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a b s t r a c t

We demonstrate that a computational fluid dynamics (CFD) model enhanced with molecular-level infor-

mation can accurately predict unsteady nano-scale flows in non-trivial geometries, while being efficient

enough to be used for design optimisation. We first consider a converging–diverging nano-scale channel

driven by a time-varying body force. The time-dependent mass flow rate predicted by our enhanced CFD

agrees well with a full molecular dynamics (MD) simulation of the same configuration, and is achieved at

a fraction of the computational cost. Conventional CFD predictions of the same case are wholly inade-

quate. We then demonstrate the application of enhanced CFD as a design optimisation tool on a bifurcat-

ing two-dimensional channel, with the target of maximising mass flow rate for a fixed total volume and

applied pressure. At macro scales the optimised geometry agrees well with Murray’s Law for optimal

branching of vascular networks; however, at nanoscales, the optimum result deviates from Murray’s

Law, and a corrected equation is presented.

� 2015 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Many emerging applications of nanofluidic technology take

advantage of different physical effects that dominate at small

scales; examples can be found in air and water purification [1,2],

and in micro chemical reactors [3,4]. The design of these technolo-

gies would be greatly facilitated by being able to perform numeri-

cal simulations that predict mass flow rates and heat transfer.

Computational fluid dynamics (CFD) is regularly used to model

and create optimal every-day engineering designs efficiently.

However, the assumptions used to derive the continuum fluid

equations become invalid in highly-confined systems, making the

equations inaccurate. On the other hand, molecular dynamics

(MD) can be used to perform highly detailed simulations of

nano-scale systems; it has been successfully used to study the

behaviour of protein folding [5], crystal formation [6] and chemical

reactions [7]. The drawback is that MD is extremely computation-

ally intensive, especially when used to model systems comprising

hundreds of thousands of molecules that would be required for

engineering applications.

The continuum fluid assumptions become inaccurate for gas

flows as the smallest characteristic scale of the geometry (e.g.

channel height) approaches the mean distance between molecular

collisions (i.e. the mean free path) [8]. When modelling dense liq-

uids (as we do in this paper) there is not a well-defined condition

for when the fluid assumptions become inaccurate. However, it

appears that they fail when water is confined in channels of width

�1–2 nm (see [9] and references therein), and MD simulations

have been used to show that Lennard-Jones fluids confined in

geometries of �2–3 nm still show continuum behaviour [10–12].

At the nano-scale the fluid molecules form layers parallel to an

interface, which causes the strain rate to vary rapidly within sev-

eral molecular diameters [13]. These large variations mean the

stress no longer has local linear behaviour [14,15].

Despite the complexities of fluid behaviour at the nano-scale, it

has recently been shown that useful predictions from CFD can be

obtained for some simple geometries, if appropriate fluid state

models, viscosity relationships, and slip models are extracted from

an MD pre-simulation [16]. In [17], a similar approach is used to

obtain CFD predictions of flow through a nanotube; with results

agreeing well with full MD simulations.

However, what remains to be tested is the robustness of nano-

scale CFD when applied to more complex engineering calculations.

In this paper, we test if our enhanced CFD model is robust enough

to predict flow behaviour in a non-trivial geometry (a converging–

diverging channel), while using various forms of applied forcing to

generate unsteadiness within it. As a demonstration of its
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efficiency, we go on to apply the enhanced CFD to the design opti-

misation of a small fluidic network.

The paper is structured as follows. In the next section we sum-

marise the MD pre-simulation procedure and the CFD model used.

We then use these models to perform unsteady simulations of a

converging–diverging channel, where the width of the channel is

close to the continuum limit. Our model is then applied to simulate

an industrially-relevant problem of flow through a bifurcating

channel. We show that to optimally design the channels the slip

velocity at walls must be taken into account. The paper then ends

with a summary.

