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Cocrystals have been increasingly recognized as an attractive alternative delivery form for solid drug

products. In this work, Raman spectroscopy, X-ray powder diffraction/X-ray crystallography, and

differential scanning calorimetry have been used to study the phenomenon of cocrystal formation in

stoichiometric mixtures of citric acid with paracetamol. Raman spectroscopy was particularly useful

for the characterization of the products and was used to determine the nature of the interactions in the

cocrystals. It was observed that little change in the vibrational modes associated with the phenyl groups

of the respective reactants took place upon cocrystal formation but changes in intensities of the

vibrational modes associated with the amide and the carboxylic acid groups were observed upon

cocrystal formation. Several new vibrational bands were identified in the cocrystal which were not

manifest in the raw material and could be used as diagnostic features of cocrystal formation. An

understanding of the effects of cocrystal formation on the vibrational modes was obtained by the

complete assignment of the spectra of the starting materials and of the cocrystal component. The results

show that the cocrystals was obtained in a 2 : 1 molar ratio of paracetamol to citric acid. The

asymmetric unit of the crystal contains two paracetamol molecules hydrogen-bonded to the citric acid;

one of these acts as a phenolic-OH hydrogen bond donor to the carbonyl of a carboxylic acid arm of

citric acid. In contrast, the other phenolic-OH acts as a hydrogen bond acceptor from the quaternary

C–OH of citric acid.
1. Introduction

Pharmaceutical cocrystals are being investigated extensively as

they offer a variety of solutions to problems encountered in the

use of solid active pharmaceutical ingredients.1 The cocrystal

requires some partner molecule called the cocrystal former that

does not hamper the pharmaceutical activity of the API but

improves its physical, chemical or biological properties, and is

safe to use for human consumption.2 Cocrystallizing two or more

different molecules requires understanding of complementary

intermolecular interactions which can preferentially result in

heteromeric interactions over their homomeric counterparts.3,4

The cocrystals are a homogeneous phase of stoichiometric

composition and not a mixture of pure component crystalline

phases. Hydrogen bonds are the basis of molecular recognition

phenomena in pharmaceutical systems; moreover, they are key

elements in the design of molecular assemblies and super-

molecules in the solid states. In the crystalline state, hydrogen

bonds are accountable for the creation of families of molecular

networks with the same molecular components or with different

molecular components (multiple component crystals or cocrys-

tals).5–15 The cocrystals are stabilized through a variety of

different intermolecular interactions including hydrogen bonds,

aromatic p-stacking, and van der Waals forces, and unlike salt

formation, no proton transfer occurs between the API and the
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guest molecule.16 Slow evaporation and grinding are the most

commonly used techniques for producing cocrystals.17 The citric

acid molecule has two distinct hydrogen-bonding functions,

namely the hydroxyl and acid groups. In addition, the absence of

any aromatic functions offers the opportunity to probe directly

the aromatic functions of aromatic amide in the cocrystal: par-

acetamol.

Raman spectroscopy probes the effect of crystal structure on

bond vibrational energies and is potentially able to selectively

distinguish between the polymorphs of a given API. Further-

more, the measurements are noninvasive, nondestructive, and

rapid (data acquisition within seconds rather than minutes),

which make Raman spectroscopy ideal for automated high-

throughput analytical systems. Since Raman spectroscopy and

XRD are complementary techniques at the molecular level, in

combination they can provide an increased understanding of

solid-state phenomena. Karki et al. have reported an anhydrous

cocrystal of citric acid–caffeine and hydrated cocrystal of citric

acid–theophylline.18 Also, Myz et al. have studied a 1 : 1 citric

acid–meloxicam cocrystal.19 A number of paracetamol cocrystals

have been reported to date;20–22 Lemmerer et al. have studied

cocrystal of citric acid and nicotinamide formation of four

hydrogen bonding heterosynthons in one cocrystal;23 Schantz

et al. have studied citric acid anhydrous and paracetamol,

prepared as crystalline physical mixtures using solid-state

NMR,24 but a systematic synthesis and vibrational spectroscopy

characterization of the citric acid–paracetamol (CIT–Pa) coc-

rystal have not to our knowledge been studied hitherto.

