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Abstract 

 
Surface  roughness is an  important quality in manufacturing, as it 

affects  the  product’s tribological, frictional and  assembly   

characteristics. Turning stainless steel at low cutting speeds may result  

in a rougher  surface due  to  built  up  edge formation, where as speed 

increases the surface roughness improves, due to the low contact time  

between  the  chip  and  the tool to allow bonding  to occur.However, 

this increase in cutting speed produces higher tool wear rates, which 

increases the machining costs. 

Previous studies have indicated that savings in cost and 

manufacturing time are obtained when predicting the surface roughness, 

prior to the machining process. In  this  paper,  experimental data are  

used  to develop  prediction models  using  Multiple Linear  Regression  

and  Artificial  Neural  Network methodologies. Results show that the  

neural  network outperforms the  linear model  by  a fair  
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margin(1400%).  Moreover,  the developed Artificial Neural Network  

model  has  been  integrated with  an optimisation algorithm, known as 

Simulated Annealing (SA),this is done in order  to  obtain a set of 

cutting parameters that result in low surface  roughness.  A low value  

of surface  roughness and  the  set  of parameters resulting on it,  are 

successfully yielded  by the  SA algorithm. 

 

Keywords: Stainless  Steel, Turning, Surface Roughness, Multiple Linear 

Regression, Artificial  Neural Networks,  Simulated Annealing. 

 

 

 

1    Introduction 
 

 
In order to achieve the nominal values of surface roughness specified by engineering 

design, the right combination of machining parameters must be chosen by 

manufacturing. In any cutting process, the geometry, the tolerances and the surface 

roughness of the machined piece are very important, as they represent the quality of 

the process. 

The surface roughness  in a turning process is affected by many  factors  such as: the 

geometry of the cutting tool, the depth  of cut, the cutting speed, the feed rate,  the 

workpiece’s microstructure and the rigidity  of the  lathe  (Gokkaya, H. et  al.   

2007).The surface  finish  also affects considerably the performance  of produced  

machines,  since  many  aspects of equipment's performance  such  as desired  

efficiency, mechanical  life, and  the  resistance  against  environmental factors  are  

influenced  by  it. Economic losses arise when the working parameters are not 

selected properly. For this reason,  much  effort has been directed  in understanding 

the  effects of cutting conditions  on the quality of the machined surface and  to the  

creation  of adequate models which can  be used  to find optimal  or near-optimal 

cutting parameters for objectives such as obtaining a desired  value  of surface  

roughness,  surface  integrity, reduction of machining time,  tool wear, and  many  

others.  However, not much focus has been given to the prediction of surface 

roughness at low speed turning. Low speed  turning may  become  the  best  choice in 

cases where  advantages related to  a decrease  in tool wear  and  consequently  on the 
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decrease  of machining  costs can  be mentioned.  This research studies the effects of 

cutting parameters on the surface roughness  when turning AISI316 austenitic 

stainless  steel, a widely used material  in Precision  Engineering  applications, such 

as petrochemical and brewing industry, piping and connections,  medical and surgical 

instruments, and hydraulic  systems. 

 
 

To help manufacturing engineers in the decision making process for reducing time  

and  cost of cutting process, researchers  propose  models that try  to simulate the 

conditions during the machining process, establishing the cause and effect 

relationships between  various  factors  and  desired product characteristics. 

Furthermore, the technological  advances  in the  field, for instance  the  ever-growing  

use of computer  controlled machine  tools, have brought up new issues to deal with,  

emphasizing the  need  for more  precise  predictive  models, hence many authors 

have worked on prediction  models for surface roughness. Among these researchers 

we can mention Benardos  and  Vosniakos, 2013. These researchers carried  out an 

extensive  literature review on the subject  and four major  categories  were created  to 

classify the selected  papers. These  are: (i) approaches that are based on machining  

theory  to develop analytical models and/or computer algorithms  to represent the 

machined  surface; (ii) approaches that examine the effects of various factors through 

the execution  of experiments and  the  analysis  of the  results;  (iii) approaches that 

use designed experiments; and  (iv)  artificial  intelligence  (AI)  approaches.  The  

