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Abstract 

After spinal cord injury (SCI), bone loss in the paralysed limbs progresses at variable rates. 

Decreases in bone mineral density (BMD) in the first year range from 1% (slow) to 40% 

(rapid). In chronic SCI, fragility fractures commonly occur around the knee, with significant 

associated morbidity. Osteoporosis treatments await full evaluation in SCI, but should be 

initiated early and targeted towards patients exhibiting rapid bone loss. The potential to 

predict rapid bone loss from a single bone scan within weeks of a SCI was investigated using 

Statistical Shape Modelling (SSM) of bone morphology, hypothesis: baseline bone shape 

predicts bone loss at 12-months post-injury at fracture-prone sites. 

 

In this retrospective cohort study 25 SCI patients (median age, 33 years) were scanned at the 

distal femur and proximal tibia using peripheral Quantitative Computed Tomography at 

<5weeks (baseline), 4, 8 and 12 months post-injury. An SSM was made for each bone. Links 

between the baseline shape-modes and 12-month total and trabecular BMD loss were 

analysed using multiple linear regression. 

 

One mode from each SSM significantly predicted bone loss (age-adjusted P<0.05 R
2
=0.37-

0.61) at baseline.  An elongated intercondylar femoral notch (femur mode 4, +1 SD from the 

mean) was associated with 8.2% additional loss of femoral trabecular BMD at 12-months. A 

more concave posterior tibial fossa (tibia mode 3, +1 SD) was associated with 9.4% 

additional 12-month tibial trabecular BMD loss. 

 

Baseline bone shape determined from a single bone scan is a valid imaging biomarker for the 

prediction of 12-month bone loss in SCI patients. 
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Abbreviations  

 

Spinal Cord Injury (SCI), Statistical Shape Modelling (SSM), Queen Elizabeth National 

Spinal Injury Unit (QENSIU), American Spinal Injury Association (ASIA), ASIA 

Impairment Score (AIS) 

 

1 Introduction 

 

Every year 130,000 people worldwide, survive a traumatic Spinal Cord Injury (SCI)[1]. In 

developed economies these patients can now expect near-normal lifespans, but have to face 

the many complications of SCI including osteoporosis and osteoporotic fractures[2-4]. 

Osteoporotic fractures occur  in men and women, young and old; they are frequently low-

energy, occurring during transfer activities, such as from wheelchair to bed or bed to chair, 

during rehabilitation activities or simply as a result of turning in bed[4] and are at least twice 

as common as in the general population[5]. The distal femur and proximal tibia are the 

commonest sites of bone loss and fractures. 

 

 At first glance the implications of lower limb fractures in patients with SCI may seem 

insignificant as patients are already non-ambulatory. However, fractures can have serious 

consequences with morbidity exceeding non-SCI fracture populations[6] often compounded 

by a delay in recognising the fracture. SCI related lower limb fractures are difficult to treat as 

the fractured bone is commonly fragile and porous making surgical fixation complicated, 

whilst the other standard option, plaster casts can cause pressure ulcers in the limb they are 

applied to. Other complications include mal-union and deformity (another cause of pressure 

ulcers), extended periods of bed rest, prolonged hospitalisation and decreased 

independence[7]. 
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No guidelines exist for the treatment of osteoporosis in SCI patients, and clinicians generally 

take a reactive rather than a preventative approach to treating this group. Guidelines for 

postmenopausal osteoporosis[8, 9], have limited value for treating SCI osteoporosis because 

of differences in the pathophysiology and co-morbidities[2-4]. Furthermore, there is no clear 

equivalent of FRAX for fracture risk calculation for SCI patients[10]. Current available 

treatments are often intensive, life-long and have undesirable side effects[11]. Importantly, 

many of the treatments have either only worked, or worked best, when administered in the 

acute stage after injury[12]. All these challenges that patients and clinicians face could be 

circumvented by establishing a preventative target to treat approach. Identifying those at risk 

of rapid bone loss would help greatly in initiating therapy in the early stage after injury, when 

it is most likely to be effective[12, 13].  

