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Abstract

This paper concerns the accuracy of several high-resolution and high-order finite volume schemes in Implicit Large

Eddy Simulation of weakly-compressible turbulent channel flow. The main objective is to investigate the properties

of numerical schemes, originally designed for compressible flows, in low Mach compressible, near-wall turbulent

flows. Variants of the Monotone Upstream-centred Scheme for Conservation Laws and Weighted Essentially Non-

Oscillatory schemes for orders of accuracy ranging from second to ninth order, as well as with and without low

Mach corrections, have been investigated. The performance of the schemes has been assessed against incompressible

Direct Numerical Simulations. Detailed comparisons of the velocity profiles, turbulent shear stresses and higher-

order turbulent statistics reveal that the low Mach correction can significantly reduce the numerical dissipation of the

methods in low Mach boundary layer flows. The effects of the low Mach correction has more profound impact on

second and third-order schemes, but they also improve the accuracy of fifth order schemes. The ninth-order Weighted

Essentially Non-Oscillatory scheme is the least dissipative scheme and it is shown that the implementation of the

low Mach correction in conjunction with this scheme has a significant anti-dissipative effect that adversely affects

the accuracy. Finally, the computational cost required for obtaining the improved accuracy using increasingly higher

order schemes is also discussed.

Keywords: Implicit Large Eddy Simulation (ILES), MUSCL, WENO, turbulent compressible channel flow,

high-resolution, high-order, low Mach correction.

1. Introduction

Implicit Large-Eddy Simulations (ILES) originated from the observations made in [1] that the embedded dissipa-

tion of a certain class of numerical methods can be used in lieu of explicit sub-grid scale (SGS) models in classical

Large-Eddy Simulation (LES) of turbulent flows. Modified equation analysis (MEA) was developed [2] in an effort to

determine the stability of a difference equation by examining the truncation errors. The process begins from reducing

a differential equation to a discretised equation by expanding each of its terms in a Taylor series. Such an analysis

has been performed for the truncation error of certain schemes (e.g. [3–9]) leading to a better understanding of the

implicit sub-grid dissipation.

In ILES, the Navier-Stokes equations (NSE) are discretised using high-resolution/high-order non-oscillatory meth-

ods without involving a low-pass filtering operation which gives rise to sub-grid scale (SGS) terms that require ad-

ditional modelling. Instead, only the (implicit) de facto filtering introduced through the finite volume integration of

the NSE over the grid cells is utilised in conjunction with non-linear numerical schemes that adhere to a number of

principles; see [10, 11], and reviews [8, 9, 12, 13]. It has been shown [3] that ILES methods need to be carefully

designed, optimised, and validated for the particular differential equation to be solved. Direct MEA of high-resolution

schemes for the Navier-Stokes equations is extremely difficult to be performed, thus understanding of the numerical

properties of these methods to date still relies on performing computational experiments.

Several experimental studies [14–18] performed in the past to investigate the physics of turbulent boundary layers,

established the turbulent channel flow test-case as one of the major ‘canonical’ flow problems to be used to perform

detailed validation of numerical/computational methods [19–21]. A recent overview of the progress made regarding

Direct Numerical Simulation (DNS) of wall-bounded turbulent flows with particular emphasis on channel and pipe

flow geometries is given in [22–25] and references therein. Most of the DNS studies have used finite differences,

Legendre polynomials and/or spectral methods based on Fourier representation or Chebychev-tau formulation. More

recently, Discontinuous Galerkin (DG) methods have also been applied to DNS of turbulent channel flow [26, 27].

Incompressible DNS of fully developed channel flow has been published in [28–35]. These studies shed light on

the turbulent flow physics, as well as provide data for the validation of numerical methods and turbulence models.

A recent study [36] compared two fundamentally different DNS codes to assess the accuracy and reproducibility of

standard and non-standard turbulence statistics, showing that the maximum relative deviations were below 0.2% for

the mean flow, below 1% for the root-mean-square velocity, and pressure fluctuations, and below 2% for the three
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components of the turbulent dissipation. In comparison to incompressible DNS, there is only a limited number of

compressible DNS studies and those have primarily been conducted for supersonic flows [37–40].

In [41, 42] the obtained DNS data were compared against experimental results, and then used to further probe

and shed light on the turbulent flow physics. Other studies tried to ascertain the differences between channel and

pipe turbulent flows through numerical computations [43, 44] and experiments [45, 46]. In [45] a comparison of

experimental data with well-documented high Reynolds number (Reτ = 934) DNS [31] was presented. An excellent

agreement for the streamwise velocity statistics between the two data sets was reported. Although the energy spectra

were very similar, the DNS predicted a lower energy value in the logarithmic region, possibly due to the (shorter)

dimension of the DNS box. The high computational cost required to successfully resolve all turbulent length-scales

limits the applicability of DNS to relatively low Reynolds numbers and the incompressible Navier-Stokes equations.

Note that DNS should be used (cautiously) as a benchmark rather than validation data. As a simulation result must

ideally contain some assessment of the numerical errors and an error bar; however, this is not the case in the literature.

There are several research studies concerning classical LES of turbulent channel flow. Previous studies [47–50]

(and references therein) have dealt with the development of SGS models; error contributions from SGS modelling

and numerical schemes [19, 51–54]; error control through explicit filtering [53, 55, 56]; and the effects of different

filtering procedures [20, 57, 58].

Recent developments of explicit SGS models include the approximate deconvolution model (ADM) [47] which

is an approximation of the non-filtered field by means of a truncated series expansion of the inverse filter operator.

For an incompressible channel flow, ADM compared well against DNS data and showed a significant improvement

[48] over the results obtained from typical SGS models such as the classical and dynamic Smagorinsky model. An

evolution of the ADM is the adaptive local deconvolution model (ALDM) [49]. The ALDM is based on a non-linear

discretization scheme, which contains several free deconvolution parameters that allow control of the truncation error.

The free parameters are constrained such that the numerical viscosity optimally matches the theoretical eddy viscosity

predicted by the analytical theories of turbulence and is therefore regarded as an ILES approach (in the broader

context) compared to the ADM. The ALDM was applied to incompressible, turbulent channel flow to analyze its

implicit SGS modelling capability in wall-bounded turbulence [50]. The simulations showed that the ALDM gives

better results than the dynamic Smagorinsky model at the same grid resolution.

In the framework of classical LES, the accuracy of the SGS model is strongly influenced by the numerical con-

tamination of the smallest resolved turbulent structures near the filter cut-off length [51, 52, 59]. Furthermore, it was

found that the numerical error and SGS model interact with each other [19, 52–54]. It was reported [19] that for

low-order finite-difference schemes, the truncation errors can exceed in magnitude the contribution of the SGS term.