present research  uses approach  (ii) when analysing  experimental results  and  

developing  the  regression model, since it carries  out  statistical analysis  on 

experimental results,  and  approach (iv) when Artificial Neural Networks are used to 

model the surface roughness behaviour  and Simulated Annealing is used to select the 

cutting parameters. In approaches (ii) and (iv), no analytical models based on 

machining theory are used, since they use empirical performance equations 

established from extensive testing. According to Benardos  and  Vosniakos, 2013, 

models based on theory are generally not accurate so their improvement with the 

introduction of additional parameters is examined by researchers. This is due to the 

fact that the phenomena that lead to the formation of surface roughness are very 
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complex and interacting in nature so a comprehensive solution has not yet been 

found. The objective of this research is to develop a methodology for predicting the 

surface roughness and selecting parameters based on effective tools, hence the use of 

empirical data. 

 
 

Other researchers  have focused their  effort on the  analysis  of the machinability  

of austenitic stainless  steel. This  material  is  considered difficult  to  machine  due  

to  its  low thermal conductivity and  high  mechanical and  microstructural sensitivity 

to  strain  and  stress  rate  (M'Saoubi  et  al.,2008).  Different  works have been 

developed  to improve the  machinability of austenitic stainless  steel, and among  

these  researchers  we can mention Lin (2008),where the surface roughness  variations 

for different grades  of austenitic stainless  steel  under  different cutting conditions  

in high  speed  fine turning was investigated.  The surface  roughness  and the  tool  

wear  were predicted  by Regression  analysis  and ANOVA.  

 

In 2009, Anthony Xavior and Adithan determined the influence of different 

cutting fluids on the wear and the surface roughness  when turning AISI 304 

austenitic stainless  steel. Ibrahim  Ciftci (2006) conducted experiments to machine  

AISI 304 and AISI 316 austenitic stainless  steels using CVD multi-layer coated  

cemented  carbide  tools. The  study  concluded  that cutting speed significantly  

affected the machined  surface roughness. Cebeli et  al., 2006 conducted  an  

investigation to  determine surface  roughness,  tool wear and tool-chip  interface  

temperature during  turning of AISI 304. 

 
 

Models  for tool  life, surface  roughness  and  cutting forces were developed for 

turning of AISI302 by Al-Ahmari  (2007), using multiple  regression analysis 

techniques, response surface methodology  and  computational neural  networks. Ulas 

Caydas  and Sami Ekici (2010) used support vector machines  (SVM) tools, namely  

least  square-SVM,  spider  SVM and  artificial  neural  networks  (ANN) models  to  

assess  the  surface  roughness  of AISI  304 austenitic stainless  steel. Akasawa T. et 

al (2003) conducted  experiments to determine the effect of variation of 
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concentrations of S, Ca C and Bi on the machinability of various grades of 300 series 

of austenitic stainless  steel. 

 
 

Models based  on Linear  Regression  have also been applied  with  success by 

researchers  in more  recent years.   The  relationship between  tool  life, surface 

roughness  and vibration was examined  by O.B. Abouelatta, J. Madl, in 2001.In these 

case the variables  that were considered  included  the  cutting speed,  feed rate,  depth  

of cut, tool nose radius,  tool overhang,  approach angle, workpiece length and 

workpiece diameter. The  experimental data  was analysed  to produce  regression 

analysis  models.   R. Baptista, J.F.  Antune  Simoes, 2000, applied  Design of 

Experiments technique  together  with  multiple  linear  regression  to establish a 

mathematical model of 3 and 5 axes milling process.  A comprehensive  literature 

review on the applications of ANNs for turning process performance  prediction  can 

be foundat  Chandrasekaran et  al,  2010.According  to  this paper, Simulated  

Annealing  (SA) imitates the  cooling process of metal  during  annealing  to achieve 

the  minimization of a given function  values. The  algorithm starts with  an initial  

point,  x0, which is a set of input  data  for the  fitness function,  and  a large number  

corresponding  to a high temperature “T”. A second point x1is generated  close to the 

first point using a Gaussian  distribution with first point as its mean. The difference in 

the fitness function  values at these points  is considered analogous  to  the  difference  

