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ABSTRACT 

 

Corrosion or manufacture defects can cause internal cracks in steel pipes. For ductile materials, the 

crack front can yield before the stress intensity reaches its fracture toughness. The yielding of the 

crack front could ease the stress concentration at the crack front. Therefore, to predict the failure of 

cracked steel pipes using linear elastic fracture mechanics it is necessary to quantify the part of 

fracture toughness that withstands the elastic stress field, namely, elastic fracture toughness. This 

paper intends to propose an analytical model of the elastic fracture toughness for steel pipes with 

internal surface cracks. 
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INTRODUCTION 

 

Pipes are widely used to transport gas or liquid in infrastructure and industries, e.g., water, oil/gas, 

carbon dioxide etc. These pipes are made of various materials based on different needs amongst 

which steel is very commonly used. For steel material, there are a number of classes or grades 

according to the carbon content with different mechanical properties. Most of steel materials 

exhibit ductile behaviour, demonstrated by yielding of the material. The yielding behaviour allows 

the steel pipes undergo significant amount of deformation before the collapse which to some extent 

prevents catastrophic failures. When pipes collapse, however they fail, it can be socially, 

economically and environmentally devastating, causing, e.g., enormous disruption of daily life, 

massive costs of reinstatement, widespread flooding and subsequent pollution, and so on.  

 

Like in many other structures, it is inevitable to have defects or cracks in steel pipes. The defects 

are normally produced during manufacturing process and the cracks are mainly induced by 

material deterioration, e.g., corrosion. Surface cracks are perhaps the most common form [1] and 

usually treated as semi-elliptical shape [2, 3]. The schematic and geometry of the surface crack in a 

pipe is shown in Figure 1. Due to the presence of surface cracks, the stress in a pipe will concentrate 

around those cracks, known as stress singularity, which is one of main causes for pipe collapse. For 

brittle materials, e.g., cast iron, stress is developed around cracks elastically and the stress intensity 

factor can be determined from elastic fracture mechanics to represent the singularised stress. When 

the stress intensity factor reaches a critical limit, known as fracture toughness, , any extra load 

will cause the failure of the structure.  

 

When a structure is made of ductile materials, the crack front/tip can yield before the stress 

intensity factors reaches . The yielding of the crack front could ease the stress concentration. As 

such, at the critical state of fracture, the maximum stress intensity factor, as represented by fracture 
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toughness , consists of elastic and plastic portions and part of stress singularity (or part of 

) is endured by the yielding of the crack front/tip. In other words, to be able to use linear elastic 

fracture mechanics, the plastic portion should be excluded from the fracture toughness of the 

ductile materials. How much to be deducted depends on the extent of plastic property of the 

material, e.g., yield stress. Therefore, for predicting the failure of defected/cracked pipes of ductile 

materials without modelling the plastic development around the crack front, it is necessary to 

quantify the elastic fracture toughness in  if the linear elastic fracture mechanics is to be used.   

 

Considerable research has been carried out on determining the stress intensity factors for pipes with 

internal surface cracks and most of it focuses on brittle materials [3-6]. Milne et al. [7] developed 

an assessment framework for integrity of ductile pipes containing defects. In their method, the 

effects of material yielding at the crack front on pipes are considered in combination with elastic 

fracture analysis in a failure assessment diagram. Critical points in the diagram have been 

identified based on test results with respect to both fracture and yielding failure. The fracture 

toughness can be experimentally determined by ASTM standard testing method [8] or some 

numerical approaches, e.g., [9]. For plastic pipes, most research employed elastic-plastic finite 

element analysis to investigate the fracture response (Crack Tip Opening Displacement) of the 

cracked pipes [10-12]. The elastic-plastic fracture analysis is necessary in modelling crack 

propagation but can demand more effort on simulation than elastic fracture analysis, including 

computational time. For thin-walled pipes with internal surface cracks, it is reasonable not to allow 

any crack propagation through the thickness of the pipe. Therefore, linear elastic fracture 

mechanics can still be used in assessing the failure of plastic pipes as long as the elastic fracture 

resistance can be identified and formulated. A comprehensive literature review (see References) 

suggest that very little research has been undertaken that addresses the plastic fracture capacity of 

pipes made of ductile materials and almost none in an analytical manner.  Given the fact that 

fracture mechanics has been widely employed to determine stress intensity factors for both brittle 
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and ductile materials, there is a clear need to develop a model for elastic fracture toughness with 

which the simple failure criterion of linear elastic fracture mechanics could be used in assessing 

cracked ductile pipes and in the meantime the plastic property of pipe is considered.    