 

The majority of acute bone loss occurs in the first 1-2 years after injury[14, 15]. Bone 

Mineral Density (BMD) gradually levels off at around 3-7 years post-injury with variations in 

the rate depending on the anatomical location[16]. SCI osteoporosis is “sublesional” i.e. bone 

loss occurs below the neurological injury level, with all limbs affected in tetraplegia, but only 

the lower limbs in paraplegia[5, 17, 18]. In both paraplegics and tetraplegics, there is 

substantial variability in the rate of bone loss at 12 months post-injury, with some SCI 

patients losing bone much faster than predicted (up to 40%), some losing bone at the 

predicted rate, while others lose little or no bone[19]. The rate of bone loss cannot be 

predicted or explained by the level of neurological injury and methods to identify those who 

will suffer rapid bone loss are needed. 

 

The innovative use of statistical shape modelling (SSM) to capture bone shape has enhanced 

hip fracture prediction in the elderly[20-22]. SSM characterises and quantifies the natural 
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shape variation of an object, overcoming the limitations of basic geometric measurements 

(e.g. width, length, angles) which are suitable for simpler objects. This approach has been 

successfully applied to study various medical conditions[20, 23-26]. Until now, bone 

morphology has not been investigated in SCI patients, even though it is a known determinant 

of bone strength, independent of BMD[27-29]. Few studies have investigated prediction of 

bone loss in postmenopausal women, older men or SCI patients[19, 30-33].  

 

The aim of this study is to investigate, for the first time, the prediction of SCI related bone 

loss based on a single early bone scan. The specific objective of this study was to test whether 

femoral and tibial statistical shape models reveal shape variations that can predict the rate of 

bone loss in a cohort of SCI patients and act as an imaging biomarker.  

 

2 Material and Methods 

2.1 Study subjects and imaging 
 

This study was approved by the West of Scotland Research Ethics Committee 3 in line with 

the declaration of Helsinki[34]. Participants gave full informed consent and their datasets 

were anonymised. 

 

Images and data from a prospective study, designed to characterise bone loss in individuals 

with complete SCI in the first year post-injury were analysed retrospectively. Full details of 

the study design and findings are available elsewhere[34]. Recruitment took place between 

October 2008 and February 2012. In-patients at the Queen Elizabeth National Spinal Injury 

Unit (QENSIU), Glasgow, UK, who were no more than 5 weeks post-injury at the start of the 

study with a ASIA Impairment Score (AIS) of A (motor-complete, sensory-complete) or B 
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(motor-complete, sensory-incomplete) according to the International Standards for 

Neurological Classification of Spinal Cord Injury were eligible for inclusion[35]. Patients 

were excluded if they had pre-SCI diagnosis of osteoporosis or medical complications 

associated with their injury. 

 

Images and bone density were obtained using an XCT 3000 peripheral Quantitative 

Computed Tomography (pQCT) scanner (Stratec Medizintechnik GmbH). Scans were taken 

of the distal femur and proximal tibia at four time points. Baseline scans were taken as soon 

as possible after injury (all before 5 weeks post-injury) and follow up scans at 4, 8 and 12 

months post-injury. 

 

Scans were taken on the ‘dominant’ side for all participants except when a limb on that side 

had a history of fractures or if the region to be scanned contained any metal components[19, 

34]. All scans were taken by the same operator using the same anatomical location (4% total 

bone length) and scanning parameters as the baseline scan (slice thickness 2.4mm, voxel edge 

length 0.3mm for distal femur and 0.5mm for proximal tibia)[36]. Reproducibility has been 

previously published[36]. Images were saved as comma separated value files and converted 

into 8bit Tiff. The right leg was scanned for 21/25 participants. All subjects had femur BMD 

values within the normal range at baseline (no normative values are available for the 

proximal tibia)[15]. Percentage change in total BMD, trabecular BMD (calculated within the 

central 45% of total bone area) and Bone Mineral Content (BMC) from baseline to 12-month 

scan were calculated[34]. Cortical BMD was not measured as the thinness of the cortical 

shell at the epiphyses makes it an unreliable measure due to the partial volume effect. 
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2.2 Statistical shape modelling 
 

Semi-automated point placement of shape templates was performed on all baseline images 

using the Active Shape Model Toolkit (Visual Automation Limited, Manchester, UK). Figure 

1 shows the templates for the femur (44 points) and tibia (30 points). Mode scores (output 

variables) were calculated by a locally developed software (Shape, Aberdeen, UK) using 

principal component analysis. Scores were calculated so each mode has a mean of zero and a 

standard deviation (SD) of 1 and is statistically independent from the other modes (Figure 2).  

