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Abstract

We use factor augmented vector autoregressive models with time-varying

coefficients and stochastic volatility to construct a financial conditions index

that can accurately track expectations about growth in key US macroeconomic

variables. Time-variation in the model’s parameters allows for the weights at-

tached to each financial variable in the index to evolve over time. Furthermore,

we develop methods for dynamic model averaging or selection which allow the

financial variables entering into the financial conditions index to change over

time. We discuss why such extensions of the existing literature are important

and show them to be so in an empirical application involving a wide range of

financial variables.
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1 Introduction

The recent financial crisis has sparked an interest in the accurate measurement

of financial shocks to the real economy. An important lesson of recent events

is that financial developments, not necessarily driven by monetary policy actions

or fundamentals, may have a strong impact on the economy. The need for

policy-makers to closely monitor financial conditions is clear. In response to this

need, a recent literature has developed several empirical econometric methods

for constructing financial conditions indices (FCIs). FCIs are used for several

purposes. For instance, they can be used to identify periods when financial

conditions suddenly deteriorate (e.g., Lo Duca and Peltonen, 2013), assess credit

constraints or forecast economic developments. An FCI summarizes in one single

number information from many financial variables. Many financial institutions

(e.g. Goldman Sachs, Deutsche Bank and Bloomberg) and policy-makers (e.g. the

Federal Reserve Bank of Kansas City) produce closely-watched FCIs. Estimation of

such FCIs ranges from using simple weighted averages of financial variables through

more sophisticated econometric techniques. An important recent contribution is

Hatzius, Hooper, Mishkin, Schoenholtz and Watson (2010) which surveys and

compares a variety of different approaches. The FCI these authors propose is

based on simple principal components analysis of a very large number of quarterly

financial variables. Other recent notable studies in this literature include English,

Tsatsaronis and Zoli (2005), Balakrishnan, Danninger, Elekdag and Tytell (2008),

Beaton, Lalonde and Luu (2009), Brave and Butters (2011), Gomez, Murcia and

Zamudio (2011) and Matheson (2011).

In this paper our goal is to accurately monitor financial conditions through

a single latent FCI. The construction and use of an FCI involves three issues: i)

selection of financial variables to enter into the FCI, ii) the weights used to average

these financial variables into an index and iii) the relationship between the FCI and

the macroeconomy. There is good reason for thinking all of these may be changing

over time. Indeed, Hatzius et al (2010) discuss at length why such change might

be occurring and document statistical instability in their results. For instance, the

role of the sub-prime housing market in the financial crisis provides a clear reason

for the increasing importance of variables reflecting the housing market in an FCI.

A myriad of other changes may also impact on the way an FCI is constructed,

including the change in structure of the financial industry (e.g. the growth of the

shadow banking system), changes in the response of financial variables to changes

in monetary policy (e.g. monetary policy works differently with interest rates near

the zero bound) and the changing impact of financial variables on real activity (e.g.

the role of financial variables in the recent recession is commonly considered to

have been larger than in other recessions).

Despite such concerns about time-variation, the existing literature does little to

statistically model it. Constant coefficient models are used with, at most, rolling

2



methods to account for time-variation. Furthermore, many FCI’s are estimated ex

post, using the entire data set. So, for instance, at the time of the financial crisis,

some FCIs will be based on financial variables which are selected after observing

the financial crisis and the econometric model will be estimated using financial

crisis data. The major empirical contribution of the present paper is to develop

an econometric approach which allows for different financial variables to affect

estimation of the FCI, with varying (or zero, when not selected) weight each. In

this manner, we develop an econometric tool that explicitly takes into account the

fact that each financial crisis has different causes, and is transmitted to the real

economy with varying intensity.

Following a common practice in constructing indices, we use factor methods. To

be precise, we use extensions of Factor-augmented VARs (FAVARs) which jointly

model a large number of financial variables (used to construct the latent FCI)

with key macroeconomic variables. Following the recent trend in macroeconomic

modelling using VARs and FAVARs (Primiceri, 2005; Korobilis, 2013) we work

with time-varying parameter FAVARs (TVP-FAVARs) which allow coefficients and

loadings to change in each period. TVP-FAVARs have enjoyed increasing popularity

for forecasting macroeconomic variables (see, among others, Eickmeier, Lemke and

Marcellino, 2011a and D’Agostino, Gambetti and Giannone, 2013).

Additionally, we work with a large set of (TVP-) FAVARs that differ in which

financial variables are included in the estimation of the FCI. Faced with a large

model space and the desire to allow for model change, we follow Koop and Korobilis

(2012) and use efficient methods for Dynamic Model Selection (DMS) and Dynamic

Model Averaging (DMA). These methods forecast at each point in time with a single

optimal model (DMS), or reduce the expected risk of the final forecast by averaging

over all possible model specifications (DMA). We implement model selection or

model averaging in a dynamic manner. That is, DMS chooses different financial

variables to make up the FCI at different points in time. DMA constructs an FCI by

averaging over many individual FCIs constructed using different financial variables.

The weights in this average vary over time.

From an econometrician’s point of view, there is also growing theoretical

evidence in favor of our modelling strategy. Boivin and Ng (2006) show that using

all available data to extract factors (the FCI in our case) is not always optimal in

factor analysis, thus providing support for implementing DMA/DMS to construct

our FCI. Additionally, there is much econometric evidence in favor of structural

instabilities in the coefficients or loadings of macroeconomic and financial factor

models; see, among others, Banerjee, Marcellino and Masten (2006) and Bates,

Plagborg-Møller, Stock and Watson (2013).

Econometric methods for estimating FAVARs and TVP-FAVARs are well-established;

see, e.g., Bernanke, Boivin and Eliasz (2005), and Korobilis (2013). However,

the likelihood-based estimation techniques used in the literature (e.g. Bayesian

methods using Markov chain Monte Carlo algorithms) rely on simulation algo-
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rithms or complex numerical methods, all of which are computationally extremely

demanding in high dimensions. With our large model space, and our wish

to implement recursive forecasting, it is computationally infeasible to use such

methods. Therefore, our major econometric contribution in this paper lies in the

development of fast estimation methods which are based on the Kalman filter and

smoother and are simulation-free. When dealing with the FAVAR with constant

parameters, our algorithm collapses to the two-step estimator for dynamic factor

models of Doz, Giannone and Reichlin (2011). In the case of estimating models

with time-varying parameters and stochastic volatility (TVP-FAVARs), our algorithm

provides an extension of Doz, Giannone and Reichlin (2011).

Our results indicate that financial variables do have predictive power for macro-

economic variables (GDP growth, inflation and unemployment). Additionally, time

variation in the parameters is important for providing accurate short-run forecasts.

Finally, model averaging and/or selection also result in the improvement of forecast

accuracy over using a single model with all the available financial variables. In

the remainder of the paper we examine all these issues in depth, and we provide

evidence by using different forecast metrics and by conducting several robustness

checks.

In particular, in the next section we introduce our modeling framework and

sketch the features of our novel estimation algorithm (complete details are provided

in the Technical Appendix), plus we describe how we implement DMA or DMS

methods in the face of the large number of models we work with. In Section 3 we

present our data, estimates of different FCIs, and results of a recursive forecasting

exercise which is the main tool for evaluating the performance of our FCI. Section

4 concludes the paper. An empirical appendix provides an extensive sensitivity

analysis to various aspects of our specification.

2 Factor Augmented VARs with Structural Instabili-

ties

2.1 The TVP-FAVAR Model and its Variants

Let xt (for t = 1, ..., T ) be an n × 1 vector of financial variables to be used in

constructing the FCI. Let yt be an s×1 vector of macroeconomic variables of interest.

In our empirical work yt = (πt, ut, gt)
′
where πt is the GDP deflator inflation rate, ut

is the unemployment rate, gt is the growth rate of real GDP. The p-lag TVP-FAVAR

takes the form

xt = λ
y
t yt + λ

f
t ft + vt[

yt
ft

]
= ct +Bt,1

[
yt−1
ft−1

]
+ ...+Bt,p

[
yt−p
ft−p

]
+ εt

, (1)
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where λyt are regression coefficients, λft are factor loadings, ft is the latent factor

which we interpret as the FCI, ct is a vector of intercepts, (Bt,1, ..., Bt,p) are VAR

coefficients and ut and εt are zero-mean Gaussian disturbances with time-varying

covariances Vt and Qt, respectively. We adopt the common identifying assumption

in the likelihood-based factor literature1 that Vt is diagonal, thus ensuring that vt is

a vector of idiosyncratic shocks and ft contains information common to the financial

variables. This model is very flexible since it allows all parameters to take a different

value at each time t. Such an assumption is important since there is good reason to

believe that there is time variation in the loadings and covariances of factor models

which use both financial and macroeconomic data (see Banerjee, Marcellino and

Masten, 2006). For recent discussions about the implication of the presence of

structural breaks in factor loadings, the reader is referred to Breitung and Eickmeier

(2011) and Bates, Plagborg-Møller, Stock and Watson (2013).

Following the influential work of Bernanke, Boivin and Eliasz (2005) our

factor model in (1) consists of two equations: one equation which allows us to

extract the latent financial conditions index (FCI) from financial variables xt; and

one equation which allows to model the dynamic interactions of the FCI with

macroeconomic variables yt. This econometric specification is important for two

reasons. First, unlike Stock and Watson (2002) who extract a factor and then use

it in a separate univariate forecasting regression, we use a multivariate system to

forecast macroeconomic variables using the FCI. Thus, we jointly model all the

variables in the system which should allow us to better characterize their co-

movements and interdependence. Second, we are able to purge from the FCI

the effect of macroeconomic conditions. Thus, the final estimated FCI reflects

information solely associated with the financial sector.

It is worth digressing to expand on the manner in which we include macro-

economic variables in our model. Including yt on the right-hand side of the first

equation of (1) is intended solely to ensure the FCI reflects only financial conditions.

This is also done in Hatzius et al. (2010) for the same reason. However, it is

worth stressing that, by doing this, we are only purging the FCI of the effect of

current macroeconomic conditions. Financial variables can also reflect expectations

of future macroeconomic variables and we are not purging the FCI of these future

expectations. This is an issue common to all FCIs. As a robustness check, our

empirical results (see Appendix C) also include a case where yt in the first equation

of (1) is replaced by professional forecasts of macroeconomic variables (which will

reflect expectations of future macroeconomic conditions).

Including yt on the left-hand side of the second equation of (1) is done so as to

provide a metric for evaluating our FCI. That is, in answer to the question: “what

makes a good FCI?”, the approach in this paper provides the answer: “it is one

which forecasts yt as well as possible”. There are, of course, other possible answers

1Some approaches to dynamic factor models which do not use likelihood-based methods allow
for weak correlations between the elements of vt.
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to this question which would lead to other FCIs. We are not attempting to build

a structural model of the economy (e.g. a structural VAR or a DSGE) through the

manner we are including yt in (1). Hence, issues which arise with structural models

(e.g. structural VARs often involve an ordering of variables reflecting an assumed

causal structure) do not need to be addressed here.

In order to complete our model, we need to define how the time varying

parameters evolve. While the specification of all time-varying covariances is

discussed in the following subsection, we define here the vectors of loadings

λt =

(
(λyt )

′ ,
(
λft

)′)′
and VAR coefficients βt =

(
c′t, vec (Bt,p)

′ , ..., vec (Bt,p)
′)′

to

evolve as multivariate random walks of the form

λt = λt−1 + vt,
βt = βt−1 + ηt,

(2)

where vt ∼ N (0,Wt) and ηt ∼ N (0, Rt). Finally, all disturbance terms presented in

the equations above are uncorrelated over time and with each other.

We call the full model described in equations (1) and (2) the TVP-FAVAR. We

also consider several restrictions on the TVP-FAVAR which result in other popular

multivariate models:

1. Factor-augmented VAR (FAVAR): This model is obtained from the TVP-FAVAR

under the restriction that both λt and βt are time-invariant (Wt = Rt = 0).

2. Time-varying parameter VAR (TVP-VAR): This model can be obtained from

the TVP-FAVAR under the restriction that the number of factors is zero (i.e.

ft = 0).

3. VAR: This model is obtained when the number of factors is zero and both λt
and βt are time-invariant.

In addition, we consider heteroskedastic (when Vt and Qt are allowed to be

time-varying) and homoskedastic (Vt = V and Qt = Q) variants of all models.