2. Methodology

2.1. The MD pre-simulations

As in [16], we employ preliminary molecular dynamics (MD)

simulations to obtain fluid properties and boundary conditions

that enable the effective use of a Navier–Stokes fluid solver for

nano-scale applications. This approach can be classed as a ‘‘sequen-

tial molecular-continuum hybrid method’’ (see [18] for a review of

hybrid methods), where ‘sequential’ refers to the fact that the MD

is performed in advance of, and so independent of, the continuum-

fluid solver.

Fig. 1 (far left) shows a schematic of the MD pre-simulation

domain; it is symmetrical about its centrelines and uses periodic

boundary conditions in the streamwise direction (in the x-direc-

tion) and into the page (in the z-direction). The domain has bulk,

shear and interface zones (as labelled) for measuring state, con-

stitutive and boundary properties, respectively. Pressure and den-

sity are measured in the bulk zone. In addition to this, in the bulk

zone an artificial streamwise body force ðFxÞ is applied (Fig. 1, cen-

tre left), which creates a velocity profile in the domain similar to

that illustrated (Fig. 1, centre right). We assume that the equation

of state in the bulk zone is unaffected by the magnitude of strain

rate generated. In the shear zone the fluid is, therefore, subject to

a constant shear stress, sxy, directly resulting from the bulk-zone

forcing. A linear flow velocity profile is developed in the shear

zone, and this is least-squares fitted to obtain a strain rate and

shear viscosity coefficient, l.
Any significant density oscillations associated with molecular

layering are confined to the interface zone. In this zone we calcu-

late what we term the ‘CFD surface displacement’, d, which is the

distance that a CFD wall/surface needs to be displaced from the

centres of surface atoms in order to accurately represent the

boundary of the fluid (as opposed to the boundary of the solid);

see d in Fig. 1. We take this displacement to be the distance from

the centre of the surface wall atoms to where the fluid density

becomes at least 10% of the bulk, i.e. qP aqbulk, where a ¼ 0:1.

Note, the surface displacement is quite insensitive to the percent-

age of the bulk density chosen as the threshold, since the density

increases from zero to well above the bulk density over a very

short distance. For example, had we chosen the threshold to be

at 20% of the bulk density, the surface displacement would have

only been 1–2% larger, for a typical case.

The linear velocity profile obtained in the shear zone is extrapo-

lated into the interface zone to find the apparent slip length, n, as

defined from the CFD surface (see Fig. 1, centre right).

The molecular dynamics pre-simulations, and the full-scale MD

simulations used for benchmarking, are performed using the

mdFoam solver [19–22] that is implemented within the

OpenFOAM libraries [23]. For the test cases considered in this

paper we have adopted a simple Lennard-Jones (LJ) fluid model

(at 292.8 K), where the solid LJ wall atoms are fixed/frozen [24].

However, the methodology is general to any given molecular

model. For full details of the molecular pre-simulation domain

and the molecular dynamics parameters used, the reader is

referred to [16].

MD pre-simulation

domain

Applied 

body force 

CFD Wall

CFD Wall

CFD Fluid

Measured velocity 

pr

Interface Zone 

Shear Zone 

Bulk Zone 

Shear Zone 

Interface Zone 

Line of 
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Fig. 1. Schematic of molecular dynamics pre-simulation for extracting fluid dynamic properties that are essential inputs to an enhanced CFD solver for nano-scale flows.
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Fig. 2(a) shows MD pre-simulation measurements of pressure,

obtained from the standard Irving–Kirkwood expression [25], vary-

ing with the mass density. The MD pre-simulation results are least-

squares-fitted to a 2nd order polynomial. This then serves as an

equation of state within the enhanced CFD solver to connect the

mass continuity equation to the momentum equation. In this case

the polynomial is p ¼ 0:001559q2 � 3:387qþ 2020:6.

The strain-rate is extracted from the MD shear zone by a least-

squares linear fit to the relaxed and time-averaged velocity profile.

The applied shear stress is measured using the Irving–Kirkwood

equation, from which we obtain a dynamic shear viscosity coeffi-

cient for the LJ fluid at a given bulk density. The viscosity coeffi-

cients measured from our MD pre-simulations of Lennard-Jones

argon are shown in Fig. 2(b). A least-squares polynomial fit of

2nd order in density is also plotted: l ¼ 7:96� 10�10

q2 � 1:774� 10�6qþ 0:001106. This is then used in our enhanced

CFD simulations to close the momentum equation. Note, due to the

breakdown of the continuum assumption and the existence of non-

local stress, this state-dependent viscosity becomes only approxi-

mate when applied to a nano-confined fluid.