High-order numerical schemes are thus important in resolving the large energy-containing scales more accurately.

However, they can also lead to contamination of the smallest resolved scales by truncation errors, in particular when

using non-spectral methods. It was shown [56] that these errors can be controlled using an explicit filter. Nonetheless,

mesh refinement still improved the results at a faster rate than the explicit filter size. Furthermore, previous studies

[53] have shown that a minimum ratio of explicit filter-width to cell-size is necessary to be defined in order to prevent

numerical errors from becoming larger than the contribution of the SGS turbulence closure terms and consequently

saturating the solution. It was demonstrated that when the numerical simulations are carried out by a fourth-order

finite-difference scheme, a filter width of at least twice the cell size should be used, whereas for a second-order

scheme the filter width should be at least four times the cell size.

The influence of the numerical errors and SGS models in LES of channel flows, with and without explicit filtering

were studied in [60]. When comparing to LES without explicit filtering, the difference in the mean velocity profiles

was not large; however, the turbulence intensities were improved when explicit filtering was used. In [61], various

dynamic SGS models were investigated to obtain the true filtered LES solution for an incompressible turbulent channel

flow. It was hypothesized that the true LES solution should depend only on the filter width, regardless of the grid

resolution. On the other hand, in ILES the solution converges towards DNS as the grid is refined because the filter

width is implicitly and directly connected to the grid spacing. The effect of the different filtering methods was also

examined in a subsequent study [57] showing that three-dimensional filtering gives better results than two-dimensional

filtering. In [58], it was reported that the effect of filtering can be significant, with smooth filters increasing the

total simulation error. Recently, [20] investigated the use of explicit filtering in LES for obtaining grid independent

numerical solutions similar to the work of [61]. The convergence of the simulations was analysed for a turbulent

channel flow at various friction Reynolds numbers (Reτ=180, 395, and 640), and it was shown that by using an
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explicit filter, the turbulent statistics and energy spectra became independent of mesh resolution. In [62], an accurate

spectral LES approach was used to solve the incompressible, isothermal, Navier-Stokes equations. This allowed for

simple, constant-coefficient Smagorinsky-type eddy viscosity SGS models without any wall damping functions to be

used for modelling the decay of small scales. The approach termed “variational multiscale residual-based turbulence

modelling” for LES has been further developed in [63, 64] showing very promising results.

Although LES is computationally less demanding than DNS, it still requires significant computational resources

for simulating near wall turbulence at high Reynolds numbers. An alternative to LES is to make use of wall-layer

models near the wall and use LES to resolve the outer region of the boundary layer, thus “relaxing” the grid resolu-

tion requirements near the wall. The wall-layer models can be broadly classified as: (i) equilibrium laws based on

the logarithmic law, or some other assumed velocity profile (wall functions); (ii) zonal models, in which the turbu-

lent boundary-layer equations (TBLE) are solved, weakly coupled to the outer-layer LES; and (iii) hybrid methods

employing a Reynolds-Averaged Navier-Stokes (RANS)-based turbulence model near the wall and LES in the outer

layer. A thorough review of the above is provided by Piomelli [65].

The best-known realisation of the hybrid framework is the Detached Eddy Simulation (DES) method by Spalart

et al. [66]. In DES the interface location is dictated by the grid parameters through a switching condition. In [67] DES

was used in the simulation of a turbulent channel flow. The results showed a non-physical buffer layer developing

near the RANS/LES interface caused by the misalignment of the log layers between the RANS and LES regions.

Due to the log-layer mismatch, the skin-friction coefficient was under-predicted by approximately 15%. In the most

commonly used DES implementation, the entire boundary layer is modelled by RANS [68, 69]. Using the K − ǫ

model, [68, 69] carried out hybrid simulations of channel flow and introduced additional filtering at the interface to

reduce the log-layer mismatch. Although these methods are promising, the amplitude of the stochastic forcing and

the width of the additional filtering need both to be determined empirically. In [70] a stochastic backscatter model

was applied to the wall-modeled DES of a channel flow showing improvements in the prediction of the mean velocity

profile.

Other DES studies [71, 72] also reported issues in coupling the modeled and LES resolved regions, especially

when more complex geometries and flows were considered in comparison to a plane flat surface [73–76]. More re-

cently, a dynamic slip wall boundary condition for wall-modelled LES [77] was proposed, which gave encouraging

results for separated flows over aerofoils. In [78], both ILES and the immersed-interface treatment of the wall bound-

aries showed to provide high computational efficiency on very coarse meshes for backward-facing step and periodic

hill flows. Another category of near-wall models has been proposed by [79], which has been used in RANS, but may

also prove promising for DES.

Although there is an extensive body of published research regarding the solution of turbulent channel flows using

DNS, classical LES and DES, ILES investigations are still limited in number [80–83]. Previous research [80–83] has

indicated that ILES is capable of reproducing first and second order statistical moments of the velocity field. Reviews

examining the accuracy of ILES in other canonical problems such as the turbulence decay in a Taylor-Green vortex

have also been published [84, 85]. Despite the above literature, there has been no systematic attempt to investigate the

behaviour of different high-order compressible ILES methods in compressible turbulent channel flows. The aim of

this study is to present a detailed investigation of the accuracy of a number of popular numerical schemes, originally

designed for shock-capturing, with respect to weakly-compressible, turbulent channel flow. The specific objectives

are: (i) to investigate the accuracy of the Monotone Upstream-centred Scheme for Conservation Laws (MUSCL) 2nd

to 5th, and the Weighted Essentially Non-Oscillatory (WENO) 5th to 9th-order accurate slope limiter schemes against

DNS data; (ii) to examine the effects of the low Mach correction of Thornber et al. [86, 87] on the accuracy of the

MUSCL and WENO schemes; and (iii) to compare the numerical schemes with respect to their computational cost.

The numerical assessment has been made using the incompressible DNS data of Moser et al. [30], which correspond

to a friction Reynolds number of Reτ = 395 (based on friction velocity uτ).

The paper is organised as follows: The governing equations and numerical schemes employed are briefly presented

in §2. A description of the numerical set-up used in the simulation of the turbulent plane channel flow is given in §3,

detailing the initial and boundary conditions, the implementation of the forcing term, and the statistical quantities

utilised in the analysis of the results. §4 presents the results from a series of ILES computations examining the

accuracy and efficiency of different numerical schemes. Finally, the conclusions of the present study are summarised

in §5.
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2. Computational model

2.1. Governing equations

The turbulent channel flow is governed by the Navier-Stokes equations, which in integral form are written as:

• Conservation of mass:
∂

∂t

˚

V

ρdV +

¨

A

ρ~u · dA = 0, (1)

where dA = ~ndA is the vector normal surface, t is time, ρ is the density and ~u is the velocity vector such that

~u =
[
ux, uy, uz

]T
= [u, v,w]T . V and A denote the volume and surface area of the cell, respectively.