2.2 Estimation of a Single TVP-FAVAR

Bayesian estimation of FAVARs (as well as VARs) with time-varying parameters is

typically implemented using Markov Chain Monte Carlo (MCMC) methods, which

sample from the very complex multivariate joint posterior density of the factor ft
and the remaining model parameters; see, e.g., Primiceri (2005), or Del Negro and

Otrok (2008). Such Bayesian simulation methods are computationally expensive
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even in the case of estimating a single TVP-FAVAR. When faced with multiple TVP-

FAVARs and when doing recursive forecasting (which requires repeatedly doing

MCMC on an expanding window of data), the use of MCMC methods is prohibitive.2

In this paper, we use a fast two-step estimation algorithm which vastly reduces

the computational burden, and greatly simplifies the estimation of the FCI.

Following Koop and Korobilis (2013) we combine the ideas of variance discounting

methods with the Kalman filter in order to obtain analytical results for the posteriors

of the state variable (ft) as well as the time-varying parameters θt = (λt, βt). To

motivate our methods, note first that, as long as both the factor, ft, and the loadings,

λt, in the measurement equation are unobserved, application of the typical Kalman

filter recursions for state-space models is not possible. Therefore, we adapt ideas

from Doz, Giannone and Reichlin (2011) and the state-space literature (Nelson and

Stear, 1976) and develop a dual, conditionally linear filtering/smoothing algorithm

which allows us to estimate the unobserved state ft and the parameters θt = (λt, βt)
in a fraction of a second.

The idea of using a dual linear Kalman filter is very simple: first update the

parameters θt given an estimate of ft, and subsequently update the factor ft given

the estimate of θt. Such conditioning allows us to use two distinct linear Kalman

filters or smoothers,3 one for θt and one for ft. The main approximation involved

is that f̃t, the principal components estimate of ft based on x1:t, is used in the

estimation of θt. Such an approach will work best if the principal component(s)

provide a good approximation of the factor(s) coming from a FAVAR with structural

instabilities. A theoretical proof that this is the case is not available for our flexible

and highly nonlinear specification. However, given the recent findings of Stock

and Watson (2009) and Bates, Plagborg-Møller, Stock and Watson (2013), there is

strong theoretical and empirical evidence to believe that this is the case. Empirically,

Bates, Plagborg-Møller, Stock and Watson (2013) conduct extensive Monte Carlo

experiments and show that principal components can support large amount of time

variation in the loading coefficients λt. Theoretically, they prove that principal

component estimates of factors are consistent even if there is a substantial amount

of time variation or structural change in the factor loadings. For instance, they

find that: “deviations in the factor loadings on the order of op (1) [as would occur

with random walk variation in the factor loadings] do not break the consistency

of the principal components estimator” (page 290). This is the econometric theory

2To provide the reader with an idea of approximate computer time, consider the three variable
TVP-VAR of Primiceri (2005). Taking 10,000 MCMC draws (which may not be enough to ensure
convergence of the algorithm) takes approximately 1 hour on a good personal computer. Thus,
forecasting at 100 points in time takes roughly 100 hours. These numbers hold for a single small
TVP-VAR, and would be much infeasible for the hundreds of thousands of larger TVP-FAVARs we
estimate in this paper.

3The other alternative being to use a joint nonlinear filter, e.g. the Unscented Kalman Filter
(UKF) and the Extended Kalman Filter (EKF). We have found such filters to be very unstable given
the dimension of our model, and the relatively few time-series observations.
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we draw upon to justify use of principal components estimates at this stage in our

algorithm.

Error covariance matrices in the multivariate time series models used with

macroeconomic data are usually modeled using multivariate stochastic volatility

models (see, e.g., Primiceri, 2005), estimation of which also requires compu-

tationally intensive methods. In order to avoid this computational burden, we

estimate (Vt, Qt,Wt, Rt) recursively using simulation-free variance matrix discount-

ing methods (e.g. Quintana and West, 1988). The Technical Appendix provides

complete details. For Vt and Qt we use exponentially weighted moving average

(EWMA) estimators. These depend on decay factors κ1 and κ2, respectively. Such

recursive estimators are trivial computationally. Additionally, the EWMA is an

accurate approximation to an integrated GARCH model. Such a feature is in

line with authors such as Primiceri (2005) and Cogley and Sargent (2005) who,

in the context of macroeconomic VARs, work with integrated stochastic volatility

models. The covariance matrices Wt, Rt are estimated using the forgetting factor

methods described in Koop and Korobilis (2012, 2013)4 which depend on forgetting

factors κ3 and κ4, respectively. Decay and forgetting factors have very similar

interpretations. Lower values of the decay/forgetting factors imply that the more

recent observation t−1, and its squared residual, take higher weight in estimating Vt
and Qt compared to older observations. The choice of the decay/forgetting factors

can be made based on the expected amount of time-variation in the parameters.5

Note that the choice κ1 = κ2 = 1 make Vt and Qt constant, while κ3 = κ4 = 1 imply

that Wt = Rt = 0 in which case λt and βt are constant.

A sketch of the structure of our estimation algorithm is given in the following

table.

Algorithm for estimation of the TVP-FAVAR

1. a) Initialize all parameters, λ0, β0, f0, V0, Q0
b) Obtain the principal components estimates of the factors, f̃t

2. Estimate the time varying parameters θt given f̃t
a) Estimate Vt, Qt, Rt, and Wt using VD

b) Estimate λt and βt, given (Vt, Qt, Rt,Wt), using the KFS

3. Estimate the factors ft given θt using the KFS

In the table VD stands for “Variance Discounting” and KFS stands for “Kalman filter

and smoother”. The steps above can also be considered to be a generalization of

4An EWMA estimation scheme can also be applied to these matrices, but due to their large
dimension we found better numerical stability and precision when using forgetting factors.

5Choice of forgetting factors is similar in spirit to choice of prior. Empirical macroeconomists
frequently impose subjective priors on the degree of time variation in their parameters; see for
instance the very informative priors used in the TVP-VARs of Primiceri (2005) and Cogley and
Sargent (2005).
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the estimation steps introduced by Doz et al. (2011) for the estimation of constant

parameter dynamic factor models. In fact, if we fix all time-varying coefficients and

covariances to be constant, our algorithm collapses to the FAVAR equivalent of the

two-step estimation algorithm for dynamic factor models of Doz et. al (2011).

Identification in the FAVAR is achieved in a standard fashion by restricting

Vt to be a diagonal matrix. This restriction ensures that the factors, ft, capture

movements that are common to the financial variables, xt, after removing the effect

of current macroeconomic conditions through inclusion of the λyt yt term. Further

restrictions usually imposed in likelihood-based estimation of factor models, e.g.

normalizing the first element of the loadings matrix to be 1 (Bernanke, Boivin and

Eliasz, 2005) are not needed here since the loadings λt are identified (up to a sign

rotation) from the principal components estimate of the factor.

2.3 Dynamic Model Averaging and Selection with many TVP-

FAVARs

In this paper, we work with Mj, j = 1, .., J , models which differ in the financial

variables which enter the FCI. In other words, a specific model is obtained using

the restriction that a specific combination of financial variables have zero loading

on the factor at time t or, equivalently, that different combinations of columns of xt
are set to zero. Thus, Mj can be written as

x
(j)
t = λ

y(j)
t yt + λ

f(j)
t f

(j)
t + u

(j)
t[

yt
f
(j)
t

]
= c

(j)
t +B

(j)
t,1

[
yt−1
f
(j)
t−1

]
+ ...+B

(j)
t,p

[
yt−p
f
(j)
t−p

]
+ ε

(j)
t

, (3)

where x
(j)
t is a subset of xt, and f

(j)
t is the FCI implied by model Mj. Since xt is of

length n, there is a maximum of 2n−1 combinations6 of financial variables that can

be used to extract the FCI.

When faced with multiple models, it is common to use model selection or model

averaging techniques. However, in the present context we wish such techniques

to be dynamic. That is, in a model selection exercise, we want to allow for the

selected model to change over time, thus doing DMS. In a model averaging exercise,

we want to allow for the weights used in the averaging process to change over

time, thus leading to DMA. In this paper, we do DMA and DMS using an approach

developed in Raftery et al (2010) in an application involving many TVP regression

models. The reader is referred to Raftery et al (2010) for a complete derivation and

motivation of DMA. Here we provide a general description of what it does.

The goal is to calculate πt|t−1,j which is the probability that model j applies

at time t, given information through time t − 1. Once πt|t−1,j for j = 1, .., J are

obtained they can either be used to do model averaging or model selection. DMS

6We remove from the model set the model with zero financial variables, i.e. with no FCI extracted.
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arises if, at each point in time, the model with the highest value for πt|t−1,j is used.

Note that πt|t−1,j will vary over time and, hence, the selected model can switch over

time. DMA arises if model averaging is done in period t using πt|t−1,j for j = 1, .., J
as weights. The contribution of Raftery et al (2010) is to develop a fast recursive

algorithm for calculating πt|t−1,j.
Given an initial condition, π0|0,j for j = 1., , .J , Raftery et al (2010) derive a

model prediction equation using a forgetting factor α:

πt|t−1,j =
παt−1|t−1,j∑J

l=1 π
α
t−1|t−1,l

, (4)

and a model updating equation of:

πt|t,j =
πt|t−1,jfj (Datat|Data1:t−1)∑J

l=1 πt|t−1,lfl (Datat|Data1:t−1)
, (5)

where fj (Datat|Data1:t−1) is a measure of fit for model j.7 Many possible measures

of fit can be used. Inspired by is a large literature (e.g., among many others,

Forni, Hallin, Lippi and Reichlin, 2003) which investigate the ability of financial

variables to forecast macroeconomic ones, we focus on the ability of the FCI to

forecast yt. Accordingly, we set as a measure of fit the predictive likelihood for the

macroeconomic variables, pj (yt|Data1:t−1). α is a forgetting factor with 0 < α ≤ 1
which, similar to the decay/forgetting factors (κ1, κ2, κ3, κ4) used for estimating

the error covariance matrices, tunes how rapidly switches between models should

occur. Lower values of α allow for an increasing amount of switching between

the number of variables that enter the FCI each time period. If α = 0.99, forecast

performance five years ago receives 80% as much weight as forecast performance

last period. The case α = 1 leads to conventional Bayesian model averaging

implemented on an expanding window of data.

3 Empirical Results

3.1 Data and Model Settings

We use 18 financial variables8 which cover a wide variety of financial considerations

(e.g. asset prices, volatilities, credit, liquidity, etc.). These are gathered from several

7Throughout this paper past data up to time t will be denoted by 1 : t subscripts, e.g., Data1:t =
(Data1, .., Datat).

8We have gathered a range of widely-used financial variables, following the recommendations
of Hatzius et al. (2010). The final number of variables, though, was restricted by computational
constraints. As we explain in the Technical Appendix, availability of computer clusters (such as
the ones maintained by central banks, e.g. the ECB) could allow for the implementation of model
averaging with many more variables.
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sources. All of the variables (i.e. both macroeconomic and financial variables)

are transformed to stationarity following Hatzius et al (2010) and many others.

The Data Appendix provides precise definitions, acronyms, data sources, sample

spans and details about the transformations. Our data sample runs from 1970Q1

to 2013Q3. Notice that all of our models use four lags and, hence, the effective

estimation sample begins in 1971Q1. The three macroeconomic variables that

complete our model are the GDP deflator, the unemployment rate, and the real

GDP. We use real time data such that forecasts are at time t are always made using

the vintage of data available at time t. All of these series are observed in real-time

from 1970Q1, are seasonally adjusted, and can be found in the Real-Time Data Set

for Macroeconomists provided by the Philadelphia Fed. Macroeconomic variables

which are not already in rates, that is the GDP deflator and real GDP, are converted

to growth rates by taking first log-differences, which we will refer to as inflation

and output growth, respectively.

Some of the financial variables have missing values in that they do not begin

until much after 1970Q1. In terms of estimation with a single TVP-FAVAR model,

such missing values cause no problem since they can easily be handled by the

Kalman filter (see the Technical Appendix for more details). However, when we are

using multiple models, there is a danger that in a specific model the value of the

FCI in a period (say 1970Q1-1982Q1) has to be extracted using financial variables

which all have missing values for that period. In such a case, the value of extracted

FCI will be nil for the specified period, and the FCI will be estimated only after at

least one variable becomes observed. We introduce a simple restriction to prevent

such estimation issues. In each model, we always include the S&P500 in the list of

financial variables, a variable which is observed since 1970Q1. This means that, at a

minimum, the FCI will be extracted based on this financial variable. This restriction

implies that the S&P500 is not subject to model averaging/selection and we instead

perform DMA/DMS using the remaining 17 financial variables. Therefore, we have

a model space of 217=131,072 TVP-FAVARs. We remind the reader that a list of

the different specifications estimated (and their acronyms) is given at the end of

Section 2.1.

