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a b s t r a c t

Rheumatoid arthritis (RA) remains a debilitating autoimmune condition as many patients are refractory

to existing conventional and biologic therapies, and hence successful development of novel treatments

remains a critical requirement. Towards this, we now describe a synthetic drug-like small molecule

analogue, SMA-12b, of an immunomodulatory parasitic worm product, ES-62, which acts both pro-

phylactically and therapeutically against collagen-induced arthritis (CIA) in mice. Mechanistic analysis

revealed that SMA-12b modifies the expression of a number of inflammatory response genes, particu-

larly those associated with the inflammasome in mouse bone marrow-derived macrophages and indeed

IL-1b was the most down-regulated gene. Consistent with this, IL-1b was significantly reduced in the

joints of mice with CIA treated with SMA-12b. SMA-12b also increased the expression of a number of

genes associated with anti-oxidant responses that are controlled by the transcription factor NRF2 and

critically, was unable to inhibit expression of IL-1b by macrophages derived from the bone marrow of

NRF2�/� mice. Collectively, these data suggest that SMA-12b could provide the basis of an entirely novel

approach to fulfilling the urgent need for new treatments for RA.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Rheumatoid arthritis (RA) is one of the more common inflam-

matory diseases to affect Western societies with a prevalence rate

of 1% [1]. Incidence increases with age, women are three to five

times more likely than men to develop the condition and the dis-

ease is associated with decreased life span [2]. Although the advent

of new biologic therapies has revolutionized themanagement of RA

[3], not all patients are responsive and hence, the need to develop

new drugs remains.

ES-62 is a glycoprotein secreted by the parasitic filarial nema-

tode Acanthocheilonema viteae [4]. The molecule possesses anti-

inflammatory properties and hence it has been tested in the

collagen-induced arthritis (CIA) model of RA where it was found to
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protect against disease development [5e7]. ES-62 activity is

dependent on an unusual post-translational attachment of phos-

phorylcholine (PC) [reviewed in Ref. [8]] and indeed PC attached to

ovalbumin [6] or albumin [9] can mimic ES-62 in protecting against

CIA. As a consequence of this, we hypothesized that it could be

possible to synthesize novel small drug-like PC-based molecular

analogues (SMAs) that mimic ES-62 activity: indeed, recently we

produced a sulfone termed 11a that protects against CIA and ap-

pears to do so using the same mechanism of action as ES-62,

namely inhibiting TLR-mediated pro-inflammatory cytokine re-

sponses, by partially downregulating MyD88 expression [9]. Here,

we describe another novel sulfone, 12b, which also inhibits disease

development in mice sensitized and challenged with collagen, but

which contains additional previously unsuspected immunomodu-

latory properties. In particular, we have found 12b to modulate the

expression of a number of genes associated with the inflammatory

response, particularly those linked to IL-1b signalling, and which

appear to be counter-regulated by activation of the transcription

factor, NRF2 that plays a crucial cytoprotective role in the response

to oxidative stress [10]. SMA-12b may thus be prototypic of a novel

class of compounds of use in treating RA, in particular in those

patients resistant to TNF-targeting biologics [11].

2. Materials and methods

2.1. Animals

Jirds and mice were bred and/or maintained in the Biological

Services Units of the Universities of Glasgow and Strathclyde in

accordance with Home Office UK Licenses PPL60/3119, PPL60/3580,

PPL60/3791, PPL60/4300, PIL60/12183 and PIL60/12950 and the

permission of the Ethics Review Board of both Universities.

Collagen-induced arthritis (CIA) was induced in male DBA/1 mice

(8e10 weeks old; Harlan Olac; Bicester, UK) by intradermal im-

munization with bovine type II collagen (CII, MD Biosciences) in

complete Freund's adjuvant (FCA) and mice were treated with

purified endotoxin-free 12b (1 mg/dose) or PBS subcutaneously on

days �2, 0 and 21 and scored for development of arthritis as pre-

viously described [5e7]. In addition, the therapeutic effects of 12b

were tested where following the onset of arthritis (mean score

3.25 ± 0.55), mice were treated subcutaneously with PBS or 12b

(1 mg/dose) every 3 days (d0, d3 and d6). The Nrf2�/� animals that

were created by Itoh et al. [12] and provided kindly by Ken Itoh and

Masayuki Yamamoto were backcrossed over six generations onto a

C57BL/6 background.

2.2. Chemical synthesis and preparation of SMAs

Endotoxin-free ES-62 and SMAs-11a, -12b and -19o (for struc-

tures see Supplemental Fig. 1) were prepared as described previ-

ously, with the SMAs to �95% purity as shown by HPLC and 1H

NIMR [7,9,13]. The SMAs were reconstituted at 100 mg/ml in cell

culture-tested dimethyl sulfoxide (DMSO; SigmaeAldrich) and

then diluted in RPMI medium, or PBS when used in vivo, to 1 mg/ml

and stored in microcentrifuge tubes at �20 �C. Compounds were

filter-sterilised using a Millex-GP (0.22 mm; Millipore) filter unit

prior to use in culture. All reagents and plasticware used were

sterile and pyrogen free.

2.3. Analysis of pathology and IL-1b expression in the joint

Decalcified joint tissue section (7 mm) preparation, Haematox-

ylin and Eosin (H & E) and Trichrome staining and detection via

immunofluorescence were performed as previously described

[7,13]. The extent of synovitis, pannus formation, and destruction of

bone and cartilage was determined using a graded scale: grade 0,

no signs of inflammation; grade 1, mild inflammation with hyper-

plasia of the synovial lining and minor cartilage damage; grades 2

through 4, increasing degrees of inflammatory cell infiltrate and

destruction of bone and cartilage. To detect IL-1b expression, sec-

tions were incubated with sodium citrate buffer (10 mM Sodium

Citrate, 0.05% Tween 20, pH 6.0) for antigen retrieval and stained

with a rabbit anti-mouse IL-1b antibody (Abcam; rabbit IgG isotype

control) with DAPI as a counterstain, at 4 �C for 12 h, followed by

detection using a biotinylated goat anti-rabbit IgG antibody and

streptavidineAlexa Fluor 647. Immunofluorescence images were

obtained using an LSM 510 META confocal laser coupled to an

Axiovert 200 microscope (Zeiss) and analysed by Zeiss LSM Image

Browser software.

2.4. Ex vivo analysis

Draining lymph node (DLN) cells (106/ml) were

incubated ± 50 ng/ml PMA plus 500 ng/ml ionomycin for 1 h before

addition of 10 mg/ml Brefeldin A (SigmaeAldrich, UK) for a further

5 h at 37 �C with 5% CO2. Live cells were discriminated by the LIVE/

DEAD fixable aqua dye (Invitrogen) and phenotypic markers were

labelled using anti-CD4-PerCP, anti-CD8-FITC or anti-gd-PE (Bio-

Legend) antibodies before the cells were fixed and permeabilised

using BioLegend protocols. Cells were then labelled using anti-

IFNg-Pacific Blue or anti-IL-17A-APC (BioLegend) antibodies for

30 min prior to flow cytometry and gated according to appropriate

isotype controls as described previously [7]. IL-12p40 and IL-17

levels in serum or DLN, bmM and peritoneal exudate cell (PEC)

supernatants were detected by ELISA using kits from BioLegend as

described previously [7] whilst levels of IL-1b were determined by

ELISA using kits from eBioscience according to the manufacturer's

recommendations.