The goals of this work were to: (1) describe the novel structural

studies of new cocrystals, (2) determine the vibrational modes
CrystEngComm, 2011, 13, 1877–1884 | 1877
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that were most affected by formation and assembly of the

supramolecular synthons, and (3) determine the magnitude of

perturbation of the vibrational frequencies of the involved

modes. These goals necessitated the assignment of most of the

observed spectral features in the vibrational bands of the citric

acid and reactant, and tracking the energies of these bands in

a stoichiometric mixture. The spectroscopic results were sup-

ported by single-crystal X-ray diffraction, X-ray powder

diffraction and differential scanning calorimetry studies of the

same materials (Fig. 1).
2. Experimental section

2.1. Materials

Citric acid (CIT) and paracetamol [monoclinic type 1 (PA)] were

purchased from Sigma Aldrich at >98%. These materials were

used as received. The solvent (ethanol) was HPLC grade and

obtained from Reidel de Haen or Fisher scientific.

Cocrystal formation was identified initially using Raman

spectroscopy and the difference in melting points between the

pure components and the product; the co-crystalline structures

were confirmed by X-ray powder diffraction and single crystal

X-ray diffraction.
2.2. Cocrystallization via slow evaporation

Anhydrous citric acid (100 mg, 0.520 mmol) was mixed with

paracetamol (78.68 mg, 0.520 mmol) in stoichiometric ratio

(1 : 1) and was dissolved in 10 ml ethanol with slight warming

until dissolution was complete. The solution was then allowed to

slowly evaporate at room temperature (22–23 �C). Then the solid

phase was harvested by vacuum filtration and dried at room

temperature under reduced pressure (25 mmHg) on Whatman

50 filter paper (Maidstone, England) for 30 minutes to remove

loosely bound solvent. The solid phases were confirmed to be

CIT:Pa cocrystal by X-ray powder diffraction, Raman spec-

troscopy, and differential scanning calorimetry.
2.3. Raman spectroscopy

Raman spectra of the co-crystal samples and those of the single

components were obtained using a Via Raman microscope

(Renishaw plc.) with 785 nm stabilized diode laser excitation.

The laser power at the sample was approximately 25 mW. A 50�
objective lens was used giving a laser spot diameter (footprint) of

about 2 mm at the sample. Spectra were obtained for a 10 s

exposure of the CCD detector in the wavenumber region 3600–

50 cm�1 using the extended scanning mode of the instrument.
Fig. 1 Molecular structure of (a) paracetamol and (b) citric acid.

1878 | CrystEngComm, 2011, 13, 1877–1884
2.4. Powder X-ray diffraction

Powder diffraction patterns of solid phases were recorded with

Bruker D8 diffractometer in Bragg–Brentano q–q geometry with

Cu Ka1,2 radiation (1.5418 �A) using a secondary curved graphite

monochromator. The X-ray tube was operated at 40 kV, 30 mA.

Samples were scanned in a vertical Bragg–Brentano (q/2q)

geometry (reflection mode) from 5� to 40� (2q) using a 0.005� step

width and a 1.5 s count time at each step. The receiving slit was 1�

and the scatter slit 0.2�. The solid phase was analyzed by X-ray

powder diffraction and results were compared to the diffraction

patterns of each pure phase.
2.5. Differential scanning calorimetry (DSC)

The thermal behavior of the solid phases was studied using DSC;

the DSC profiles were generated in the range of �50 to 160 �C

using a TA Q2000 DSC instrument with an RGS90 cooling unit.

Temperature calibration was performed using an indium metal

standard supplied with the instrument at the appropriate heating

rate of 10 �C min�1. Accurately weighed samples (1–2 mg) were

placed in Tzero aluminium pans using a similar empty pan as

reference. The data were collected in triplicate for each sample

and were analyzed using a TA Instruments Universal Analysis

2000 version 4.3A software.
2.6. Single-crystal X-ray diffraction

Single crystal data were collected on a Bruker Apex II CCD

diffractometer with Mo Ka radiation (0.71073 �A). The structure

was solved by direct methods with SHELXS-97 and refined by

a full-matrix least squares analysis on F2 with anisotropic

displacement parameters for non-H atoms in SHELXL-97.
3. Characterization of the cocrystals

3.1. X-Ray powder diffraction (PXRD)

PXRD was used to identify crystalline phases and to qualita-

tively examine changes in crystallinity. The PXRD diffracto-

grams of the citric acid, paracetamol and of the products from

cocrystallization via slow evaporation from ethanol are
Fig. 2 Powder X-ray diffraction pattern of the CIT–Pa system (a) citric

acid, (b) paracetamol and (c) the cocrystal.