To summarize, our models which produce an FCI are the TVP-FAVARs and the

FAVARs. In our forecasting exercise, for the purpose of comparison, we also include

some forecasting models which do not produce an FCI. These are the VARs and TVP-

VARs. With these model spaces, we investigate the use of DMS, DMA and a strategy

of simply using the single model which includes all 18 of the financial variables.

Some authors (e.g. Eickmeier, Lemke and Marcellino, 2011b) use existing FCIs

(i.e. estimated by others) in the context of a VAR model. In this spirit, we also

present results for VARs and TVP-VARs where the factors are not estimated from the

factor model equation in (1), rather they are replaced with an existing estimate. To

be precise, we use
(
y′t, f̂t

)′
as dependent variables for different choices of f̂t. Table

1 lists these choices from a set of financial conditions and financial stress indices
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maintained by Federal Reserve Banks. Financial Stress indices (FSIs) are similar to

FCIs, but have opposing signs: a decrease in financial conditions means increased

financial stress, and vice-versa. However, FSIs tend to focus on different issues than

FCIs. The latter tend to focus on broad measures of financial conditions, whereas

FSIs narrowly focus on measuring instability in the financial system (i.e. the current

level of frictions, stresses and strains). For this reason, we would argue that the

Chicago Fed National FCI is the most comparable to the FCI we are producing in our

empirical results. Again, these models are a restricted special case of our TVP-FAVAR

and estimation proceeds accordingly. The error covariance matrix is modelled in the

same manner as the TVP-FAVAR. We use an acronym for these TVP-VARs such that,

e.g., TVP-VAR + FCI 4, is the VAR involving the three macroeconomic variables and

the Chicago Fed National FCI.

Table 1. Financial Conditions and Stress indices

Name Acronym Source Sample

St. Louis Financial Stress Index FCI 1 St Louis Fed 1993Q4 - 2012Q1

Kansas City Fed Financial Stress Index FCI 2 Kansas Fed 1990Q1 - 2012Q1

Cleveland Fed Financial Stress Index FCI 3 Cleveland Fed 1991Q3 - 2012Q1

Chicago Fed National FCI FCI 4 Chicago Fed 1973Q1 - 2012Q1

3.2 Choice of hyperparameters and initial conditions

In this section we outline the setting of various hyperparameters and initial

conditions. All our benchmark choices that apply in the next two subsections are

fairly non-informative. In Appendix C we implement a sensitivity analysis using

priors based on a training data sample, thus extending the recommendations of

Primiceri (2005) to our TVP-FAVARs.

The first step is to set the initial conditions for the factor ft (FCI), the time-

varying parameters λt, βt, the time-varying covariances Vt, Qt, and, for doing DMA

and DMS, we must specify π0|0,j, j = 1, ..., J . These initial conditions are set to the

following (relatively non-informative) values

f0 ∼ N (0, 4) ,

λ0 ∼ N
(
0, 4× In(s+1)

)
,

β0 ∼ N (0, VMIN)

V0 ≡ 1× In,

Q0 ≡ 1× Is+1,

π0|0,j =
1

J

12



where VMIN is a diagonal covariance matrix which, following the Minnesota prior

tradition, penalizes more distant lags and is of the form

VMIN =

{
4, for intercepts

0.1/r2, for coefficient on lag r
, (6)

where r = 1, .., p denotes the lag number. Note that estimates of Wt and Rt are

proportional to the respective state covariance matrices obtained from the Kalman

filter, therefore there is no need to initialize these matrices; see the Technical

Appendix for more details.

Regarding the decay and forgetting factors we have introduced in our model it

is worth noting that we can estimate these from the data. However, computation

increases substantially (we need to evaluate or maximize the predictive likelihood

for each combination of the various factors) and, as shown in Koop and Korobilis

(2013), the existence of value added in forecasting performance from such a

procedure is questionable. Given these considerations, we choose to fix the

values of the decay/forgetting factors, but investigate sensitivity to their choice in

Appendix C.

For the decay factors κ1, κ2 which control the variation in the covariance

matrices, we fix these to the value 0.96. Such values provide volatility estimates

which are quite close to the ones expected by integrated stochastic volatility

models that have been used extensively in the Bayesian VAR and FAVAR literature

(Primiceri, 2005; Korobilis, 2013). For the forgetting factors κ3, κ4, we follow

the “business as usual prior” approach of Cogley and Sargent (2005) and assume

that changes each period are relatively slow and stable under the random walk

specification in equation (2). In order to achieve this slow time variation in the

coefficients, we set κ3 = κ4 = 0.99, a setting we use in all TVP-FAVAR and TVP-VAR

specifications. As described in the Technical Appendix, restricted versions of our

general model can be obtained by setting the forgetting factors to one. For instance

when κ3 = κ4 = 1, we obtain the VAR model.

Finally, we need to choose our prior beliefs about model change. The value

of the forgetting factor α determines how fast model switches occur, and thus we

use two values: α = 1 which implies that we are implementing Bayesian model

averaging (BMA) given data up to time t; and α = 0.99 which implies that we

implement dynamic model averaging (DMA) with relatively slowly varying model

probabilities.

3.3 Estimates of the Financial Conditions Index

Before we proceed to the forecasting exercise, it is important to understand

how both our estimation algorithm and model averaging work in the context of

estimating an FCI. The results in this section are recursive. That is the estimate of

the FCI at time t is made using data up to time t.

13



Figure 1 shows the FCI estimated in various ways using all 18 financial variables

without any model selection or model averaging being done. The shaded regions in

this figure (and subsequent figures) are the NBER recession dates. The estimated

FCIs are all similar to each other. In particular, the TVP-FAVAR and principle

components are producing very similar FCIs. The FCI produced by the FAVAR does

differ from the others at some points, particularly in the first half of the sample. This

indicates the potential importance of allowing for time variation in parameters. It

is interesting to note that the FCIs start declining before the beginning of the recent

recession with all of them bottoming out in early 2009. However, after 2009 some

discrepancies appear between the FCIs.

Figure 2 shows the impact of model averaging and selection on the estimate

of the FCI, focussing on the TVP-FAVARs. Although the broad patterns in the FCIs

plotted in Figure 2 are similar, there are some differences. In general, the FCIs in

Figure 2 are less smooth than in Figure 1 indicating that model switching/averaging

is reacting more quickly than methods without such a feature. And there are some

interesting small divergences between the two figures. For instance, in Figure 2

there is a slight improvement in the FCIs early on in the recent recession which is

missing from Figure 1. DMA and DMS are producing factor estimates which are

very similar to one another.

In Figure 3 we perform a comparison of the FCI constructed using DMA on the

TVP-FAVAR models with the four FCIs or FSIs maintained by four Federal Reserve

Banks (see Table 1). As discussed previously, FCIs and FSIs are somewhat different

since FSIs are measuring financial stress (and, hence, it is the comparison of our

approach with the Chicago Fed’s National Financial Conditions Index which is the

most relevant). We have multiplied the FSIs by minus one to maintain comparability

with the FCIs. Additionally, we standardize all the indices to have mean zero and

variance one. Our FCI does indeed match up most closely with the Chicago Fed’s

FCI. Our FCI started dropping earlier than the Chicago Fed’s in 2008 and dropped

to a lower value at the depth of the current recession. In contrast, after the 2001

recession ended, our FCI grew faster and peaked at a higher level than the Chicago

Fed’s. However, there are substantive differences with the FSIs. It is interesting to

note that, after this 2001 recession ended, the FSIs continued to signal deteriorating

financial conditions for much longer than our FCI. In general, the FSIs (in particular,

the Cleveland Fed’s FCI) exhibit substantively different behavior from our FCI.

Figures 1 through 3 compare a range of different FCI estimates. At this stage,

we express no view on whether any FCI is better or worse than any other. The key

finding we stress is that, although they are similar to one another in many respects,

differences can occur. These differences are most notable when we compare our

TVP-FAVAR based estimates to conventional estimates produced by Federal Reserve

Banks.
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Figure 1. FCIs constructed from several versions of the heteroskedastic

factor-augmented VAR model with all 18 financial variables used (no model

averaging/selection). For comparison, the principal component of the 18 financial

variables is also plotted.

Figure 2. FCIs implied by BMA, DMA and DMS on the TVP-FAVARs (with DMA

results for FAVARs provided for comparison)
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Figure 3. The FCI from the TVP-FAVAR with DMA compared to existing financial

indexes maintained by four regional US central banks.

To provide some additional insight on what DMA is doing, we present Figures

4 and 5 which shed light on the number of variables selected when we do DMA

or DMS on the TVP-FAVARs. In particular, Figure 4 calculates the expected number

of variables used to extract the FCI at each point in time. If we denote by nj the

number of variables which load on the FCI under modelMj, then we calculate each

time period the following expectation9

E
(
nDMA
t

)
=

(
J∑

j=1

πt|t,j × nj

)
− 1.

Figure 4 shows DMA or DMS is achieving a strong degree of parsimony. Given 17

variables to choose between, it is tending to choose between 5 and 8. There is a

slow decrease in the number of variables chosen until the late 90s, then there was

an abrupt increase until the current recession. Interestingly, in the middle of the

recent recession, the number of variables selected started dropping again before

stabilizing at the end of the recession.

9We subtract one since the S&P500 variable is always included in all models.
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Figure 4. Average number of variables used to extract the FCI at each point in time

as implied by DMA applied in the full TVP-FAVAR specification.

Figure 5 provides evidence on which variables receive most weight in the DMA

procedure (or are selected by DMS). The numbers in each panel of this figure are

the total probability DMA attaches to models which contain the variable named in

the title on the panel. It is worth noting that there is substantial variable switching.

That is, there are a few variables which enter then leave (or vice versa) the FCI.
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Figure 5. Time-varying probabilities of inclusion to the final FCI for each of the 18

financial variables (S&P500 is always included; see Section 3.1). Zero probabilities

at the beginning of the sample for some of the variables correspond to periods of

missing observations.

3.4 Forecasting

In this section, we investigate the performance of a wide range of models and

methods for forecasting inflation, output growth and the unemployment rate. Our

forecast evaluation period is 1990Q1 through 2013Q3-h for h = 0, 1, 2, 3, 4 quarters

ahead. Note that, since we are using real-time data, it is also informative to present

nowcasts and these are labelled h = 0 in the tables.10 Evaluation of forecast

accuracy is based on the mean squared forecast error (MSFE) and average of

predictive likelihoods (APL). The former evaluates the quality of point forecasts

whereas the latter evaluates the quality of the entire predictive distribution. Results

are normalized by dividing an MSFE or APL by the corresponding value produced

by a benchmark model. We use a homoskedastic VAR (with no FCI) as our

10To be precise, at time t (given delays in release of macroeconomic variables) we have
macroeconomic data available through period t − 1. This is used to provide nowcasts (h = 0)
and forecasts (h = 1, .., 4) using iterative methods.
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benchmark.11 For this benchmark model, the table presents the actual value of

MSFE or APL. Details of our choices of forgetting and decay factors are given in

Section 2 and we investigate the sensitivity of results to their choice in Appendix

C. The notation in the table (and the tables in Appendix C) extends our previous

notation. Thus, TVP-FAVAR indicates the TVP-FAVAR with all 18 financial variables

whereas TVP-FAVAR-DMA uses DMA (with α = 0.99) over the 217 TVP-FAVARs.

Notation such as TVP-FAVAR (c1, c2) means that we set κ1 = κ2 = c1 and

κ3 = κ4 = c2. We also present results for a VAR containing the macroeconomic

variables plus a factor estimated using principle components (labelled VAR+PC). As

another simple comparator, we also produce OLS (diffuse prior Bayesian) forecasts

from AR models augmented with a factor (estimated by principal components).

At each point in time, we choose the lag length which has produced the lowest

MSFE over the last 40 quarters. From this model, we present recursive (labelled

AR+PC(rec)) and rolling (labelled AR+PC(rol)) forecasts. For the rolling forecasts,

we try windows of 25, 30, 35 and 40 periods and present results for the one which

produces the lowest MSFE over the last 40 quarters.

For the MSFE’s we also present the Bayesian variant of a test of forecast accuracy

developed in Diebold and Mariano (1995). This test is described in Appendix B of

Garratt et al (2009). If an MSFE in the table has a *, it means the approach forecasts

significantly differently from the benchmark VAR.

Table 2 is organized so that each panel begins with a standard benchmark (e.g.

the homoskedastic VAR), then adds heteroskedasticity (e.g. the TVP-VAR(0.96, 1)
which selects the forgetting factor so as to make the VAR coefficients constant over

time but allows for heteroskedasticity), then adds time variation in coefficients (e.g.

the TVP-VAR(0.96, 0.99)). Then the next panel in the table repeats the process

with models which include FCIs beginning with the FAVAR. The subsequent panel

investigates the usefulness of DMA or DMS.