2.5. In vitro analysis of bone marrow-derived macrophages (bmMs)

Macrophages were prepared from bonemarrow progenitor cells

obtained from 6- to 8-wk-old male BALB/c mice and DBA/1 mice

with CIA or C57BL/6, MyD88 and NRF2 knockout mice. Bone

marrow progenitor cells were cultured for 7 days at 37�/5% CO2 in

complete Dulbecco's modified Eagle's medium (DMEM; GIBCO)

supplemented with 20% L929 cell culture supernatant (contains

CSF-1), 10% heat-inactivated Fetal Calf Serum (HI FCS), 2 mM L-

glutamine (GIBCO), 50 U/ml penicillin (GIBCO) and 50 mg/ml

streptomycin (GIBCO) with fresh medium being added on day 4

[14]. The cells were analysed by flow cytometry, and were shown

routinely to be �99% positive for CD11b and F4/80 markers.

BmMs were cultured in RPMI medium (PAA Laboratories) sup-

plemented with 10% HI FCS, 2 mM L-glutamine, 50 U/ml penicillin

and 50 mg/ml streptomycin (complete RPMI) in triplicate (2 � 105

cells/well) in 96-well plates and were rested overnight prior to

exposure to the indicated concentration of SMAs for 18 h. In some

experiments, bmMs were then stimulated with either Salmonella

minnesota lipopolysaccharide (100 or where indicated, 1000 ng/ml

LPS; Sigma), BLP (10 ng/ml Pam3CSK4; Axxora Ltd) or CpG

(0.01 mM; Source Bioscience Autogen) for 24 h and cell superna-

tants analysed for cytokine production by ELISA. ELISAs were per-

formed according to the manufacturer's instructions, using paired

antibodies from BD Bioscience Pharmingen for IL-12p40 and IL-6

and R&D systems for IL-1b.

2.6. TransAm (NFkB p65)

BmMs were cultured in 6 well plates (4 � 106 cells/well) in

complete RPMI medium. After 24 h, the medium was changed and
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the cells were pretreated with or without SMAs (5 mg/ml) for 18 h

before being stimulated with 100 ng/ml LPS, 100 ng/ml BLP or 1 mM

CpG for 1 h. Treatment with the SMAs alone did not activate NFkB

p65 (results not shown). Activated NFkB p65 was measured in

nuclear fractions (isolated using a Nuclear Extraction Kit; Active-

Motif) by the ELISA-based TransAM kit (ActiveMotif) according to

the manufacturer's instructions.

2.7. Flow cytometric analysis of cell death

Cell death was determined by 7-Amino Actinomycin D (7-AAD;

BD Pharmingen) staining of bmMs after stimulation with com-

pounds 12b and 19o. bmMs (2 � 105/well) were pretreated with

SMAs (5 mg/ml) for 18 h prior to being stimulated with either

100 ng/ml S. minnesota LPS (Sigma), 100 ng/ml BLP (Pam3CSK4) or

0.01 mM CpG for 24 h. The ability of the compounds to spontane-

ously induce cell death was also tested. The cells were washed in

PBS containing 1% FCS, then subsequently incubated with 5 mL of 7-

AAD for 10 min on ice in the dark. Flow cytometry was conducted

using a FACS Canto immunocytometry system (Becton Dickinson

Pharmingen) and data were processed using FlowJo software (Tree

Star Inc., OR USA).

2.8. Laser scanning cytometry (LSC)

BmMs (104/well) from mice with CIA treated with either PBS or

12b (1 mg/ml) were incubated for 18 h in Lab-Tek chamber slides

(Nunc) before being stimulated with LPS (100 ng/ml) for 15 min

then fixed with 4% formaldehyde for 15 min [15]. Samples were

quenched with 50 mM ammonium chloride (Fisher Scientific) for

10 min, washed, permeabilised with 0.1% Triton X-100 (Sigma) in

PBS for 20 min and thenwashed and incubated for 20 minwith PBS

containing 1% BSA and 10% normal goat serum (Sigma). Cells were

then incubated with anti-phospho-p65 (pp65; Cell Signalling) or

the relevant isotype control rabbit IgG (Santa Cruz Biotech Inc) in

PBS containing 1% BSA and 10% normal goat serum overnight at

4 �C. The cells were washed, and incubated with fluorescein-

conjugated anti-rabbit IgG (Vector Laboratories) at 10 mg/ml in 1%

BSA, 10% normal goat serum in PBS for 1 h in the dark. Cells were

washed and stained with DAPI (Invitrogen) as a counterstain. Cells

were washed again, and the slides mounted in Vectashield (Vector

Laboratories) for analysis by LSC. LSC data were analysed using

WinCyte software (CompuCyte). Using the relocation feature of the

LSC, areas with the average representative fluorescence were

relocated to and digital images of the stained cells were obtained

using a Hammamatsu camera and Openlab software (Improvision)

[15].

2.9. Cell lysates and Western blotting

BmMs (2 � 106 cells/sample) were lysed by the addition of ice-

cold, modified RIPA buffer (50 mM Tris, pH 7.4, 150 mM sodium

chloride, 2% (v/v) NP-40, 0.25% (w/v) sodium deoxycholate, 1 mM

EGTA, 1x Halt protease and phosphatase inhibitors [Pierce]) and

solubilised on ice for 30min. Protein (30 mg) samples were resolved

on the XCell SureLock Mini-Cell kit with NuPAGE Novex high-

performance pre-cast Bis-Tris gels and NuPAGE buffers and re-

agents (Invitrogen Life Technologies). Proteins were transferred to

nitrocellulose (Amersham) or PVDF (Millipore, Watford, UK) and

membranes were blocked by incubating for 1 h in 5% non-fat milk

in TBS/Tween (0.5 M NaCl and 20 mM Tris pH7.5 with 0.1% (v/v)

Tween-20) at RT. Membranes were incubated with primary anti-

body diluted in 5% BSA in TBS/Tween buffer overnight at 4 �C,

washed with TBS/Tween and incubated with the appropriate

horseradish peroxidase (HRP)-conjugated secondary antibody in

5% non-fat milk in TBS/Tween for 1 h at RT. Membranes were then

washed with TBS/Tween and protein bands were visualised using

the ECL detection system. Quantification of the bands was per-

formed using ImageJ software (National Institute of Health, NIH).

2.10. Microarray

BmMs (2 � 106 cells/well in 6-well plates) were incubated with

medium, 12b, 19o (both 5 mg/ml) or ES-62 (2 mg/ml) for 4 h. Cells

were harvested into RLT buffer and RNA prepared using the RNeasy

Mini kit (Qiagen) and residual DNA cleared with DNaseI (Invi-

trogen), according to the manufacturers' protocols. Checking of

RNA quality, cDNA preparation and microarray were performed at

the Glasgow Polyomics Facility at the University of Glasgow using

standard Affymetrix protocols. Triplicate biological replicates were

hybridised to Affymetrix Mouse Gene 1.0 ST arrays representing

over 28,000 genes. Bioinformatical data analysis was commis-

sioned in the Bioinformatic Services Miltenyi Biotec GmbH (Ber-

gisch-Gladbach, Germany). Briefly, raw microarray data were

preprocessed using GC-RMAmethod and corrected for batch effect.