This journal is ª The Royal Society of Chemistry 2011
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compared in Fig. 2 and 3. The formation to the cocrystalline

phase is indicated by the diffraction peaks at positions 2q ¼ 7.5�,

17.5� and 22.7�, furthermore, some characteristic diffraction

peaks of the raw material have disappeared in the PXRD dif-

fractograms of the product via slow evaporation. Low intensity

broad peaks around 13.7�, 14�, 18.1� and 26.5�, corresponding to

CIT and Pa, suggest the presence of unreacted crystalline mate-

rial. In addition, the XRD patterns confirm the formation of

a new complex phase.
Fig. 4 DSC curve of the citric acid, paracetamol and cocrystal product.
3.2. Differential scanning calorimetry (DSC)

The DSC of the cocrystallization product from slow evaporation

is presented in Fig. 4. The presence of unreacted component

would cause a decrease in the melting point. The DSC traces were

observed and the results are presented in Fig. 4. The results show

a single endothermic event at 154.5 �C for pure citric acid and

pure paracetamol has an endothermic event at 170.5 �C.

It is interesting that the cocrystal product also shows two

endotherms at 72.05 and 94.10 �C, separated by a broad exo-

therm. This can be interpreted as a transition between enantio-

tropic polymorphic forms of the cocrystal. While such behaviour

is relatively uncommon, further study of this system was beyond

the scope of this project.
Fig. 5 Raman spectra in the 3150–2850 cm�1 region of (A) citric acid,

(B) paracetamol and (C) CIT–Pa cocrystal prepared from solution.
3.3. Raman spectroscopic characterisation

Since cocrystal formation is the result of interactions between

different molecular components that also exist in the single-

component crystalline states, vibrational spectroscopy is an

excellent technique to characterize and study cocrystallization.

Differences in hydrogen bond interactions of the CIT–Pa coc-

rystals lead to significant changes in the Raman spectra as shown

in Fig. 5 and 6 and the vibrational wavenumbers and assignments

are listed in Table 1. Raman spectroscopic data were utilized

primarily to evaluate whether the complex is a simple physical

mixture or component of molecular ions. Anhydrous citric acid,

H3C6H5O7, is a tribasic acid with an OH group attached to the

middle carbon atom, whereas paracetamol contains a benzene

ring core, substituted by one hydroxyl group and the nitrogen

atom of an acetamide group in the para-position. There are two

activating groups that make the benzene ring highly reactive
Fig. 3 Powder X-ray diffraction pattern of the CIT–Pa system (a) citric

acid, (b) paracetamol and (c) the cocrystal.

This journal is ª The Royal Society of Chemistry 2011
toward electrophilic aromatic substitution. Paracetamol has

three crystalline polymorphs;25,26 monoclinic type 1 is the ther-

modynamically stable polymorph which has characteristic peaks

at 1325 and 1234 cm�127 attributed to the amide III band (C–N

stretch/C–N–aromatic stretch/C–N–H bend) and nC–O,

sipHCC, nCC, sCCC, respectively.

The Raman spectrum of pure CIT (Fig. 5) starting material

shows peaks at 3001, 2964, 2956 and 2949 cm�1. Through coc-

rystal formation of citric acid with paracetamol the bands at 3001

and 2964 were shifted to 2998 and 2978 cm�1, respectively,

while the peaks at 2956 and 2949 cm�1 appear as a broad band at

2953 cm�1.
Fig. 6 Raman spectra in the 1750–1350 cm�1 region of (a) citric acid, (b)

paracetamol and (c) CIT–Pa cocrystal prepared from solution.

CrystEngComm, 2011, 13, 1877–1884 | 1879
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Table 1 Assignments of major bands of Raman spectra of citric acid paracetamol and their cocrystal productsa

Citric acid solid (CIT) CIT : Pa Paracetamol (Pa) Assignment29�31

2993w 2998vw —
2979w * —
2956w 2953w —
2949w —
— * 2931w Asymmetric CH3 stretch
1734s 1718vw — n(COOH)
— — —
1691vs 1668 sh — (C]O stretch)
— 1654 broad 1644vs Amide I band(C]O stretch)
1630 m broad —
— 1614m 1618vs nCC, sCCC, sip