 

Intra- and inter-repeatability were assessed using the median point-to-point distance for 10 

femur and tibia images each. Each image was marked up twice at least one day apart. Intra- 

and inter-repeatability was 0.6 pixels (0.18mm) and 1.2 pixels (0.36mm) for the femur and 

0.7 pixels (0.35mm) and 1.9 pixels (0.95mm) for the tibia respectively. 

 
Figure 1 

 Femur and tibia shape models. Landmark points (triangles) mark easily identifiable 

anatomical or geometric features (e.g. the tip of the femoral anteromedial condyle). Non-

landmark points (circles) are equally spaced to describe the outline. 
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Figure 2 

To calculate shape variation in the dataset, the bones must first be aligned as closely as 

possible by scaling, rotating and transforming the outlines (Procrustes analysis). This allows 

the average shape to be calculated for the femur (A) and tibia (B) and also a “point cloud” for 

each, (C and D respectively) showing the variation in femur and tibia points. Principal 

Component Analysis is then used to quantify this variation by calculating “modes” which 

represent different patterns of variability from the average shape. The first mode describes the 

largest percentage of variability in the dataset, followed by the second mode, and so on. Each 

image is assigned a set of mode scores (one for each mode) representing how it varies from 

the average shape. 
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2.3 Statistical analysis 
 

Statistical tests were performed using SPSS version 21.0.01 (SPSS, IBM, USA). Significance 

level was set at P<0.05. Normality testing was performed using the Shapiro-Wilk test, 

equality of variance using Levene’s Test. 

 

In a per-protocol analysis, subject characteristics evaluated as potential risk factors for SCI 

bone loss (sex, level of injury, AIS and age) were investigated using Pearson’s correlation (or 

its non-parametric equivalent where appropriate) to test for association with 12-month BMD 

and BMC change. The link between baseline bone shape (mode scores from ≤5 week scans) 

and the factors described above were assessed using t-tests and Pearson’s correlation or their 

non-parametric equivalents. Simple and age-adjusted multiple linear regression were used to 

assess how much of the variance in 12-month percentage change in BMD was accounted for 

by baseline shape and Cohen’s f
2
 effect sizes calculated. 

 

3 Results 

3.1 Subject demographics 
 

The flow chart in Figure 3 describes the study recruitment. Fifty-five eligible patients were 

identified and 25 were included in the study[34]. Baseline pQCT scans were available for all 

participants at the femur and all but 2 at the tibia.  Percentage change data for BMD and 

BMC from baseline to 12 months were available for 19 participants at the femur and 17 at the 

tibia.  
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Figure 3 

Flowchart showing recruitment and retention of study participants. 

 

On average (Mean±SD) baseline scans were performed at 1.00 ± 0.17 months post-injury 

(n=25), and final scans at 12.56 ± 0.99 months post-injury (n=19). There was no significant 

difference in age, gender or paraplegic/tetraplegic category between those who underwent a 

12-month scan and those who did not (P=0.220-0.675). 

 

The cause of SCI in all 25 participants was trauma. There were 21 male and 4 female 

participants with a median age of 33.0 (Inter-quartile range=20.0-50.5) ranging from 16 to 76 

years. The level of SCI ranged from cervical 4 to lumbar 1 spine and participants were 

55 Patients eligible

48 Participants

26 Participants

25 Participants

22 excluded (6 females, 16 males) due to medical

complications or pre-SCI diagnosis of osteoporosis
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6 declined consent (3 females, 3 males)

1 female dies within 5 weeks post-injury

1 female subject excluded due to long term 

hormonal therapy

2 tibia scans not performed

due to participant 

discomfort during scanning

6 participants did not attend 

the 12 month pQCT scan.
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categorised into paraplegic (n=10) or tetraplegic (n=15) for analysis. The majority (n=19) had 

no motor or sensory function (AIS A), the rest (n=6) had some sensory but no motor control 

below the injury level (AIS B). 