The normalized log2 intensities values were centered to themedian

of all samples for each transcript cluster ID, i.e. the median was

subtracted from each individual log2 expression value. Such ratio

data in log2 space were used to create heat maps in which red

shading indicates a stronger expression of the representative gene

in comparison to the median of the total sample, and green rep-

resents a relative downregulation, respectively. Next, the different

samples were compared to each other by a correlation analysis in

order to get an impression of inter-sample similarity or variability.

The obtained inter-experiment correlation coefficients based on

the normalized log2 intensities were generated for all samples and

displayed in clustered images. Positive correlation is indicated by

shades of yellow (higher correlation ¼ brighter color), while less

well correlated samples are indicated by shades of black. In order to

select differentially regulated transcripts between SMA-12b-

stimulated and unstimulated samples the following selection

criteria were applied: adjusted p value �0.1 (calculated by the

method of Benjamini and Hochberg) and at least 1.5-fold expres-

sion difference. All differentially expressed genes were analysed

through the use of IPA (Ingenuity® Systems, www.ingenuity.com)

software to detect up-stream regulators (transcription factors, TF)

that may be responsible for the observed changes in the gene

expression using experimentally observed relationships between

TFs and genes. The IPA TF analytical tool determines a z-score that

establishes whether gene-expression changes for known targets of

each TF are consistent with what is reported as “activation” in the

literature (z > 0, TF predicted as “activated”), or if the changes

reflect inhibition as described in the literature (z < 0, TF predicted

as “inhibited”). Z-scores greater than 2 or -2 are considered sig-

nificant. Next, all of the significantly down-regulated TFs i.e. RelA,

NFkB1 and HMGB1 were displayed as a network to graphically

represent the molecular relationships between molecules. Mole-

cules are represented as nodes, and the biological relationship

between two nodes is represented as a line. All relationships are

supported by at least one reference from the literature, from a

textbook, or from canonical information stored in the Ingenuity

Knowledge Base. The intensity of the node color indicates the de-

gree of up- (red) or down- (green) regulation. Nodes are displayed

using various shapes that represent the functional class of the gene

product. For signalling pathways, an arrow pointing from node A to

node B indicates that A causes B to be activated (e.g. by binding,

phosphorylation, dephosphorylation, etc) and for ligands/receptors

pathways: an arrow pointing from a ligand to a receptor signifies

that the ligand binds the receptor and subsequently leads to acti-

vation of the receptor. This binding event does not necessarily
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directly activate the receptor; activation of the receptor could be

caused by events secondary to the ligand/receptor-binding event.

Solid lines indicate direct interactions whereas dotted lines, indi-

rect interactions.

2.11. qRT-PCR

Total RNAwas extracted using an RNeasy plus kit (Qiagen) and�

1 mg of RNA was used to synthesize cDNA (Applied Biosystems).

TaqMan®RT-PCRwas performedusing the followingTaqMan®Gene

Expression Assays: IL-1b (Mm01336189_m1), chemokine receptor

5 (CCR5: Mm01216171_m1), chemokine receptor 2 (CCR2: Mm00

438270_m1), chemokine ligand 10 (CXCL10; Mm00445235_m1),

complement component 5a receptor 1 (C5AR1; Mm00500292_s1),

CD274 (PD-L1) (Mm00452054_m1), CD200 receptor 1 (CD200R1:

Mm02605260_s1), NLRP3 (Mm00840904_ml), NLRC4

(Mm01233149_ml), glutamate-cysteine ligase, modifier subunit

(GCLM; Mm00514996_ml), glutamate-cysteine ligase, catalytic

subunit (GCLC:Mm00802655_ml) and haem oxygenase 1 (HMOX1;

Mm00516005_ml), all from Applied Biosystems. Polymerase chain

reactions were performed in triplicate in a StepOne sequence de-

tector (Applied Biosystems). Data analysis was performed using the

Applied Biosystems sequence detection software and samples were

normalized to the reference reporter mouse glyceraldehyde 3-

phosphate dehydrogenase (GAPDH; Mm99999915_g1) endoge-

nous control.

2.12. Statistical analysis of data

Parametric data were analysed by the unpaired one-tailed Stu-

dent's t test or by 1-way ANOVA. Normalised datawere analysed by

the KruskaleWallis test whilst the ManneWhitney test was used

for analysis of clinical CIA scores where *p < 0.05, **p < 0.01 and

***p < 0.001.

3. Results

3.1. SMA-12b protects against CIA

We have recently provided proof of concept that screening of

PC-based compounds for their ability to suppress TLR2-, TLR4- and

TLR9-mediated production of Th1/Th17-promoting cytokines (IL-

12p40 and IL-6) bymacrophages allows the selection of SMAs, such

as the sulfone 11a, that mimic the ability of ES-62 to protect against

CIA by suppressing pathogenic IFNg and IL-17 production [9].

Although another sulfone, 12b, could also significantly reduce IL-

12p40 secretion, it was not as effective with respect to IL-6 [9].

Nevertheless, it was found to be as effective as ES-62 [5e7,13] and

11a [9] in preventing the development of arthritis in the prophy-

lactic CIA mouse model, as indicated by reduction in each of

articular score (Fig. 1A), hind paw width (Fig. 1B) and disease

incidence (Fig. 1C; score �2). Furthermore, importantly as with ES-

62 [5] and SMA-11a (unpublished), when SMA-12b was adminis-

tered therapeutically after the onset of arthritis; it protected against

further disease development (Fig. 1D).

Consistent with the in vitro screening studies, whilst 12b- or

PBS-treated mice undergoing CIA in the prophylactic model did not

display altered numbers of leukocytes in the peritoneal exudate

(PEC; Fig. 1E) or frequencies of macrophages within this population

(Fig. 1F) when compared to healthy naïve mice, we observed

significantly elevated levels of IL-12p40 in the peritoneal fluid of

mice undergoing CIA that were reduced to the levels observed in

naïve mice by in vivo exposure to 12b (Fig. 1G). Similarly, the low

levels of IL-12p40 spontaneously secreted ex vivo by DLN cells were

reduced to levels comparable to those produced by naive cells, in

cultures derived from 12b-treated mice undergoing CIA (Fig. 1H).

However, unlike ES-62 and 11a, SMA-12b did not suppress the

number of total DLN cells or CD4þ, CD8þ and gd T cells (Fig. 1I and

results not shown). Moreover, although there was a trend towards

reduction in the number of IFNg-producing DLN cells, specifically

CD4þ, CD8þ and gd T cells following PMA/Ionomycin stimulation,

this did not reach statistical significance (Fig. 1J and results not

shown). Furthermore, 12b did not reduce the number of PMA/

ionomycin-stimulated DLN or CD4þ or gd T cells that were

capable of producing IL-17 (Fig. 1K and results not shown) or lower

the serum levels of IL-17 in mice undergoing CIA (Fig. 1L). This lack

of modulation of IL-17/IFNg responses in vivowas rather surprising

as IL-12p40, as a component of both IL-12p70 and IL-23, is a ther-

apeutic target (ustekinumab) in inflammatory autoimmune dis-

eases [16,17] due to its ability to promote differentiation and/or

maintenance of Th1 and Th17 cells. Nevertheless, these studies

demonstrated that despite exhibiting some potential to suppress

the cytokine milieu associated with Th17/Th1-driven pathogenesis

in arthritis, both in vitro and in vivo, the protection afforded by 12b

did not appear to depend on suppressing the Th17/Th1 phenotype

associated with pathogenesis in CIA.