in  energy  level (∆E). In  a  minimization process, if the  second point  has lower 

function  value,  it replaces  the  first point;  otherwise, it replaces the first point with 

a probability exp(−∆E/T) (Deb,  1995).The algorithm is stopped  when a sufficiently 

small temperature is obtained or no significant  improvement  in the  fitness function  

value  is observed. Chen  and  Tasi,1996, followed by many researchers  applied  SA 

to solve the optimization problem for minimum unit production cost of multi-pass 

turning process.  Baykasoglu and Dereli, 2002, have used SA to optimize  cutting 

conditions  in their  heuristic model.  However, they  did not take  surface finish into 

consideration. 
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Once analysing  the  literature review, this  research  will be focused on 

comparing  the performance  of the Multiple  Linear  Regression  and the Artificial  

Neural  Network  methodologies  for the prediction of the surface  roughness    and  

the use of  the best  fitting  method  as  the  objective  function  in an  SA algorithm. 

This will provide a novel contribution to the manufacturing field by giving the 

opportunity to find a good procedure to model and obtain the desired surface 

roughness when turning at low cutting speed. 

 

 

 

2    Methodology 
 

 
 

A cylindrical sample of austenitic stainless steel with 200 mm length and 30 mm in 

diameter was selected for this investigation. The bar was pre-machined in 10 

subsections corresponding to different combination of cutting parameters, as observed 

in Figure 1. 

 

 
 

Figure  1: Schematic  drawing  of workpiece used in the experiments . 
 

 

The austenitic stainless steel has a chemical composition of 17.1% Cr, 68.7% Fe, 

9.9% Ni, 2.1 % Mo, 1.8% Mn and 0.47% Si, which was obtained through the  use of a 
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Hitachi S-3700N Scanning  Electron  Microscope coupled with an Oxford Inca 350 

EDX analyser. 

 

According  to ASM Metals Handbook,  the mechanical  properties  of AISI316 are as 

follows: 
 

 
Table  1: Mechanical  Properties of AISI316 

 

Vickers Hardness 258 HV 

Tensile Strength, Yield 290 MPa 

Tensile Strength, Ult. 580 MPa 

Elongation at break 50% 

Modulus  of Elasticity 193 GPa 

 

 
HERTEL inserts with TiN/TiAlN carbide coating with two different tool nose radius; 

0.4 mm and 0.8 mm were selected for the study. Figure 2 shows the geometry and 

dimension of the inserts. 

. 

 
 

Figure  2: Schematic  drawings  of turning insert  geometry 

 

 
Table 2 shows the cutting parameters selected for the study. These parameters were 

recommended by the tool supplier based on the tool-workpiece combination.A XYZ 

Proturn SLX 1630CNC Lathe with a maximum spindle of 2500 rpm, was selected for 

the turning experiments. The cutting process was conducted under a dry cutting 

environment and a new tool was used to cut a length of 200 mm under different 

combination of cutting parameters (10 different speeds and constant depth of cut, feed 

rate and tool nose radius). 
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Table  4: Testing  parameters 
 
 
 

Cutting Speed(m/min) 14 15       16       18    20    22    25    30    40    50 

Feed rate  ( mm/rev) 0.15 0.20    0.25 

Depth  of cut (mm) 0.5 1.0 

Tool nose radius(  mm) 0.4 0.8 

 

 

Once the material  was machined  it was placed in a bench for surface roughness 

measurements. The surface roughness was measured across the tool feed direction 

using a Mitutoyo Surftest- SV2000 profilometer, with the cut-off length at 15 mm 

providing a three sample length in compliance with ASME B46.1 and to avoid noisy 

data.  An example of the measured  surface roughness  values can be found in the 

appendices  (Section  8). 

 

 

3    Results and discussion 
 

 
Once the experimental data was gathered, in order to minimise the effect of noisy 

data, the values that exceeded two standard deviations from the population's average 

were not considered to take part of the analysis. In a normal probability distribution, 

95% of population is contained within two standard deviations above and below the 

average. The remaining 5% were discarded from further analysis to avoid noisy data 

propagation. This is based on the Tchebysheff ’s theorem  (Kvanli  et al, 2006).  