• Conservation of momentum:

∂

∂t

˚

V

ρ~udV +

¨

A

(
ρ~u

)
~u · dA = −

¨

A

pdA +

¨

A

τ · dA +

˚

V

ρ
−→
FbdV (2)

where p is the static pressure, τ is the stress tensor and
−→
Fb denotes (external) body forces such as gravity.

The components of the stress tensor are given by:

τ =



τxx τxy τxz

τyx τyy τyz

τxz τzy τzz


(3)

and the local stresses are defined by assuming the fluid is Newtonian:

τi j = µ

(
∂ui

∂x j

+
∂u j

∂xi

)
−

2

3
µ∇ ~uδi j (4)

where δi j is the Kronecker delta with indices (i), ( j) = (x, y, z) and τi j = τ ji for i , j.

• Finally, conservation of the total energy for the control volume yields:

∂

∂t

˚

V

ρEdV +

¨

A

ρE~u · dA = −

¨

A

p~u · dA +

¨

A

k∇T · dA

+

¨

A

(
τ · ~u

)
· dA +

˚

V

ρ
−→
Fb · ~udV

(5)

where E is the total energy per unit mass, k is the thermal conductivity coefficient, and T is the static tempera-

ture.

The continuity, momentum and total energy equations can also be written in a matrix form as:

∂

∂t

˚

V

−→
WdV +

¨

A

(
−→
Fc −

−→
Fv

)
dA = 0 (6)
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−→
W =



ρ

ρu

ρv

ρw

ρE



,
−→
Fc =



ρ∨

ρu ∨ +nx p

ρv ∨ +ny p

ρw ∨ +nz p

ρE∨



,
−→
Fv =



0

nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nxΘx + nyΘy + nzΘz



(7)

where external forces have been neglected, and ∨ is the contravariant velocity given by:

∨ = ~n · ~u = nxu + nyv + nzw (8)

and

Θx = uτxx + vτxy + wτxz + k
∂T

∂x

Θy = uτyx + vτyy + wτyz + k
∂T

∂y

Θz = uτzx + vτzy + wτzz + k
∂T

∂z

(9)

The ideal gas law has been employed:

p = ρRT, (10)

where R is the specific gas constant equal to 287 J · kg · K−1. The total energy per unit mass (E) is the sum of internal

energy (e) plus kinetic and is computed by:

E = e +
1

2

(
u2 + v2 + w2

)
(11)

where assuming a (calorically) perfect gas the internal energy e is:

e = cvT =
p

ρ (γ − 1)
(12)

cv denotes the specific heat capacity at constant volume, and γ = 1.4 is the heat capacity ratio (γ = cp/cv). The

viscosity is approximated by the Sutherland’s Law:

µ (T ) = µ0

(
T

T0

)3/2
T0 + S u

T + S u

, (13)

where S u is the Sutherland temperature (110.4 K), while the values of the reference temperature and viscosity are

T0 = 288.15 K and µ0 = 1.7894 × 10−5 kg/ (m · s) respectively. The heat conductivity coefficient is calculated by:

k (T ) =
cp

Pr
µ (T ) =

γcv

Pr
µ (T ) (14)

and the Prandtl number (Pr) is 0.72.

2.2. Numerical methods and Simulation Code

The present study has been carried out using a block-structured, finite-volume, high-order ILES code labeled as

CNS3D. The code has been previously applied to a broad range of turbulent flow problems, including other canonical

problems [84, 88], as well as more complex subsonic, transonic, and supersonic flows [13, 89–94]. CNS3D comprises

several discretization (reconstruction) schemes for calculating the variables at the cell faces of the computational cell.

In the present study, we have employed the Harten, Lax and van Leer Contact (HLLC) [95] approximate Riemann
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solver, an extension to the original Harten, Lax and van Leer (HLL) solver [96], to define the convective fluxes at the

cell face.

The numerical schemes implemented in conjunction with the HLLC solver are:

• MUSCL piece-wise linear 2nd-order Monotonized Central (MC) limiter [97, 98];

• MUSCL 3rd (M3) [99] and 5th (M5) order limiters [100, 101];

• WENO 5th (W5) and 9th (W9) order schemes [102, 103], which are extensions of the original WENO scheme

[104]. WENO schemes and their extensions have been previously investigated in connection with different flow

problems both with structured and unstructured grids, see e.g. [90, 105–114] and references therein. Note that

the relative smoothness limiter of [115] is employed instead.

The above schemes have been further combined with the LM correction proposed by Thornber et al. [86]; the

theoretical development and justification of the LM correction can be found in [87]. It was demonstrated that the

LM correction can significantly reduce the numerical dissipation of Godunov-type methods at low Mach numbers

via a progressive central differencing of the velocity components in the post-reconstruction phase. An analysis [87]

of the source of the turbulent kinetic energy dissipation in upwind schemes revealed that the absolute dissipation

of fluctuating kinetic energy is proportional to the temperature multiplied by the change of entropy (assuming an

approximately isothermal flow). This neglects the additional dissipation that occurs during isentropic transformation

of kinetic energy to internal energy in the form of local compressions and expansions. Using MEA, the evolution of

entropy was derived for various compressible numerical schemes and it was demonstrated that the overly dissipative

behaviour observed in simulations of homogeneous decaying turbulence is ascribed to numerical dissipation that is

proportional to the speed of sound. The LM correction provides a limiting procedure which recovers the accuracy

of such schemes with an optimal dissipation in the limit of M → 0 [86]. In this study, the LM correction is further

investigated for low Mach turbulent boundary layers.

3. Problem set-up

3.1. Initial and boundary conditions

The turbulent channel flow employed in this paper corresponds to the incompressible DNS simulations of Moser

et al. [30]. The Reynolds number based on the friction velocity and channel half-height is Reτ = 395, which is

equivalent to Re ≃ 6887 based on the bulk velocity [116]. Previous studies concerning compressible, turbulent

channel flows have been conducted at high Mach numbers, however, to examine the effects of the numerical schemes

with and without low-Mach correction, the LES studies in this paper are conducted at a Mach number of M∞ = 0.2.

