f
e
vector is a function of the number of strain sensors

within the element as well as the measured section-strain values,

and is given by

f
e
¼

1

n

Z Z

Ae

X

n

i¼1

ðweðB
mÞ

T
eei þwkð2hÞ

2
ðBbÞ

T
k
e
i

þwgðB
sÞ

T
gei Þdxdy ð10dÞ

Once the element (local) matrix equations are established, the

element contributions to the global linear equation system of the

discretized structure can be performed as

K ¼
X

nel

e¼1

ðTeÞ
T
k
e
Te ð11aÞ

F ¼
X

nel

e¼1

ðTeÞ
T
f
e

ð11bÞ

U ¼
X

nel

e¼1

ðTeÞ
T
ue ð11cÞ

KU ¼ F ð11dÞ

where Te is the transformation matrix of the nodal DOF of an

element from the local to the global coordinate system, K is the

global left-hand-side matrix (symmetric matrix and independent

of the measured strain values), U is the global nodal displacement

vector, F is the global right-hand-side vector (function of the

measured strain values), and the parameter nel stands for the total

number of inverse finite elements.

The global left-hand-side matrix K includes the rigid body

motion mode of the discretized structure. Therefore, it is a singular

matrix. By prescribing problem-specific displacement boundary

conditions, the resulting system of equations can be reduced from

Eq. (11d) as

KRUR ¼ FR ð12Þ

where KR is a positive definite matrix (always non-singular), and

thus it is invertible. The solution of Eq. (12a) is very fast because

the matrix KR remains unchanged for a given distribution of strain

sensors and its inverse should be calculated only once during the

length of the monitoring process. However, the right-hand-side

vector FR is dependent on the discrete surface strain data obtained

from in-situ strain sensors. Hence, it needs to be updated during

any deformation cycle. Finally, the matrix–vector multiplication

K�1
R FR gives rise to the unknown DOF vector UR, which provides

the deformed structural shape at any real-time. By using the evalu-

ated displacement values, the continuous strain field throughout

the structure can be obtained. Furthermore, the constitutive rela-

tionship between stress and strain will allow determination of

stress distribution. Finally, a suitable failure criterion can be used

for damage detection as part of the SHM process.

3. Numerical examples

3.1. A cantilever plate under static transverse force near free tip

A rectangular cantilever plate subject to a static transverse force

applied near the free tip has a length of 0.254 m, a height of

0.0762 m, and a uniform thickness of 3.175 mm (refer to Fig. 4).

The plate is made of aluminum having an elastic modulus of

73.084 GPa and a Poisson’s ratio of 0.33. The concentrated force

of F = 25.728 N is applied in the negative z direction near the tip.

This plate was originally analyzed and then tested in a mechanics

laboratory by Bogert et al. [3]. Subsequently, Tessler and Spangler

[32] analyzed this plate configuration using the iFEMmethodology.

Using a relatively coarse iMIN3 discretization that has a single

strain rosette within each element, the authors obtained a highly

accurate reconstruction of the full-field displacement response.

In this first example, the above stated problem is analyzed once

again using the iFEM/iQS4 methodology to validate the present

element bending capability. There is no need to model the part

of the plate to the right of the applied force because it is free of

stress. Therefore, the following iFEM and direct finite element

method (FEM) models are defined over the domain X 2 ½0; a� and

Y 2 ½0; b� (refer to Figs. 4 and 5). To establish an accurate reference

solution, a convergence study was performed using direct FEM

analyses utilizing an in-house FEM code. The most refined mesh

consisted of 432 uniformly distributed square elements, possessing

2886 DOF. The FEM deflections and rotations are used to compute

the simulated strain-sensor strains.

To remain consistent with the work by Tessler and Spangler

[32], in the present iFEM analysis the same strain-rosette locations

are used. As depicted in Fig. 5, the iQS4 model has 28 rectangular-

shaped elements each having a single strain rosette. Except for

eight of the strain-rosettes (i.e., the first four which are near to

the clamped edge and the second four which are near to the

loading edge), the strain rosettes are placed at the centroids of each

iQS4 element. Since the material properties of the plate are

symmetric with respect to the mid-plane and the resulting

deformations are due to bending only, the strain distribution is

anti-symmetric with respect to the mid-plane and hence the strain

rosettes need only be positioned on one of the bounding surfaces

(in this case, the top surface) of the iQS4 elements.