3.2. SMA-12b modulates inflammatory response gene expression in

bmMs

To investigate the mechanism(s) underlying the protection

against CIA afforded by SMA-12b, genome-wide microarray of

macrophages was undertaken. Bioinformatical analysis revealed

that whilst ES-62 and an SMA, 19o, that had been found not to

modulate TLR-driven proinflammatory cytokine production in the

in vitro screens [9], essentially did not alter the gene expression

profile, treatment of macrophages with 12b for 4 h resulted in 364

genes being up-regulated and 496 genes being down-regulated in

comparison to un-stimulated cells (a complete list of the affected

genes and associated information provided by Ingenuity Pathway

Analysis is shown in Supplementary Table 1). Indeed, tree structure

analysis of sample clusters according to their degree of similarity

shows that only 12b-stimulated cells clearly separated from the

three other experimental conditions (Fig. 2A), with the 30 most

down- and up-regulated genes shown (Fig. 2B). Furthermore, it was

noted that when examining all of the data, a number of genes of

possible relevance to RAwere affected (Supplementary Table 2). For

example, several associated with pro-inflammatory cytokine re-

sponses (e.g., IL-1b) and cell migration and recruitment, particu-

larly of monocytes (e.g., NR4A1, CXCL10, CXCL3, CCR2, CX3CR1 and

TREM) were down regulated and many of these were members of

the top 30 downregulated genes. At the same time, some genes that

play an inhibitory role in inflammation e.g., CD200R1 and CD274

(PD-L1) and have recently been identified as therapeutic targets in

RA [18,19] were up-regulated. The data for a number of these key

genes have been validated by qRT-PCR (Fig. 2C).

3.3. SMA-12b inhibits the secretion of IL-1b

IL-1b was found to be the most downregulated gene in bmMs

exposed to SMA-12b (Supplementary Tables 1 and 2) and so we

next attempted to obtain evidence linking this effect of the SMA to

the release of IL-1b. First, we determined whether 12b inhibited

LPS-mediated secretion of IL-1b by bmMs and this was found to be

the case (Fig. 3A). We then investigated mice undergoing CIA and

found that DLN cells from SMA-12b-treated mice displayed

reduced ConA-stimulated IL-1b production relative to cells from

mice undergoing CIA treated with PBS or from naïve mice (Fig. 3B).

Finally, crucially it was found that staining of IL-1b production in

the joint reveals that this is greatly inhibited in mice that show
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reduced disease development as a consequence of exposure to 12b

(Fig. 3C&D).

3.4. SMA-12b is predicted to target transcription factors

To identify the transcription factors potentially responsible for

the observed SMA-12b-mediated changes in macrophage gene

expression, we used IPA for Transcription Factors (TFs). This soft-

ware predicted, based on prior knowledge of expected effects be-

tween transcriptional regulators and their known target genes, the

activation z-scores of 3 TFs - RelA (�2.996), NFkB1 (�2.223) and

HMGB1 (�2.168) to be significantly inhibited by SMA 12b and 6 TFs,

NFE2L2 (NRF2; 3.630), NKX2-3 (3.300), CBFB (2.630), TRIM24

(2.611), RXRA (2.213) and DACH1 (2.000) to be significantly acti-

vated. The TF with the lowest activation z-score and therefore the

most inhibited by 12b was RelA, the p65 signalling element of the

NFkB pathway. Consistent with this, we found that SMA-12b in-

hibits p65 NFkB activation in bmMs stimulated with each of TLR2

(BLP), TLR4 (LPS) and TLR9 (CpG) ligands in vitro (Fig. 4A). More-

over, exposure of mice undergoing CIA to 12b in vivo resulted in

bmMs with reduced capacity for phosphorylation and consequent

activation of p65 (pp65) in response to stimulationwith LPS ex vivo

(Fig. 4B). RelA-regulated genes with changes in their mRNA levels

following exposure of cells to 12b that correlated with inhibition of

RelA are shown in Fig. 4C and include IL-1b, as reported earlier the

most repressed gene amongst all those tested in the microarray

Fig. 1. SMA-12b protects against CIA in an IL-17-independent manner. Development of CIA by (A) Mean Arthritis Score (PBS, n ¼ 15; 12b, n ¼ 13; data pooled from 2 independent

experiments) and (B) hind paw width (PBS, n ¼ 7; 12b, n ¼ 6; data from single experiment), where results are expressed as mean scores ± SEM for PBS or 12b-treatment groups of

collagen-exposed mice. Incidence (C), indicated by % of mice developing a severity score �2 is shown (PBS, n ¼ 15; 12b, n ¼ 13). (D) Following development of arthritis (d0), mice

were treated every 3 days with PBS or 12b (both n ¼ 6) and score for each mouse normalised to that at day 0. Peritoneal cavity cells were counted (E) (PBS, n¼ 11; 12b, n ¼ 12; naive,

n ¼ 6) and frequency of F4/80þ cells determined by FACS (F) (PBS, n ¼ 13; 12b; n ¼ 12, naive, n ¼ 5). Peritoneal fluid was concentrated and IL-12p40 measured by ELISA (G) (PBS,

n ¼ 14; 12b, n ¼ 10; naive, n ¼ 7). For E-G, each value represents data from individual mice with data pooled from two independent experiments. (H) IL-12p40 spontaneously

released by DLN cells from mice undergoing CIA and treated as indicated are shown where data are presented as the mean values of individual mice from one experiment (naïve,

n ¼ 3; PBS, n ¼ 7; 12b, n ¼ 6). (I) Total numbers of DLN cells of individual mice from the naïve (n ¼ 3), PBS-treated (n ¼ 14) and 12b-treated (n ¼ 13) groups are shown. (J) The

number of IFNg-expressing DLN cells and (K), IL-17-expressing DLN cells following stimulation with PMA/ionomycin from individual mice is shown (naïve, n ¼ 3; PBS, n ¼ 12; 12b,

n ¼ 12). (L) Serum IL-17 levels are plotted as mean values of triplicate IL-17 analyses from individual mice (PBS, n ¼ 14; 12b, n ¼ 13). *p < 0.05; **p < 0.01 and ***p < 0.001.
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(Supplementary Table 1). As mentioned above, IPA also projected

inhibition of activity of another member of the NFkB family, namely

NFkB1 (Fig. 4C), the 105 kD protein that is processed to produce the

p50 TF and consistent with this, 12b down-regulated transcript

levels of a number of NFkB1-dependent genes (Fig. 4C). Many genes

whose expressionwas changed by SMA-12b andwhose direction of

change supported inhibition of RelA were present in this group of

genes confirming that these two TFs act in concert to regulate gene

expression levels and are both 12b targets. Collectively, these data

suggest that 12b acts to suppress the hyperactive NF-kB (p65 and

p50) signalling that promotes recruitment of inflammatory cells

and generation of pro-inflammatory mediators such as IL-1b in RA

joints [20].