The size of the non-dimensional domain
(
Lx × Ly × Lz

)
is (2π × 2 × π) in the streamwise (x), wall normal (y)

and spanwise (z)-directions, respectively (Figure 1). In the streamwise and spanwise directions, periodic boundary

conditions are employed, while in the wall normal direction an adiabatic no-slip wall condition is applied.

In [39], it was shown that many of the scaling relations used to express adiabatic compressible boundary-layer

statistics in terms of incompressible boundary layers hold for non-adiabatic cases too. Wall cooling slightly enhances

compressibility effects and increases the coherency of turbulent structures, however, its effects remain insignificant

even for a supersonic turbulent channel flow. In the compressible DNS channel flow simulations of [37, 38], it was

shown that a decreasing wall temperature leads to higher skin friction. In the present study, the adiabatic wall condition

was employed in order to examine the accuracy of the numerical methods unhindered by external heat transfer effects,

thus obtaining a more meaningful comparison to the incompressible DNS.

The initial conditions of [117] are employed. The streamwise velocity profile is given by a laminar (Poiseuille)

parabolic profile with a white noise perturbation (s = 10%) superimposed. The white noise random signal (ǫ) was

generated using the intrinsic FORTRAN command RAND, which varies according to the index numbering (i, j, k) of

each cell along the corresponding spatial direction [x, y, z] using for input the integer function:

Ni jk = i + ( j − 1) × Nx + (k − 1) × Ny × Nx (15)
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Figure 1: Illustration of channel geometry.

so that ǫ = RAND
(
Ni jk

)
and ǫ ∈ [−1, 1]. The same velocity perturbation is also used for the spanwise and wall-normal

velocity components, while the initial density and pressure are assumed constant throughout the domain. In summary,

this leads to the following dimensional initialisation of the primitive variables (at t = 0):

ρ = ρ∞

u = uc

[
1 −

(
y

δ
− 1

)2
]

(1 + s ǫ)

v = s ǫ × u

w = s ǫ × u

E =
p∞

ρ∞ (γ − 1)
+

1

2

(
u2 + v2 + w2

)

(16)

Isentropic flow relations are used to estimate p∞ based on the free-stream Mach number M∞ = 0.2. The initial free-

stream density and pressure values are ρ∞ ≈ 1.20 kg/m3 and p∞ ≈ 98540 Pa, respectively. The centreline velocity

used for obtaining the initial laminar profile is uc = (3/2)u∞, where the bulk (free-stream) velocity is u∞ ≈ 67.8 m/s.

To investigate the grid convergence properties of the schemes, three computational grids were employed con-

taining 643, 963 and 1283 grid points, respectively; see Table 1 for the details of the grids used in comparison to the

DNS. The grid points near the wall were clustered using a two parameter hyperbolic tangent stretching function [118].

Note that the coarse grid (643) used in the present ILES is approximately 34 times coarser than the DNS grid, while

the medium (963) and fine (1283) grids are 10.4 and 4.4 times coarser than the DNS, respectively. It is also worth

mentioning that in the DNS the fine grid resolution is also combined with numerical schemes (spectral methods) that

inherently contain little or no numerical dissipation, whereas the present non-oscillatory finite volume methods are

inherently dissipative schemes.

3.2. Forcing term

Periodic conditions in both the streamwise and spanwise directions are employed for reducing the length of the

computational domain required for a fully turbulent flow to develop. To ensure that the mass-flux remains constant

throughout the simulation a forcing term is added to the Navier-Stokes equations that acts as an artificial pressure

gradient. In [37, 119, 120], a forcing term was developed to augment the momentum and energy equations in order to

obtain a constant mass-flux. Though the forcing term was initially developed as an artificial pressure gradient term,
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Grid
(
N px × N py × N pz

)
y+

ILES (Coarse) 65 × 65 × 65 1.52515

ILES (Medium) 97 × 97 × 97 1.00016

ILES (Fine) 129 × 129 × 129 0.74404

DNS 256 × 193 × 192 0.03000

Table 1: Number of points and y+ value of first grid point from the wall for the present ILES and the DNS of Moser et al. [30].

in its final implementation it was reduced down to a simple body force. Interpretations of this term have been given

by different authors [38, 121].

For compressible channel flows, forcing terms have been previously proposed by [119, 120] for the subsonic

regime based on the extension of the incompressible condition derived in [122], as well as by [37] for supersonic

channel flows. More recently, [40] proposed a new subgrid term based on the pressure gradient, which is added

to the momentum and energy equations. In the compressible LES of [123], the description of the forcing term for

compressible channel flow was revisited, so that the streamwise periodic simulation resembles as much as possible

that of a spatially evolving fully developed turbulent channel flow. This requires, in addition to an artificial force term

in the momentum equation, an artificial heat source term to be added to the internal energy equation.

In the present simulations, a forcing term ft is added to the right hand side (RHS) of the streamwise momentum

Equation (2), with the total energy Equation (5) remaining unchanged to conserve the total energy. The forcing term

( ft) is calculated at the beginning of each time step (N) using the mass-flux dissipation from the previous time step.

According to [119, 120], this yields:

f N
t = f N−1

t +
∆t

LyLz

[
α
(
QN+1 − Q0

)
+ β

(
QN − Q0

)]
(17)

where α = 2/∆t and β = 0.2/∆t are coefficients that calibrate the stability of the predictor step. Q0, QN and QN+1 are

the target mass-flux Q0 =
(
LyLz

)
ρ∞u∞, the mass-flux at the current time-step (N), and the first-order predictor of the

mass flux at time-step N + 1, respectively. QN+1 is given by:

QN+1 = QN − ∆tgN (18)

where

gN = LyLz f N−1 + 2
Lz

Re
τN

w

∣∣∣
y=0

(19)

In Equation (19) it is assumed that the values of the wall shear stress (τw) for the upper and lower plates are approxi-

mately equal at all time instants.

3.3. Statistical quantities

For completeness, the key definitions used in this paper are presented below. A space or ensemble average of a

variable φ is denoted by φ̄ . Since the streamwise (x) and spanwise (z)-directions are homogeneous, the ensemble

average is calculated by φ̄ =< φ >xz, where <>xz stands for spatial averaging in the x-z plane. The Favre average of a

variable, denoted by φ̃, at a time t is then obtained by:

φ̃ =
ρφ

ρ
=
〈ρφ〉xz

〈ρ〉xz

(20)
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The Favre averaged variable can also be further averaged in time as:

φ̃
t
=

´

φ̃(t)dt
´

dt
(21)

to obtain a statistically converged mean profile subject to adequate sampling.