In Figs. 6–8, contour plots for the transverse displacement and

two bending rotations are compared between the iFEM and high-

fidelity FEM analyses. The percent difference between the iFEM

and FEM predictions for the maximum deflection is only 0.4%; this

result is in close agreement with the predictions of Tessler and

Spangler [32]. Similar accuracy is evidenced for the maximum

bending rotations, with the percent difference of 0.3% for the

Y-rotation, and 1.5% for the X-rotation. Both the iFEM and direct

FEM contours are graphically indistinguishable in the figures.

These results also confirm the superior bending predictions of

iQS4, especially considering the low-fidelity mesh used in the iFEM

analysis.

3.2. A short cantilever beam under shear loading

The shear-loaded short cantilever beam has been used by

many authors, e.g., Allman [1], Ibrahimbegovic et al. [13] and
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Ibrahimbegovic and Wilson [14], to validate the membrane

response of new elements. Herein this problem is revisited to

assess the membrane capability of iQS4. The length L, the dimen-

sions a� 2h of the constant rectangular cross section, the elastic

modulus E, and the Poisson’s ratio v of the beam are given in

Fig. 9. The right edge of the beam is subjected to a shear loading

P, whereas the left edge of the beam is fully clamped.

According to Timoshenko and Goodier [36], the elasticity solu-

tion of the V displacement of the tip is

V ¼ 2PL3

Eha3
þ ð4þ5vÞPL

4Eah
¼ 9:025 mm for the properties described in

Fig. 6. Contour plots of W displacement: (a) iFEM analysis using 28 iQS4 elements and a single strain rosette per element; (b) direct FEM analysis.

Fig. 5. Plate discretization using 28 iQS4 elements and exact locations [mm] of strain rosettes.

Fig. 4. Cantilever plate under transverse force applied near free tip.
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Fig. 7. Contour plots of hY rotation: (a) iFEM analysis using 28 iQS4 elements and a single strain rosette per element; (b) direct FEM analysis.

Fig. 8. Contour plots of hX rotation: (a) iFEM analysis using 28 iQS4 elements and a single strain rosette per element; (b) direct FEM analysis.

Fig. 9. Short cantilever beam under shear loading at free edge.
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Fig. 9. To establish an accurate reference solution, a convergence

study was performed using direct FEM analysis. The highest

fidelity mesh has 1024 uniformly distributed square elements

and 2210 DOF. The maximum V displacement obtained from the

direct FEM analysis is approximately 9.042 mm which agrees well

with the analytical solution. These FEM deflections are used to cal-

culate the simulated in-situ strains.

Two different iFEM beam analyses are performed using varying

number of strain rosettes. Since the material properties and the

resulting membrane deformations of the beam are symmetric with

respect to the mid-plane, the strain rosettes can be placed on one

of the bounding surfaces (in this case, the top surface). In the first

example, the iQS4 model of the beam has 64 square-shaped

elements each having a single rosette as depicted in Fig. 10.

To investigate the effect of drilling rotation, the iFEM beam

analyses are performed by both including and excluding the

drilling rotation. In Fig. 11, contour plots for the V displacements

are compared between these two cases. The iFEM and direct FEM

analyses produce the maximum V displacement that differs only

by 0.5% when the drilling rotation is included; it is 6.2% when

the drilling rotation is excluded.

In the second example, the same problem is analyzed once

again using a coarser iQS4 discretization that has only 16 square-

shaped elements, each having a single-strain rosette as illustrated

in Fig. 12. To demonstrate the effect of drilling rotation on the

membrane response, contour plots of the V displacement are

shown in Fig. 13, where the results correspond to the cases of

including and excluding the drilling rotation. The iFEM and direct

FEM predictions for the maximum deflection are identical when

the drilling rotation is included in the iQS4 element formulation.

By excluding the drilling rotation, the maximum V displacement

is underestimated by 19.2%. These results demonstrate that iQS4

has a superior membrane-response capability when implemented

with the hierarchical drilling rotation. The formulation also

decreases the tendency toward membrane locking.

3.3. A thin-walled cylinder

In the previous examples, bending and membrane capabilities

of the iQS4 element have been assessed by way of simple plate

and beam problems. In many practical engineering applications,

however, more complicated structural topologies are common.

Herein, a thin-walled cylinder having radius of 1 m, length of 5 m

and uniform thickness of 20 mm is analyzed to demonstrate the

robustness of the iFEM/iQS4 methodology for modeling realistic

shell structures. The cylinder is made of steel having an elastic

modulus of 210 GPa and the Poisson’s ratio of 0.3. Both ends of

the cylinder are fixed in terms of translations and rotations and a

concentrated force F = 100 kN is applied at twelve different loca-

tions (refer to Fig. 14).