To address the mechanisms responsible for suppressing NF-kB

signalling, we turned to the TFs that were predicted by the IPA to be

activated by SMA-12b (Fig. 4D) and, on the basis of the changes in

the expression profile of their target genes, NFE2L2 (NRF2) was

ascribed the highest activation score. Interestingly, therefore, given

the convergence of hypoxia, reactive oxygen species (ROS) and the

inflammasome in promoting the inflammation and angiogenesis

that leads to joint damage in RA [21e25], a large group of genes,

involved in protection against oxidative stress and controlled by

this TF were up-regulated by SMA-12b (Supplementary Tables 1

and 2). For example, 12b drove increased expression of genes tak-

ing part in synthesis, regeneration and utilization of glutathione

such as GCLM, GCLC, SLC7A11, GSTA3 and GSR (Fig. 4D). In addition,

SMA-12b also increased mRNA levels of TXNRD1 and PRDX1, which

are engaged in thioredoxin production, regeneration and utiliza-

tion, as well as NQO1 and HMOX1 that play a role in quinone

detoxification and iron sequestration, respectively.

That NF-kB-associated TFs and NRF2 were inversely targeted

was particularly interesting as there is evidence in the literature

that these elements counter-regulate [26,27] and also that NRF2

protects against joint damage in the antibody-induced arthritis

(AIA) model of RA by limiting oxidative stress-induced cartilage

destruction [28]. By contrast, crosstalk between NF-kB and

Fig. 2. SMA-12b modulates gene expression in bmMs. (A) The tree structure indicates clusters of samples according to their degree of similarity. Positive correlation is indicated by

shades of yellow (higher correlation ¼ brighter colour), while less well correlated samples are indicated by shades of black. The colour bar on top of the tree indicates the treatment

group assignment: green, none; blue, 12b; red, 19o and yellow, ES-62, of samples from 3 independent experiments. (B) Excerpt of a clustered heat map (Euclidean distance,

complete linkage) showing 30 most down-regulated and 30 most up-regulated reporters in triplicate samples from 3 independent experiments (aec) of 12b-treated macrophages

compared to un-treated cells (medium). (C) Microarray data were validated for selected target genes by qRT-PCR where the levels of the gene of interest were normalized to the

level of GAPDH and expressed as a fold change for 12b (and 19o) with respect to the medium control. Data shown are means from three biological replicates.

J. Rzepecka et al. / Journal of Autoimmunity 60 (2015) 59e7364



Fig. 3. SMA-12b inhibits IL-1b production. (A) BmMs from BALB/c mice pre-treated with the indicated concentration (mg/ml) of 12b or medium alone were then stimulated with LPS

(1 mg/ml) and IL-1b release determined by ELISA. Data presented are the mean values ± SD for replicate cultures (medium, n ¼ 7; none, n ¼ 6; 12b(0.2), n ¼ 4; 12b(1), n ¼ 8 and

12b(5), n ¼ 8) from 3 individual mice (except for 12b(0.2) cultures where data were only obtained for 2 mice). (B) DLN cells from naive DBA/1 mice or DBA/1 mice undergoing CIA

treated with either PBS or 12b were stimulated with ConA (1 mg/ml) and levels of released IL-1b determined. Data shown are the mean values for individual mice (naive, n ¼ 3; PBS,

n ¼ 7; 12b, n ¼ 6). (C) Joint sections from individual mice representative of each treatment group were assessed for histopathology (10� magnification; H & E and Trichrome

staining; scale bars 100 mm, no zoom) and also IL-1b expression by immunofluorescence (magnification 20�: scale bars 200 mm and scan zoom 0.7; 40�: scale bars 100 mm and scan

zoom 0.7 for naive and 1.5 for PBS and 12b). Isotype controls were negative and the strong IL-1b staining in the naïve (40�) image reflects high production of IL-1b (31kD) by

keratinocytes in the portion of skin in the section included as an additional control for validation of the antibody specificity. Parameters of histopathology were scored (D) with the

data presented as mean values from individual mice ± SEM (n ¼ 14 for PBS-; n ¼ 12 for 12b-treatment groups). *p < 0.05; **p < 0.01 and ***p < 0.001.



Fig. 4. SMA-12b inhibits TLR-induced NFkB activation in macrophages. (A) BmMs were pre-incubated for 18 h with SMAs (5 mg/ml) and then stimulated with 100 ng/ml LPS, 10 ng/ml

BLP or 1 mM CpG for 1 h. “None” represents no SMA pre-treatment and “medium”, no PAMP treatment. p65 activation was measured by the TransAM assay and data presented are

mean values ± SEM from three independent experiments, *p < 0.05; **p < 0.01 (B) BmM from CIA mice treated with PBS or 12b were incubated with medium or LPS (100 ng/ml) and

assessed for expression of pp65 (green) against a DAPI (blue) nuclear counterstain. Histograms are presented showing gating of pp65þ cells relative to the isotype control; the

increase in pp65 expression by LPS-treated cells relative to that in unstimulated bmMs and the levels of pp65 expression in LPS-stimulated bmMs derived from CIA mice exposed to

PBS or 12b (>200 individual cells/group) were analysed. Data are then presented as the mean values ± SD, n ¼ 3, of the difference in mean fluorescence integral (DMFI) of LPS-

stimulated cells relative to their medium controls. IPA prediction of 12b-mediated down-regulation of RelA/NFkB1 (C) and up-regulation of NRF2 NFE2L2; (D) signalling based on

expression of their target genes by microarray analysis is shown. Genes down-regulated or up-regulated by 12b are shown in green and red, respectively.



Hypoxia-Inducible Factors (HIFs) has been shown to be arthrito-

genic [21]. It was therefore decided to further explore, including a

comparison with SMA-11a, whether SMA-12b inversely targeted

key NF-kB- (IL-1b, inflammasome genes) and NRF2- (HMOX1, GCLC

and GCLM) dependent genes that may play roles in counter-

regulating inflammation in RA.

3.5. SMA-12b modulates transcript levels of IL-1b/inflammasome

and NRF2-controlled genes

Inflammasomes are closely associated with IL-1b as they form

molecular platforms that drive the proteolytic cleavage by caspase-

1, which results in release of bioactive IL-1b. Indeed, ROS-

dependent NF-kB signalling via the NLRP3 inflammasome has

been implicated in IL-1b-mediated pathogenesis in RA [22,23]. It

was therefore interesting that in addition to IL-1b being the gene

most repressed by 12b, the SMA down-regulated, albeit not as

profoundly, levels of genes encoding several inflammasome mol-

ecules, including NLRP3 (�1.51 vs unstimulated) and NLRC4 (�1.69

vs unstimulated) (Supplementary Tables 1 and 2). We therefore

further explored the modulation of IL-1b and these inflammasome

genes in macrophages by SMA-12b and also, for comparison, the

effects of 11a (both at 5 mg/ml; Fig. 5AeC). This confirmed that 12b

downregulated steady-state expression of IL-1b and NLRC4 mRNA

within 4 h but this was not the case for 11a. Moreover, whilst both

SMAs downregulated NLRP3 expression within 4 h, significant

suppression of NLRP3 mRNAwas observed at 2 h with 12b, but not

with 11a. We next investigated the effects of 11a and 12b on the

mRNA levels of IL-1b and the inflammasome genes after simulta-

neous exposure of the cells to a pro-inflammatory stimulus, in this

case, LPS (Fig. 5DeF). Under these pro-inflammatory conditions,

12b, but not 11a, also suppressed LPS-mediated upregulation of IL-

1b and NLRP3. Although, 12b did not significantly inhibit the

transient LPS-mediated upregulation of NLRC4, levels of this

inflammasome component were reduced below basal levels within

4 h under all LPS-stimulated conditions tested. These differential

effects may reflect that, for example, unlike NLRP3 that requires

additional pro-inflammatory signals including bacterial TLR ligands

Fig. 5. SMA-12b downregulates genes associated with production of bioactive IL-1b in bmMs. The effect of exposure of bmMs to SMAs-11a and -12b (both at 5 mg/ml) over 4 h on the