In general, Table 2 shows a pattern where forecasts improve as we add in

extensions. Adding heteroskedasticity tends to improve forecasts substantially,

then adding time-variation in parameters tends to improve them a bit more.

Moving from TVP-VARs to TVP-FAVARs leads to further improvements in forecast

performance. Using DMA or DMS with the 217 TVP-FAVARs leads to yet further

improvements. Of course, there are some exceptions to this pattern. Table 2

investigates forecasting performance for three variables at five different horizons

using two different forecast evaluation metrics. With so many possible forecast

evaluations it is not surprising there are some cases where simpler approaches beat

our more complicated TVP-FAVAR-DMS or TVP-FAVAR-DMA approaches. But overall

the latter are tending to produce the best forecasts.

Another important pattern in Table 2 is that our approach (again with some

11This VAR is obtained as the restricted special case of the TVP-FAVAR (i.e. dropping the equation
for the factors and turning off the variation in coefficients). Thus, its prior is equivalent to the prior
for the initial conditions of the TVP-VAR described in Section 3.2.
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exceptions) tends to forecast much better than standard approaches, including the

VAR, the FAVAR and simple univariate methods. The simple univariate methods

occasionally forecast well (e.g. when forecasting unemployment a year ahead

the recursive AR model forecasts well when MSFE is used as a forecasting metric

and AR+PC(rol) often forecasts inflation well), but often forecast very badly. In

contrast, the approaches involving TVP-FAVARs and DMA or DMS typically forecast

best and never forecast badly. They also virtually always beat FAVARs, indicating

the importance of allowing for time-variation in parameters.
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Table 2: Performance of our FCI compared to other forecasting models, 1990Q1 - 2013Q3

Forecast Metric APL MSFE

INFLATION

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
VAR (no FCI) 0.8587 0.7470 0.6959 0.6319 0.5848 0.0440 0.0540 0.0570 0.0610 0.0730

TVP-VAR (0.96,1) 1.36 1.31 1.32 1.32 1.29 1.05* 0.92* 0.92* 0.95* 0.97*

TVP-VAR (0.96,0.99) 1.35 1.32 1.33 1.32 1.28 0.93* 0.84* 0.87* 0.93* 0.96*

FAVAR 1.00 1.00 0.99 1.02 1.01 0.96 0.90 0.86* 0.89* 0.86

TVP-FAVAR (0.96,1) 1.36 1.32 1.33 1.32 1.32 1.08* 0.94* 0.92* 0.92* 0.93*

TVP-FAVAR (0.96,0.99) 1.34 1.34 1.35 1.34 1.31 0.91* 0.78* 0.78* 0.87* 0.92*

TVP-FAVAR-DMA (0.96,0.99) 1.47 1.46 1.48 1.50 1.47 0.94* 0.78* 0.82* 0.90* 0.91*

TVP-FAVAR-DMS (0.96,0.99) 1.50 1.48 1.50 1.53 1.49 1.02* 0.86* 0.94* 1.07* 1.08*

TVP-FAVAR-BMA (0.96,0.99) 1.35 1.36 1.38 1.38 1.32 0.94* 0.79* 0.83* 0.91* 0.92*

TVP-FAVAR-BMS (0.96,0.99) 1.42 1.42 1.44 1.45 1.42 1.01* 0.84* 0.93* 1.06* 1.06*

VAR+PC 0.99 1.00 1.00 1.02 1.03 0.96 0.91 0.92 0.94* 0.90*

AR + PC (rec) 1.02 1.09 1.06 1.05 1.04 1.41* 1.39* 1.61* 2.09* 2.28*

AR + PC (rol) 1.36 1.58 1.62 1.58 1.59 1.17* 0.90* 0.93* 1.12* 1.21*

UNEMPLOYMENT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
VAR (no FCI) 0.6508 0.4119 0.3067 0.2468 0.2073 0.1210 0.3890 0.8230 1.4020 2.1100

TVP-VAR (0.96,1) 1.47 1.52 1.50 1.48 1.46 0.77* 0.72* 0.73* 0.72* 0.71*

TVP-VAR (0.96,0.99) 1.48 1.49 1.44 1.41 1.37 0.68* 0.62* 0.66* 0.66* 0.70*

FAVAR 0.91 0.87 0.83 0.82 0.81 0.99 1.14 1.25 1.29 1.34

TVP-FAVAR (0.96,1) 1.50 1.53 1.52 1.53 1.52 0.68* 0.62* 0.63* 0.65* 0.66*

TVP-FAVAR (0.96,0.99) 1.46 1.50 1.46 1.43 1.42 0.69* 0.65* 0.67* 0.67* 0.69*

TVP-FAVAR-DMA (0.96,0.99) 1.61 1.65 1.60 1.57 1.51 0.63* 0.55* 0.55* 0.56* 0.58*

TVP-FAVAR-DMS (0.96,0.99) 1.57 1.63 1.59 1.59 1.56 0.68* 0.56* 0.53* 0.54* 0.56*

TVP-FAVAR-BMA (0.96,0.99) 1.47 1.52 1.42 1.37 1.27 0.63* 0.55* 0.55* 0.56* 0.58*

TVP-FAVAR-BMS (0.96,0.99) 1.56 1.58 1.52 1.48 1.42 0.67* 0.57* 0.55* 0.56* 0.58*

VAR+PC 0.94 0.92 0.91 0.90 0.88 0.93 0.99 1.08 1.13 1.17

AR + PC (rec) 0.97 1.14 1.22 1.28 1.38 1.27 0.79* 0.64* 0.54* 0.47*

AR + PC (rol) 1.12 1.30 1.34 1.34 1.41 1.11 0.76* 0.74* 0.70* 0.55*

OUTPUT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
VAR (no FCI) 0.3380 0.3170 0.3118 0.3104 0.3099 0.4310 0.5280 0.5470 0.5250 0.5050

TVP-VAR (0.96,1) 1.38 1.41 1.38 1.38 1.38 0.90* 0.83* 0.83* 0.83* 0.85*

TVP-VAR (0.96,0.99) 1.35 1.38 1.36 1.36 1.35 0.89* 0.81* 0.80* 0.80* 0.82*

FAVAR 0.97 0.97 0.97 0.97 0.98 0.92 1.00 0.95 0.87 0.83

TVP-FAVAR (0.96,1) 1.49 1.51 1.47 1.48 1.48 0.76* 0.76* 0.77* 0.79* 0.82*

TVP-FAVAR (0.96,0.99) 1.46 1.46 1.44 1.44 1.43 0.77* 0.72* 0.72* 0.71* 0.72*

TVP-FAVAR-DMA (0.96,0.99) 1.51 1.52 1.49 1.48 1.48 0.74* 0.68* 0.67* 0.69* 0.71*

TVP-FAVAR-DMS (0.96,0.99) 1.54 1.56 1.54 1.55 1.56 0.76* 0.68* 0.68* 0.71* 0.72*

TVP-FAVAR-BMA (0.96,0.99) 1.39 1.38 1.34 1.31 1.30 0.74* 0.68* 0.67* 0.69* 0.71*

TVP-FAVAR-BMS (0.96,0.99) 1.47 1.46 1.43 1.42 1.42 0.78* 0.71* 0.70* 0.72* 0.72*

VAR+PC 1.03 1.01 1.00 0.99 0.99 0.80* 0.93* 0.96* 0.94* 0.94*

AR + PC (rec) 1.10 1.14 1.16 1.17 1.17 0.97* 0.78* 0.83* 0.79* 0.85*

AR + PC (rol) 1.29 1.27 1.26 1.29 1.35 1.04* 0.90* 0.98* 1.00* 0.93*

Notes: APL is the average predictive likelihood (not in logarithms), and MSFE is the mean squared forecast error. Model’s fore-

cast performance is better when APL (MSFE) is higher (lower). For each variable (inflation, unemployment, output) the first li-

ne shows the APL and MSFE of the benchmark model for each forecast horizon h. All other models’ APL and MSFE are relative

to that of the benchmark model. Values of APL (MSFE) higher (lower) than 1 signify better performance than the benchmark.
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Also of interest is the performance of our approach relative to VAR forecasts

augmented with an existing FCI. Before doing so, we note that such comparisons are

extremely difficult since different indices are based on different assumptions, data

transformations, frequencies and sample sizes. The earliest common starting date

for the FCIs is 1994Q1 and, accordingly, we re-estimate our models using data from

this point and use 2000Q1 - 2013Q3-h as our forecast evaluation period. Table 1

describes the existing FCIs and FSIs and defines the acronyms we use in Table 3. We

use the same naming convention as in Table 2 so that, for instance, TVP-VAR+FCI4

is the TVP-VAR which includes the macroeconomic variables and the Chicago Fed

National FCI. All modelling choices (e.g. priors and discount factors) are the same

benchmark choices as those used previously (see Section 3.2).

In relation to the approach developed in this paper, the story is similar to that

told by Table 2. TVP-FAVARs with DMA or DMS still are either the best or among

the best forecasting models for all the macroeconomic variables at all forecasting

horizons. The table also shows that substantial benefits can be achieved by allowing

for time-variation in parameters and doing DMA or DMS. Among the existing

FCIs, use of the Chicago Fed’s National FCI tends to lead to the best forecasting

performance. Given the fact that it is this FCI which is most similar to our own

(see Figure 3), it is not surprising that the TVP-VAR which includes FCI4 is given

forecasting results similar to our TVP-FAVAR which includes all of the financial

variables. Nevertheless, it is worth noting that DMA or DMS do add additional

improvements in forecast performance so that TVP-FAVAR-DMA and TVP-FAVAR-

DMS almost always forecast better than the TVP-VAR-FCI4.

Including any of the FSIs (i.e. FCI1, FCI2 or FCI3) in a TVP-VAR usually leads to

fairly good forecast performance, but rarely as good as FCI4. And there are some

cases where these other existing indices forecast poorly. For instance, the Kansas

City Fed’s FSI forecasts of unemployment are appreciably worse than those of other

indices.
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4 Conclusions

In this paper, we have argued for the desirability of constructing a dynamic financial

conditions index which takes into account changes in the financial sector, its

interaction with the macroeconomy and data availability. In particular, we want

a methodology which can choose different financial variables at different points in

time and weight them differently. We develop DMS and DMA methods, adapted

from Raftery et al (2010) and others, to achieve this aim. Using a large data set

of US macroeconomic and financial variables, we find our estimated FCI to have

reasonable properties. It is broadly similar to existing FCIs, but does exhibit some

interesting differences.

We also demonstrate the usefulness of our FCI as a forecasting tool. Working

with a large model space involving many TVP-FAVARs which make different

choices of financial variables, we find DMA and DMS methods lead to improved

forecasts of macroeconomic variables, relative to methods which use a single model.

We also show the importance of allowing for time variation in parameters and

heteroskedasticity in achieving good forecast performance.

25



References

[1] Aiolfi, M., Capistrán, C., Timmermann, A., 2010. Forecast combinations. In:

Michael P. Clements and David F. Hendry (Eds). The Oxford Handbook of

Economic Forecasting. Oxford University Press, USA.

[2] Balakrishnan, R., Danninger, S., Elekdag, S., Tytell, I., 2009. The transmission

of financial stress from advanced to emerging economies. IMF Working Papers

09/133, International Monetary Fund.

[3] Banerjee, A., Marcellino, M., Masten, I., 2008. Forecasting macroeconomic

variables using diffusion indexes in short samples with structural change.

CEPR Discussion Papers 6706, C.E.P.R. Discussion Papers.

[4] Bates, B. J., Plagborg-Møller, M., Stock, J. H., Watson, M. W., 2013. Consistent

factor estimation in dynamic factor models with structural instability. Journal

of Econometrics, 177, 289-304.

[5] Beaton, K., Lalonde, R., Luu, C., 2009. A financial conditions index for the

United States. Bank of Canada Discussion Paper, November.

[6] Bernanke, B., Boivin, J., Eliasz, P., 2005. Measuring monetary policy: A factor

augmented vector autoregressive (FAVAR) approach. Quarterly Journal of

Economics 120, 387-422.

[7] Boivin, J., Ng, S., 2006. Are more data always better for factor analysis?

Journal of Econometrics 132, 169-194.

[8] Brave, S., Butters, R., 2011. Monitoring financial stability: a financial

conditions index approach. Economic Perspectives, Issue Q1, Federal Reserve

Bank of Chicago, 22-43.

[9] Breitung, J., Eickmeier, S., 2011. Testing for structural breaks in dynamic

factor models. Journal of Econometrics, 163(1), 71-84.

