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Computational Approaches to Understanding the Self-
Assembly of Peptide-Based Nanostructures 

Tell Tuttle*[a] 

 

Abstract: The interest in the self-assembly of peptide-based 

systems has grown significantly over the past 10 – 15 years 

as more and more applications are shown to benefit from the 

useful properties of the amino acid based monomers. With 

the desire to apply the principals of self-assembly to systems 

within new application areas there has been an increasing 

emphasis in understanding the governing forces involved in 

the self-assembly process and using this understanding to 

predict the behavior of, and design, new materials. 

To this end, computational approaches have played an 

increasingly important role over the past decade in helping to 

decode how small changes in the primary structure can lead 

to significantly different nanostructures with new function. In 

this review a brief survey of the different computational 

approaches employed in this quest for understanding are 

provided, along with representative examples of the types of 

questions that can be answered with each of the different 

approaches.  
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1. Introduction 

Self-assembly is a process by which monomers (discrete 
units) spontaneously interact with each other to form 
ordered structures. There are a large number of different 
chemical systems that are known to undergo self-assembly. 
However, peptide-based systems are of particular interest 
due to their biocompatibility and their ability to form varied 
supramolecular structures with only small variations in the 
individual monomers.[1]  

The amino acids that compose a peptide have 
particular properties that govern their intermolecular 
interactions. Depending on the nature of the side chain, 
the amino acids are able to interact, to varying degrees, 
via ionic and electrostatic interactions, H-bonding 
interactions, and dispersion-based interactions. While 
the initial aggregation of peptides is largely due to the 
hydrophobic effect,[2] the ability to interact at close 
range to form ordered mesoscale systems critically 
depends on the specific interactions and as such, the 
primary sequence of the peptide. The ability of peptides 
to self-assemble was originally discovered for longer 
oligopeptides,[3] however, the self-assembly of short 
peptides has resulted in the significant interest in this 
field over the past 15 years.[4]  

Figure 1. Chemical structure and molecular model of 

diphenyalanine. 

The first example of a dipeptide that was shown to 
self-assemble was diphenylalanine (FF, Figure 1). In 
2001, Gorbitz[4b] used crystal structures to characterize 
the structure of diphenyalanine as nanotubes. Moreover, 
by comparing the structures formed by diphenylalanine 
and dileucine, Gorbitz was able to demonstrate that the 
different interactions between the sidechains, rather than 
just their hydrophobicity, were crucial for determining 
the resulting structure and as such, its potential 
applications.[4b, 5]  

In 2003, Gazit and Reches[4a] demonstrated the 
potential applications of self-assembling dipeptides in 
their paper that describes the use of FF to cast 
nanowires. The success of the FF dipeptide resulted in a 
several efforts to modify the core FF motif to derive 
new functionality and structure as slight modifications 
of the phenylalanine side chain can result in a change in 
the interactions the peptide can have. For example, the 
removal of the methyl group to convert diphenylalanine 
to diphenylglycine resulted in the formation of 
nanospheres rather than nanotubes.[6] This loss caused 
the phenyl groups to become more rigid and unable to 
rotate so the overall packing of the peptides was 
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changed. Similarly, the addition of a third amino acid to 
the C-terminus resulted in a change in the types of 
structures that were produced. CFF, resulted in the 
formation of nanospheres,[7] while FFF formed nano-
platelets.[8]  

Introducing a third amino acid into the peptide chain 
can affect the resulting structure through a number of 
different mechanisms. In the case of a dipeptide, the 
short chain length requires a close, well-ordered packing 
of the peptides to balance the electrostatic interactions 
between the N- and C-termini. For FFF, the chain is 
slightly longer therefore an optimum pairing of the 
charged termini results in an elongation of the structure. 
In addition, the increased flexibility of the FFF chain 
promotes this sheet like structure to assemble. The 
change in shape is also thought to be due to the 
introduction of another H-bonding interaction within the 
peptide.[9] All three of these factors could conceivably 
contribute to the relative stability of the resulting 
nanostructure, however, it is difficult, if not impossible 
to determine, prima facie, which is the dominant effect. 