The following statistics have been calculated for comparison with the DNS data: (i) streamwise velocity (u or

u+); (ii) Reynolds stresses
(
RSu′

i
u′

j

)
; (iii) skewness

(
S u′

i

)
; and (iv) flatness

(
Fu′

i

)
. The three fluctuating components

(u′, v′, w′) are calculated by u′
i
= ui − ũi

t
, where the ‘dash’ denotes the fluctuating part of the variable.

The Reynolds stresses are normalized by the resolved friction velocity in order to compare against the available

DNS data of [30]:

RS
(
u′iu
′
j

)
=
< u′

i
u′

j
>xz

(
ũτ

t
)2

∣∣∣∣∣∣∣∣

Ly

y=0

(22)

where |
Ly

y=0
stands for the variable’s profile in the y-axis.

The skewness and flatness are given, respectively, by

S
(
u′i

)
=
< u′3

i
>xz

3

√
< u′2

i
>xz

∣∣∣∣∣∣∣∣∣

Ly

y=0

(23)

and

F
(
u′i

)
=
< u′4

i
>xz

< u′2
i
>2

xz

∣∣∣∣∣∣

Ly

y=0

(24)

The statistical convergence of skewness and flatness is a good indicator of the fully developed status of the flow,

as well as of the adequacy of the data sampling. Note that all statistical profiles obtained at a given instant are further

averaged in time using Equation (21).

4. Results

To obtain a time window that ensures statistically stationary results, simulations have been carried out over a mini-

mum of ten flow-through times after transition has occurred, using the numerical schemes MC (Monotonized Central,

MUSCL 2nd-order), M3 (MUSCL 3rd-order), M5 (MUSCL 5th-order), W5 (WENO 5th-order) and W9 (WENO 9th-

order) with and without LM corrections.

The three-dimensional turbulent structures obtained from different simulations are shown by plotting the iso-

surfaces of Q-criterion [124] in Figures 2 to 4 for the schemes without the LM correction and Figures 5 to 7 with

the LM correction. Q-criterion is an indication of vorticity prevailing over strain and is useful in identifying vortex

cores. The Q iso-surfaces show, in a qualitative manner, the ability of the different schemes to resolve turbulent

structures. Note that for the calculation of Q-criterion the velocity field is non-dimensionalized by the bulk velocity

(u∞). It is clearly evident that as the order of accuracy of the reconstruction increases, more turbulent structures are

resolved. W5 resolves more turbulent structures than M5. The reason is that MUSCL schemes are designed to satisfy

positivity-preserving criteria in the framework of the total variation diminishing (TVD) condition [11] that leads to

more dissipative schemes.

The LM correction results in a remarkable improvement of the 2nd, 3rd and 5th-order schemes enabling much finer

turbulent scales to be resolved, as it is evident when comparing Figures 2-4 with Figures 5-7. The lower the order

of accuracy and grid resolution are, the more obvious the effects of the LM correction become. The most important

advantage of the LM correction is that it can provide significantly better accuracy on coarser grids than the same

numerical scheme might achieve without the correction on a substantially refined grid. The W9 scheme provides the

most turbulent-like solutions without using the LM correction. This is because W9 is the least dissipative scheme
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employed, thus the addition of LM corrections does not offer any further improvement and could in fact amplify

dispersive errors originating from the truncation error terms (odd order terms).

The results also reveal the mechanism by which the generated vorticity occurring in the viscous layer is ‘ejected’

due to low speed streaks into the outer boundary layer, thus making it turbulent. This mechanism is responsible for

the production of hairpin vortices that get stretched by the ambient shear. These streamwise elongated vortices have

also been reported by previous (incompressible) ILES studies [80].

Further analysis of the behaviour of the numerical schemes is now carried out and assessed through quantitative

comparisons to the DNS data of [30].

Figure 8 shows the velocity profiles in wall units for different numerical schemes and grid resolutions. The LM

correction provides significant improvements for the MC, M3 and M5 schemes and to a lesser degree for the W5

scheme. For example, the second order MC with LM correction on 643 resolution, captures the streamwise velocity

profile better than the M5 without the LM correction on the 1283 resolution. On the other hand, the LM correction

has hardly any effect on W5, while it slightly deteriorates the profile of W9. In respect of the latter, it should be noted

that the 9th -order WENO scheme is the least dissipative but more dispersive than the other methods and this may

trigger locally entropy-violating solutions. The LM correction tends to reduce even further the numerical dissipation

of the scheme, thus having adverse effects on the numerical error. For all grid resolutions employed, the W9 profile

consistently gave results closer to DNS than any other scheme employed here. On the 1283 grid, the W9 solution is

practically identical to the DNS data.

The results for the Reynolds stresses (RS) are shown in Figures 9-12 revealing that the most accurate solution is

obtained by W9. The LM correction significantly improves the accuracy of all schemes apart from W9. It appears

that the W9 scheme encompasses sufficient dissipation and the LM correction has a significant anti-dissipative effect

that adversely affects the accuracy. The lower the order of accuracy of the scheme is, the greater the effect of the

LM correction becomes. The W5 scheme gives better results than M5 for the RS(u′u′) and RS(u′v′) and similar

results to M5 (with LM correction) for RS(w′w′). Overall, the W5 and W9 performed better than any of the MUSCL

schemes. The WENO schemes, particularly W9, give extremely accurate results that closely match the DNS profiles.

The most noticeable result here is the significant over-prediction of the RS(u′u′) and under-prediction of RS(u′v′) by

all schemes apart of W9. The W9 profile of RS(w′w′) on the 643 grid appears to be odly shaped after the maxima

point but increasing the grid resolution improves the shape of the profile. Additionally, the W9 was the only scheme

capable of resolving the initial rise of RS(w′w′) up to y = 0.1, while it begins to deviate from the DNS at about

y = 0.15 (similarly to other schemes).

Regarding the location of the maximum Reynolds stress, the streamwise and wall-normal components are the

most challenging to resolve. As aforementioned, the W9 is the only scheme that gives satisfactory results. Decreasing

the order of accuracy leads to a gradual shift of the peak location towards the midstream. The wall-normal velocity

Reynolds stress RS(w′w′) is the least accurately captured due to the unresolved turbulent scales associated with the

small near-wall fluctuations. These are masked by the increasing numerical dissipation produced as the order of

accuracy of the numerical scheme is decreased and as the local Mach number reaches the zero limit near the wall.

With regards to RS(u′v′), all schemes show an overall good agreement. All Reynolds stress terms gradually converge

to the DNS peak values in the proximity of y = 0.1 (y+ ≈ 40), an indication of the prevalence of turbulent production

located near the end of the buffer layer.