 

3.2 Baseline risk factors for SCI bone loss 
 

In the femur, there were no significant differences in bone loss (total BMD, trabecular BMD 

or BMC percentage change) when comparing sex, injury status (AIS and injury level) (Table 

1) and no significant correlations with age (P>0.05). 

 

Similarly tibial total BMD, trabecular BMD and BMC change were not related to sex or AIS. 

However, tetraplegics had a significantly smaller 12-month total BMD loss compared with 

paraplegics (Table 1). Age was significantly correlated with total BMD (r=0.66, P=0.004) 

trabecular BMD (r=0.70, P=0.002) and BMC (r=0.68, P=0.003) change. 

 

Baseline height and weight data were not available due to difficulty in their measurement in 

the acute stage after a SCI. Spastic versus flaccid paralysis and the administration of 

methylprednisolone, were also not associated with 12-month BMD or BMC change (data not 

shown). 
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Table 1: Association between baseline characteristics and 12-month percentage change in BMD and BMC at the femur and tibia.  

 

 

T-tests (presented as mean (standard deviation)) or Mann-Whitney tests (presented as median (interquartile range) and marked by †) were used as appropriate. Significant 

results are indicated in bold. BMD = Bone Mineral Density; BMC = Bone Mineral Content; Para = Paraplegic; Tetra = Tetraplegic; AIS = ASIA Impairment Score.

Variable  Group (N) Total BMD % 

loss 

P Trabecular BMD % loss P BMC % loss P 

Femur 

Sex Female (4) 

Male (15) 

-14.5 (12.0) 

-17.9 (12.2) 

0.624 -13.9 (12.6) 

-15.4 (17.2) 

0.874 -15.2 (14.3) 

-18.6 (12.3) 

0.642 

Injury 

Status 

Para (9) 

Tetra (10) 

-20.8 (9.7) 

-13.9 (13.2) 

0.217 -19.2 (14.3) 

-11.5 (17.4) 

0.307 -20.3 (-32.3, -13.0) 

-7.8 (-29.6, -6.0) 

0.191
†
 

AIS A (14) 

B (5) 

-19.3 (11.4) 

-11.2 (12.5) 

0.202 -17.3 (15.2) 

-9.1 (18.7) 

0.346 -19.6 (13.2) 

-13.1 (9.2) 

0.334 

Tibia 

Sex Female (3) 

Male (14) 

-28.2 (17.4) 

-25.7 (14.7) 

0.800 -16.9 (-17.6, -4.6) 

-13.9 (-48.5, -7.3) 

0.900† -20.9 (7.4) 

-23.0 (13.7) 

0.798 

Injury 

Status 

Para (8) 

Tetra (9) 

-33.5 (11.4) 

-19.6 (14.7) 

0.049 -29.8 (21.1) 

-12.6 (15.4) 

0.072 -28.3 (10.8) 

-17.7 (12.6) 

0.083 

AIS A (12) 

B (5) 

-24.9 (-42.3, -

14.7) 

0.527†
 -24.1 (22.6) 

-12.5 (6.7) 

0.128 -24.2(14.5) 

-18.9(6.1) 

0.450 
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3.3 Femur shape 
 

The first 7 modes were selected for analysis from the femoral SSM. These described 74.8% 

of the total variance, with each mode describing at least 4.2%. The remaining modes were 

discarded as, individually, they accounted for a small percentage of variance that was 

indistinguishable by eye. 

 

3.3.1 Femur shape and baseline characteristics 
 

Analysis of baseline mode scores showed that men had significantly higher mode 2 scores 

than women (0.24 ± 0.80 and -0.84 ± 0.80 respectively, P=0.028) and mode 5 was both 

significantly higher in tetraplegics than paraplegics (1.03 ± 0.94 and -0.46 ± 0.51 

respectively, P=0.001) and significantly correlated with age (r=0.58, P=0.009). There were 

no significant differences in mode scores between AIS A and AIS B groups for any of the 

modes (P>0.05). 

 

Tetraplegics were significantly older than paraplegics, mean age=46.6 ± 20.0 and 29.6 ± 11.5 

years respectively (P=0.039), which may explain why both tetraplegic and older subjects had 

higher baseline mode 5 scores. 