There are a number of other factors that can also 
affect the self-assembling ability of peptides. The 
chirality of amino acids has also been shown to have a 
dramatic effect on the ability of a peptide sequence to 
self-assemble.[7a, 10] Marchesan et al, have shown that 
the natural tripeptide sequence, VFF, does not self-
assemble. However, when the chirality of the amino 
acid at the N-terminus was altered nanostructures were 
obtained, which led to the formation of a hydrogel. 
FTIR showed the amide region had shifted to lower 
frequencies suggesting that the presence of ordered β-
sheets. These structural observations are not observed 
for the natural tripeptide. When the same process was 
carried out on FFV, where the N-terminus amino acid 
was changed, similar observations were seen. There are 
also specific interactions that were observed through 
this process, where there is a shift in the peak indicating 
the presence of a deprotonated C–terminus. This shift 
shows the presence of an interaction between the COO- 
and the NH3

+ of the termini creating a strong 
electrostatic interaction. FTIR has not been the only 
way of observing the changes in structure. Visual 
inspection has shown that the sample with the D-amino 
acids at the N-terminus were able to hydrogelate, which 
was the first time this type of self assembly has been 
reported. The continuation of this work has shown the 
formation of structures with LFF.[10d] Similar to VFF 
and FFV, changing the chirality of the amino acid at the 
N-terminus to the D-amino acid induces the formation 
of structures and gelation. 

Modifying the sequence length and the chirality of 
the peptides have both been shown to effect the self-
assembly ability of a peptide. However, the most 
commonly used method for altering the self-assembly 
ability of short peptides is through modifying the 
termini of the peptide sequence. For example, by 
amidation of the C-terminus. This neutralizes the 
terminus and reduces charge-charge repulsions, which 
can prevent a structure from forming, although it also 
removes the potentially stabilizing head-to-tail 
arrangement whereby the positive N- and negative C-
termini are aligned. This is best seen in Cao et al.,[11] 

where groups are used to take away the charge of the 
termini reducing the electrostatic effect. In this study 

the authors used a series of sequential substitutions to 
rationalise the changes that were being observed in the 
resulting nanostructures.  In particular, this study 
suggested that by substituting phenylalanine for tyrosine, 
the introduction of the hydroxide substituent makes the 
aromatic more electron deficient and inhibits the role of 
the π -  π stacking. The constraints on the structure are 
also relaxed as the π - π stacking is not as predominant 
which allows for flexibility in the arrangement of the 
aromatic rings. The authors conclude that these reasons 
explain why FFK is able to form strong fibres, while 
FYK/YFK form weaker fibres and YYK does not form 
fibres.  

While the small modification to the C-terminus are 
successful in transforming some peptides sequences into 
self-assembling structures, the more common approach 
is to use aromatic moieties to functionalise the N-
terminus of the peptide. Aromatic peptide amphiphiles 
contain large aromatic groups, normally located at the 
N-termini, which are used to induce self-assembly in 
peptide systems.[1] There are many groups that can be 
used to induce the self-assembly of peptides, a selection 
of which are displayed in Figure 2.  

 

Figure 2. A selection of common aromatic motifs for inducing 

peptide self-assembly. 

There are two main driving forces behind the 
formation of nanostructures from aromatic peptide 
amphiphiles. The first is the hydrophobic effect, which 
results from the fact that the water in a system will 
reorganize in such a way as to maximize their polar (H-
bonding) interactions. The aromatic groups shown in 
Figure 2 present large surface areas with no favorable 
interactions for the water molecules to bind to and as 
such the hydrophobic molecules rearrange so that the 
least amount of water is in contact with the group. For 
planar molecules, the close packing of the rings ensures 
that the interactions of water with the hydrophobic rings 
are minimized. This is the hydrophobic effect.[12] 
Although, it has been mentioned here that rings systems 
induce the hydrophobic effect, the same process 
happens for all hydrophobic groups, but with aromatic 
systems there is another interaction that takes over at 
short range and allows the formation of nanostructures, 
π-π stacking.  

The most predominant aromatic group that is used in 
peptide self-assembly is Fluorenylmethyloxycarbonyl, 
Fmoc.[13] The main benefits for Fmoc are that the large 
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ring system introduces a hydrophobic area to bring the 
molecules together and that the close-range π-stacking 
interactions are then able to create an ordered structure 
through self-assembly.[13c, 13e, 14] The Fmoc moieties 
favor a parallel-displaced stacking interaction (Figure 3), 
which allows for the maximum stabilizing overlap 
between the π‐system. This ability to promote peptides 
to self assemble allows for an increasingly diverse range 
of applications to be explored. 

 

Figure 3. Arrangement of Fmoc π-stacking. 