High-order turbulent statistics provide a stringent accuracy test for numerical schemes because they can reveal

the extent of under-resolution and numerical errors. Flatness (kurtosis) is used here to identify locations where the

maxima of the distribution of the velocity component fluctuations occur. High values of flatness indicate regions of

the flow where the magnitude of the fluctuations can be relatively high to its mean, while non-zero values of skewness

reveal if the velocity fluctuation has a direction of preference. The flatness and skewness of the velocity components

are presented in Figures 13 to 18. Typically, the flatness is higher near the wall for all velocity components as shown

in Figures 13, 15 and 17, a manifestation of the intermittent nature of the flow in the viscous sub-layer. The results

show a gradual convergence to DNS as the order of accuracy or grid resolution is increased. However, it is clear

that the order of accuracy of the numerical scheme has a much greater impact on the resulting profiles than the grid

resolution. The implementation of the MUSCL schemes in conjunction with the LM correction results in DNS-like

distributions on the 963 grid something that is unattainable even on the 1283 grid without the LM correction.

At grid resolution 1283 the results for the streamwise flatness and skewness profiles (Figures 13, 14, 16 and

18) show improvement only for the W9 scheme. The schemes cannot capture the DNS spanwise skewness profile

11



(a) MC 2nd (b) MUSCL 3rd

(c) MUSCL 5th (d) WENO 5th

(e) WENO 9th

Figure 2: Q-criterion iso-surfaces on 643 grid (iso-value=0.5 colored by streamwise velocity.)
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(a) MC 2nd (b) MUSCL 3rd

(c) MUSCL 5th (d) WENO 5th

(e) WENO 9th

Figure 3: Q-criterion iso-surfaces on 963 grid (iso-value=0.5 colored by streamwise velocity.)

13



(a) MC 2nd (b) MUSCL 3rd

(c) MUSCL 5th (d) WENO 5th

(e) WENO 9th

Figure 4: Q-criterion iso-surfaces on 1283 grid (iso-value=0.5 colored by streamwise velocity.)
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(a) MC 2nd (b) MUSCL 3rd

(c) MUSCL 5th (d) WENO 5th

(e) WENO 9th

Figure 5: Q-criterion iso-surfaces on 643 grid with LM corrections (iso-value=0.5 colored by streamwise velocity.)
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(a) MC 2nd (b) MUSCL 3rd

(c) MUSCL 5th (d) WENO 5th

(e) WENO 9th

Figure 6: Q-criterion iso-surfaces on 963 grid with LM corrections (iso-value=0.5 colored by streamwise velocity.)
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(a) MC 2nd (b) MUSCL 3rd

(c) MUSCL 5th (d) WENO 5th

(e) WENO 9th

Figure 7: Q-criterion iso-surfaces on 1283 grid with LM corrections (iso-value=0.5 colored by streamwise velocity.)
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Figure 8: Velocity profiles in wall units for different schemes and grid resolutions
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Figure 9: The streamwise velocity RS(u′u′) calculated by different ILES schemes
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Figure 10: The wall-normal velocity RS(v′v′) calculated by different ILES schemes
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Figure 11: The spanwise velocity RS(w′w′) calculated by different ILES schemes
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Figure 12: The streamwise and wall-normal velocities RS(u′v′) calculated by different ILES schemes
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S(w′) near the midstream, which takes very small values fluctuating about zero. Increasing the grid resolution helps in

obtaining a near wall flatness value that gradually approaches the DNS, and holds true for all the velocity components.

This is most prominently visible for the W9 scheme. Regarding skewness, refining the grid further causes the near-

wall peak value for the streamwise and wall-normal components to converge closer to the DNS value. Again, this

appears to be most evident for the W9 scheme.

The wall-normal skewness profiles of some schemes, in particular the MUSCL scheme, exhibit an unusual positive

peak value near the wall prior to converging towards the DNS negative value peak. This is due to the limiting process

of the MUSCL and WENO schemes in the near wall region. It is known that strongly imposed no-slip conditions

often lead to inaccurate resolution of the near wall turbulence, particularly for coarse boundary-layer meshes. To

circumvent this shortcoming, a weakly imposed Dirichlet boundary conditions was suggested [125] and later applied

to a turbulent channel flow [126], however, showing that such an approach is less effective for grids employing a

stretching function. This kind of condition was not investigated during the course of the present study.

Similar to the observations made for the mean velocity and Reynolds stress profiles, the higher order statistics

also confirm that: (i) the 9th-order WENO scheme without LM corrections gives overall the best results; (ii) the LM

correction has a more pronounced effect on the lower order schemes; and (iii) that the WENO schemes capture the

turbulent statistics more accurately than the MUSCL schemes. The W9 is the only scheme that predicts the streamwise

flatness profile adequately on the under-resolved 643 grid, satisfactorily on the 963 and gives a near-DNS solution on

the 1283 grid. The rest of the schemes exhibit noticeable discrepancies to the DNS data, though in some cases, e.g.

the wall-normal skewness (Figure 18), the M5 and W5 schemes also perform reasonably well.

Figures 20 and 21 show the difference between the schemes employed and DNS for the streamwise Reynolds

stress, flatness and skewness. The numerical schemes in conjunction with the LM correction provide fairly accurate

results for the streamwise Reynolds stress y > 0.7. The least accurate schemes are the M2 and M3 schemes, especially

for y < 0.7, with significant discrepancies near y = 0.1 (y+ ≈ 40), which corresponds to the log-law region. The

differences between the schemes and DNS are reflected more clearly on the flatness and skewness. The differences

are reduced as the grid is refined. Moreover, the LM correction clearly improves the accuracy of all schemes apart

from the W9.

The grid-convergence characteristics of the best schemes, namely the M5 and W9 schemes, are separately shown

in Figure 22 and Figure 23, respectively. The grid convergence behavior of the M5 suggests that it could benefit

from finer resolution in the near-wall region. Note that since the peak location of the streamwise velocity Reynolds

stress is predicted fairly accurately, it is the magnitude which is overestimated. An underlining cause for this could

be the under-prediction of the wall-normal and, more importantly, spanwise velocity Reynolds stresses, as previously

shown in Figures 10 and 11. Hence, it is argued that the M5 scheme would benefit mostly by increasing the spanwise

resolution. The W9 scheme gives the most accurate results, very close to DNS even for the 963 resolution.

In Figures 24 to 27, a comparison of the MUSCL and WENO schemes is further carried out for the energy spectra

of the spatial fluctuation of the velocity components in the streamwise and spanwise (homogeneous) directions. The

best, highest-order variants from these schemes have been selected, namely the M5 and W9, on the 1283 grid at two

locations, one in the mid-stream at y+ = 395, and the other near the wall at y+ ≈ 30 within the buffer layer. It is shown

that the W9 scheme provides energy spectra that closely match in magnitude and shape those of the DNS.