The prescribed boundary conditions and geometry are suitable

to take advantage of the symmetry planes. As shown in Fig. 15,

only one-eighth of the cylinder needs to be modeled while

applying the appropriate symmetry boundary conditions. The

translations along the normal axis and the rotations around

the in-plane axes are constrained for each symmetry plane. Thus,

the XY-plane symmetry conditions are imposed constraining the

translation along the Z-direction and the rotations around the

X- and Y-directions. To establish an accurate reference solution

for this problem, an FEM convergence study was carried out. The

highest fidelity mesh has 2400 uniformly distributed rectangular

elements and 15,006 DOF. The FEM deflections and rotations are

used to calculate the simulated strain-sensor strains. Then, three

different iFEM analyses of the cylinder were performed using three

different strain-rosette networks. Although the material properties

of the cylinder are symmetric with respect to the mid-plane, the

resulting deformations exhibit both stretching and bending

response due to the complexity of the structural topology. Hence,

the strain-rosettes have to be placed on both the top and bottom

surfaces of the cylinder.

In the first case study, the iQS4 discretization is identical to the

highest-fidelity mesh used in the direct FEM analysis. As presented

in Fig. 16, the iQS4 model has 2400 uniformly distributed rectan-

gular elements each having two strain rosettes, one on the centroid

of the top surface and the other one on the centroid of the bottom

surface.

To assess the global displacement and rotation response, it is

convenient to compute the total displacement, UT ,

UT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 þ V2 þW2

q

ð13Þ

and the total rotation, hT ,

hT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhXÞ
2 þ ðhY Þ

2 þ ðhZÞ
2

q

ð14Þ

where U, V , and W are the translations along the global X-, Y-, and

Z-axes, respectively, and hX , hY , and hZ are the rotations around the

global X-, Y-, and Z-axes, respectively.

In Figs. 17 and 18, the iFEM and FEM contour plots for UT and hT

are presented, showing the results that are graphically indistin-

guishable. The percent difference between the iFEM and FEM solu-

tions for the maximum values of UT and hT are respectively 1% and

0.06%.

Although the results of this case study are satisfactory, the

number of strain rosettes used may be considered too high for a

practical application. In the second case study shown in Fig. 19,

the top- and bottom-surface strain-rosettes are removed from

2160 iQS4 elements, with the resulting iQS4 mesh having only

240 � 2 strain rosettes. For an iQS4 element which has no in-situ

strain components, the corresponding weighting coefficients are

set to 10�4.

In Figs. 20 and 21, the contour plots for the UT displacement and

hT rotation are depicted for both the iFEM and high-fidelity FEM

analyses. The percent difference between the iFEM and FEM pre-

dictions for the maximum UT displacement is 3%, whereas it is only

Fig. 10. Short cantilever beam discretized using 64 iQS4 elements and exact locations [mm] of strain rosettes.
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Fig. 11. Contour plots of V displacement for short cantilever beam corresponding to iFEM analysis of 64 iQS4 element model: (a) drilling rotation included; (b) drilling

rotation excluded.

Fig. 12. Short cantilever beam discretized using 16 iQS4 elements and exact locations [mm] of strain rosettes.

Fig. 13. Contour plots of V displacement for short cantilever beam corresponding to iFEM analysis of 16 iQS4 element model: (a) drilling rotation included; (b) drilling

rotation excluded.
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0.5% for maximum total rotation. Remarkably, the iFEM contours

are almost identical to those of FEM. The iFEM predictions remain

sufficiently accurate even with the missing strain-rosette data in

many elements.

In the third case study, the iQS4 model of the cylinder has 160

uniformly distributed rectangular elements each having top- and

bottom-surface strain rosettes located as shown in Fig. 22. The

iFEM analysis is performed using the strain data obtained from

160 � 2 strain rosettes only.

In Figs. 23 and 24, the contour plots for the UT displacement and

hT rotation are presented for both the iFEM and high-fidelity FEM

analyses. According to the contour plots in Fig. 23, the percent

difference between the iFEM and FEM predictions for the maxi-

mum UT displacements is less than 1%. These results demonstrate

the superior accuracy of the iFEM/iQS4 capability even when very

coarse discretizations are used. Even though the percent difference

between the iFEM and FEM predictions for the maximum hT

rotation is approximately 29%, the iFEM and FEM contour plots

are generally in good agreement (refer to Fig. 24).

3.4. The effects of noisy strain measurements on the accuracy of the

iFEM solution

The iFEM/iQS4 methodology is ultimately aimed at real engi-

neering structures where the measured strains may be relatively

noisy. Therefore, to examine iFEM/iQS4 predictive capabilities in

the presence of noisy strain data, the thin-walled cylinder consid-

ered in the previous study is revisited herein. The iFEM analyses of

the cylinder are performed once again using strain data which have

5% and 10% of noise, respectively.