Ulijn and co-workers have been able to develop 
Fmoc functionalised peptides for use in cell culture.[13c] 
Using Fmoc-FF as a self-assembled precursor, the 
subsequent addition of Fmoc-S creates a core shell 
structure where the hydrophobic Fmoc-FF fibres form a 
core, which is coated by Fmoc-S molecules with the 
polar serine residues facing towards the solvent. The 
core/shell structure provides greater flexibility in the 
design of the nanofibrous network and as such creates a 
more specialised environment for cells to grow.  

The afore mentioned applications are a small sample 
of those currently being explored and already exploited 
by peptide-based self-assembly. However, the future 
development of new materials depends critically on 
understanding the types of non-covalent interactions 
(and their relative importance) that occur between the 
monomers and the organization of the self-assembled 
monomers of the resulting nanostructure at the atomic 
resolution.  To this end, computational methods, within 
their model limitations, have played, and continue to 
play, an important role in driving forward our 
understanding of this class of materials. 

 

Tell Tuttle’s research is focused on the 

concept of “reducing molecular search 

spaces”. The group works closely with 

experimental colleagues to address 

practical problems in the areas of 

molecular structure, molecular 

recognition, molecular reactivity and 

molecular properties. The 

understanding derived from the 

computational and theoretical methods 

employed in this research, results in the 

generation of predictive models that are 

used to design molecular-based 

solutions to a range of problems, from fields as diverse as 

fundamental chemistry through to drug discovery and from 

nanotechnology through to organic electronics. 

The aim of this review is to provide an overview of 
the application of computational methods to study 
peptide self-assembly. Given this aim, the review does 
not provide a comprehensive study of the entire field, 
but instead considers the types of questions that each of 
the different computational methods may answer along 
with a typical case study from the literature to further 
illustrate the utility of the method. Within this review 
three computational methods (quantum chemistry, 
atomistic molecular mechanics, and coarse grained 
molecular mechanics) are described. The relative 
simplicity, and consequently computational efficiency, 
of the different methods results in their application 
across large size and time scales (Figure 4). Briefly, the 
most accurate and complex quantum chemistry methods 
are typically able to deal with 100’s of atoms and only 
on the fs – ps timescale. Atomistic molecular mechanics 
methods are already significantly simplified (although 
still retain atomistic resolution) and can readily model 
10,000 – 100,000 atoms over the ns - µs timescale. The 
loss of atomic resolution through grouping atoms into 
beads within coarse grained molecular mechanics results 
in a further simplification and the ability to readily 
model 100,000 – 1,000,000 atoms over the µs – ms 
timescale.   

Figure 4. Comparison of the utility of computational methods 

across varying time and size regimes. QM = Quantum 

mechanics, AAFF = All-atom force-fields, CGFF = Coarse 

grained force-fields.  

2. Quantum Chemistry 

Quantum mechanical (QM) methods offer the promise of 
high accuracy and detailed, unbiased insights into the 
supramolecular structures that are formed from peptide-
based building blocks. By determining the wavefunction and 
solving the Schrödinger equation for a given system all 
potentially observable information about the system can be 
calculated. Unfortunately, solving Schrödinger’s equation 
for all possible nuclear arrangements to allow for a complete 
mapping of the potential energy surface for a nanostructure 
built from 100’s and 1000’s of peptide-based sub-units 
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remains unfeasible, even with the impressive advances in 
algorithm efficiency and computing power that has been 
witnessed over the past twenty years. As such, the typical 
approach to studying peptide self-assembly with quantum 
mechanical methods has been to employ model systems. 

The most widely used methodology in the QM study 
of peptides is density functional theory (DFT). While 
some studies do employ wavefunction based 
methodology, such as MP2,[15] or make use of the 
simplicity of semi-empirical based methods such as 
OM3-D,[16] the vast majority of studies utilise DFT. In 
most QM studies the object has been to understand the 
strength of specific interactions between monomers 
units, such as the H-bonding interactions or dispersion 
interactions, which in turn can be used to determine the 
most favoured orientation or stacking conformation of 
the monomer units.[15, 17] Owing to the cost of the QM 
calculations, these types of studies typically make use of 
dimer, tetramers and even up to octamers of the 
monomer sub-units to evaluate the binding energies and 
favoured structures and then extrapolate these finding to 
the larger nanostructure assuming a regular repeating 
unit. This type of structural and energetic information is 
particularly useful when considering how to modify a 
system or to design a new structure based on an existing 
model. An example case study from the literature that 
uses this approach is discussed below (Section 2.1). 