The LM correction improves all the energy spectra obtained by the MUSCL schemes. Regarding the M5 scheme,

the improvement is apparent by the substantial increase of the energy spectrum, particularly in the low wavenumber

regime at y+ = 395 but also at y+ ≈ 30. Despite the above improvements, the magnitude of the energy spectra still

remains lower than those obtained by the DNS. The susceptibility of the W9 scheme to the LM correction is mostly

evident near the grid cut-off wavenumbers and is caused by the interaction between the dispersive truncation errors

and the LM correction. Furthermore, due to the low numerical dissipation in the W9 scheme, the amplified dispersive

errors are not sufficiently damped, thus manifesting in the numerical solution.

In the case of y+ = 395, there is an unnatural leveling-off of the energy spectra near the grid-cell (implicit filter)

cut-off wavenumber due to the lower mesh resolution in this area. This behaviour is reminiscent of that witnessed in

under-resolved simulations using spectral methods and agrees with previous findings in the literature [19, 51–54, 59],

where it has also been suggested [53, 55, 56] that explicit LES filtering should be introduced at widths greater than

that of the cell size in order to reduce, or avoid altogether, the complex interactions between the numerical (implicit)

and SGS model (explicit) dissipation. In contrast to the midstream location, the spectra near the wall do not exhibit

such (strong) adverse effects from aliasing and truncation errors. The observations made about the effects of the LM
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Figure 13: Flatness of the streamwise velocity
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Figure 14: Skewness of the streamwise velocity
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Figure 15: Flatness of the wall-normal velocity
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Figure 16: Skewness of the wall-normal velocity
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Figure 17: Flatness of the spanwise velocity
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Figure 18: Skewness of the spanwise velocity
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Figure 19: Grid convergence for streamwise velocity stresses Re(u′u′)
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Figure 20: Grid convergence for streamwise flatness F(u′)
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Figure 21: Grid convergence for streamwise skewness S (u′)
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Figure 22: Grid convergence for MUSCL 5th with LM correction
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Figure 23: Grid convergence for WENO 9th
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Figure 24: Energy Spectra on 1283 grid at y+ = 395 in streamwise direction
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Figure 25: Energy Spectra on 1283 grid at y+ = 395 in spanwise direction

correction on the W9 scheme at larger wavenumbers agree with previous computational evidence from DNS databases

[127–130] suggesting that the interactions between large resolved scales and unresolved scales are less significant than

those between small resolved scales and unresolved scales.

By integrating the ILES and DNS energy spectra an estimate of the total resolved energy can be obtained. A

quantitative comparison of the spectra results for DNS, MUSCL 5th and WENO 9th is presented in Table 2 and

Table 3 for the total resolved energy. The WENO 9th order gives results closer to DNS than the MUSCL 5th. The LM

correction consistently improves the accuracy of the MUSCL 5th order, however, its effects are more ambiguous with

respect to WENO 9th order.

The domain size was chosen to be sufficiently large to contain all turbulent scales resolved and it is thus expected

that the temporal variability of the resolved friction Reynolds number should remain low. An indication of the above is

provided by calculating the standard deviation of the resolved friction Reynolds number σ (Reτ) over the total number

of samples (Ns) used to obtain the averaged statistical profiles:

σ (Reτ) =

√√√
1

Ns

Ns∑

n=1

[
Reτ (n) − Reτ

]2
(25)

where Reτ (n) = ρ̄uτδ/µ̃ is the resolved friction Reynolds number at time-step n, and Reτ is the ensemble average of
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Figure 26: Energy Spectra on 1283 grid at y+ = 30 in streamwise direction
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Figure 27: Energy Spectra on 1283 grid at y+ = 30 in spanwise direction
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Streamwise

Spectrum

Streamwise

Velocity

Wall-normal

Velocity

Spanwise

Velocity

MUSCL 5th 7.132 0.138 0.821

MUSCL 5th
+LM 5.310 0.376 1.409

WENO 9th 4.873 0.636 1.612

WENO 9th
+LM 5.385 0.580 1.395

DNS 5.105 0.675 1.593

Spanwise

Spectrum

Streamwise

Velocity

Wall-normal

Velocity

Spanwise

Velocity

MUSCL 5th 17.193 0.302 1.594

MUSCL 5th
+LM 11.891 0.776 2.774

WENO 9th 10.810 1.245 3.118

WENO 9th
+LM 11.607 1.204 2.788

DNS 11.241 1.386 3.189

Table 2: Total resolved Energy Spectra near the wall (y+ ≈ 30)

Streamwise

Spectrum

Streamwise

Velocity

Wall-normal

Velocity

Spanwise

Velocity

MUSCL 5th 0.333 0.235 0.213

MUSCL 5th
+LM 0.543 0.369 0.304

WENO 9th 0.675 0.404 0.375

WENO 9th
+LM 0.573 0.408 0.382

DNS 0.572 0.406 0.399

Spanwise

Spectrum

Streamwise

Velocity

Wall-normal

Velocity

Spanwise

Velocity

MUSCL 5th 0.690 0.440 0.392

MUSCL 5th
+LM 1.111 0.718 0.573

WENO 9th 1.326 0.763 0.712

WENO 9th
+LM 1.232 0.735 0.728

DNS 1.187 0.773 0.754

Table 3: Total resolved Energy Spectra near the midstream (y+ ≈ 392)
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Grid: 643 Reτ σ (Reτ) LM: Reτ LM: σ (Reτ)

MC 2nd 279.60 10.35 320.47 5.51

MUSCL 3rd 269.90 8.78 309.78 6.16

MUSCL 5th 277.85 6.76 322.20 3.90

WENO 5th 315.87 5.72 331.37 3.51

WENO 9th 372.17 3.64 367.58 2.91

Grid: 963

MC 2nd 292.97 9.25 343.77 4.19

MUSCL 3rd 290.05 8.02 342.21 3.33

MUSCL 5th 304.34 5.81 349.28 4.24

WENO 5th 343.24 3.91 360.83 3.96

WENO 9th 387.70 3.53 382.11 3.02

Grid: 1283

MC 2nd 309.14 7.16 359.10 4.45

MUSCL 3rd 308.26 7.02 355.14 3.08

MUSCL 5th 325.65 2.88 366.61 2.24

WENO 5th 360.85 2.75 374.75 2.96

WENO 9th 393.13 1.85 386.60 2.28

Table 4: Resolved friction Reynolds numbers
(
Reτ

)
and standard deviation (σ)

the resolved friction Reynolds number over the entire sample range:

Reτ =
1

Ns

Ns∑

n=1

Reτ (n) (26)

The standard deviation (σ) is indicative of the ability of high-order scheme to sustain a turbulent field; lower values

attained suggest greater accuracy and lower intermittency. The σ values obtained for all configurations examined

herein are summarized in Table 4 along with their resolved friction Reynolds number. W9 encompasses the lowest

value out of all high-order schemes examined, with a σ value of below 4 for all mesh resolutions, with or without LM

correction. On the other hand, the 2nd-order MUSCL scheme (MC) showed the greatest variability with a value as

high as 10 on the coarse grid. Apart from the WENO schemes on the fine grid (1283), the use of the LM correction

led to significant reductions of σ, especially for the lower-order MUSCL schemes. Concerning the resolved friction

Reynolds number, the LM correction improves the ILES results of the MUSCL schemes by 10-20%.