steady state- and LPS-induced mRNA levels of IL-1b (A & D); NLRP3 (B & E) and NLRC4 (C & F) as assessed by qRT-PCR where the levels of the gene of interest were normalized to the

level of GAPDH and expressed as a fold change with respect to the medium control. Data are presented as the means ± SEM of the mean of replicate values pooled from 3 individual

experiments. *p < 0.05; **p < 0.01 and ***p < 0.001. Black* represent significance between 12b (or 11a) and control whereas grey* represents significant differences between 12b-

and 11a-treated cells.
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for full induction, NLRC4 exhibits high levels of expression under

steady-state conditions, and hence exposure to LPS may induce

confounding effects in this case [24].

Likewise, as the IPA analysis revealed that SMA-12b increased

levels of many antioxidant genes controlled by the transcription

factor NRF2 (Fig. 6A), we assessed whether 12b and 11a (both at

5 mg/ml) differentially modulated the expression levels of HMOX1

(the most up-regulated gene from the antioxidant family) and two

genes, GCLC and GCLM that are crucially involved in biosynthesis of

glutathione, under steady-state and pro-inflammatory (LPS-TLR4

signalling) conditions. Consistent with themicroarray data,12b, but

not 11a, was able to strongly upregulate expression of all 3 genes

between 2 and 4 h (Fig. 6BeD). By contrast, LPS acted to down-

regulate HMOX1, GCLC and GCLM expression: however, this was

prevented by 12b and indeed, even in the presence of LPS, this SMA,

but not 11a, was able to induce their expression (Fig. 6EeG).

3.6. SMA-12b suppresses IL-1b and inflammasome genes via NRF2

NRF2 and NF-kB have been reported to counter-regulate gene

induction and consistent with this, 12b downregulated NF-kB-

regulated IL-1b and inflammasome genes whilst up-regulating

expression of NRF2-controlled anti-oxidant genes (Figs. 5 and 6).

We therefore hypothesised that deficiency in NRF2 could inhibit

the ability of 12b to dampen-down genes classically known to

depend on NFkB e.g. IL-1b. As predicted, while 12b significantly

down-regulated the levels of IL-1b mRNA in a dose-dependent

manner in bmM from WT mice, this was not apparent in NRF2

KO macrophages (Fig. 7A). Similarly, the 12b-induced down-

regulation in the levels of NLRP3 and NLRC4 (Fig. 7B and C) was

shown to be NRF2-dependent, as there was no significant differ-

ences in the mRNA levels of these genes between control and 12b-

treated bmM from NRF2 KO mice, although it should be noted that

NRF2 deficiency itself appeared to impact on the steady-state levels

of NLRP3 and particularly, perhaps mimicking the effects of LPS,

NLRC4 expression. NRF2-deficiency was validated by the suppres-

sion of 12b-mediated induction of GCLC observed in WT bmM

(Fig. 7D). Of note, the counter-regulation of inflammasome and

anti-oxidant genes that we are witnessing appears to be associated

with SMA-12b protection against CIA as analysis showed increased

levels of mRNA for GCLC (129%) and HMOX (121%) yet reduced

levels of NLRP3 (74%) in splenocytes from 12b-treated relative to

PBS-treated mice with CIA.

We next investigated the ability of 12b to suppress LPS-

production of IL-1b in NRF2-deficient bmM and found it to be

lost (Fig. 8A). By contrast, 12b-mediated inhibition of LPS-

stimulated IL-12p40 or IL-6 production remained intact despite

NRF2 deficiency (Fig. 8A & results not shown). This latter result

presumably reflects that 12b, similarly to the parent molecule ES-

62 and SMA-11a [9], downregulates steady-state levels of MyD88

Fig. 6. SMA-12b upregulates mRNA levels of anti-oxidant genes that are NRF2 targets. (A) IPA prediction of 12b-mediated activation of NRF2 cytoprotective/anti-oxidant pathways

based on 12b-modulation of expression of NRF2 target genes as assessed by microarray analysis. The effect of exposure of bmMs to SMAs-11a and -12b over 4 h (both at 5 mg/ml) on

the steady state- and LPS-induced mRNA levels of HMOX1 (B & E); GCLC (C & F) and GCLM (D & G) as assessed by qRT-PCR where the levels of the gene of interest were normalized

to the level of GAPDH and expressed as a fold change with respect to the medium control. Data are presented as the means ± SEM of values pooled from 3 individual experiments.

*p < 0.05; **p < 0.01 and ***p < 0.001. Black* represent significance between 12b (or 11a) and control whereas grey* represents significant differences between 12b- and 11a-treated

cells.
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expression in bmM (Fig. 8B; for 12b, 67.68 ± 8.34% of medium

alone levels where n ¼ 3 and p < 0.05). By contrast, we have

recently reported that LPS upregulates MyD88 expression in

bmMs [9], and in two further independent experiments we have

shown that pre-exposure to 12b also resulted in downregulation

of MyD88 expression in LPS-treated bmM (Fig. 8C and D). In

addition to being essential for TLR4-mediated IL-12p40 production

by bmMs [29], MyD88 is required for LPS-induction of IL-1b as

well as for the NF-kB-mediated induction of NLRP3 and IL-1b by

TLRs important in CIA/RA, such as TLR2 [30e32] and IL-1R [33,34]

that do not couple via the TRIF, MyD88-independent pathway

[35]: thus, we investigated whether 12b-mediated inhibition of IL-

1b production was also associated with downregulation of MyD88

signalling. This revealed that although steady-state levels of IL-1b

mRNA (Fig. 8E) are partially reduced by MyD88 deficiency, expo-

sure to 12b resulted in a further reduction in levels. Steady-state

levels of NLRP3, NLRC4, GCLC and HMOX1 expression and their

modulation by 12b were predominantly independent of MyD88

expression (Fig. 8E and results not shown). Thus with respect to

IL-1b, these data suggest that SMA 12b acts to inhibit pathogenic

production of this cytokine by a dual-pronged mechanism,

involving downregulation of MyD88 in addition to upregulation of

NRF2 activation and converging at the level of the inflammasome

(Fig. 8F).

4. Discussion

ES-62 is an immunomodulatory molecule secreted by the filarial

nematode, A. viteae that exerts anti-inflammatory effects on both

the innate and adaptive arms of the immune response to promote

parasite survival and, as a consequence, exhibits therapeutic po-

tential in a number of autoimmune and allergic inflammatory

disorders [36]. However, due to being a large and potentially

immunogenic protein, ES-62 is in reality not suitable for develop-

ment as a therapy. Nevertheless, its anti-inflammatory activity is

due to post-translational decoration with PC, allowing us to

recently construct a library of drug-like compounds based around

this active PC moiety as a potential starting point in the develop-

ment of novel anti-inflammatory drugs as therapies in autoimmune

inflammation.