2.1. Preferred Packing Poses 

In their recent work on rigid cyclic γ-peptides, Wu, Deng 
and co-workers utilized a combination of experimental and 
computational methods to determine the self-assembled 
structure of their peptide nanotubes.[17d] In this work the 
authors demonstrated that it was possible to synthesize the 
cyclic γ-tetrapeptide (1, Figure 5) through a 
cyclodimerization reaction of the parent dipeptide.[17d] 

Figure 5. Molecular structure of 1. 

The cyclic γ-tetrapeptide was found to self-assemble 
and form a colourless organogel when incubated in 

dichloromethane. After dispersing the organogel in 
water by sonication the authors were able to examine 
the systems by atomic force microscopy (AFM) and 
tunnelling electron microscopy (TEM). These two 
techniques were able to show that the peptides formed 
into long (> 1µm) regular nanofibres with a height of 
1.4 – 1.6 nm and a width of ~5 nm.[17d] This type of 
structural data from microscopy is able to provide 
important detail about the type of structures that can 
form and the dimensions of the fibres found in this case 
are consistent with a structure that have individually 
stacked units of 1. However, the interactions that allow 
this packing to occur cannot be resolved by these 
techniques. In order to determine the nature of the 
packing mechanism, the authors employed DFT studies 
to investigate the alternative motifs.  

The optimisation of 1 revealed that there was only 
one dominant conformation of the cyclohexane rings, in 
the boat shape, and that the rigidity of the cyclic 
tetrapeptide meant that there was only one low-energy 
conformation for the backbone of the molecule.[17d] The 
structural rigidity of the building block is a clear benefit 
when designing the nanostructures that are able to form 
from these blocks. By limiting the number of potential 
conformers, the possible packing arrangements are also 
limited. In this case, the authors were only able to 
identify two possible ways that the rigid monomer 
would be able to interact with itself, either through 
parallel or anti-parallel β-sheet-like H-bonding 
patterns.[17d] 

In order to determine which of the two possible 
arrangements was preferred, the authors carried out 
optimisations of the two possible arrangements of 
dimers of 1. The optimisations were carried out at the 
M05-2X/6-31+G(d,p) level of theory[18] and the binding 
energies were corrected for basis set superposition error. 
In the gas phase, the parallel dimer was calculated as 
having a binding energy of -34.4 kcal/mol and the anti-
parallel dimer with a binding energy of -23.0 kcal/mol. 
An analysis of the structures resulting from the 
optimisation revealed that the parallel dimer suffered 
less internal strain and was also able to form stronger H-
bonding interactions, relative to the anti-parallel 
dimer.[17d]  

This example case study shows the power of 
bringing together both experimental and computational 
methods to gain an understanding into the self-
assembled structure of a peptide-based material. The 
authors were able to rely on a combination of 
experimental microscopy methods to determine the size 
of the system as well as FTIR data to provide 
information about the role of H-bonding interactions. 
However, the resulting two possible arrangements could 
not be distinguished by experimental methods alone. In 
this study, the distinction between the arrangements was 
instead carried out by considering their relative 
energetic stability. Given the rigidity of the cyclic γ-
tetrapeptide this approach was tenable. However, in 
most cases, with non-cyclic building blocks, this is 
unlikely to be the case and therefore, evaluating 
potential arrangements through their relative binding 
energies can be problematic. Particularly if the energetic 
difference between several possible conformations is 
within the limits of the model applied.[19] 
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To overcome this problem, there has been an 
increasing shift towards the use of QM methods to 
predict properties that can be directly compared to the 
experimental observables. Experimentally, several 
techniques can be used to provide information about the 
types of non-covalent interactions that are involved in 
the self-assembled system. Using a variety of potential 
arrangements for the system, the equivalent spectra can 
be calculated and as such, the structure that correlates 
with the experimental spectra can be determined. 
Examples of this approach have been successfully 
employed for evaluating absorption spectra with TD-
DFT,[20] calculating NMR chemical shifts to determine 
the conformation of a peptide,[16] and calculating 
Fourier transform infrared (FTIR) spectra to determine 
the nature of the H-bonding interactions.[19, 21] An 
example case study of this approach is also discussed 
below (Section 2.2).  