 

3.3.2 Femur shape and bone loss 
 

Only mode 4 (Figure 4A) correlated with 12-month percentage changes in total or trabecular 

BMD or BMC (r=-0.53, P=0.019 (Pearson’s correlation), r=-0.51 P =0.026 and  r=-0.48, 
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-15.1, -1.1) constant=-16.5%, f
2
=0.35. This result was still significant after adjustment for age 

with 8.2% additional BMD loss (95%CI -14.9, -1.5) per SD increase (R
2
=0.37, constant=-

27.8%, P=0.019, f
2
=0.59). 

3.4 Tibia shape 
 

The first 7 modes accounted for 87.1% of the total variance, with each accounting for at least 

2.8%. As previously, the remaining modes were discarded. 

 

3.4.1 Tibia shape and baseline characteristics 
 

No significant differences were observed in any of the mode scores between males and 

females , para- and tetraplegic groups  or between AIS A and B groups (P>0.05) and there 

were no correlation between mode scores and age (P>0.05). However, when examining all 

baseline data (n=23), a significant negative correlation was found between mode 3 and age, 

so older subjects were more likely to have a high mode 3 score (r=-0.42, P=0.044). 

 

3.4.2 Tibia shape and bone loss 
 

A significant negative correlation was found between mode 3 (Figure 4B) and percentage 

total BMD (r=-0.49, P=0.048) and BMC change (r=-0.52, P=0.032) there was a borderline 

negative correlation between mode 3 and trabecular BMD change (r=-0.48, P=0.054). There 

was a significant negative correlation between mode 1 and trabecular BMD change (r=-0.55, 

P=0.022) whilst BMC change was borderline significant (r=-0.48, P=0.053). 
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Multiple linear regression found that mode 3 accounted for 24% of variability in tibial total 

BMD change before adjustment for age, (R
2
= 0.24) with 7.0% more total BMD loss (95%CI -

13.9,-0.06) for every 1SD increase (constant=-25.3%, P=0.048, f
2
=0.31) which became non-

significant after adjustment for age (R
2
=0.48, with 4.3% more total BMD loss (95%CI -10.7, 

2.1%) for each 1SD increase, constant=-41.0, P=0.169, f
2
=0.92). 

 

Trabecular bone loss was also predicted by mode 3, which accounted for 42% of variance in 

trabecular BMD change (R
2
=0.42, P=0.005). Each 1SD increase in mode 3 was associated 

with a loss of an additional 12.6% trabecular BMD (95%CI -20.7, -4.4) constant=-19.1%, 

f
2
=0.72. This result was still significant after adjustment for age with 9.4% additional BMD 

loss (95%CI -16.9, -1.9) per SD increase (R
2
=0.61, constant=-37.7%, P=0.018, f

2
=1.53). 

 

 

4 Discussion 

This study found that bone shape is a repeatable early predictor of bone loss after a SCI, even 

after adjustment for age, the strongest baseline predictor (since the young showed a faster rate 

of bone loss). The predictive capacity of shape was stronger for trabecular than total bone 

loss in both the femur and tibia. In the femur, an elongated intercondylar femoral notch 

represented by a 1SD higher score for femur-mode 4 at <5 weeks corresponded to an extra 

8.2% femoral trabecular BMD loss at 12 months post-injury. Similarly, at the tibia, a more 

concave posterior tibial fossa and a proportionally bigger anterolateral section, represented by 

a 1SD higher baseline for tibia-mode 3 corresponded to an extra 9.4% loss of tibial trabecular 

BMD at 12 months. 
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Visualisation of the modes allows description of the shapes most predictive of bone loss. In 

the femur, a higher mode 4 (associated with increased bone loss) had longer condyles, a more 

concave epicondylar fossa and a deeper, sharper and narrower intercondylar notch compared 

with lower scores (Figure 4A). The tibial shape associated with a higher mode 3 score had  a 

more concave posterior tibial fossa and is proportionally bigger anterolaterally (Figure 4B), 

compared with the lower mode 3 scores, which were associated with a reduced tibial bone 

loss. 

 

In both the femur and the tibia, the most striking shape differences were observed around 

muscle and ligament insertion points. These results are perhaps not unexpected since these 

biomechanically active regions are vital for maintaining skeletal tissue through transmission 

of loading forces. It is unlikely that the shape of the femur or tibia would have changed 

significantly from when the injury first happened to the time of the first scan, however we 

cannot be certain of this. The observed difference in shape may be congenital and put patients 

at a higher risk of bone loss due to the effects of muscle on bone or vice versa. 