[10] Clark, T., 2009. Real-time density forecasts from VARs with stochastic volatil-

ity. Federal Reserve Bank of Kansas City Research Working Paper 09-08.

[11] Cogley, T., Sargent, T. J., 2005. Drift and volatilities: Monetary policies and

outcomes in the post WWII U.S. Review of Economic Dynamics 8(2), 262-302.

[12] D’Agostino, A., Gambetti, L., Giannone, D. (2013). Macroeconomic forecast-

ing and structural change. Journal of Applied Econometrics, 28, 81-101.

[13] Del Negro, M., Otrok, C., 2008. Dynamic factor models with time-varying

parameters: Measuring changes in international business cycles. University of

Missouri Manuscript.

26



[14] Diebold, F., Mariano, R., 1995. Comparing predictive accuracy. Journal of

Business Economics and Statistics, 13, 134-144.

[15] Doz, C., Giannone, D., Reichlin, L., 2011. A two-step estimator for large

approximate dynamic factor models based on Kalman filtering. Journal of

Econometrics 164, 188-205.

[16] Eickmeier, S., Lemke, W., Marcellino, M., 2011a. Classical time-varying

FAVAR models - estimation, forecasting and structural analysis. Deutsche

Bundesbank, Discussion Paper Series 1: Economic Studies, No 04/2011.

[17] Eickmeier, S., Lemke, W., Marcellino, M., 2011b. The changing international

transmission of financial shocks: evidence from a classical time-varying

FAVAR. Deutsche Bundesbank, Discussion Paper Series 1: Economic Studies,

No 05/2011.

[18] English, W., Tsatsaronis, K., Zoli, E., 2005. Assessing the predictive power

of measures of financial conditions for macroeconomic variables. Bank for

International Settlements Papers No. 22, 228-252.

[19] Filippeli, T. and Theodoridis, K., 2013. DSGE priors for BVAR models,

Empirical Economics, forthcoming.

[20] Forni M., Hallin M., Lippi M., Reichlin L., 2003. Do financial variables help

forecasting inflation and real activity in the EURO area? Journal of Monetary

Economics 50, 1243-55.

[21] Garratt, A., Koop, G., Mise, E. and Vahey, S., 2009. Real-time prediction with

UK monetary aggregates in the presence of model uncertainty. Journal of

Business and Economic Statistics, 27, 480-491.

[22] Giannone, D., Reichlin, L., Sala, L., 2005. Monetary Policy in Real Time. NBER

Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-

224, National Bureau of Economic Research, Inc.

[23] Gomez, E., Murcia, A., Zamudio, N., 2011. Financial conditions index: Early

and leading indicator for Colombia? Financial Stability Report, Central Bank

of Colombia.

[24] Hatzius, J., Hooper, P., Mishkin, F., Schoenholtz, K., Watson, M., 2010.

Financial conditions indexes: A fresh look after the financial crisis. NBER

Working Papers 16150, National Bureau of Economic Research, Inc.

[25] Hoeting, J. A., Madigan, D., Raftery, A. E., Volinsky, C. T., 1999. Bayesian

Model Averaging: A Tutorial. Statistical Science 14, 382-417.

27



[26] Ingram, B., Whiteman, C., 1994. Supplanting the ’Minnesota’ prior: Forecast-

ing macroeconomic time series using real business cycle model priors. Journal

of Monetary Economics, 34, 497-510.,

[27] Kárný, M., 2006. Optimized Bayesian Dynamic Advising: Theory and Algo-

rithms, Springer-Verlag New York Inc.

[28] Kaufmann, S., Schumacher, C., 2012. Finding relevant variables in sparse

Bayesian factor models: Economic applications and simulation results.

Deutsche Bundesbank Discussion Paper No 29/2012.

[29] Koop, G., Korobilis, D., 2012. Forecasting inflation using dynamic model

averaging. International Economic Review 53, 867-886.

[30] Koop, G., Korobilis, D., 2013. Large time-varying parameter VARs. Journal of

Econometrics, 177, 185-198.

[31] Korobilis, D., 2013. Assessing the transmission of monetary policy shocks

using time-varying parameter dynamic factor models. Oxford Bulletin of

Economics and Statistics 75, 157-179.

[32] Kulhavý, R., Kraus, F., 1996. On duality of regularized exponential and linear

forgetting. Automatica 32,1403-1416.

[33] Lo Duca, M., Peltonen, T., 2013. Assessing systemic risks and predicting

systemic events. Journal of Banking and Finance 37, 2183-2195.

[34] Lütkepohl, H., 2005. New Introduction to Multiple Time Series Analysis.

Springer: New York.

[35] Matheson, T., 2011. Financial conditions indexes for the United States and

Euro Area. IMF Working Papers 11/93, International Monetary Fund.

[36] Nelson, L., Stear, E., 1976. The simultaneous on-line estimation of parameters

and states in linear systems. IEEE Transactions on Automatic Control 21, 94 -

98.

[37] Primiceri. G., 2005. Time varying structural vector autoregressions and

monetary policy. Review of Economic Studies 72, 821-852.

[38] Quintana, J.M., West, M., 1988. Time Series Analysis of Compositional Data.

In Bayesian Statistics 3, (eds: J.M. Bernardo, M.H. De Groot, D.V. Lindley and

A.F.M. Smith), Oxford University Press.

[39] Raftery, A. E., Karny, M., Ettler, P., 2010. Online prediction under model

uncertainty via dynamic model averaging: Application to a cold rolling mill.

Technometrics 52, 52-66.

28



[40] Schorfheide, F., Wolpin, K. E., 2012. On the use of holdout samples for model

selection. American Economic Review - Papers and Proceedings 102(3), 477-

481.

[41] Stock, J. H., Watson, M. W., 2002. Macroeconomic forecasting using diffusion

indexes. Journal of Business & Economic Statistics 20,147-162.

[42] Stock, J. H., Watson, M. W., 2009. Forecasting in dynamic factor models

subject to structural instability. In: Jennifer Castle and Neil Shephard (Eds),

The Methodology and Practice of Econometrics: A Festschrift in Honour of

Professor David Hendry, Oxford: Oxford University Press.

29



A
.
D

a
ta

A
p

p
e
n

d
ix

T
h

e
fo

ll
o
w

in
g

ta
b
le

d
e
sc

ri
b
e
s

th
e

se
ri

e
s

w
e

u
se

d
to

e
x
tr

a
ct

o
u

r
F
in

a
n

ci
a
l

C
o
n

d
it

io
n

s
In

d
e
x
.

T
h

e
se

ri
e
s

a
re

se
le

ct
e
d

a
s

d
e
sc

ri
b
e
d

in
S

e
ct

io
n

3
.1

o
f

th
e

p
a
p
e
r.

T
h

e
fo

u
rt

h
co

lu
m

n
d

e
sc

ri
b
e
s

th
e

st
a
ti

o
n

a
ri

ty
tr

a
n

sf
o
rm

a
ti

o
n

co
d

e
s

(T
co

d
e
s)

w
h

ic
h

h
a
v
e

b
e
e
n

a
p
p
li

e
d

to
e
a
ch

v
a
ri

a
b
le

.
T
co

d
e

sh
o
w

s
th

e
st

a
ti

o
n

a
ri

ty
tr

a
n

sf
o
rm

a
ti

o
n

fo
r

e
a
ch

v
a
ri

a
b
le

:
T
co

d
e
=

1
,

v
a
ri

a
b
le

re
m

a
in

s
u

n
tr

a
n

sf
o
rm

e
d

(l
e
v
e
ls

)
a
n

d
T
co

d
e
=

5
,

ta
k
e

fi
rs

t
lo

g
d

if
fe

re
n

ce
s.

T
h

e
fi

ft
h

co
lu

m
n

d
e
sc

ri
b
e
s

th
e

so
u

rc
e

o
f

e
a
ch

v
a
ri

a
b
le

.
T

h
e

co
d

e
s

a
re

:
B

-
B

lo
o
m

b
e
rg

;
D

-
D

a
ta

st
re

a
m

;
F

-
Fe

d
e
ra

l

R
e
se

rv
e

E
co

n
o
m

ic
D

a
ta

(h
tt

p
:/

/
re

se
a
rc

h
.s

tl
o
u

is
fe

d
.o

rg
/f

re
d

2
/)

;
G

-
A

m
it

G
o
y
a
l

(h
tt

p
:/

/w
w

w
.h

e
c.

u
n

il
.c

h
/a

g
o
y
a
l/

);

R
-

B
o
a
rd

o
f

G
o
v
e
rn

o
rs

o
f

th
e

Fe
d

e
ra

l
R

e
se

rv
e

S
y
st

e
m

(h
tt

p
:/

/w
w

w
.f

e
d

e
ra

lr
e
se

rv
e
.g

o
v
/)

;
U

-
U

n
iv

e
rs

it
y

o
f

M
ic

h
ig

a
n

(h
tt

p
:/

/w
w

w
.s

ca
.i

sr
.u

m
ic

h
.e

d
u

/)
;

W
-

M
a
rk

W
.

W
a
ts

o
n

(h
tt

p
:/

/w
w

w
.p

ri
n

ce
to

n
.e

d
u

/
m

w
a
ts

o
n

/)
.

T
a
b
le

A
1
:

T
h

e
1
8

v
a
ri

a
b
le

s
u

se
d

fo
r

th
e

F
C

I

N
o

M
n

e
m

o
n

ic
D

e
sc

ri
p
ti

o
n

T
co

d
e

S
o
u

rc
e

S
a
m

p
le

1
S
&

P
5
0
0

S
&

P
5
0
0

S
to

ck
P

ri
ce

In
d

e
x

5
F

1
9
7
0
:Q

1
-2

0
1
3
:Q

3

2
T

W
E

X
M

M
T

H
F
R

B
N

o
m

in
a
l

M
a
jo

r
C

u
rr

e
n

ci
e
s

D
o
ll

a
r

In
d

e
x

(L
in

k
e
d

T
o

E
X

R
U

S
In

1
9
7
3
:1

)
5

W
/
F

1
9
7
0
:Q

1
-2

0
1
3
:Q

3

3
O

IL
P

R
IC

E
U

.S
.
C

ru
d

e
O

il
Im

p
o
rt

e
d

A
cq

u
is

it
io

n
C

o
st

b
y

R
e
fi

n
e
rs

(D
o
ll

a
rs

p
e
r

B
a
rr

e
l)

5
B

1
9
7
4
:Q

1
-2

0
1
3
:Q

3

4
T

E
D

sp
re

a
d

3
m

L
IB

O
R

-
3
m

T
re

a
su

ry
B

il
l

R
a
te

1
B

1
9
8
1
:Q

4
-2

0
1
3
:Q

3

5
1
0
/2

y
sp

re
a
d

1
0
-Y

e
a
r/

2
-Y

e
a
r

T
re

a
su

ry
Y
ie

ld
S
p
re

a
d

1
F

1
9
7
6
:Q

3
-2

0
1
3
:Q

3

6
2
y
/3

m
sp

re
a
d

2
-Y

e
a
r/

3
-M

o
n

th
T
re

a
su

ry
Y
ie

ld
S
p
re

a
d

1
F

1
9
7
6
:Q

3
-2

0
1
3
:Q

3

7
C

o
m

m
e
rc

ia
l

P
a
p
e
r

sp
re

a
d

3
-M

o
n

th
F
in

a
n

ci
a
l

C
o
m

m
e
rc

ia
l

P
a
p
e
r/

T
re

a
su

ry
B

il
l

S
p
re

a
d

1
B

1
9
7
1
:Q

2
-2

0
1
3
:Q

3

8
L
O

A
N

H
P

I
In

d
e
x

H
o
m

e
L
o
a
n

P
e
rf

o
rm

a
n

ce
In

d
e
x

U
.S

.
In

d
e
x

L
e
v
e
l

5
B

1
9
7
6
:Q

1
-2

0
1
3
:Q

3

9
3
0
y

M
o
rt

g
a
g
e

S
p
re

a
d

3
0
y

C
o
n

v
e
n

ti
o
n

a
l

M
o
rt

g
a
g
e

R
a
te

-
1
0
y

T
re

a
su

ry
R

a
te

1
F

1
9
7
1
:Q

2
-2

0
1
3
:Q

3

1
0

C
M

D
E

B
T

H
o
u

se
h

o
ld

s
a
n

d
N

o
n

p
ro

fi
t

O
rg

a
n

iz
a
ti

o
n

s;
C

re
d

it
M

a
rk

e
t

In
st

ru
m

e
n

ts
;