2.2. Structures through Spectra 

In a combined experimental and computational approach, 
Fleming, et al.,[19] investigated the validity of assigning 
secondary structure motifs, parallel or anti-parallel β-sheet 
arrangements using FTIR. Within the field of protein 
structure determination, the amide I region of the IR spectra 
is known to be sensitive to changes in the H-bonding 
patterns of β-sheets. As such, the presence of β-sheets had 
been widely reported for a class of gelators composed from 
various short (di- and tri-) peptides capped at the N-terminus 
with an aromatic group; most commonly the Fmoc 
moiety.[13c, 22] In the case of proteins, it is possible 
differentiate between infinite parallel and antiparallel β-
sheets, the former typically showing a single band at 
approximately 1615-1640 cm-1 and the latter having an 
additional component near 1685 cm-1. However, in the case 
of short peptides assembled into a nanostructure, the validity 
of the vibrational exciton running along a β-strand to 
produce the high frequency peak was unclear, given the 
short (2-3 amino acid) length of the strand. Therefore, in 
order to investigate the origin of the split amide I peaks in 
Fmoc-dipeptides a number of computational and 
experimental studies were performed.[19] 

Initial calculations, at the B97-D/def2-SVP level of 
theory,[23] of the vibrational modes of the Fmoc-
dialanine (Fmoc-AA) monomer unit were carried out to 
determine the IR spectra of the individual building 
block. This allowed the determination of the spectra in 
the absence of H-bonding that would be present in a 
self-assembled structure. From these calculations it was 
apparent that the split amide I peak was already present 
for the monomer and that the higher frequency peak was 
due to the presence of the carbamate moiety in Fmoc 
(Figure 6). In order to verify this, a second system was 
constructed which lacked the carbamate group, but was 
otherwise identical – Fluorenylmethylcarbonyldialanine 
(Fmc-AA, Figure 6).[19] 

The presence of a split peak for the Fmoc-AA 
monomer could also be confirmed experimentally. By 
dissolving the compounds in methanol, where 
aggregation of the units is disfavoured, the IR spectra of 
the monomers could be obtained. Despite the fact that 
the calculated spectra clearly overestimated the 
frequency of the vibrational modes, due to model effects, 
the relative intensity and separation of the peaks in the 

amide I region were consistent between the 
computational and experimental data.[19]  

 

Figure 6. Simulated amide I spectra for Fmoc-AA and Fmc-AA 

monomers. Labels 1 and 2 indicate the number of the carbonyl 

giving the main contribution to the transition dipole moment 

Vibrations localised on carboxylic acid groups (carbonyl 3, 

generally >1790 cm-1) groups are omitted.
[19]

 

Even though the splitting of the peaks in Fmoc-AA 
was not due to the presence of a vibrational exciton 
along the monomer, the shift of the primary amide I 
mode upon forming a nanostructure could still be 
diagnostic of the type of nanostructure being formed. 
Therefore, in addition to the study of the monomers, 
dimer and tetramer models of the Fmoc-AA and Fmc-
AA in parallel and a variety of potential anti-parallel 
arrangements were constructed.  

As well as vibrational calculations, binding energies 
were also computed for these model structures. β-sheets 
of Fmc-AA were found to be more stable than Fmoc-AA 

and the tetramers were more stable (on a per monomer 
basis) than the corresponding dimers due to cooperative 
binding effects.[19] Furthermore, the authors showed that 
the parallel arrangement was generally found to be more 
stable than the antiparallel arrangement, although as 
stated previously the variations between the binding 
energies for flexible molecules such as these were small. 
Therefore, the differences in the relative binding 
energies of these arrangements were not considered to 
be good indicators for determining the equilibrium 
distribution of supramolecular structures. Rather, the 
correlation between the experimental and calculated 
vibrational spectra is a much more reliable indicator due 
to the local nature of the factors effecting the shifts in 
the amide I bands.[19] 

Comparison of the calculated infrared bands for the 
different arrangements with the experimental spectra 
revealed several interesting features. When ignoring 
size-dependent artefacts in the DFT results, the 
lineshapes of the predicted absorption bands are in good 
agreement with experimental results. The experimental 
results consistently showed the amide I peak of Fmc-AA 
at a lower frequency than that seen for the infrared 
bands of Fmoc-AA. This observation suggested that the 
proximity of the fluorenyl group also influences the 
amide I vibration as was seen in the calculated 
spectra.[19]  

Despite the fact that the calculated frequencies were 
systematically too high, it was apparent that, as the 
finite computational models become larger, from dimer 
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to tetramers, a gradual convergence towards the 
experimental infrared bands was observed.[19] It should 
be noted that the frequency results were not corrected 
for anharmonic effects and basis set truncation, which 
usually leads to an overestimation of calculated 
vibrational frequencies. 