 

This paper proposes an analytical model of elastic fracture toughness for steel pipes with internal 

surface cracks, as a function of geometric and material parameters, i.e., crack/pipe geometry, 

fracture toughness and yield stress. Weight function method is employed to enable the analytical 

derivation of elastic fracture toughness. Weight functions are derived for a wide range of 

geometries of cracked pipes, i.e., aspect ratios  and . With the 

proposed model the failure criteria of elastic fracture mechanics can be used to assess fracture of 

ductile materials. Tearing is not considered in the model for failure assessment, which can provide 

some safe margin for relatively thin-walled structures. An example is provided to demonstrate the 

application of the proposed model and some key parameters that affect the fracture of carked pipes 

have been investigated. The proposed analytical model can help engineers and asset managers in 

risk assessment of pipe failures so as to make a risk informed decision with regards to repair and 

maintenance of deteriorated steel pipes.  

 

FAILURE CRITERIA 

 

According to elastic fracture mechanics when a pipe has a crack on its wall, a stress intensity factor 

is used to assess its fracture as follows: 

                                  when a pipe fails                                                                  (1) 

 is the stress intensity factor and  is the fracture toughness both for mode I fracture.  

 

For ductile materials, the contribution of the material yielding to the fracture toughness  needs 

to be accounted for. The yielding would provide a plastic phase in stress development which could 

0.2/2.0 ≤≤ ca 8.0/2.0 ≤≤ ta
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ease the stress intensity due to the dissipation of strain energy by enduring large deformation of the 

material without increasing the stress. In other words, the stress singularity around a crack can be 

softened by plastic deformation of the material. Thus using Equation (1) to assess fracture of 

ductile materials may have neglected their yielding behaviour and hence leads to inaccurate 

prediction of the failure.  

 

To enable the continual use of linear elastic fracture mechanics, i.e., Equation (1), and in the 

meantime to account for the softening of stress intensity due to material yielding, a function KIC

'  is 

proposed such that the failure criteria of Equation (1) becomes 

                                 when a pipe fails            (2) 

where KIC

' is referred to as elastic fracture toughness in this paper which depends on plastic 

development of the material. When there is no plastic development KIC

'

 
= . With Equation (2) 

the elastic fracture mechanics can still be used to determine  and the plastic property of the 

material is taken into account by modifying the “full” fracture toughness . 

 

For internally pressurized pipes, two parameters measuring two individual failure modes, i.e., 

fracture or loss of strength, also known as fracture toughness parameter and load parameter in 

standard FAD analysis, can be introduced as follows: 

                                                                                                                                 (3) 

                                                                                                                                    (4) 

where is the applied load/pressure and is the plastic limit load/pressure of the cracked pipes.  

Normally a pipe fails when either or reaches a certain limit. However, these two failure 

modes interact. Loss of strength is marked by material yielding which in turn affects the 

development of stress intensity and hence affects the failure by fracture. Thus it is important to 

'

ICI KK ≥

ICK

IK

ICK

IC

I
r

K

K
K =

L

r
P

P
L =

P LP

rK rL



 - 6 -

understand this interactive behaviour of the two failure mechanisms. Milne and his co-workers 

have established a quantitative relationship between and at the critical state through 

experiments. It can be expressed as follow [7] 

                                                                                 (5) 

                                                                                                                                (6) 

where  is the uniaxial flow stress of the material, obtained as the average of the yield and 

ultimate tensile strengths.  is the uniaxial lower yield stress, based on uniaxial tensile test. 

Equations (5) and (6) are the basis for deriving the elastic fracture toughness '

ICK  as follows. 

 

DIREVATION OF ELASTIC FRACTURE TOUGHNESS 

 

According to the theory of fracture mechanics [13], the stress intensity factor  is a function of 

far-field stress level , the size of the crack (crack depth in surface cracks), the shape and 

orientation of the crack, and dimensions of the body, i.e., the pipe wall, in which the crack occurs. 

This relationship can be expressed in general as follows [14] 

                                                             (7) 

where  is an angle that defines the positions of the points along the crack front and  is the 

shape function allowing for various geometries of the crack and the pipe. To determine the stress 

intensity factor , finite element method (FEM) is usually employed especially for cases where 

analytical solutions cannot be obtained [15]. Since the stress intensity factors for cracks in a 

pipeline depend on crack geometries and also vary along the crack front, it is useful to have a 

general solution applicable to a wide range of geometries at some critical points of the crack. 