 

Alone, the shape models explained between 24% and 42% of the subsequent bone loss. 

Including age in the regression increased this substantially (between 37% and 61%), with the 

highest percentage in the trabecular bone of the tibia. Most effect sizes were classed as 

“large” using Cohen’s definitions [37], with just one classed as “medium” (<0.35). Whilst it 

is always recommended to use descriptors such as “large”, “medium” and “small” with 

caution, even by Cohen himself, these findings indicate our models may have clinical, not 

just statistical significance. 
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There are no published studies that have addressed prediction of the speed of disuse related 

bone loss in SCI, and very few in post-menopausal osteoporosis or older men[30-33]. In post-

menopausal and SCI osteoporosis the primary focus has been on predicting fractures. SSM 

has been previously used to predict hip fractures in post-menopausal women using 

radiographs or Dual Energy X-ray Absorptiometry (DXA) scans of the proximal femur[20-

22]. The present study is the first to use SSM to study SCI-induced osteoporosis and 

moreover it is the first to use SSM to predict bone loss. 

 

Previous studies have made important advances in our understanding of SCI bone loss by 

describing it using DXA, pQCT, as well as blood and urine concentrations of bone turnover 

markers[12, 14-17, 38-44]. There is potential for data from both longitudinal and cross-

sectional studies in this field to be assessed for association with rate of bone loss. Such 

information could add to the predictive ability of the findings from the current study. 

 

Since the findings of this study are novel, there are no directly comparable studies. The few 

studies that have assessed distal femur or proximal tibia shape have assessed it in the context 

of knee osteoarthritis or clinical studies looking to predict outcome of interventions based on 

bone morphology. Interestingly all these studies noted differences in the femoral 

intercondylar notch shape associated with either osteoarthritis or the success of cruciate 

ligament reconstruction, and many proposed that this may arise due to differences in cruciate 

ligament attachment[45-48]. Differences in the shape of the distal femur based on age and 

sex have also been reported elsewhere[46].  

 

In the general population, a decrease in BMD is typically associated with ageing. However in 

this study, older participants had a slower rate of loss at the proximal tibia. This may be 
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because they are likely to be less physically active and may have already suffered from some 

generalised loss of muscle strength, and so are not as reliant on this for BMD 

maintenance[49]. 

 

Key strengths of this study are the longitudinal design, starting as soon as practically possible 

after injury, the use of clinically relevant skeletal sites for the SCI population (femur and 

tibia)[34], and the high repeatability of both the pQCT measurements,[36] and the shape 

models (inter-repeatability for both the femur and tibia <1 mm). This study is one of the 

largest longitudinal studies of acute SCI. There are around 100 cases of SCI per year in 

Scotland and approximately half of these are motor complete injuries, which was the focus of 

this study. 

 

The patient sample was representative of the SCI population in terms of sex, average age and 

age range[50, 51], but there were limitations. Although the majority of the eligible patients 

admitted to QENSIU gave consent to participate, many could not be scanned at less than five 

weeks post injury due to medical complications. These patients were not included in the 

study and the participants may therefore have been a healthier group. 

 

Other than age, the shape models developed in this study are the first biomarkers of bone loss 

identified in the SCI population. They have the potential to be used as a tool to help identify 

at risk SCI patients so that they can be monitored or treated at an early stage.  

 

5 Conclusion 

In conclusion bone shape measurement within one month of injury is a predictor of SCI bone 

loss at the distal femur and the proximal tibia, one year post-injury. This imaging biomarker 
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may help in the early detection, treatment and prevention of SCI osteoporosis, with the 

potential to reduce the incidence of fractures and their associated morbidity. 
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Highlights 

• Links between bone shape and bone loss following spinal cord injury were 

explored 

• Images and BMD were taken from pQCT of the distal femur and proximal tibia 

• Tibial trabecular BMD loss at 1yr was predicted by a concave posterior tibial 

fossa 

• An elongated intercondylar femoral notch predicted femoral trabecular BMD loss 

• Baseline bone shape predicted 12-month bone loss in spinal cord injury patients 

 