L
ia

b
il

it
y,

L
e
v
e
l

5
F

1
9
7
1
:Q

1
-2

0
1
3
:Q

3

1
1

C
C

I
In

d
e
x

C
o
n

ti
n

u
o
u

s
C

o
m

m
o
d

it
y

F
u

tu
re

s
P

ri
ce

In
d

e
x

5
B

1
9
7
0
:Q

1
-2

0
1
3
:Q

3

1
2

M
O

V
E

In
d

e
x

M
e
rr

il
l

L
y
n

ch
O

n
e
-M

o
n

th
T
re

a
su

ry
O

p
ti

o
n

s
V
o
la

ti
li

ty
In

d
e
x

(M
O

V
E

)
1

B
1
9
8
8
:Q

2
-2

0
1
3
:Q

3

1
3

V
IX

C
B

O
E

S
&

P
1
0
0

V
o
la

ti
li

ty
In

d
e
x

1
B

1
9
8
6
:Q

3
-2

0
1
3
:Q

3

1
4

T
O

T
A

L
S
L

T
o
ta

l
C

o
n

su
m

e
r

C
re

d
it

O
w

n
e
d

A
n

d
S
e
cu

ri
ti

ze
d

,
O

u
ts

ta
n

d
in

g
5

F
1
9
7
0
:Q

1
-2

0
1
3
:Q

3

1
5

S
T

D
S
C

O
M

S
L
O

O
S
:

N
e
t

p
e
rc

e
n

ta
g
e

o
f

b
a
n

k
s

ti
g
h

te
n

in
g

st
a
n

d
a
rd

s
fo

r
co

m
m

e
rc

ia
l

re
a
l

e
st

a
te

lo
a
n

s
1

R
1
9
9
0
:Q

3
-2

0
1
3
:Q

3

1
6

M
IC

H
1

M
ic

h
ig

a
n

S
u

rv
e
y
:

In
te

re
st

R
a
te

s/
C

re
d

it
R

e
a
so

n
fo

r
G

o
o
d

/B
a
d

C
o
n

d
it

io
n

s
fo

r
B

u
y
in

g
H

o
u

se
s

S
p
re

a
d

1
U

1
9
7
0
:Q

1
-2

0
1
3
:Q

3

1
7

M
IC

H
2

M
ic

h
ig

a
n

S
u

rv
e
y
:

B
u

y
in

g
C

o
n

d
it

io
n

s
fo

r
V
e
h

ic
le

s
1

U
1
9
7
0
:Q

1
-2

0
1
3
:Q

3

1
8

M
IC

H
3

M
ic

h
ig

a
n

S
u

rv
e
y
:

E
x
p
e
ct

e
d

C
h

a
n

g
e

In
F
in

a
n

ci
a
l

S
it

u
a
ti

o
n

1
U

1
9
7
0
:Q

1
-2

0
1
3
:Q

3

30



B. Technical Appendix

In this appendix, we describe the econometric methods we use to estimate a TVP-

FAVAR and restricted versions of it.

We write the TVP-FAVAR compactly as

xt = ztΛt + ut, ut ∼ N (0, Vt) (B.1)

zt = zt−1βt + εt, εt ∼ N (0, Qt) (B.2)

λt = λt−1 + vt, vt ∼ N (0,Wt) (B.3)

βt = βt−1 + ηt, ηt ∼ N (0, Rt) (B.4)

where λt =

(
(λyt )

′ ,
(
λft

)′)′
and zt =

[
yt
ft

]
. We also use notation where f̃t is the

standard principal components estimate of ft based on xt (using data up to time

t) and z̃t =

[
yt
f̃t

]
. Additionally, if at is a vector then ai,t is the ith element of

that vector; and if At is a matrix Aii,t is its (i, i)th element. Estimates of time varying

parameters or latent states can be made using data available at time t−1 (filtering),

or time t (updating) or time T (smoothing). We use subscript notation for this such

that at|τ is an estimate (or posterior moment) of time-varying parameter at using

data available through period τ .

Our estimation algorithm requires initialization of all state variables. In partic-

ular we define the following initial conditions for all system unknown parameters

f0 ∼ N
(
0,Σf0|0

)
, (B.5)

λ0 ∼ N
(
0,Σλ0|0

)
, (B.6)

β0 ∼ N
(
0,Σβ0|0

)
, (B.7)

V0 ≡ 1× In, (B.8)

Q0 ≡ 1× Is+1. (B.9)

The algorithm follows the following steps:

1. Given the initial conditions and zt = z̃t obtain filtered estimates of λt, βt, Vt, Qt
using the following recursion for t = 1, .., T

(a) The Kalman filter tells us:

λt|Data1:t−1 ∼ N
(
λt|t−1,Σ

λ
t|t−1

)
,

βt|Data1:t−1 ∼ N
(
βt|t−1,Σ

β

t|t−1

)
,
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where λt|t−1 = λt−1|t−1, Σ
λ
t|t−1 = Σλt−1|t−1 + Ŵt, βt|t−1 = βt−1|t−1 and

Σβ
t|t−1 = Σβ

t−1|t−1 + R̂t. The error covariances are estimated using

forgetting factors as: Ŵt =
(
1− κ−13

)
Σλt−1|t−1 and R̂t =

(
1− κ−14

)
Σβ
t−1|t−1.

(b) Calculate estimates of Vt and Qt for use in the updating step using the

following EWMA specifications:

V̂i,t = κ1Vi,t−1|t−1 + (1− κ1) ûi,tû
′
i,t (B.10)

Q̂t = κ2Qt−1|t−1 + (1− κ2) ε̂tε̂
′
t (B.11)

where ûi,t = xi,t − z̃tλi,t|t−1, for i = 1, ..., n, and ε̂t = z̃t − z̃t−1βt|t−1.

(c) Update λt and βt given information at time t using the Kalman filter

update step

• Update λi,t for each i = 1, ..., n using

λit|Data1:t ∼ N
(
λi,t|t,Σ

λ
ii,t|t

)
,

where λi,t|t = λi,t|t−1 + Σ
λ
ii,t|t−1z̃

′
t

(
V̂ii,t + z̃tΣ

λ
ii,t|t−1z̃

′
t

)−1 (
xt − z̃tλt|t−1

)

and Σλii,t|t = Σ
λ
ii,t|t−1 − Σ

λ
ii,t|t−1z̃

′
t

(
V̂ii,t + z̃tΣ

λ
ii,t|t−1z̃

′
t

)−1
z̃tΣ

λ
ii,t|t−1.

• Update βt from

βt|Data1:t ∼ N
(
βt|t,Σ

β

t|t

)
,

where βt|t = βt|t−1+Σ
β

t|t−1z̃
′
t−1

(
Q̂t + z̃t−1Σ

β

t|t−1z̃
′
t−1

)−1 (
z̃t − z̃t−1β̂t|t−1

)

and Σβ
t|t = Σ

β

t|t−1 − Σ
β

t|t−1z̃
′
t−1

(
Q̂t + z̃t−1Σ

β

t|t−1z̃
′
t−1

)−1
z̃t−1Σ

β

t|t−1.

(d) Update Vt and Qt given information at time t using the EWMA specifica-

tions as follows:

Vi,t|t = κ1Vi,t−1|t−1 + (1− κ1) ûi,t|tû
′
i,t|t (B.12)

Qt|t = κ2Qt−1|t−1 + (1− κ2) ε̂t|tε̂
′
t|t (B.13)

where ûi,t|t = xi,t − z̃tλi,t|t, for i = 1, ..., n, and ε̂t|t = z̃t − z̃t−1βt|t.

2. Obtain smoothed estimates of λt, βt, Vt, Qt using the following recursions for

t = T − 1, .., 1

(a) Update λt and βt given information at time t+ 1 using the fixed interval

smoother
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• Update λi,t for each i = 1, ..., n from

λit|Data1:T ∼ N
(
λi,t|T ,Σ

λ
ii,t|T

)
,

where λi,t|T = λi,t|t+C
λ
t

(
λi,t+1|T − λi,t+1|t

)
, Σλii,t|T = Σ

λ
ii,t|t+C

λ
t

(
Σλii,t+1|T − Σ

λ
ii,t+1|t

)
Cλt

and Cλt = Σ
λ
ii,t|t

(
Σλii,t+1|t

)−1
.

• Update βt from

βt|Data1:T ∼ N
(
βt|T ,Σ

β

t|T

)
,

where βt|T = βt|t+C
β
t

(
βt+1|T − βt+1|t

)
, Σβ

t|T = Σ
β

t|t+C
β
t

(
Σβ
t+1|T − Σ

β

t+1|t

)
Cβ′t

and Cβt = Σ
β

t|t

(
Σβ
t+1|t

)−1
.

(b) Update Vt and Qt given information at time t + 1 using the following

equations

V −1
t|t+1 = κ1V

−1
t|t + (1− κ1)V

−1
t+1|t+1, (B.14)

Q−1
t|t+1 = κ2Q

−1
t|t + (1− κ2)Q

−1
t+1|t+1. (B.15)

3. Means and variances of ft given appropriate estimates of λt, βt, Vt, Qt de-

scribed in the preceding steps can be obtained using the standard Kalman

filter and smoother.

Treatment of missing values

In our application our sample is unbalanced, since it contains many financial

variables which have been collected only after the 1970s or the 1980s. Similar

issues are faced by organizations which monitor FCIs. For instance, the Chicago

Fed National FCI comprises 100 series where most of them have different starting

dates. Although specific computational methods for dealing with such issues exist

(e.g. the EM algorithm or Gibbs sampler with data augmentation), our focus is

on averaging over many models which means such methods are computationally

infeasible. Accordingly, similar to our purpose of developing a simulation-free and

fast algorithm for parameter estimation, we want to avoid simulation methods for

estimating the missing data in xt. Additionally, methods such as interpolation can

work poorly when missing values are at the beginning of the sample.

Since the missing data in xt are in the beginning, we make the assumption

that the factor (FCI) is estimated using only the observed series. The estimation

algorithm above allows for such an approach in a straightforward manner by just

replacing missing values with zeros. The loadings λ (whether time-varying, or

constant) will become equal to 0, thus removing from the estimate of ft the effect

of the variables in xt which have missing values at time t. This feature holds both
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for the initial principal components estimate f̃t, as well as the final Kalman filter

estimate.

Estimation of a single TVP-FAVAR

Given the algorithm above, we can estimate the TVP-FAVAR by choosing values

of κ1, κ2, κ3, κ4 < 1. For the main results in the paper we set κ1 = κ2 = 0.96 and

κ1 = κ2 = 0.99. The restricted special cases of the TVP-FAVAR listed in Section 2.1

can be obtained by setting forgetting and/or decay factors to particular values. If

we set κ3 = 1 and κ4 < 1 then we can obtain a TVP-VAR augmented with factors

estimated with constant loadings12. Setting κ3 = 1 and κ4 = 1 leads to the constant

parameter FAVAR with heteroskedastic covariances (assuming that κ1, κ2 < 1). If we

additionally set κ1 = κ2 = 1 we can estimate homoskedastic versions of the various

models, since in that case Vt = Vt−1 = ... = V1 = V0 and Qt = Qt−1 = ... = Q1 = Q0.
Nevertheless, as discussed in the main body of the paper, this is a case which is

always dominated (in terms of forecast performance) by the heteroskedastic case.

We provide more evidence for this in Appendix C.

Estimation of multiple models (DMA/DMS)

In order to implement the DMA/DMS exercises we run the algorithm described

above for each of the 217 = 131, 072 models. Note that for a specific DMA exercise

all models are nested, and the only thing that changes is the number of variables

in the vector xt that we use in order to extract the FCI. Given our discussion about

how missing values are treated by the Kalman filter, in order to estimate a specific

model which uses, say, the 1st, 3rd and 15th series in xt, we simply multiply all but

the 1st, 3rd and 15th columns of xt with zeros. In that case, we remove at all times

t the effects of all 15 variables we do not use for estimation of the specific model,

and at the same time we still have as a dependent variable a 18 × 1 dimensional

vector (and programming is greatly simplified).

The most important feature of DMA is that, unlike many Bayesian model

selection and averaging procedures which use MCMC methods, there is no depen-

dence in estimating each model and iterations using “for” loops are independent.

That means that it is trivial to adapt our code to use features such as parallel

computing, thus taking advantage of the widespread availability of modern multi-

core processors (or large clusters of PCs). In MATLAB this is as easy as replacing the

typical “for” loop which would run for models 1 to 131, 072, with a “parfor” loop.

The reader is encouraged to look at our code which is available on https://sites.google

.com/site/dimitriskorobilis/matlab, which also has the option to call the Parallel

Processing Toolbox in a MATLAB environment.