 
The two models for surface roughness prediction were developed from the 

experimental data.  The first model is based on a multiple  linear regression.  The 

second model is based on an Artificial  Neural  Network.  A comparison of both 

methods can be found in the following sections. 
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3.1     Multiple Linear Regression 
 

The multiple linear regression (MLR) model was developed with the aid of the 

statistical software Minitab  16. Different adjustments were used (linear,  exponential, 

logarithmic) and  the  adjustment that presented the  best  coefficient of correlation  

was chosen.  The  proposed  regression  equation  with  potential adjustment
 

is given by: 
 

 
 
Ra = 10

1.31 
V 

−0.424
 f 

0.734
 d

0.187 
r
−0.499

(1) 

 

 

R
2
=0.466 

 

R
2
adj= 0.460 

ߪ  ൌ ͳǤ͵͵ 

 

 

 

 



10  

 

 

The squared  multiple  correlation coefficient (R
2
) is the proportion of the variation in the  response  

variable  that is explained  by the  response  variables.(Glantz and  Slinker, 2000).   The adjusted 

coefficient R
2
adj of equation  1 is 0.46 when applied to the experimental data  of this research,  (i.e. it 

explains 46%of variability within  this  dataset).  

 

The mean squared  error (MSE) is an estimator commonly used to measure the squares of the errors, 

(i.e. the difference between the predicted  and actual  values of a statistical variable(Lehmann et al, 1998). 

If ݕො is a vector of ݊ predictions, and ݕ is the vector of the true values, then  the estimated mean squared  

error of the predictor  isas shown in equation 2. 

ܧܵܯ  ൌ ͳ݊ ሺݕపෝ െ  ௜ሻ                                                   ሺʹሻݕ

 which means the ,0.72=ܧܵܯ was used to evaluate  the regression model,  resulting  in the value of ܧܵܯ 

regression model is a fairly good approximation to the  real behaviour  of the  system (the closer ܧܵܯ is to 

0, the better the model).   The calculations of mean squared errors can be found at section 8. 

 
 

According to the developed model shown in equation  1, the lowest predicted Ra  value  is 0.339 µm at  

V=50  m/min, f=0.15  mm/rev, d=1.0  mm and  r=0.8 mm.   This  is not  a  good estimate, since the  

measured  Ra  value  for this  set of parameters is 2.2 µm, which is far from the  estimated value  and  is not  

the lowest measured  value found in the  experimental dataset.  Therefore,  it can be concluded  that the  

regression  model is good for prediction  in general,  but  it is not suitable  for finding optimal  parameters. 
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3.2     Artificial Neural Network 

 

 
Figure 3 show a diagram depicting the selected network, where W stands for weights and b stands for 

biases. 

 

 
 

Figure  3:  Schematic  of the  MLP  created  to predict  the surface roughness from the  experimental 

results. 
 
 

The experimental results data  set was divided randomly  in three groups from a total of 363 values:  

273 values  for training, 54 values  for testing  and  36 values  for validation process .The training data  are 

presented to the  network  during  training, and  the network  is adjusted according  to its error.  It must be 

highlighted that the testing  data  have no effect on training so it provides  an  independent  measure  of the 

network  performance  during  and  after the training process.  The validation data  are used to measure the 

network  generalization,  and to halt  training when generalization stops improving.(Muñoz-Escalona et al, 

2010) 

 

In this case the Levenberg-Marquardt back propagation algorithm (LMA) was used for the training 

purpose. The LMA interpolates between the Gauss–Newton algorithm (GNA) and the method of gradient 

descent. The LMA was chosen because it is more robust than the GNA, which means that in many cases it 

finds a solution even if it starts very far off the final minimum. 

 

The  stopping  criterion  for training was obtained when generalization stopped  improving. This is 

indicated  by an increase  in the  mean square  error  of the values selected for the  validation process. 

 

Figure  4 shows the correlation plot between experimental and predicted data. As observed when 

analyzing Figure 4, there is a good fit between the network’s outputs and the target (measured)  values. 
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Figure  4: Regression  plot for MLP outputs vs. targets. 