Finally, the authors were able to show that the 
antiparallel tetramer results more closely resembled the 
experimental infrared spectra when compared with the 
analogous parallel tetramer model, which suggested that 
the antiparallel arrangement is the most accurate 
depiction of the supramolecular structure.[19] 

3. Atomistic Molecular Mechanics 

The most common approach to modeling the self-assembly 
of peptide-based nanostructures is through the use of 
atomistic molecular mechanics. The use of all atom force-
fields (AAFF) for studying biomolecular systems is well-
established in the literature[24] and as such the extension of 
these force-fields to study the processes of self-assembly in 
peptide-based systems is clearly justified. The use of AAFF 
provides the opportunity to study much larger systems, 
relative to the QM methods, and to include effects such as 
specific solvation which are considered critical to the self-
assembly of this class of systems. However, despite the 
relative efficiency of the force-fields approach there remain 
significant time and size restrictions in modeling the self-
assembly mechanism. 

As mentioned above, the use of QM methodology to 
study self-assembly is typically limited to studying 
specific interactions in model systems of 1 – 12 sub-
units, in the gas phase, or using an implicit solvent 
model. Whereas, in AAFF, it is routinely possible to 
model 50 – 150 monomers in a fully solvated system.  
However, despite the 1-2 orders of magnitude increase 
in the system size, these models are still significantly 
smaller than the nanostructures observed experimentally 
in all but a few cases. As such, the AAFF models of 
nanostructures typically suffer from “edge-effects”, that 
is, a much larger percentage of the modelled 
nanostructures is exposed to the solvent, relative to the 
real system. Moreover, the timescale of the AAFF 
molecular dynamics (MD) simulations is typically on 
the 10’s – 100’s of nanoseconds, which is much shorter 
than the experimental timescale for self-assembly.[25] 
Therefore, in order to provide insights into the self-
assembled structures a number of simplifying 
approximations are typically employed. 

Given the short timescales that can be accessed using 
AAFF, the most common approach to studying the self-
assembled nanostructures is to construct a proposed 
final structure of the system and then to test the stability 
of this structure through MD simulations.[26] This 
approach is particularly useful in confirming the validity 
of proposed structures based on experimental data that 
also provides structural insight, such as IR, UV-Vis 
absorption, circular dichroism, etc. However, it is also 
possible for AAFF MD studies to generate potential 
structures by carrying out longer timescale (100 ns – 1 
µs) simulations on smaller systems (typically 10’s of 
monomers) to gain an insight into what the dominant 
interactions between the sub-units and the stability of 
the resulting aggregates. This approach has been 

particularly successful when considering the self-
assembly of peptide-based systems on surfaces.[27]  

3.1. Structures through Simulation 

An excellent example of the types of information that can be 
acquired from AAFF simulations was published by Schatz, 
et al. in 2011 in their study of cylindrical nanofibres.[26f] In 
this work, the authors performed a MD simulation with the 
CHARMM force-field[24f] of a cylindrical nanofibre 
composed of 144 peptide amphiphiles (PAs) with explicit 
solvent and counterions. The PA in this case consisted of a 
lipophilic hydrocarbon tail attached to the N-terminus of a 
15-mer peptide containing charged amino acids (Figure 7). 
The PAs were arranged in a cylindrical pattern with nine 
PAs forming one layer with the overall nanostructure 
containing 16 layers.[26f] The nanostructure was placed in a 
large (144 × 144 × 84 Å3) box of ~30,000 water molecules, 
162 Na+ ions and 18 Cl- ions. The very large size of the 
system effectively restricted the amount of simulation time 
that could be achieved and after an initial equilibration 
period the system was simulated using the NPT ensemble 
for 40 ns. However, the information available about the 
overall structure (i.e., that the PAs formed a cylindrical 
nanofibre) suggested that the relatively short simulation time 
would still produce meaningful information as the initial 
aggregation process was carried out manually in the system 

construction. 

Figure 7. Structure of the peptide amphiphile (PA). The 

lipophilic segment is in black, the β-sheet segment is in green, 

the spacer segment is in red and the epitope segment is in blue. 

The authors were able to demonstrate that, despite 
the short simulation length, the fibre was stable for an 
extended period of the simulation. The initial fibre 
radius for the starting structure was ~48 Å, however, the 
system smoothly contracted over a 20 ns time period 
such that for the second period of the simulation the 
radius remained stable at ~44 Å,[26f] which was 
consistent with the available experimental data.[28] 
Around the same time point (~20 ns) in the simulation 
the non-bonded energy per PA also stabilised, after 
increasing by ~20 kcal/mol from the starting system 
configuration,[26f] indicating that an equilibrium 
structure had been obtained.  