The surface displacement d defines the location of the CFD

boundaries relative to the atomic (actual) walls. If d varies substan-

tially with density (or any other fluid property), the geometry of

the enhanced CFD domain becomes dependent on the CFD solution

itself. However, for the fluid/solid combination considered in this

paper, over the density ranges considered, d is effectively constant,

as seen in Fig. 3.

In certain cases the value of d will itself be dependent on the

geometry, particularly for high curvatures, such as around sharp

corners and obstructions. It is beyond the scope of the current

work to attempt to accommodate these influences, while noting

that, later, we obtain good agreement with full MD simulations

without doing so. To tackle geometry-dependent flow properties

(including surface displacement) would dramatically increase the

parameter space that the pre-simulations would be required to

supply information for; in fact, for such problems a ‘concurrent’

hybrid approach is likely to be more efficient.

As the spatial-scale of the geometry increases, the relative sig-

nificance of the surface displacement reduces. We can develop a

simple gauge of its impact by considering the percentage that it

modifies the mass flow rate in a simple channel in two limiting

cases: assuming no-slip at the walls (i.e. n ¼ 0); and for very high

slip (i.e. n � h, where h is the channel width). In the no-slip case,

for Poiseuille flow, the mass flow rate is proportional to the cube

of the channel width; the percentage difference of using the sur-

face displacement is then

� ¼ 1�
ðh� 2dÞ

3

h
3

 !

� 100%: ð1Þ

For the cases in Section 3, where the channel width varies, � is �28–

44%. For high-slip cases, where the velocity profile becomes plug-

like, the mass flow rate becomes proportional to the square of the

channel width, giving a percentage difference:

� ¼ 1�
ðh� 2dÞ

2

h
2

 !

� 100%: ð2Þ

Considering again the cases in Section 3, � would be �20–32%; i.e.

the impact of the surface displacement is likely to be very signifi-

cant regardless of the degree of velocity slip. Based on the estimates

of Eqs. (1) and (2), the impact of a surface displacement d � 0:2 nm

will only be less than 1% (i.e. negligible) for channels greater than

75–100 nm.

Liquid slip velocity at surfaces is calculated using the Navier slip

condition:

uslip ¼ n _c; ð3Þ

where n is the slip-length and _c is the shear-rate at the bounding

surface. The least-squares-fitted linear velocity profile is used to

calculate the slip-length (as defined from the CFD surface). Based

on the strain-rate/slip-length relationship proposed in [24], and

assuming a linear dependence on density, a least-squares fit is per-

formed to the following equation:

n ¼
ðc1qþ c2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� _c= _cc
p ; ð4Þ

where q is the density, _cc is the critical shear rate (see [24]), and

c1; c2 and _c are parameters of the fit to our MD pre-simulations,

which are �1:205� 10�12 kg�1 m4, 3:747� 10�9 m and
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Fig. 2. Data for the Lennard-Jones fluid properties: (a) pressure variation with

density, and (b) viscosity variation with density. MD data points from pre-

simulation (circles), fitted polynomial (solid lines) and NIST data [26] (dashed

lines).
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1:543� 1011 s�1, respectively. Fig. 4 shows our MD pre-simulation

data and the least-squares fit of Eq. (4); data are shown for three

different values of density. The slip model approximated by Eqs.

(3) and (4) is directly introduced as a Robin boundary condition

in the enhanced CFD solver.

2.2. The enhanced CFD model

We use the laminar, compressible flow solver sonicLiquidFoam,

which we have modified to (a) accommodate a nonlinear equation

of state, (b) allow a density-dependent viscosity, and (c) incorpo-

rate slip boundary conditions of the form given in Eq. (4). A com-

pressible solver is used despite the very low Mach numbers,

since significant compressibility can occur in micro and nano

geometries due to very high viscous pressure losses [27,28].