12In a previous version of this paper we have named this model the factor augmented TVP-VAR or
FA-TVP-VAR.
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C. Sensitivity analysis

In this section we present further results for several different choices of prior

hyperparameters, which can reflect different beliefs about time variation in the

model parameters as well as beliefs about variation over time in the choice of the

optimal model.

C.1. Comparison of relatively noninformative with training

sample priors

In the main body of the paper results are presented for a subjectively-elicited but

relatively noninformative prior. An interesting alternative is to choose all prior

hyperparameters using a training sample of data. In the context of TVP-VARs,

Primiceri (2005) suggests such a prior which is based on splitting the data into a

training sample, and a testing sample where estimation occurs. OLS estimation of a

constant coefficient model using the training sample provides parameter estimates

which are used as prior hyperparameters for the testing sample. Such training

sample priors are commonly-used in Bayesian analysis, and in the context of TVP

models help provide regularized posterior estimators which can also help numerical

stability. This latter feature is important in the case of TVP-VARs and TVP-FAVARs

estimated with MCMC - see the discussion in Section 4.1 of Primiceri (2005).

In this section, we introduce such a training sample prior for our FAVAR and TVP-

FAVAR models. We use the first 10 years of data (1970Q1-1979Q4) in our original

sample as the training sample. We estimate a FAVAR with constant parameters

using OLS methods (replacing the factor with its principal component estimate) on

this training sample. These OLS estimates are used to in the initial conditions for

the estimation sample, 1980Q1-2013Q3, as follows

f0 ∼ N
(
f̂TST , 0.1

)
,

λ0 ∼ N
(
0, 4× var

(
λ̂
TS
))
,

β0 ∼ N
(
0, 4× var

(
β̂
TS
))
,

V0 ≡ 1× V̂ TS,

Q0 ≡ 1× Q̂TS,

π0|0,j =
1

J
,

where parameters with a hat and a superscript TS denote OLS estimates of the

respective parameters in the time-invariant FAVAR fitted using the training sample.

Other settings used in the main body of the paper remain the same, e.g. we use

four lags everywhere and the decay and forgetting factors that define each of the
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models (DMA vs BMA, or FAVAR vs TVP-FAVAR) are exactly the ones specified in

Section 3.2. The forecast evaluation sample is 1990Q1-2013Q3. Table C.1 presents

the results of this exercise. It is divided in three blocks, each one corresponding to

one of the three variables of interest (inflation, unemployment, output growth). For

each block the first line shows the APL and MSFE of the benchmark TVP-FAVAR used

in the main body of the paper. The APLs and MSFEs of all other models are relative

to the APL and MSFE of the benchmark TVP-FAVAR, which implies that relative APL

higher than one (similarly, relative MSFE lower than one) is an indication of better

performance relative to the benchmark.

Table C1: Comparison of benchmark with training sample (TS) priors, 1990Q1-2013Q3

Forecast Metric APL MSFE

INFLATION

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
TVP-FAVAR 1.1233 0.9741 0.9066 0.8194 0.7380 0.0416 0.0454 0.0466 0.0562 0.0696

FAVAR 0.76 0.77 0.76 0.78 0.80 1.06 1.14 1.10 1.02 0.94

TVP-FAVAR-TS 1.01 1.04 1.06 1.10 1.09 0.93 0.94 0.87 0.87 0.97

FAVAR-TS 0.87 0.89 0.91 0.96 1.00 0.93 1.08 1.10 0.98 0.94

TVP-FAVAR-DMA-TS 1.13 1.13 1.15 1.16 1.17 0.94 0.84 0.89 0.90 0.86

TVP-FAVAR-BMA-TS 1.13 1.14 1.16 1.17 1.18 0.87 0.82 0.87 0.86 0.85

UNEMPLOYMENT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
TVP-FAVAR 0.9170 0.5868 0.4191 0.3229 0.2639 0.0906 0.2741 0.5950 1.0105 1.5359

FAVAR 0.64 0.61 0.61 0.63 0.64 1.68 2.01 2.09 2.14 2.17

TVP-FAVAR-TS 0.81 0.74 0.74 0.77 0.80 1.58 1.84 1.77 1.62 1.45

FAVAR-TS 0.50 0.51 0.56 0.62 0.66 2.44 2.85 2.82 2.47 2.21

TVP-FAVAR-DMA-TS 1.14 1.15 1.15 1.19 1.19 1.01 0.87 0.77 0.75 0.75

TVP-FAVAR-BMA-TS 1.15 1.16 1.16 1.19 1.22 1.00 0.86 0.77 0.75 0.75

OUTPUT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
TVP-FAVAR 0.4643 0.4344 0.4206 0.4156 0.4131 0.3548 0.4085 0.4204 0.3972 0.3854

FAVAR 0.71 0.71 0.72 0.73 0.74 1.43 1.64 1.57 1.48 1.40

TVP-FAVAR-TS 0.80 0.82 0.81 0.79 0.78 1.64 1.64 1.68 1.09 1.03

FAVAR-TS 0.72 0.76 0.74 0.66 0.65 2.04 1.84 2.01 1.21 1.37

TVP-FAVAR-DMA-TS 1.05 1.01 1.04 1.02 0.93 1.45 1.40 1.26 1.50 1.18

TVP-FAVAR-BMA-TS 0.97 0.95 1.06 0.93 0.89 1.44 1.40 1.26 1.50 1.18

Notes: APL is the average predictive likelihood (not in logarithms), and MSFE is the mean squared forecast error. Model’s fore-

cast performance is better when APL (MSFE) is higher (lower). For each variable (inflation, unemployment, output) the first li-

ne shows the APL and MSFE of the benchmark model for each forecast horizon h. All other models’ APL and MSFE are relative

to that of the benchmark model. Values of APL (MSFE) higher (lower) than 1 signify better performance than the benchmark.

In Table C1 we see that the training sample prior is not particularly helpful

for forecasting unemployment and output, while there is marginal improvement

of APLs and MSFEs for inflation. This result suggests that globally (for all three

variables of interest) our relatively noninformative prior is a sensible choice and

avoids problems with training samples such as that noted by Schorfheide and

Wolpin (2012):
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“[...] from a Bayesian perspective the use of holdout samples is

suboptimal because the computation of posterior probabilities should be

based on the entire sample and not just on a subsample.” Schorfheide

and Wolpin (2012)

From our own experience with Bayesian VARs (and FAVARs), we can argue that

training sample priors are very important in cases where numerical stability is an

issue. For example, the decision of Primiceri (2005) and others to use training

sample priors when estimating TVP-VAR with MCMC works well because serious

numerical issues can occur when relatively noninformative priors and diffuse initial

conditions are used in the full sample. In the present paper, where we examine

high dimensional TVP-FAVARs, we do not have such numerical issues due to the

computational simplicity of our algorithm (which does not involve the use of Monte

Carlo or other iterative methods). This exact advantage of our estimation methods

justifies our decision to use relatively noninformative priors in the full available

sample as the benchmark case. In other datasets, e.g. macroeconomic data for

the Euro-Area, training samples might not be available at all. In this case one can

either use a subjectively elicited prior or a prior which is informed by economic

theory. For example, economic theory restrictions can enter our prior distributions

for the (FA)VAR part of our model, in the spirit of Filippeli and Theodoridis (2013)

and Ingram and Whiteman (1994). Examining such restrictions is beyond the scope

of our main aim in this paper, which is to show the general role of time-variation in

models and parameters when extracting an FCI.

C.2. A Different Way to Purge Macroeconomic Conditions from

the FCI

We have stressed in the main body of the paper that a good FCI should be purged of

macroeconomic conditions. However, it might be argued that these macroeconomic

conditions should not reflect the current situation, but rather current expectations

of future macroeconomic conditions. In the body of the paper, we always use

the current values of the three macroeconomic variables of interest (yt). It is

possible that yt is a poor proxy of future macroeconomic expectations. In order

to investigate this possibility, in this appendix we replace yt by an explicit measure

of macroeconomic expectations by using forecasts of the macroeconomic variables.

In particular, we replace first equation of our TVP-VAR by

xt = λ
y
t ỹt + λ

f
t ft + ut, (C.1)

where ỹt contains one-year ahead forecasts of the macroeconomic variables made

provided by the Survey of Professional Forecasters (SPF).13 For the second model

13This data is available at http://www.phil.frb.org/research-and-data/real-time-center/survey-of-
professional-forecasters/historical-data/mean-forecasts.cfm
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equation, we maintain the assumption that the FCI ft and the three macroeconomic

variables of interest yt follow a VAR of the form

[
yt
ft

]
= ct +Bt,1

[
yt−1
ft−1

]
+ ...+Bt,p

[
yt−p
ft−p

]
+ εt. (C.2)

In Table C2, we present the forecasting results for this model, which we name

the TVP-FAVAR-SPF to denote the fact that we use the SPF in the measurement

equation, and for the TVP-FAVAR and FAVAR as implemented in Section 3.4. Both

TVP-FAVAR models have κ1 = κ2 = 0.96 and κ3 = κ4 = 0.99, but we additionally

show results for the FAVAR-SPF which is the special case with κ1 = κ2 = κ3 = κ4 = 1
(a constant parameter FAVAR with the SPF variables used to purge the FCI). We

can see that using the SPF variable in order to purge the FCI, results in a slight

deterioration of forecast performance. It is only when using DMA with the TVP-

FAVAR-SPFs, that we see improvement over our benchmark TVP-FAVAR, but DMA

led to similar improvements in the body of the paper (i.e. it is the use of DMA which

is causing these improvements, not the inclusion of the SPF variables).

Table C2: Comparison with the FAVAR with macroeconomic expectations (SPF), 1990Q1-2013Q3

Forecast Metric APL MSFE

INFLATION

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
TVP-FAVAR 1.1233 0.9741 0.9066 0.8194 0.7380 0.0416 0.0454 0.0466 0.0562 0.0696

FAVAR 0.76 0.77 0.76 0.78 0.80 1.06 1.14 1.10 1.02 0.94

TVP-FAVAR-SPF 1.01 0.99 1.00 1.00 0.99 1.01 0.99 1.01 0.98 1.03

FAVAR-SPF 1.00 0.98 0.99 1.01 1.02 1.16 1.22 1.23 1.20 1.15

TVP-FAVAR-DMA-SPF 1.12 1.12 1.13 1.15 1.16 1.05 1.04 1.10 1.09 1.05

TVP-FAVAR-BMA-SPF 1.14 1.08 1.15 1.15 1.12 1.16 1.05 1.11 1.20 1.18

UNEMPLOYMENT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
TVP-FAVAR 0.9170 0.5868 0.4191 0.3229 0.2639 0.0906 0.2741 0.5950 1.0105 1.5359

FAVAR 0.64 0.61 0.61 0.63 0.64 1.68 2.01 2.09 2.14 2.17

TVP-FAVAR-SPF 0.99 0.99 0.99 1.00 0.98 1.02 1.05 1.04 1.04 1.04

FAVAR-SPF 0.96 0.89 0.91 0.93 0.93 1.27 1.43 1.45 1.45 1.43

TVP-FAVAR-DMA-SPF 1.14 1.14 1.15 1.18 1.16 0.90 0.84 0.80 0.81 0.82

TVP-FAVAR-BMA-SPF 1.09 1.09 1.10 1.09 1.18 0.91 0.83 0.76 0.74 0.75

OUTPUT

h=0 h=1 h=2 h=3 h=4 h=0 h=1 h=2 h=3 h=4

TVP-FAVAR 0.4643 0.4344 0.4206 0.4156 0.4131 0.3548 0.4085 0.4204 0.3972 0.3854

FAVAR 0.71 0.71 0.72 0.73 0.74 1.43 1.64 1.57 1.48 1.40

TVP-FAVAR-SPF 0.99 0.99 1.00 1.00 1.00 1.04 1.02 1.01 1.02 1.01

FAVAR-SPF 0.89 0.90 0.92 0.95 0.96 1.18 1.32 1.25 1.19 1.17

TVP-FAVAR-DMA-SPF 1.08 1.09 1.09 1.09 1.08 1.02 1.01 1.01 1.04 1.05

TVP-FAVAR-BMA-SPF 1.02 1.11 1.12 1.04 1.11 1.04 0.98 0.96 1.00 1.02

Notes: APL is the average predictive likelihood (not in logarithms), and MSFE is the mean squared forecast error. Model’s fore-

cast performance is better when APL (MSFE) is higher (lower). For each variable (inflation, unemployment, output) the first li-

ne shows the APL and MSFE of the benchmark model for each forecast horizon h. All other models’ APL and MSFE are relative

to that of the benchmark model. Values of APL (MSFE) higher (lower) than 1 signify better performance than the benchmark.
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In general, from all the models we have attempted (also for different values

of forgetting/decay factors or priors), we found that the benchmark specification

consistently performs better than the specification in equations (C.1)-(C.2) which

utilizes survey information.