In addition to structural insights, one of the powerful 
features of AAFF simulations is the capability of 
directly quantifying the relative strengths of interactions 
that stabilise the structures. In this case, the authors 
were able to determine that the electrostatic interactions 
between the PAs was actually destabilising – due to the 
net anionic charge of the PAs. However, this repulsive 
interaction was offset by both the attractive van der 
Waals interactions between the PAs and the significant 
electrostatic interaction energy between the PAs and the 
surrounding counterions.[26f] This observation was also 
consistent with the experimental data, which showed 
that the formation of the cylindrical aggregates was 
triggered by counterion screening.[29] 
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The agreement with experiment that could be 
achieved by analysing the energetic and structural data 
is impressive. However, for computational approaches 
to be truly useful they need to offer unique insights that 
are not available from alternative experimental 
approaches. In this respect one of the key findings of 
this work is the amount of disorder that an apparently 
well-ordered system is able to tolerate. The classical 
view of nanostructured systems is one of highly-order 
sub-units that have a regularly repeating stabilising 
interaction such as π-stacking and H-bonding, in parallel 
or anti-parallel β-sheet arrangements. In contrast to this 
ordered, relatively static, view of the nanostructure, 
Schatz, et al., demonstrated that the nanofibre was able 
to maintain its cylindrical shape and dimensions with 
only 14% β-sheet content (Table 1), predominantly with 
a parallel alignment.[26f] This view that the relatively 
disordered, dynamic alignment of sub-units is able to 
lead to a well-defined nanostructure can have significant 
implications for the design of self-assembling building 
blocks. 

Table 1. Average population of the secondary structure of PAs 

in the cylindrical fibre.
[26f]

  

Configuration % 

α-helix 1 

β-sheet 14 

Turn 20 

Coil 65 

 

4. Coarse Grained Molecular Mechanics 

As the example above demonstrates, the AAFF approach is 
able to provide detailed structural and energetic data for 
nanostructured systems. However, in order to progress 
beyond analyzing systems with a known nanostructure 
requires knowledge of the self-assembly mechanism. This is 
the main limitation of the AAFF approach. The self-
assembly of typical peptide-based systems occur over the µs 
– ms time scale and the resulting nanostructures can have 
widths of 5 – 100 nm and lengths on the µm scale. These 
time and size regimes are currently beyond the limits of our 
most advanced supercomputers and sophisticated algorithms, 
particularly for routine calculations. Therefore, in order to 
progress beyond the analysis of self-assembled structures 
and into the study of the process of self-assembly requires a 
different approach. 

An emerging approach for tackling the large time 
and size regimes required in the study of peptide self-
assembly is through the use of a coarse-grained force-
field (CGFF).[2, 30] Within this context, a CGFF typically 
implies that a number of atoms in the molecule are 
collectively represented by a single “bead”. One of the 
most popular CGFFs for studying peptide-based self-
assembly is the Martini force-field.[31] The Martini 
force-field utilises a mapping of ~4 heavy atoms to each 
bead (4:1). For example, the non-hydrogen atoms that 
constitute the backbone atoms of an amino acid (-N-C-
C(=O)-C-) are grouped into a single bead to represent 
the backbone (Figure 8), while the sidechain of 
phenylalanine is represented by a 2-3:1 mapping in 

order to maintain the flat structure of the aromatic group 
(Figure 8). The act of describing several atoms as a 
single bead has several beneficial factors, namely: (a) 
the reduction in the degrees of freedom in the system; 
(b) the reduction in the number of interacting particles; 
(c) a simplification of the potential energy expression; 
and (d) the larger mass of the beads, relative to the 
atoms, allows for much longer timestep (~25 fs) relative 
to the atomistic simulations (1-2 fs). These factors 
combine to allow an increase in efficiency of two to 
three orders of magnitude over the AAFF simulations. 
Practically, this translates into the ability to routinely 
calculate explicitly solvated systems with 1000’s of 
self-assembling monomers on the µs timescale.  

 

Figure 8. (a) All atom representation of diphenylalanine. The 

yellow circles indicate where the coarse-grain beads are 

positioned after mapping. (b) The coarse-grained 

representation of diphenylalanine. The red beads represent the 

backbone atoms and the white beads represent the sidechain 

atoms.  

Clearly, the coarse-graining of a system results in a 
loss of information. The ability to represent specific 
interactions, such as H-bonding, is not possible with the 
loss of atomic detail. Therefore, it was of interest to 
determine whether such coarse grained approaches 
could still provide meaningful information about both 
the self-assembly mechanism of peptide-based systems 
and the resulting nanostructures. 