The sulfone SMA-12b was selected for screening for anti-

inflammatory actions in the mouse CIA model on the basis that

its ability to inhibit PAMP-induced IL-12p40 and to a lesser degree

IL-6 production should dampen down subsequent Th1/Th17

polarisation [9], a phenotype associated with pathology in this

model [7,37]. This strategy has recently provided proof of concept

with respect to the protective actions of the related SMA, 11a [9].

Like ES-62 and 11a, SMA-12bwas found to afford protection against

CIA in both prophylactic and therapeutic studies but detailed

analysis of the former revealed that even allowing for 12b's reduced

effectiveness at lowering IL-6 responses, such protection clearly did

not appear to reflect the significant suppression of Th1/Th17 re-

sponses that had been noted with 11a.

As an approach to understanding how SMA-12b might be pro-

tecting against CIA in the light of its limited effects on Th1/Th17

responses, we turned to microarray analysis employing bmMs. This

indicated that 12b was able to suppress IL-1b and associated

inflammasome gene expression and also production of IL-1b

Fig. 7. SMA-12b-mediated changes in gene expression are abrogated in NRF2-deficient bmMs. The effect of exposure (4 h) of bmMs from wild type and NRF2-deficient (NRF2 KO)

C57BL/6 mice to SMA-12b on the mRNA levels of IL-1b (A; n ¼ 5); NLRP3 (B; n ¼ 5); NLRC4 (C; n ¼ 6) and GCLC (D; n ¼ 6) as assessed by qRT-PCR. The levels of the gene of interest

were normalized to GAPDH and expressed as a fold change with respect to the relevant wild type medium control. Data are presented as the means ± SEM, where n represents

matched replicate cultures of individual wild type and KO mice. *p < 0.05; **p < 0.01 and ***p < 0.001 where significance is for WT SMA treatments relative to the wild type “none”

condition as indicated by black* and grey* indicates significance between “none” WT and “none” KO samples.
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protein. Moreover, analysis of the joints of CIA mice successfully

treated with SMA-12b indicated a reduction in the level of IL-1b-

expressing cells in the synovium. This represents a key finding

given the importance of this cytokine in induction of pathology in

both CIA [38] and RA [39] as evidenced by the effectiveness of IL-1-

targeting biologics such as anakinra in suppressing the infiltration

of inflammatory cells and joint damage in RA patients [33]. Sub-

sequent IPA for Transcription factors (TF) helped provide an

explanation for the effect on IL-1b by revealing that NF-kB signal-

ling, which can promote both IL-1b production and effector re-

sponses and has been implicated in joint pathogenesis in CIA [20],

was likely to be inhibited by SMA-12b and this was confirmed by

functional analysis, both in vitro and ex vivo. At the same time, IPA

indicated activation of NRF2; a key component of the response to

oxidative stress [40,41]. This result was consistent with the obser-

vation that the two TFs are known to counter-regulate each other

[26,27,42] and indeed NRF2�/� mice were subsequently employed

to show the importance of this TF to the inhibitory effects on pro-

duction of the NF-kB target, IL-1b.

A key question is how SMA-12b is able to promote NRF2 acti-

vation. Like 12b, SMA-11a can cause inhibition of NF-kB [9] but it

does not appear to activate NRF2 (Fig. 6). The major difference

between 11a and 12b is that the latter is a quaternary ammonium

salt as opposed to a tertiary amine, a structural difference that

would be expected to have a substantial influence both on binding

to receptors (through differences in hydrogen bonding ability and

steric bulk) and on access to cells and cellular compartments (12b is

permanently positively charged). The 4-substituent on the benzene

ring (bromo in 11a and methyl in 12b) is also significantly different,

particularly in terms of size, and might also influence receptor

binding. However the most plausible explanation for the difference

in effect on NRF2 is that 12b but not 11a is likely to be converted by

b-elimination within the cell to a vinyl sulfone [43], a structure

recently shown to cause activation of NRF2 [44]. The 12b-derived

vinyl sulfone, as an electrophile, could in theory interact with thiol-

groups on cysteine residues of the NRF2 repressor protein, Keap-1,

and based on recent ideas reported in the literature [45] this could

cause a conformational change that would allow release of NRF2,

and translocation to the nucleus to drive expression of target genes

such as HMOX1 which, like NRF2 itself [28], has been shown to be

protective against inflammatory arthritis. Indeed, like 12b, HMOX1

appears to achieve protection in the CIA model by reducing each of

NF-kB activation, production of IL-1b by synovial cells, and synovial

fibroblast hyperplasia (pannus formation) [46]. Further support for

12b mediating activation of NRF2 by interacting with Keap1 is

provided by the recent report of a crystal structure of the Btb

domain of Keap1 with a triterpenoid antagonist bound through a

sulfide link at residue C151 (Protein Data Bank 4cxt) [47]. Thus,

future work designed to fully optimize the structure of SMA-12b in

Fig. 8. SMA-12b-mediated suppression IL-1b is abrogated in NRF2 KO but not MyD88 KO

bmMs. (A) BmMs from wild type and NRF2-deficient (WT and NRF2 KO) C57BL/6 mice

were incubated with 12b (18 h) prior to exposure to medium (“None”) or LPS (100 ng/

ml) for a further 24 h and IL-b and IL-12p40 release measured by ELISA. Data presented

are the % responses (normalised to the wild type LPS response; 100%) and the

means ± SEM (of mean values of triplicate cultures) frommatched individual wild type

and NRF2 KO mice (IL-1b: n ¼ 3 and IL-12p40; n ¼ 6). Western blot analysis of MyD88

expression in BALB/c bmMs (B) treated with ES-62 (2 mg/ml) or 12b (1 mg/ml) for 20 h.

bmMs pretreated with 12b (2 h) were then stimulated with LPS overnight and MyD88

expression assessed by western blotting (C) or flow cytometry (D; black ¼ LPS;

grey ¼ LPS þ SMA-12b). The effect of exposure (4 h) of bmMs from wild type and

MyD88-deficient (MyD88 KO) C57BL/6 mice to 12b (E) on the mRNA levels of IL-1b

(n ¼ 4); NLRP3 (n ¼ 3) and GCLC (n ¼ 6) as assessed by qRT-PCR. The levels of the

genes were normalized to GAPDH and expressed as a fold change with respect to the

relevant WT medium control. Data (A & E) are presented as the means ± SEM, where n

represents matched cultures from individual wild type and KO mice. *p < 0.05;

**p < 0.01 and ***p < 0.001 where for black *, significance is relative to the corre-

sponding wild type control and for grey**, significance is relative to the corresponding

KO control. (F) Model of SMA-12b action in CIA: 12b protection predominantly reflects

activation of NRF2 signalling to counteract MyD88-integrated inflammasome-

mediated IL-1b production whilst 11a preferentially targets MyD88-driven induction

of the IL-17 inflammatory axis.
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the drive towards the clinic will have particular focus on the role of

vinyl sulfone conversion.