Signal-to-noise ratio (SNR) characterizes the relative strength of

a desired signal and background noise. The SNR describes the ratio

of the amplitude of the signal to the amplitude of the noise. Since

SNR is a dimensionless quantity and many signals can have a wide

dynamic range, SNR can be expressed on the logarithmic decibel

(dB) scale as

SNRdB ¼ 10log10

Psignal

Pnoise

� �

ð15Þ

where Psignal and Pnoise are respectively the average power of the

signal and noise. Eq. (15) indicates that a larger SNR typically results

in a less noisy measurement, whereas a smaller SNR results in a

more noisy measurement.

Using Eq. (15), SNR values corresponding to 5% noise and 10%

noise can be calculated as 13.01 dB and 10 dB, respectively. The

white Gaussian noise is added to the surface strain measurements

for each of the specified SNR values using the built-in function

awgn() in the Matlab/Octave toolbox. In Figs. 25 and 26, the top

surface strain measurements ðeþxxÞi with 0% noise are compared to

those with 5% and 10% noise. These comparisons show that the

added noise levels generate significant differences in the strain

measurements for each sensor.

Once the iFEM analyses of the thin-walled cylinder are

performed using strain data that include 5% and 10% noise levels,

percent difference between iFEM and direct FEM predictions for

UT displacement can be calculated for each node i as

PDðUTÞ ¼ PDi ¼
UiFEM

T;i � UFEM
T;i

UFEM
T;max

�

�

�

�

�

�

�

�

�

�

� 100% ð16Þ

where UiFEM
T;i is iFEM prediction for the UT displacement at node i,

UFEM
T;i is direct FEM prediction for the UT displacement at node i,

Fig. 14. Thin-walled cylinder under concentrated forces.

Fig. 15. One-eighth of thin-walled cylinder with symmetric boundary conditions.

Fig. 16. Discretization of one-eighth of thin-walled cylinder using 2400 iQS4

elements with top- and bottom-surface strain rosettes per each element.
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and UFEM
T;max is direct FEM prediction of the maximum UT displace-

ment. In Fig. 27, contour plots of PDðUTÞ, corresponding to the

model in Fig. 16, are shown for the strain data with the noise

levels of 0%, 5%, and 10%. The results clearly demonstrate the

superior accuracy of the iFEM solutions even when the in-situ

strain measurements include noise up to 10%. Moreover, the

mean-percent difference, MPD, and the root-mean-square differ-

ence, RMSD, comparing iFEM and FEM predictions for the UT

displacement, are calculated as

MPD ¼
1

Nn

X

Nn

i¼1

PDi ð17Þ

and

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PNn

i¼1 UiFEM
T;i � UFEM

T;i

	 
2

Nn

v

u

u

t

ð18Þ

where Nn is the total number of nodes. As shown in Table 1, MPD

and RMSD for the UT displacement for each iFEM/iQS4 model are

Fig. 17. Contour plots of UT displacement for thin-walled cylinder modeled in Fig. 16: (a) iFEM/iQS4 analysis; (b) direct FEM analysis.

Fig. 18. Contour plots of hT rotation for thin-walled cylinder modeled in Fig. 16: (a) iFEM/iQS4 analysis; (b) direct FEM analysis.

Fig. 19. Discretization of one-eighth of thin-walled cylinder using 2400 iQS4

elements with top- and bottom-surface strain rosettes located within 240 select

elements.

Fig. 20. Contour plots of UT displacement for thin-walled cylinder modeled in Fig. 19: (a) iFEM/iQS4 analysis; (b) direct FEM analysis.
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Fig. 21. Contour plots of hT rotation for thin-walled cylinder modeled in Fig. 19: (a) iFEM/iQS4 analysis; (b) direct FEM analysis.

Fig. 22. Discretization of one-eighth of thin-walled cylinder using 160 iQS4 elements with top- and bottom-surface strain rosettes located within each element.

Fig. 23. Contour plots of UT displacement for thin-walled cylinder modeled in Fig. 22: (a) iFEM/iQS4 analysis; (b) direct FEM analysis.

Fig. 24. Contour plots of hT rotation for thin-walled cylinder modeled in Fig. 22: (a) iFEM/iQS4 analysis; (b) direct FEM analysis.
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compared for the cases of 0%, 5%, and 10% noise levels for the strain

measurements. The results indicate that noisy strain measurements

have only insignificant effect on the accuracy of the iFEM solution.