Weight functions are therefore developed to determine stress intensity factor  which is the 

product of the distributed stress  along the crack and the corresponding weight function.  
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is the hoop stress on the crack surface along the x direction which is the thickness direction as 

illustrated in Figure 1. The stress intensity factor  can be expressed as follows [16, 17] 

                    (8) 

where  is the weight function of position  and crack depth . 

 

Based on the theory of superposition, the distributed stress  along the crack can be related to 

the internal pressure  [18] as follows, 

                                                                                  (9) 

where � is the inner radius of the pipe and �	is the thickness of the pipe wall as shown in Figure 1. 

 

For internal surface cracks, the plastic limit pressure  should be considered as the limit internal 

pressure to yield the extreme fibre of the pipe wall for local failure rather than global collapse of the 

pipe. With this assumption, a derived form of  from an empirical model [19] is presented as 

follows, 

                                   (10) 

where and is the yield strength of the pipe material.  

Substituting Equations (8) – (10), Equations (3) and (4) become 

                        (11) 

                                                (12) 
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Dividing Equation (11) by Equation (12), can be expressed in terms of as follows, 

( ) ( )
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Combining Equations (5) and (13), the critical limit of at fracture, denoted as , can be 

obtained as follows, 

 

      (14) 

where   

and 1 ≥ ��� ≥ 	1 − 0.14 � ��
���

�� 	0.3 + 0.7��� �−0.65 � ��
���

���. 
 

From Equation (3), when the critical state of failure is reached, the stress intensity factor of 

Equation (3), i.e., , becomes elastic critical limit, i.e., elastic fracture toughness,  which can 

be written as follows, 

ICrcIC KKK ='                                                                                                                           (15) 

Equation (15) actually modifies the fracture toughness 
ICK by 

rcK . The elastic fracture toughness 

is defined as the critical stress intensity factor relating to elastic stress only; this definition is in 

line with the concept of elastic and plastic stress intensity factors in Milne et al [7]. It needs to be 

noted that  is a constant given the same crack/pipe geometry and material property. This is 

reflected in Equation (14) where  is a function of geometry and material property only. It also 

needs to be noted that Equation (14) is an implicit expression of  and it can be solved by 

numerical method with, e.g., MatLab.  
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WEIGHT FUNCTION  

 

To determine  as shown in Equation (8), weight function has to be derived for a given location. 

For the case of pipes with internal surface cracks, the deepest and surface points of the surface 

crack are normally of interest as those two points usually have the maximum and minimum stress 

intensities. The weight functions for the surface point  and the deepest point  can 

be derived based on finite element analysis results [20] for a wide range of crack geometries, i.e., 

 and  as shown below. These ranges of geometric factors cover 

most of the practical cases of internally cracked steel pipes.  
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 is an elliptical integral of the second kind (which defines the shape of the ellipse) and can be 

expressed empirically as follows [21] 

                             for                                        (18a) 

               for                                  (18b) 
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VERIFICATION AND DISCUSSIONS  

 

Before verifying the developed model for elastic toughness, an example is presented to 

demonstrate its application to practical steel pipes. Most pipes are subjected to internal pressure, 

e.g., pressurised water, gas or liquid-phase carbon dioxide, which produce stresses in the wall of 

the pipe. The material properties for the steel in the example are taken as =400 , =650

 and =100 . The geometry of the pipeline with internal surface crack is taken 

as , , and . The internal pressure is assumed to be 100 

. The process to determine both the stress intensity factor, i.e., Equation (8), and the elastic 

fracture toughness, i.e., Equation (15), is as follows. 

 

The first is to evaluate the weight functions for the surface and deepest points, i.e., Equations (16) 

and (19) and these two weight functions become: 

 

 

Substituting the above evaluated weight functions together with the stress distribution expressions 

(Equation (9)) into Equation (8), the stress intensity factor can be obtained as follows: 

 for the surface point and , 

 for the deepest point. 

Next is to determine the elastic fracture toughness. Substituting the derived weight functions into 

Equation (14), can be obtained as . From Equation (15), the elastic fracture 

toughness can then be calculated, i.e., � �! = 93$%&√(.  
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Finally, Equation (2) is used to assess the failure of the pipes. For this example, since � > � �! , the 

pipe failed.  