C.3. Comparison of different rates model switching

Calculation of the DMA/DMS time-varying probabilities depends on selection of a

hyperparameter α, which is a forgetting factor that determines how fast we “forget”

past observations. Thus, this hyperparameter α controls how much data we use for

the calculation of time-varying probabilities at time t and, thus, determines the rate

of model switching. That is, as α gets lower only the most recent data are used and

older data are discounted towards zero at a faster rate, resulting in model switching

occurring at a faster rate.

We remind the reader that α = 1 leads to standard BMA. The benchmark results

reported in the body of the paper, using α = 0.99, allow for slightly more rapid

model switching. In this appendix we provide results for choices of α which reflect

beliefs about even faster model switches, namely α = 0.96, as well as the extreme

case of α = 0.001. Note that this latter case is close to the case of model averaging

using equal weights, since it is trivial to prove that as α→ 0 then the model weights

degenerate to πt|t−1,j → 1/J for all j = 1, ..., J . Naive model averaging schemes

using equal weights have been shown in many cases to perform better than more

elaborate econometric techniques that perform estimation of the model averaging

weights; see Aiolfi, Capistrán and Timmermann (2010).

Table C3 shows the predictive likelihoods and mean squared forecast errors

for the TVP-FAVAR model with DMA implemented for various values of forgetting

factor α. As in the previous tables in this appendix, the first line shows the results

for the benchmark TVP-FAVAR where all 18 variables are used to extract the FCI. All

models have the benchmark prior described in the main text, plus the benchmark

choices for decay factors of κ1 = κ1 = 0.96 and κ3 = κ4 = 0.99. We can immediately

observe that the case α = 0.001 results, in general, in much higher relative MSFEs

for most horizons, for all three variables. The case α = 0.96 sometimes does better

than α = 0.99 implying that there are periods in our sample that allowing for faster

model switching would be beneficial. Therefore, there could potentially be further

improvements in forecast accuracy by estimating α using grid-search methods, or

even allowing a different value of α for each forecasting equation. We remind the

reader that we do not perform such a search due to the already high computational

demands of our empirical exercise, and we refer to Koop and Korobilis (2013) for

an example of using such a procedure.
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Table C3: Comparison of faster/slower model switching, 1990Q1-2013Q3

Forecast Metric APL MSFE

INFLATION

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
TVP-FAVAR 1.1233 0.9741 0.9066 0.8194 0.7380 0.0416 0.0454 0.0466 0.0562 0.0696

TVP-FAVAR-BMA (α = 1) 1.01 1.02 1.03 1.02 1.00 1.03 1.00 1.06 1.04 1.00

TVP-FAVAR-BMS (α = 1) 1.06 1.06 1.07 1.08 1.08 1.11 1.07 1.19 1.21 1.16

TVP-FAVAR-DMA (α = 0.99) 1.09 1.09 1.10 1.12 1.12 1.03 1.00 1.05 1.03 0.99

TVP-FAVAR-DMS (α = 0.99) 1.12 1.10 1.12 1.14 1.14 1.12 1.09 1.20 1.23 1.17

TVP-FAVAR-DMA (α = 0.96) 1.05 1.07 1.09 1.06 1.07 1.04 1.00 1.05 1.02 0.98

TVP-FAVAR-DMS (α = 0.96) 1.10 1.12 1.12 1.14 1.16 1.18 1.11 1.21 1.22 1.19

TVP-FAVAR-DMA (α = 0.001) 1.02 1.01 1.05 1.03 1.04 1.47 1.42 1.41 1.21 1.15

TVP-FAVAR-DMS (α = 0.001) 1.06 1.08 1.10 1.09 1.13 1.47 1.25 1.42 1.45 1.40

UNEMPLOYMENT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
TVP-FAVAR 0.9170 0.5868 0.4191 0.3229 0.2639 0.0906 0.2741 0.5950 1.0105 1.5359

TVP-FAVAR-BMA (α = 1) 1.01 1.01 0.97 0.96 0.90 0.91 0.85 0.82 0.83 0.84

TVP-FAVAR-BMS (α = 1) 1.07 1.05 1.04 1.03 1.00 0.97 0.88 0.83 0.83 0.84

TVP-FAVAR-DMA (α = 0.99) 1.11 1.10 1.09 1.10 1.07 0.92 0.86 0.83 0.84 0.85

TVP-FAVAR-DMS (α = 0.99) 1.08 1.09 1.09 1.11 1.10 0.99 0.86 0.79 0.80 0.81

TVP-FAVAR-DMA (α = 0.96) 1.05 1.09 1.06 1.08 1.10 0.89 0.82 0.80 0.80 0.82

TVP-FAVAR-DMS (α = 0.96) 1.13 1.12 1.13 1.19 1.14 0.95 0.84 0.76 0.74 0.75

TVP-FAVAR-DMA (α = 0.001) 0.99 1.00 1.01 0.95 1.02 1.08 0.89 0.82 0.81 0.83

TVP-FAVAR-DMS (α = 0.001) 1.08 1.04 1.07 1.12 1.03 1.03 0.88 0.77 0.76 0.76

OUTPUT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
TVP-FAVAR 0.4643 0.4344 0.4206 0.4156 0.4131 0.3548 0.4085 0.4204 0.3972 0.3854

TVP-FAVAR-BMA (α = 1) 0.95 0.94 0.93 0.91 0.91 0.97 0.95 0.94 0.97 0.98

TVP-FAVAR-BMS (α = 1) 1.00 1.00 0.99 0.99 0.99 1.01 0.99 0.98 1.01 1.00

TVP-FAVAR-DMA (α = 0.99) 1.03 1.04 1.03 1.03 1.04 0.96 0.94 0.94 0.97 0.98

TVP-FAVAR-DMS (α = 0.99) 1.05 1.06 1.06 1.08 1.09 0.99 0.95 0.95 1.00 1.00

TVP-FAVAR-DMA (α = 0.96) 1.03 1.04 1.04 1.02 1.01 1.01 1.00 1.00 1.03 1.04

TVP-FAVAR-DMS (α = 0.96) 1.10 1.07 1.08 1.12 1.11 1.04 0.99 0.97 1.01 1.03

TVP-FAVAR-DMA (α = 0.001) 0.96 0.98 0.96 0.96 0.94 1.06 1.03 1.04 1.05 1.10

TVP-FAVAR-DMS (α = 0.001) 1.08 0.97 0.99 1.06 1.04 1.08 1.03 1.00 1.03 1.05

Notes: APL is the average predictive likelihood (not in logarithms), and MSFE is the mean squared forecast error. Model’s forecast per-

formance is better when APL (MSFE) is higher (lower). For each variable (inflation, unemployment, output) the first line shows the

APL and MSFE of the benchmark model for each forecast horizon h. All other models’ APL and MSFE are relative to that benchmark

model. Values of APL (MSFE) higher (lower) than 1 signify better performance than the benchmark.

C.4. Comparison of different rates of parameter change

Similar to the hyperparameters that control model switching, κ1, κ2, κ3, κ4 control

the amount of time-variation in the error covariances (Vt, Qt), as well as the time-

varying loadings λt and the VAR coefficients βt. Table C4 presents results for

different choices of these decay and forgetting factors. We only present results for

the TVP-FAVAR models with all 18 variables used to extract the FCI, and not for the

more computationally intensive DMA/DMS variants of the TVP-FAVAR (which allow

selection of the optimal number of variables to include in the FCI). The first line

again shows the benchmark TVP-FAVAR with κ1 = κ2 = 0.96 and κ3 = κ4 = 0.99. As
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for the other tables in this appendix, we present relative APLs and relative MSFEs,

for the evaluation period 1990Q1-2013Q3.

Table C4: Comparison of faster/slower parameter switching, 1990Q1-2013Q3

Forecast Metric APL MSFE

INFLATION

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
FAVAR (1,1) 0.8584 0.7474 0.6924 0.6427 0.5934 0.0438 0.0524 0.0542 0.0604 0.0686

TVP-FAVAR (0.96,1) 1.36 1.32 1.34 1.30 1.30 1.12 1.05 1.01 0.99 1.00

TVP-FAVAR (0.94,1) 1.49 1.45 1.49 1.47 1.46 1.12 1.02 0.98 0.94 0.98

TVP-FAVAR (0.92,1) 1.53 1.51 1.52 1.52 1.50 1.11 1.02 0.99 0.97 1.00

TVP-FAVAR (1,0.99) 1.01 1.01 1.02 1.00 1.00 0.97 0.96 0.97 0.98 1.02

TVP-FAVAR (0.96,0.99) 1.34 1.34 1.35 1.32 1.29 0.95 0.86 0.86 0.93 1.01

TVP-FAVAR (0.94,0.99) 1.46 1.44 1.48 1.45 1.43 1.05 0.95 0.92 0.88 0.95

TVP-FAVAR (0.92,0.99) 1.50 1.47 1.49 1.49 1.45 1.08 0.99 0.96 0.94 0.99

UNEMPLOYMENT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
FAVAR (1,1) 0.5914 0.3567 0.2557 0.2024 0.1676 0.1200 0.4102 0.9406 1.6578 2.5544

TVP-FAVAR (0.96,1) 1.65 1.77 1.83 1.87 1.88 0.70 0.59 0.56 0.56 0.56

TVP-FAVAR (0.94,1) 1.74 1.90 1.95 2.00 1.99 0.71 0.60 0.56 0.55 0.55

TVP-FAVAR (0.92,1) 1.74 1.89 1.96 2.01 2.03 0.73 0.62 0.58 0.56 0.56

TVP-FAVAR (1,0.99) 1.09 1.13 1.18 1.21 1.23 1.03 1.01 0.99 0.97 0.97

TVP-FAVAR (0.96,0.99) 1.60 1.73 1.76 1.74 1.75 0.69 0.59 0.55 0.54 0.54

TVP-FAVAR (0.94,0.99) 1.73 1.85 1.88 1.90 1.87 0.65 0.53 0.51 0.51 0.52

TVP-FAVAR (0.92,0.99) 1.77 1.94 1.95 1.98 1.95 0.65 0.53 0.50 0.50 0.51

OUTPUT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
FAVAR (1,1) 0.3276 0.3071 0.3031 0.3016 0.3041 0.3694 0.5209 0.5542 0.5181 0.4967

TVP-FAVAR (0.96,1) 1.54 1.56 1.51 1.53 1.50 0.91 0.78 0.77 0.81 0.84

TVP-FAVAR (0.94,1) 1.63 1.63 1.62 1.62 1.62 0.90 0.78 0.76 0.80 0.84

TVP-FAVAR (0.92,1) 1.66 1.68 1.66 1.68 1.68 0.92 0.77 0.76 0.80 0.83

TVP-FAVAR (1,0.99) 1.14 1.14 1.13 1.12 1.11 1.13 1.01 0.95 0.92 0.91

TVP-FAVAR (0.96,0.99) 1.51 1.51 1.49 1.48 1.46 0.91 0.75 0.72 0.75 0.77

TVP-FAVAR (0.94,0.99) 1.59 1.58 1.57 1.55 1.55 0.91 0.76 0.74 0.79 0.83

TVP-FAVAR (0.92,0.99) 1.62 1.64 1.62 1.60 1.61 0.91 0.75 0.74 0.78 0.82

Notes: APL is the average predictive likelihood, and MSFE is the mean squared forecast error. Model’s fore-

cast performance is better when APL (MSFE) is higher (lower). For each variable (inflation, unemployment, output) the first li-

ne shows the APL and MSFE of the benchmark model for each forecast horizon h. All other models’ APL and MSFE are relative

to that of the benchmark model. Values of APL (MSFE) higher (lower) than 1 signify better performance than the benchmark.

It is interesting to note that our conservative benchmark prior on time-variation

in the volatilities (κ1 = κ2 = 0.96) is globally dominated by a prior which allows

faster switching in volatilities (κ1 = κ2 = 0.92). This result is not surprising,

as there is ample evidence for a high degree of volatility in macroeconomic and

financial data (usually modeled in the literature as a geometric random walk, or a

persistent AR(1) process). It would be surprising to find support for large time-

variation in the time-varying parameters λt,βt. However, we do not find such

support. In terms of predictive likelihoods results are similar for κ3 = κ4 = 1
(constant parameters) and κ3 = κ4 = 0.99, while MSFEs seem to favor a small
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degree of time-variation. However, values of κ3 and κ4 of 0.98 or lower, forecasting

results deteriorate dramatically, showing the consequences of allowing too large a

degree of time variation in the VAR coefficients and factor loadings.
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