3. Unsteady simulations

We now simulate the unsteady flow behaviour of a Lennard-

Jones fluid along a converging–diverging channel; a case chosen

to demonstrate the robustness of the enhanced CFD model when

applied to non-trivial flow problems.

Owing to the lack of detailed and reliable experimental flow

measurements at the nano-scale, in this section we compare our

enhanced CFD predictions with full-scale MD simulation results.

This comparison is intended to test whether enhanced CFD can

produce flow field solutions of comparable accuracy to full MD in

complex nano-scale geometries, without the need for ad hoc cor-

rections, and at only a fraction of the cost of full MD.

3.1. Cases

We consider a two-dimensional geometry: a converging–

diverging channel with a smoothly varying height in the stream-

wise direction. A gravity-type force is applied to the fluid to gener-

ate an unsteady/transient flow. As test cases, we choose flows that

exhibit non-continuum behaviour (e.g. slip at surfaces), and do not

contain a significant bulk flow region, i.e., the width of the channel

is at the 2–3 nm continuum-fluid limit for a Lennard-Jones fluid.

The converging–diverging channel is shown in Fig. 5 and has a

length l ¼ 68 nm in the streamwise direction x, a depth of 5.44 nm,

and heights of 3.4 nm and 2.04 nm at the inlet and throat sections,

respectively. The channel is periodic in both the streamwise and

spanwise direction. The height between top and bottom walls

hðxÞ varies in the streamwise direction according to a sinusoidal

function,

hðxÞ ¼ 2a cos
2px
l

� �

� 1

� �

þ hinlet; ð5Þ

where 4a ¼ 1:36 nm is the change of height from inlet to throat, and

hinlet is the height of the channel at the inlet.

The full MD domain is divided into 200 bins in the x-direction of

bin-width dx ¼ 0:34 nm, and the instantaneous mass flow rate and

density are measured in each bin. In the enhanced CFD domain, we

define a plane across the channel at equivalent positions, and sum

the mass fluxes from each cell the plane crosses, at each time-step,

to get the instantaneous data. Dependency studies on the mesh

resolution and on the time step showed that 50,000 cells and a

time step of 21.6 fs were more than sufficient to obtain converged

CFD solutions.

All the flows start from rest, then a time-varying gravity force

FgðtÞ is applied. We consider four different forces applied to the

fluid:

1. Startup flow: a steady gravity force of Fg ¼ 0:487 pN.

2. Short oscillations: an unsteady, oscillating gravity force with

amplitude 0.487 pN and period of T ¼ 0:22 ns, i.e.

FgðtÞ ¼ 0:487� 10�12 sin
2pt

0:22� 10�9

� �

; ð6Þ

where t is the simulation time;

3. Long oscillations: an unsteady oscillating gravity force of the

same amplitude, but with a larger period T ¼ 10:8 ns, i.e.

FgðtÞ ¼ 0:487� 10�12 sin
2pt

10:8� 10�9

� �

; ð7Þ

where t is the simulation time;

4. Varying oscillations: an unsteady oscillating gravity force with

the same amplitude but with increasing period of 0:2 ! 10:8 ns

as shown in Fig. 6(d), where the dashed line indicates how the

period of the oscillation changes.
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bols) and fit to Eq. (4) (dashed lines).

Fig. 5. The converging–diverging channel used in the unsteady flow cases. Top is the MD domain, and bottom is the CFD domain.
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Graphical representations of how the forces vary are shown in

Fig. 6.

3.2. Results for the four cases

To test the reliability of our CFD predictions that have MD pre-

simulation input, we compare results with full-domain molecular

dynamics calculations (referred to as ‘full MD’). To test whether

our enhanced CFD model is an improvement over conventional

CFD, we also compare results with predictions from compressible

CFD with no-slip at the wall and without incorporating a CFD sur-

face offset (referred to as ‘no-slip CFD’). We also compare with

incompressible CFD with slip incorporated but no surface displace-

ment (referred to below as ‘incomp. slip CFD’).