 

To verify the developed model of Equation (15), it would be ideal to have experimental results for 

the elastic fracture toughness directly but this proves to be extremely difficult from literature 

search. However, some results have been found on  which can be used to compare with those 

from the analytical model for indirect verification. Amongst the test data published [22, 23], most 

are related to very small ratios of or , e.g., . They do not fall in the applicable 

ranges of the derived weight function and the model cannot be directly used to derive . Brown 

and Zybenko [23]  and Schulze et al. [22] have tested a number of cylindrical pipes with artificial 

axial flaws to different depths/geometries, measured the pressure at failure and calculated the stress 

intensity factors. Their results were summarized in Miller [19] from which the data were obtained 

for comparisons as presented in Table 1. By using the same inputs of geometries and pressures,  

for the deepest point determined from the proposed model (Equation (13)) and the literature are in 

reasonably good agreement. The difference in the results could be caused by possible variation in 

formulation of the stress intensity factor � , since the same value of � * is used.  

 

One of the advantages of the proposed model is that the effects of some key parameters on fracture 

of the pipes can be quantitatively investigated. From Equation (14), it can be found that it is not 

simply the yield strength or the critical stress intensity factor, but the ratio of them that controls the 

elastic fracture toughness as represented by , given the same pipe and crack geometries. Figure 

2 demonstrates the effect of  ratio, a material constant, on the elastic fracture toughness. A 

range of values of are investigated between 0 and 1, and the unit of  is . It is 

very interesting to observe that a higher ratio of leads to a greater portion of fracture 

resistance being endured by plastic deformation. In general, is a measure of fracture toughness 

rK

ca / ta / 02.0/ =ca

rK

rK

rcK

yICK σ/

yICK σ/ yICK σ/ m

yICK σ/

ICK
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and is a measure of strength and the ratio reflects an important mechanical property, 

i.e., toughness/strength. Figure 2 presents a clear indication as to how much amount of fracture 

resistance is sustained by plastic deformation.  

 

By using Equations (5) and (6),  curves can be plotted for parametric study. For given 

applied internal pressures, and can be calculated by Equations (3), (4), (9) and (16) – (20) for 

the surface and deepest points respectively as shown in Figure 3. It can be seen from Figure 3 that 

for a pressure of 10 , the stress intensity factor at the deepest point exceeds the critical limit 

while that at the surface point does not. It has also been observed that, when internal pressure 

increases, linearly increases with by the same slope. The linearity is because both  and 

are linear functions of the applied pressure and thus  is a constant, i.e., the slope of the 

straight line in Figure 3. The slopes however depend on the crack geometries, fracture toughness 

and yield strength. For example, from Equation (10), one can find that smaller yield strength , 

produces smaller plastic limit pressure  and larger  (Equation (12)). Thus the slope of 

is smaller as shown in Figure 3. This makes sense noting the fact that the smaller the yield strength 

is the easier the pipe fails.  

 

The effect of fracture toughness of the material on its failure can be investigated through the 

derived analytical model, given the same strength, i.e., . Figure 4 demonstrates the 

lines for =50, 75 and 100  respectively and the critical curve for failure. The other 

parameters for all these three lines are the same, i.e., , and . It can 

be seen from Figure 4 that the greater the fracture toughness of the material is, the larger portion of 

plastic endurance is from  in pipe failure. This means that the pipe will fail in more plastic 

manner with more plastic deformation ahead of the crack. Given the case demonstrated in Figure 4, 

for materials with greater than 50 , there is considerable plastic endurance, e.g., 

yσ yICK σ/

rr LK −

rK rL

MPa

rK rL rK

rL rr LK /

yσ

LP rL rr LK /

yσ
rr LK −

ICK mMPa /

2.0/ =ca 2.0/ =ta ma 02.0=

ICK

ICK mMPa /
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about 20% for =75  and 33% for =100 at failure. These results 

effectively justify the need to consider the plastic yielding at the crack front in the analysis of 

fracture.  

 

Figures 5 and 6 show the effects of  ratio on the curve for both the deepest and surface 

points with inputs of =0.1m, =0.5 and =50 . As can be seen, when  ratio 

increases from 0.5 to 2.0 the slope of line decreases, meaning that the crack with higher 

aspect ratio of  fails with more plastic development at the crack front. It should be noted that 

for the surface point in Figure 6, the lines for ratio of 0.5 and 1.0 are very close. The amount of 

plasticity that develops at failure can be reflected by the applied pressure  and the plastic limit 

pressure  of the given cracked pipe, i.e., Equation (4). The values of  have been checked for 

those three cases to be 45.5 , 47.0  and 47.5  for =0.5, 1.0 and 2.0 respectively. 