 

The results in terms of ܧܵܯ for each phase of the network were as follows: a training performance  of 

0.0489, testing  performance  of 0.0636 and  validation performance  of 0.0472, yielding a general  

performance  of 0.0509.  These  values are  considered as very  good as they  outperform the  Multiple  

Linear  Regression results  by more than  14 times (1400%).  The networks  outputs as well as the ܧܵܯ 

values for each point can be found in the appendices  (section  8). 

 
 

When  comparing  the  performance  of the  two prediction  models for surface roughness employed by 

their  general ܧܵܯ, it can be concluded  that ANN has a considerably  better performance  when compared 

to the MLR  when predicting the surface  roughness  for AISI316  turning, since the  ܧܵܯ  obtained for the  

ANN  was  0.05 which  is nearly  fourteen  times smaller (1400%) than  the  MLR which obtained a 0.72 ܧܵܯ. These results  are in agreement with  previous  research  such  as Chryssolouris  and  Guillot,  1990; 

Jiao  et al, 2005 and Al-Ahmari,  2007, who found that ANNs are better  than  MLR for predicting  surface 

roughness  in turning  processes.  However, Feng and Wang, 2003, found that the ANN and the MLR are 

equally effective in predicting the surface roughness.  Since from our results  the ANN model displayed  

the best  performance,  this  model will be used as the  fitness function  for a Simulated Annealing (SA) 

algorithm. 
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4    Cutting parameters selection 
 

 
In order  to  find parameters that return low values of surface roughness (below 1.0 µm), the  proposed 

ANN has been used as the fitness function  in a Simulated Annealing  (SA) algorithm  set for the 

minimisation of the surface roughness  values.  The problem was set up in MATLAB  R2011a using the  

Optimisation Toolbox. The objective  function’s lower limit was set to 0, since Ra values are always 

positive.  Other  parameters were set  as the  default  SA parameters on MATLAB’s  Optimisation 

Toolbox. 

 

The maximum  number  of iterations was set as infinite, maximum  function  evaluations  was  12000 and 

no  time  limit  was  specified.   The  function  tolerance,   the lowest significant improvement before the 

algorithm stops, was set to 1e-6. The number  of stall iterations was set as 2000. In order to apply the SA 

method  to a specific problem,  the following parameters must be also specified: the annealing schedule  

temperature, the  re-annealing  interval, the  temperature  update  function  and the  initial  temperature 

(Kirkpatrick, S. et al , 1983). These  parameters are  given this  nomenclature due  to  their  analogy  with  

the metal  cooling process.  The fast annealing  function  was used with a re-annealing interval  of 100, 

exponential temperature update and initial  temperature of 100. The  SA algorithm must have an initial 

point from which the iterations are calculated. The closer this initial point is to the actual solution of the 

SA, the faster the convergence of the algorithm and the shortest the calculation time. Therefore, a good 

initial "guess" must be provided. In this work, the initial  point was set as the best point found by the 

regression  model.  The upper  and lower bounds  are based on the upper  and lower values  of each  of the  

four parameters used in this  work:  cutting speed, feed rate,  depth  of cut and tool nose radius.  These 

points can be seen in Table 5: 

 

 
 

Table  5: Inputs  for SA algorithm 

 

Point V(m/min) f(mm/rev) d(mm) r(mm) 

Initial  point 50 0.15 0.5 0.8 

Lower bound 14 0.15 0.5 0.4 

Upper  bound 50 0.25 1.0 0.8 
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The fitness function value and the correspondent set of parameters generated by the algorithm are in 

Table  6. 

 

 
Table  6: SA algorithm’s  outputs. 

 
Ra (µm)     V(m/min)    f(mm/rev)    d(mm)     r(mm) 

 

0.65             49.3              0.156           0.52         0.57 

 

 

This result can be considered plausible as cutting speed is near the higher value of the interval, in 

concordance  with the results of Lin, 2008; Ozel, 2003 and  Kilickap, 2005.   The  combination of depth  of 

cut  and tool nose radius  values  obtained are in agree with  Halevi, 2003 who states  that as a general rule 

of thumb, the  depth  of cut  should be greater  than  or equal to 2/3 of the  nose radius,  in order  to  

minimize  the  effect of axial  forces that appear as the  depth  of cut  increases  in relation  to  the  tool  

nose radius.   These  axial forces have  a negative  effect on the  cutting action  e.g.   with  more  tendency 

to vibration and  rougher  surface finishing.  Finally,  the  feed rate  value  is near the  lower specified limit,  

concurring  with the results  of Lin, 2008; Ozel, 2003 and Kilickap, 2005,  where surface roughness  

average values rise with higher feed rates. 