In Fig. 7 we plot the mass flow rate variation with time in a sin-

gle bin near the inlet of the channel for each case. We see that in all

cases the enhanced CFD model is able to accurately predict how

the mass flow rate changes in time. Fig. 7(a), in which a constant

force is applied throughout the channel, shows that the CFD

reaches steady state at the same time as the MD simulation, and

that a similar final mass flow rate is reached. There are, however,

substantial differences between the enhanced CFD, the no-slip

CFD, and the incomp. slip CFD results. The oscillations that are

observed at the early times in Fig. 7(a) in the enhanced CFD results

and also the MD data are due to an acoustic response of the nano

channel to impulse forcing. A first estimate of the natural acoustic

period is obtained by T ¼ l=c ¼ 0:07 ns (where c is the speed of

sound). This corresponds reasonably closely with the observed

kinks in the mass flow rate.

Fig. 7(b) shows the results when an oscillating force with period

0.22 ns is applied. The mass flow rate in the enhanced CFD oscil-

lates with the right frequency, the correct amplitude, and is also

in phase with the full MD results. The no-slip CFD, on the other

hand, appears to have the correct frequency but the amplitude is

incorrect and it is oscillating out of phase, while the incomp. slip

CFD is in phase but overpredicts the amplitude.

In Fig. 7(c) we have an oscillating force with period 10.8 ns. The

mass flux in the enhanced CFD oscillates with the right frequency,

correct amplitude, and is in phase, whereas the no-slip CFD

appears to have the correct frequency, and is oscillating in phase,

but the amplitude is incorrect. In Fig. 7(d) the period of the oscil-

lating force increases from 0.22 ns to 10.8 ns; even in this more

elaborate case, the enhanced CFD prediction is accurate.

Table 1 provides an indication of the computational cost for the

full-domain MD simulations. The longest simulations presented in

this paper ran in parallel (on 24 CPUs) for 48 days. The enhanced

CFD itself has negligible computational cost by comparison,

although the MD pre-simulations require the computational

resources indicated in the last row of Table 1. However, these

pre-simulations need only be performed once for a particular

fluid/solid combination, and then can be used for any number of

flow geometries thereafter.

4. Design optimisation

We now demonstrate how the enhanced CFDmodel can be used

in design optimisation problems at the nanoscale. The example we

choose is the optimal design of a bifurcating nano-channel net-

work (see Fig. 8); such a design exploration would not be feasible

using full MD simulations. The problem is to find the optimal

widths of the channels in a bifurcating channel (i.e. those that give

greatest mass flow rate), for a constant pressure difference Dp

between the inlet and the outlets, and a constant volume V. At

the macro scale the solution to this problem is given by Murray’s

Law [29,30], which was first derived using the Hagen–Poiseuille

Law to minimise the power required to sustain the flow of blood

through vessels. It has also since been shown to describe the water

transport though biological vessels in plants [31], and at the micro
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Fig. 6. The applied gravity forces varying with time for the four different cases: (a) step force, (b) oscillating gravity force with period T ¼ 0:22 ns, (c) oscillating gravity force

with period T ¼ 10:8 ns, and (d) oscillating gravity force with increasing period T ¼ 0:22 ns ! 10:8 ns, where the dashed line shows how the period of oscillation changes.
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scale it has been used to optimally design MEMS devices with

rectangular or trapezoidal cross sections [32].

For a 2D two-level network, like the geometry in Fig. 8, Murray’s

Law is

h
2
0 ¼

X

N

j¼1

h
2
N; ð8Þ

where h0 is the width of the inlet parent channel, and h1 to hN are

the widths of the outlet daughter channels. For a symmetric bifur-

cating channel with N ¼ 2 and h1 ¼ h2, the optimum ratio of chan-

nel widths is then given by

h
2
0

2h
2
1

¼ 1: ð9Þ

−2

0

2

4

6

0 0.1 0.2 0.3 0.4

M
a
ss

F
lo

w
R

a
te

,
ṁ
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Fig. 7. The mass flow rate near the inlet of the channel varying with time, for each case. The solid lines are the full MD results, the dashed lines are the enhanced CFD results,

the dotted lines are the incomp. slip CFD results and the dot dashed lines are the no-slip CFD results. (a) step force, (b) oscillating gravity force with period T ¼ 0:22 ns, (c)

oscillating gravity force with period T ¼ 10:8 ns, and (d) oscillating gravity force with increasing period T ¼ 0:22 ! 10:8 ns. Note the statistical noise in the full MD results.