As noted the effect of ratio on the plastic limit pressure  is minor. However, based on 

Equation (4), it can be found that the effect of ratio on the maximum allowed applied pressure 

at fracture is relatively significant, e.g.,  is nearly doubled for from 0.5 to 2.0 for respective 

values of of 0.19 and 0.41 for the deepest point. It is very interesting to find that higher aspect 

ratio of results in higher allowable pressure at failure. In other words, given all the other 

parameters the same for the same steel pipe under the same amount of applied pressure, the pipes 

with low aspect ratio can fail much earlier than those with high aspect ratio. This finding can be of 

practical significance when assessing the pipe failure on site.  

 

To investigate the effects of ta /  ratio on the failure mode of cracked pipes, Figures 7 and 8 are 

produced for ta /  ratio of 0.2, 0.5 and 0.8 for the deepest and surface points respectively. In both 

curves, when ta /  ratio increases, the failure of the pipe becomes more brittle with an increased 

slope of the line. In other words, the smaller the ta /  ratio is, the more plastic deformation 

ICK mMPa / ICK mMPa /

ca / rr LK −

a ta / ICK mMPa / ca /

rr LK −

ca /

ca /

P

LP LP

MPa MPa MPa ca /

ca / LP

ca /

P ca /

rL

ca /

rr LK −
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is developed around the crack. This makes sense because smaller ta /  ratio means more remaining 

fibres of the pipe wall ahead of the crack and thus more plastic deformation can develop. Moreover, 

it is interesting to find out that for higher ta /  ratios, e.g., ta /  equal to 0.5 and 0.8, the  

lines are not sensitive to plastic development as they are quite close to each other. This means that 

the pipes with higher ratio of ta /  fails at more or less the same level of plasticity.   

 

 

 

 

CONCLUSIONS 

 

An analytical model of elastic fracture toughness for steel pipes with internal surface cracks has 

been proposed, as a function of geometric and material properties. With the proposed model the 

failure criteria of elastic fracture mechanics can be used to assess fracture of ductile materials. 

Weight function method has been employed to enable the analytical derivation of elastic fracture 

toughness. After verifying the proposed model indirectly with data published in literature some key 

parameters that affect the fracture of carked pipes have been investigated. It has been found that, 

given the same yield strength, the greater the fracture toughness of the material is, the more plastic 

development there is and that the stress intensity factor at the deepest point exceeds the critical 

limit faster than that at the surface point. It has also been found that the pipes with cracks of higher 

aspect ratio of  fail with more plastic development at the crack front and that the smaller the 

ta /  ratio is, the more plastic deformation is developed at the crack front. It can be concluded that 

the proposed analytical model for elastic fracture toughness can assess the fracture of cracked pipes 

with ductile materials more accurately. Accurate assessment of pipe failures can help engineers and 

asset managers in making a risk informed decision with regards to repair and maintenance of 

deteriorated steel pipes.  

rr LK −

ca /
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Table 1 Comparison of  for the deepest point between the proposed model and those from 
literature   

Material 
R 

(mm) 

 

(mm) 
  

P 

(MPa) 

� * 

(MPa/√() [23] [22] 

(the 

model) 
Difference 

Aluminum 100 4.4 0.27 0.40 34 30 1.72 n.a. 1.60 6.9% 

Steel 38 1.7 0.20 0.53 38 200 n.a. 0.30 0.27 10% 

           

 

rK

a
ca / ta / rK rK rK
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(a)   Schematic of a pipe with a semi-elliptical internal surface crack  

 

 

(b)   Geometry of the semi-elliptical internal surface crack  

 

Figure 1 A pipe with a semi-elliptical internal surface crack 
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Figure 2 Effects of on the ���  yICK σ/
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Figure 3 Failure assessment diagram for , , and =50

for the surface and deepest points 
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Figure 4 Effects of critical fracture toughness on failure assessment of the surface point 
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Figure 5 Effects of ratio on failure mode at the deepest point 
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Figure 6 Effects of ratio on failure mode at the surface point 

  

ca /



 - 27 -

 
Figure 7 Effects of ta /  ratio on failure mode at the deepest point  
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Figure 8 Effects of ta /  ratio on failure mode of the surface point 

 