The computational requirements in LES is another important issue and will remain so in the foreseeable future

despite the advancements in high-performance computing. To analyse the computational efficiency of each numerical

scheme at different grid resolutions, the results of Table 4 are used to establish the error reduction versus computational

cost. The numerical error, εN , is estimated by the average resolved friction Reynolds number (Reτ) of Equation (4):

εN =
395 − Reτ

395
× 100% (27)

with the target reference friction Reynolds number being 395. Note that the DNS of [30] reported a resolved friction
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Figure 28: Error vs. normalized computational cost

Reynolds number of ReDNS
τ = 392.24.

The computational cost is estimated using as reference the fastest simulation, namely the 2nd-order MC scheme

without the LM correction on the coarse 643 grid. Dividing the computational time of each simulation by the reference

value, a normalised computational time is obtained.

The obtained error (εN) vs computational cost for each scheme is plotted in Figure 28. The 1283 grid contains

exactly 8 times more cells than the coarse grid and 2.4 time than the medium grid, thus the computational time is

expected to increase accordingly. The WENO schemes are more accurate than the MUSCL ones, but at the same time

are much more computationally intensive. Note that due to the simplicity of the LM correction [86], its overhead in

the total simulation time is almost negligible as seen in Figure 28. The W9 scheme is approximately 1.4 to 2.7 times

more expensive than the W5 and M5 schemes, respectively. However, the WENO schemes enable the simulations to

approach the target DNS value at much coarser meshes. The W9 scheme on the 643 grid was capable of obtaining

a friction Reynolds number that was closer to the target value of 395 than any of the remaining schemes, even when

used on a finer grid (1283) in conjunction with the LM correction. Specifically, the W9 scheme on the coarse grid

(643) is approximately as computationally expensive as any of the MUSCL schemes are on the medium grid (963) for

approximately half the error. For example, the coarse grid ILES using W9 gives better results than the fine grid ILES

using M5 and LM correction for half of the computational cost. As a final remark, we should note that the analysis

above should be considered by taking into account that there is an uncertainty associated with the DNS and that if one

accounts for the error bounds in the DNS solution (with reference to the experiment), then this might elucidate the

error associated with the W9 scheme with and without the LM correction.

5. Conclusions

A detailed investigation of the accuracy and efficiency of high-order MUSCL and WENO schemes in the frame-

work of ILES has been conducted for a weakly-compressible, fully-developed, turbulent channel flow. The study has

led to useful insights with respect to the effects of these schemes on the accuracy of ILES in wall-bounded turbulent

flows, and a summary of the key conclusions is provided below.
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The LM correction [87] significantly improves the accuracy of the simulations, yielding results on coarse grids

that are as accurate as those obtained on finer grids of twice the size. On the finer mesh, the extent of the improvement

for all MUSCL schemes is such that the solutions compare well to data obtained by DNS for a wide range of the

statistical quantities investigated.

The LM correction can significantly reduce the numerical dissipation intrinsic to shock-capturing methods at rela-

tively low Mach numbers, leading to a drastic improvement in the resolution and capturing of turbulent structures. As

a consequence, the turbulent boundary layer statistics appear to converge towards those obtained by DNS, suggesting

that the LM correction leads to physically correct results when applied to flows with no-slip walls. Most importantly,

this is accomplished at a very small computational overhead. The effects of the LM correction appear to be greater

when it is implemented in conjunction with second- and third-order methods. The fifth-order MUSCL and WENO

schemes also benefit from the LM correction, with the WENO 5th-order to a lesser degree.

The ninth-order WENO (W9) scheme gives by far the most accurate results out of all the schemes investigated

in this study. The results obtained by W9 closely match the DNS data, with some noticeable differences appearing

only for the higher order statistical quantities of flatness and skewness on the coarse grid. The W9 demonstrated to

be capable of accurately resolving practically all statistical quantities examined without requiring the LM correction

even on the coarsest grid. The high-order statistics W9 results suggested that the inclusion of the LM correction may

adversely affect the accuracy of its results.

It can be argued that the order of the leading even-order truncation error term of high-order schemes such as

WENO 5th is greater than two [131] and therefore does not match the order of the dissipation differential form found in

turbulence models. However, in [132] it was shown that for a successful ILES scheme, the nonlinear dissipation must

be either of the same form as that observed experimentally and also derived mathematically in turbulence theory, or

otherwise have minimal interference with the terms associated with conservation form. Consequently, the ninth-order

scheme is found to have the least numerical dissipation out of all schemes employed and for this reason performed

better even on the coarse grid. No other scheme was capable of resolving the near-wall region so adequately despite

the use of low-Mach corrections and finer meshes.

The increased accuracy and intrinsic low Mach number dissipation properties of W9 come at an increased com-

putational cost. This is the main disadvantage of the W9 scheme. Nonetheless, its accuracy (with respect to the target

friction Reynolds number) even on the coarse grid was stellar, just under 6%, whereas the best result obtained by the

fine grid simulations using the M5 scheme in conjunction with the LM correction was slightly over 7%. The M5 with

LM correction on the fine grid required more than twice the computational time compared to the W9 on the coarse

grid and, additionally, the W9 gave significantly more accurate results.

The energy spectra suggest that inadequate resolution of the near wall region leads to a reduction in accuracy of

the resolved Reynolds stresses and higher order statistics. High-order numerical methods such as W9 are naturally

less dissipative and offer the potential of adequately resolving a wider range of the energy spectrum, almost up until

the grid cut-off wavenumber. At this point, the problem is not just the amount of numerical dissipation, but also

the backscatter-like accumulation of the turbulent kinetic energy at the near cut-off wavenumbers due to dispersive

(odd-order truncation terms) errors, similar to unresolved spectral simulations.
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