Table 1

Computational costs: the first four rows are for the full MD simulations, while the last row is the MD pre-simulation that is used to collect the data for the enhanced CFD.

CPUs Liquid molecules Wall molecules Time per MD time-step (s) Total computational time

Startup flow 24 69,264 19,677 0.68 16 h

Short oscillations 24 69,264 19,677 0.68 30 h

Long oscillations 24 69,264 19,677 0.68 48 days

Varying oscillations 24 69,264 19,677 0.68 48 days

MD pre-simulations 24 5073–6668 4160 0.14 4 days per liquid/solid combination

Fig. 8. The bifurcating channel domain used for the design optimisation. The width of the parent channel is h0; the width of the two daughter channels are h1 .
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The optimisation we perform, with the given constraints of constant

volume and fixed pressure difference, is a linear search on channel

width (equal increments) to find the maximum mass flow rate. We

choose a volume of 1100 nm3, a pressure difference of 10 MPa,

channel lengths l0 ¼ l1 ¼ 75 nm, a junction length lj ¼ 20 nm and

junction width, hj ¼ 4 nm. The volume V can be calculated as:

V ¼ h0l0 þ hjlj þ 2h1l1: ð10Þ

If this geometry was optimised using MD, each simulation would

take approximately 30 days, whereas each enhanced CFD sim-

ulation takes approximately 500 s to perform. Fig. 9 shows the

results from this optimisation with our enhanced CFD model used

on a micro-scale channel and on a nano-scale channel. We see that

for a micro scale channel, the optimum width occurs when

h
2
0=2h

2
1 ¼ 1: this is the expected result according to Murray’s Law.

At the nano-scale, however, we observe a significant deviation from

the standard Murray’s Law, which is now discussed.

A deviation from the standard Murray’s Law has been noted for

rarefied gases [33] but has not so far been demonstrated for a liq-

uid. To uncover the origin of this deviation we derive Murray’s Law

using Poiseuille’s equations with Navier slip at the walls, i.e.

uðhÞ ¼ uð�hÞ ¼ n du
dy

where n is the slip length, and the velocity is

at a maximum at y ¼ 0 i.e. du
dy
jy¼0 ¼ 0. The mass flow rate is then

_m ¼
2q
3l

Dp

l
h
3

1þ
3n

h

� �

; ð11Þ

where _m is the mass flow rate, q is the density, l is the dynamic vis-

cosity and Dp is the pressure difference between the inlet of the

parent channel and the outlet of the daughter channel. Murray’s

Law is found by minimising the power P required to maintain flow,

which for flow through a channel is

P ¼ _mDpþ 2bhl; ð12Þ

where b is a constant of proportionality. By eliminating Dp with Eq.

(11) in this equation and differentiating, we find that when the

power is minimised the mass flow rate is

_m ¼ kh
2 ð1þ 3n=hÞ

ð1þ 2n=hÞ
1=2

; ð13Þ

where k ¼ 2=3
ffiffiffiffiffiffiffiffiffiffiffiffi

qb=l
p

. For a symmetric bifurcating channel, the

mass flow rate through the parent channel must equal the total

mass flow rate through the daughter channels, i.e. _m0 ¼ 2 _m1, there-

fore, the optimal ratio of channel widths becomes

h
2
0

2h
2
1

¼
ð1þ 3n=h1Þ

ð1þ 3n=h0Þ

ð1þ 2n=h0Þ
1=2

ð1þ 2n=h1Þ
1=2

: ð14Þ

It is clear that when h0;h1 � n this becomes Eq. (9), as expected. It

can also be noted that when the flow becomes plug-like, i.e.

h0; h1 � n, this ratio becomes h
2
0=2h

2
1 ¼ 21=3.