4.1. Mechanisms from Movies 

In 2011, Frederix, et al., investigated the ability of a CGFF 
to predict whether a given dipeptide would self-assemble or 
not.[2] As described above, the simplifications inherent in a 
CGFF result in a significant increase in the efficiency of 
MD simulations and as such it was possible, for the first 
time, to effectively screen all 400 of the 20 gene-encoded 
dipeptides for their propensity to self-assemble. The initial 
screening involved the simulation of each dipeptide (in the 
zwitterionic form) using the Martini CGFF. Each simulation 
started from a cubic box of 300 randomly placed dipeptides, 
solvated in Martini coarse-grained water to a final 
concentration of ~0.4 M. The simulations were carried out 
in the NPT ensemble with a 25 fs timestep for a simulation 
time of 100 ns.[2] However, because of the smoothness of the 
CG potential this equates to an effective simulation time of  
~400 ns.[32] The output of the 400 simulations were then 
analysed for their aggregation propensity (AP, defined as the 
ratio between the solvent accessible surface area of the 
peptides in the starting and final states of the simulation)[2] 
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to determine whether the dipeptide was likely to self-
assemble.      

The AP scores resulting from these simulations 
revealed that the hydrophobic amino acids, 
phenylalanine and tryptophan, promote aggregation, 
whereas small or charged residues decrease the 
propensity. However, most dipeptides have an AP score 
close to 1, indicating that they do not exhibit a 
propensity to aggregate and as such are unlikely to form 
self-assembled nanostructures. The AP scores of the 
peptides were compared to literature examples of 
dipeptides and the simulation data was able to 
accurately predict the ability of the known dipeptides to 
aggregate, or not.    

The ability of the CGFF methods to predict whether 
a peptide will aggregate clearly has many potential 
applications. However, this screening protocol, which 
utilises relatively short time and size scales for CGFFs, 
was not extensive enough to indicate the ability of the 
Martini CGFF to describe the self-assembly mechanism 
and nor the resulting nanostructure. Therefore, for the 
FF dipeptide, which has been well characterized 
experimentally, a longer, larger simulation was 
performed.  

The extended simulation of FF started from a cubic 
box of 1600 randomly placed FF molecules, solvated in 
Martini coarse-grained water to a final concentration of 
~0.4 M. Under the same conditions used in the 
screening simulations, the MD simulation was carried 
out for 1.5 µs. 

Figure 9. Final snapshot of the 1.5 µs simulation of FF. Red 

beads represent the backbone, white beads represent the 

sidechain. The end of the tube is cut off to show water beads 

(blue) on the interior. Water beads outside of the tube are 

omitted for clarity.  

In the final snapshot of the 1.5 µs simulation the FF 
monomers generated a tubular nanostructure (Figure 9) 
in agreement with that observed experimentally. The 
dimensions of the 1D nanotube (outer and inner 
diameters) also agreed reasonably well with the X-ray 
diffraction analysis of crystallized FF nanotubes.[5] In 
addition to the overall dimensions of the nanotubes it 
was also possible to correlate the rotation of the 
sidechains of the dipeptides with the experimentally 

known structure that is adopted. The dihedral angle 
between the side chains was observed to rotate from 
180º in the starting monomer structures to an average 
value of 0º in the final tube like nanostructure.  

In addition to the final tubular structure, the 
simulation also provided new information with respect 
to the mechanism by which the nanotubes are formed. 
From the initial random distribution, the dipeptides were 
observed to form sheet-like aggregates after 0.2 µs. The 
aggregate structures continued to accumulate more 
monomers up to the point where they were able to fold 
up to form hollow vesicles (∼0.5 µs). The hollow 
vesicles that were formed continued to merge for the 
duration of the simulation, resulting in the extended, 1D 
nanotube after 1.5 µs.    

5. Summary  

The self-assembly of peptide-based systems is rapidly 
emerging as technique with enormous potential applications 
to a variety of technological challenges. The minimalistic 
design of new nanostructures based on these biocompatible 
sub-units has already made significant progress through the 
experimental discovery of a number of interesting systems. 
However, for this rate of discovery to be maintained and 
hopefully accelerated the serendipitous discovery and 
empirical design of systems needs to be replaced by a 
rational understanding and a design process based on this 
understanding. The use of computational models can aid in 
this transition by: providing insights into the atomic level 
details of the self-assembled structures; determining the 
molecular forces that drive the self-assembly and stabilize 
the resulting structures; and insights into not only the 
structure but also the assembly process itself. 
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