In addition to inducing NRF2-dependent inhibition of bioactive

IL-1b production, 12b (like ES-62 and 11a but not 19o [9]) down-

regulates MyD88 expression: as this key TLR/IL-1R signal trans-

ducer is also critical for IL-1R (and for DAMP/TLR) coupling to the

inflammasome [48], such downregulation amplifies suppression of

IL-1b and associated transduction of its pathogenic effector func-

tions (Fig. 8F). Moreover, by inducing TLR/IL-1R-

hyporesponsiveness, MyD88 downregulation not only also pro-

vides a molecular mechanism for the observed 12b-mediated

NRF2-independent inhibition of TLR-mediated IL-6 and IL-12 pro-

duction but potentially impacts on IL-1R/TLR driven-MyD88-

ARNO-Arf6 signalling that plays a key role in vascular leakage and

consequent induction of inflammatory arthritis and joint damage

[49e51].

Although 12b does not suppress IFNg responses in CIA to the

extent that they are inhibited by ES-62 and 11a, its ability to sup-

press expression of downstream effectors of IFNg signalling such as

IRFs (as evidenced by microarray analysis) may reflect MyD88

downregulation as this adaptor molecule appears to play a critical

role in transducing effector immune responses in IFNg-activated

macrophages [52]. Similarly, MyD88-signalling in Meningococcal

sepsis has been associatedwith high serum levels of C5a [53], a pro-

inflammatory mediator that enhances TLR4/MyD88-mediated IL-

17F production by macrophages [54] and is pathogenic in

arthritis [55e57] due to its promotion of proinflammatory cell

migration [58] and osteoclastogenesis, particularly in synergism

with IL-1b [59]. Moreover, as osteoclasts, the cells responsible for

bone resorption in chronically inflamed joints, can arise from the

same progenitors as macrophages, it is intriguing in the context of

RA that microarray analysis suggests that 12b can downregulate the

transcription factor NFAT-C1, which has been proposed to be a

master regulator of the osteoclast transcriptome [60] and can be

induced in a TLR2/MyD88-dependent manner [61]. Thus, given the

important role of spontaneous TLR2 signalling in synovial inflam-

mation in RA [30] and reports that whilst TLR4 can preferentially

couple to IL-6/IL-17 signalling, TLR2 signalling primarily results in

IL-1b production in mice exposed to Mycoplasma arthritidis

mitogen, a superantigen that induces inflammation resulting in

arthritis, skin necrosis and shock [62], our microarray findings that

TLR2, IL-1b and C5aR all appear to be targets of 12b in macrophages

may further explain the differential protective effects of 12b and

11a in CIA.

Finally, further analysis of the microarray data reveals that the

expression of a large number of genes apparently not related to

inflammation and immunity are also modulated by SMA-12b.

Amongst the 30 most down-regulated genes are: (i) Nr4al (NUR77;

7.75-fold decrease), a member of the steroid-thyroid hormone-

retinoid receptor superfamily that acts as a nuclear transcription

factor/orphan nuclear receptor and is currently being exploredwith

respect to roles in cancer [63] and insulin resistance leading to

type-2 diabetes [64]; (ii) Gpr65 (5.59-fold decrease), which acts as a

receptor for psychosine [65]; (iii) x99383 (4.34-fold decrease), an

RNA-specific editase of glutamate receptors [66]; (iv) Nuak1 (3.4-

fold decrease), a serine/threonine protein kinase involved in a

number of different biological processes relating to cell adhesion,

senescence and proliferation [67] and (v) Ccrn4l (3.17-fold

decrease), which intriguingly has a suggested role as a circadian

clock effector (Nocturnin) [68] that promotes obesity [68,69].

Amongst the 30 most-upregulated genes are: (i) Ednrb (14.37-fold

increase), the endothelin receptor type B [70]; (ii) Slc16a9 (12.9-

fold increase), solute carrier 16, member 9, a monocarboxylic acid

transporter [71]; (iii) RragD (6.42-fold increase), a Rag-like GTPase

[72]; (iv) Ppap2b (6.09-fold increase), a plasma membrane-located

phosphatidic acid phosphatase [73] and (v) Ext1 (5.94-fold in-

crease), an ER-located glycosyltransferase involved in heparin sul-

fate biosynthesis [74]. Clearly, genes covering a wide range of

functions (or possible functions) are being targeted and it is un-

certain whether changes in expression of any of these genes or

other non-immunity/inflammation genes affected by SMA-12b

contribute to its protective effects against CIA. However, given the

recent focus on how insulin resistance and consequent obesity

[75,76] and circadian rhythms [77] impact on autoimmune in-

flammatory diseases such as RA, and that NRF2-dependent path-

ways act to protect against the dysfunction of metabolic pathways

and biological clocks that exacerbates inflammatory diseases

[78e80], it would be of interest in the future to proceed to deter-

minewhether experimentally knocking out/down or increasing the

expression of such individual genes most affected by 12b offers any

protection against disease in mouse models of RA and other in-

flammatory disorders.

5. Conclusion

In spite of initial therapeutic success, IL-1-targeting biologics

were superseded by TNF-blockers in the treatment of RA, although

lately there has been a resurgence of interest in such reagents [33].

This reflects recent proposals that IL-1 and IL-6 rather than TNF

may be critical in the transition from acute to chronic disease [81]

and, perhaps consistent with this, that patients refractory to TNF

therapy respond better to IL-1-modulation rather than alternative

TNF treatments [11]. This raises the possibility of using SMAs, such

as 11a and 12b with complementary inflammatory targets in a

stratified/personalized manner, taking into account both the dif-

ferential kinetics of particular cytokines depending on the stage of

the disease and also their site of action (such as the joint). For

example, whilst IL-17 is secreted in high levels during the initiation

phase of arthritis, this production is much reduced at the chronic

stage [82]. Perhaps particularly pertinent to this suggestion, recent

data suggest that certain synovial phenotypes are associated with

responsiveness to biologic therapies: thus, good responses to anti-

TNFa correlated with an IL-1-associated myeloid synovial signature

whereas lymphoid synovial phenotypes, reflective of IL-17-driven

pathogenesis, were less responsive to TNF blocking [83]. At the

same time, targeting of C5a/C5aR [55e57] and TLR2 [32] has shown

promise in experimental models of arthritis and thus the increasing

evidence of crosstalk between complement, TLR and IL-1R signal-

ling in inflammatory pathologies such as RA, for example by pro-

moting cellular migration and osteoclastogenesis [59] makes SMAs

that potentially target all three convergent pathways an attractive

proposition for development of novel treatments for RA. Encour-

agingly, therefore, in consideration of the route to the clinic, our

early preliminary data suggest that ES-62 and 11a but not 12b can

inhibit LPS-stimulated IL-6 production from PBMC fromRA patients

and also that (at least) ES-62 can similarly reduce IL-17 production.

Moreover, SMA-12b modulates expression of a number of genes in

human mast cells similarly to that witnessed with mouse macro-

phages (unpublished data). Furthermore, and in line with the

observed lack of toxicity of 11a and 12b in vitro, preliminary ADMET

data show no hERG liability or cytochrome p450 enzyme inhibition

associated with these compounds (Supplementary Fig. 1 and data

not shown). Finally, the recent dramatic success of IL-1-blocking

therapies in a wide range of autoinflammatory syndromes in-

dicates that there may be more widespread application of such

complementary drugs in a diverse range of these previously

intractable and debilitating conditions, as well as to more common

IL-1-mediated disorders such as post-infarction heart failure

[33,84,85].
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