We can now use Eqs. (10) and (14) to calculate the expected

value of h
2
0=2h

2
1. When comparing this to the optimum found by

the enhanced CFD we get excellent agreement, as highlighted in

Fig. 9. This shows that the slip at the walls is the important factor

in the deviation from the expected optimum. A CFD model that

includes an accurate model of the wall–fluid interaction is, there-

fore, potentially very important in the design of nano-scale devices.

5. Summary

We have shown that a CFD model enhanced with data from MD

pre-simulations is capable of making accurate predictions of

unsteady liquid flow along a converging–diverging channel that

has a width close to the expected continuum-fluid limit. This

enhanced CFD approach is far more accurate than conventional

CFD calculations, and significantly more computationally efficient

than full MD simulations.

We have also demonstrated the enhanced CFD approach

applied to a design optimisation problem: that of a bifurcating

nanofluidic network. The widths of channels in the network should

be optimised to maximise the mass flow rate through the network,

for a fixed pressure drop and network volume. We have shown that

slip at the nano-scale can have a very significant effect on the opti-

mum channel dimensions, and we have derived an analytical equa-

tion which corrects the well-known Murray’s Law. This is one of

many possible cases where nano-scale flow effects modify the

optimal design of nanofluidic systems when compared with their

macroscopic counterparts.

Acknowledgments

This work is financially supported in the UK by EPSRC

Programme Grant EP/I011927/1 and EPSRC Grants EP/K038664/1

and EP/K038621/1. Our calculations were performed on the high

performance computer ARCHIE at the University of Strathclyde,

funded by EPSRC Grants EP/K000586/1 and EP/K000195/1.

References

[1] Alexiadis A, Kassinos S. Molecular simulation of water in carbon nanotubes.
Chem Rev 2008;108(12):5014–34.

[2] Mantzalis D, Asproulis N, Drikakis D. Filtering carbon dioxide through carbon
nanotubes. Chem Phys Lett 2011;506(1):81–5.

[3] Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of
nanofluids. Renew Sustain Energy Rev 2011;15:1646–68.

[4] Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer
applications. Particuology 2009;7(2):141–50.

[5] Levitt M, Warshel A. Computer simulation of protein folding. Nature
1975;253(5494):694–8.

[6] Parrinello M, Rahman A. Crystal structure and pair potentials: a molecular-
dynamics study. Phys Rev Lett 1980;45(14):1196.

[7] Sheehan ME, Sharratt PN. Molecular dynamics methodology for the study of
the solvent effects on a concentrated diels-alder reaction and the separation of
the post-reaction mixture. Comput Chem Eng 1998;22:S27–33.

[8] Reese JM, Gallis MA, Lockerby DA. New directions in fluid dynamics: non-
equilibrium aerodynamic and microsystem flows. Philos Trans Royal Soc Lond
Series A: Math, Phys Eng Sci 2003;361(1813):2967–88.

[9] Bocquet L, Charlaix E. Nanofluidics, from bulk to interfaces. Chem Soc Rev
2010;39(3):1073–95.

[10] Huang C, Choi PY, Nandakumar K, Kostiuk LW. Comparative study between
continuum and atomistic approaches of liquid flow through a finite length
cylindrical nanopore. J Chem Phys 2007;126(22):224702.

[11] Sofos F, Karakasidis T, Liakopoulos A. Transport properties of liquid argon in
krypton nanochannels: anisotropy and non-homogeneity introduced by the
solid walls. Int J Heat Mass Transf 2009;52(3–4):735–43.

[12] Travis KP, Todd BD, Evans DJ. Departure from Navier–Stokes hydrodynamics in
confined liquids. Phys Rev E 1997;55(4):4288.

[13] Todd BD, Hansen JS, Daivis PJ. Nonlocal shear stress for homogeneous fluids.
Phys Rev Lett 2008;100(19):195901.

0 0.5 1 1.5 2
0.96

0.98

1

1.02

h2

1
/2h2

2

ṁ
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