4. Concluding remarks

A new four-node quadrilateral inverse-shell element (iQS4) has

been developed for shape-sensing analysis of plate and shell struc-

tures which have randomly distributed strain sensors. The element

formulation is based on a weighted least-squares variational prin-

ciple originally developed by Tessler and Spangler. The element

kinematic field accommodates quadratic interpolation functions

that permit a robust drilling degree-of-freedom implementation

that has the advantage of avoiding singular solutions when model-

ing complex shell structures. The formulation is also robust with

respect to the membrane and shear locking phenomena. Several

numerical studies have been performed and demonstrated the

computational efficiency, high accuracy and robustness of iQS4

discretizations with respect to the membrane, bending, and

membrane-bending coupled structural response. The practical util-

ity of the iFEM/iQS4 technology for application to engineering

structures has been assessed using relatively low- and high-

fidelity discretization strategies. The effects of sensor locations,

number of sensors, and inherent errors in the measured strain data

have also been explored. It has been demonstrated that even in the

presence of the relatively sparse strain data that are subject to

experimental noise, sufficiently accurate reconstruction of the

deformed structural shapes can be achieved.

Finally, the iFEM/iQS4 technology is readily implemented in any

general-purpose finite element code and represents a viable com-

putational tool for real-time structural health monitoring of gen-

eral plate and shell structures.
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Appendix A.

The shape functions Ni, Li, and Mi, which are used to describe

both membrane and bending capability of the iQS4 element as

given in Eqs. (2a–b) and (3a–c), are respectively defined as

N1 ¼
ð1� sÞð1� tÞ

4
ðA:1Þ

N2 ¼
ð1þ sÞð1� tÞ

4
ðA:2Þ

N3 ¼
ð1þ sÞð1þ tÞ

4
ðA:3Þ

N4 ¼
ð1� sÞð1þ tÞ

4
ðA:4Þ

N5 ¼
ð1� s2Þð1� tÞ

16
ðA:5Þ

N6 ¼
ð1þ sÞð1� t2Þ

16
ðA:6Þ

N7 ¼
ð1� s2Þð1þ tÞ

16
ðA:7Þ

N8 ¼
ð1� sÞð1� t2Þ

16
ðA:8Þ

and

L1 ¼ y14N8 � y21N5 ðA:9Þ

L2 ¼ y21N5 � y32N6 ðA:10Þ

L3 ¼ y32N6 � y43N7 ðA:11Þ

L4 ¼ y43N7 � y14N8 ðA:12Þ

M1 ¼ x41N8 � x12N5 ðA:13Þ

M2 ¼ x12N5 � x23N6 ðA:14Þ

Fig. 26. Comparison of the top surface strain measurements ðeþxxÞi with 0% and 10%

noise.

Fig. 25. Comparison of the top surface strain measurements ðeþxxÞi with 0% and 5%

noise.
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M3 ¼ x23N6 � x34N7 ðA:15Þ

M4 ¼ x34N7 � x41N8 ðA:16Þ

Note that xij and yij can be expressed in terms of local

coordinates of iQS4 element as

xij ¼ xi � xj

yij ¼ yi � yj

)

ði ¼ 1;2;3;4; j ¼ 1;2;3;4Þ ðA:17Þ

and the parent space coordinates are defined as s; t 2 ½�1;þ1�.

Appendix B.

The derivatives of shape functions Bm, Bb, Bs which are given in

Eqs. (6a–b) are defined as

Bm ¼ Bm
1 Bm

2 Bm
3 Bm

4

� �

ðB:1Þ

Bb ¼ Bb
1 Bb

2 Bb
3 Bb

4

h i

ðB:2Þ

Bs ¼ Bs
1 Bs

2 Bs
3 Bs

4

� �

ðB:3Þ

where

Bm
i ¼

Ni;x 0 0 0 0 Li;x

0 Ni;y 0 0 0 Mi;x

Ni;y Ni;x 0 0 0 Li;y þMi;x

2

6

4

3

7

5

Bb
i ¼

0 0 0 0 Ni;x 0

0 0 0 �Ni;y 0 0

0 0 0 �Ni;x Ni;y 0

2

6

4

3

7

5

Bs
i ¼

0 0 Ni;x �Li;x �Mi;x þ Ni 0

0 0 Ni;y �Li;y � Ni �Mi;y 0

 �
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>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

ði ¼ 1;2;3;4Þ

ðB:4Þ

Note that Ni, Li, and Mi, are the shape functions of the iQS4 ele-

ment which are explicitly given in Appendix A.
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