 

 

5    Conclusion 
 

 
First,  it is important to note that the solutions  found by the algorithm cannot be called optimal,  since this  

method  is a metaheuristic, designed  to find good, near optimal  solutions,  but  not to guarantee an optimal  

fitness function  value. 

 

- A Multiple  Linear  Regression  model for predicting  Ra was developed.  It yielded results  with  0.72 

precision  in terms  of Mean Squared  Error  when compared  to  the  experimental data.    This  

model  can  be useful for pre- diction  where high precision is not needed as the formula  is simple 

and a straight forward  result  can be obtained. 

 
 
 

- An  Artificial  Neural  Network  model  was  created  to  predict  Ra  from  a given set of parameters. 

It was trained, tested  and validated using experimental  data.   After many  trials,  a network  with an 

accuracy  of 98% was found with two hidden layers with five neurons each, which is an excellent 
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result  considering  that there  is variation of 15% on roughness  under  the same cutting conditions.  

The network’s outputs are a good fit for the experimental results,  and when compared  in terms  of 

mean squared  error it outperforms the multiple linear regression model by a considerable margin. 

 

 
 

- The proposed ANN was used as the fitness function  in Simulated Annealing. The  algorithm 

produced  good and feasible results. 

 

 
 

- The  cutting conditions  obtained by the  SA algorithm for low values of surface roughness  are V = 

49.3 m/min, f = 0.156 mm/rev, d =0.52 mm and r = 0.57 mm  

 

 

 
 

 
5.1     Future work 

 

Some research  opportunities found  are  the  possible  inclusion  of other  factors such  as vibration and  

cutting forces as explanatory variables  and  others  such as tool  wear  and  residual  stresses  as variables  

to  be analysed  and  predicted. Response Surface Methodology (RSM) could be used to predict Ra and its 

performance  compared  to  ANN  and  MLR.  Other  ANN  types  could  be  used for prediction, such as 

RBF  and  fuzzy-logic integrated networks.   The  genetic algorithm could  be  used  to  optimise  the  

weights  and  biases  of the  proposed network.   Other  optimisation algorithms  such as Particle Swarm  

Optimisation and  Ant Colony Optimisation can be used to optimise  the  AN fitness function and their  

results  compared.  Finally,  measurements in energy consumption, and a comparison  between  high and 

low values of cutting speeds can be carried  out for the pursuit of similar values of surface roughness. 
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V(m/min) f(mm/rev) d(mm) r(mm) Ra(µm) Ra(MLP) Ra(MLR) Sq-err(MLP) Sq-err(MLR 

14 0.15 0.5 0.4 1.267 1.331 2.640 0.004 1.886 

15 0.15 0.5 0.4 1.187 1.186 2.604 0.000 2.006 

16 0.15 0.5 0.4 1.113 1.135 2.567 0.000 2.114 

18 0.15 0.5 0.4 1.114 1.149 2.493 0.001 1.903 

20 0.15 0.5 0.4 1.121 1.092 2.420 0.001 1.687 

22 0.15 0.5 0.4 1.053 1.070 2.347 0.000 1.673 

25 0.15 0.5 0.4 1.245 1.183 2.237 0.004 0.983 

30 0.15 0.5 0.4 1.081 1.087 2.053 0.000 0.945 

40 0.15 0.5 0.4 1.042 1.049 1.686 0.000 0.415 

50 0.15 0.5 0.4 0.972 0.967 1.319 0.000 0.120 

 
 
 
 
 
 

 

7    Appendix 
 

 
Table  7: Experimental surface roughness  values and results  from Multiple 

Linear Regression(MLR) and Multi-Layer  Perceptron(MLP) models.
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