HNC

— 1609vs nCC, sip
HNC, sip

HCC

— 1547 broad 1555s sipHNC, nCC, nasCNC, sipHCC
— 1508 broad 1514w sip

HCC, sCCC, nCC

— 1505w Aryl C–H, C–H symmetric bends
1466 m broad 1453 broad CH2 sciss

1445w sas
CH3

1430 m broad — C–OH def.
1387s — — CH2 scissors
— 1375 broad 1367s ssCH3

1346w * — O–CO bending of COOH
— 1321s 1325vvs Amide III band (C–N stretch/C–N–

ph stretch/C–N–H bend)
1276 broad 1278m n(C–N); d(N–H) amide III

— 1246w 1256m nC–O, sipHCC, nCC, sCCC
— 1235 broad 1234s nCC, sipHOC, sipHCC, nCNC
1217m 1222m — —
1205m 1203w — C–C stretching
— 1191w — —
— 1175 — —
— 1168m 1165m sipHCC, nCC
1165w — —
1141m 1129w —

* 1121vvw nCC, sHOC
— 1103vvw 1106w sipHCC, nCC, sipHOC
1080m * — C–O stretch
1050m 1061vw broad — C–O stretch
— * 1014w sCH3, sCCC
— 968 966m H–C–C bend

960
939s * — C–C symmetric stretch
900m * — C–C bends and OH out-of-plane

bending
— 860m 860 vs Aromatic ring bend
— 834w 836 m Out-of-plane C–H bend (aryl-1,4-

disubsituted)
877w * —
— 788s 796s Aromatic ring stretches
— — —
780s — —
— 776 —
— 699w broad 710m Aromatic ring bend
682m 697vw broad — C]O stretching
— * 685wsh Out-of-plane wagging of NH

(amide group)
— 648w broad 650m Aromatic ring bend
636w — — —
— 623vvw 626w Amide IV band (H–N–C

deformation)
593m 597vw broad 606w sC–CH3

550m * — —
539sh * — —
— 497w broad 503m Skeleton vibration
499w — —
— * 463m Aromatic ring bend
417m 412vw — —
— * 412w s in-plane
— 389s broad 388s C–N bend
345m 355vw — —
301m — — —
— 324 328m —

1880 | CrystEngComm, 2011, 13, 1877–1884 This journal is ª The Royal Society of Chemistry 2011
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Fig. 7 Raman spectra in the 1400–950 cm�1 region of (a) citric acid, (b) paracetamol and (c) CIT–Pa cocrystal prepared from solution.

Table 1 (Contd. )

Citric acid solid (CIT) CIT : Pa Paracetamol (Pa) Assignment29�31

258m broad * — —
212 211w broad 215m —

a Where * disappeared during the cocrystal.
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Paracetamol has peaks at 3110, 3058 and 2935 cm�1 and in

those in the complex at 3110 and 3058 cm�1 appeared as very

weak and broad at the same position. At the same time as the

peak at 2935 cm�1 was shifted to 2953 cm�1 to appear as a broad

peak in the same region as the individual peaks at 2956 and

2949 cm�1 of the citric acid alone.

Pure citric acid has bands at 1734 and 1691 cm�1, corre-

sponding to the n(COOH) and (C]O stretch), respectively.

During cocrystallization these bands in the cocrystal were shifted

to 1718 cm�1 as a weak broad band and 1668 cm�1 as a weak

shoulder, respectively. The decrease in the n(COOH) and C]O

stretching wavenumbers of citric acid from 1734 to 1718 cm�1
Fig. 8 Raman spectra in the 1000–550 cm�1 region of (a) citric acid, (

This journal is ª The Royal Society of Chemistry 2011
and from 1691 to 1668 cm�1 indicates that the carboxyl group is

participating in strong hydrogen bonding. Furthermore the

broad peak at 1630 cm�1 disappears in the cocrystal as shown in

Fig. 6.

The peaks in the spectrum of paracetamol at 1644, 1618, 1609

and 1555 cm�1 are attributed to the amide I band (C]O stretch),

nCC, sCCC, sipHNC, nCC, sipHNC, sipHCC and sipHNC,

nCC, nasCNC, sipHCC, respectively; during the cocrystal

formation these peaks were shifted to 1654, 1611, 1611, and

a weak broad band at 1547 cm�1, respectively. As shown in Fig. 6

and Table 1, during the formation of a CIT–Pa cocrystal the

(C]O), (COOH) and (NH) bands of citric acid and paracetamol
b) paracetamol and (c) CIT–Pa cocrystal prepared from solution.

CrystEngComm, 2011, 13, 1877–1884 | 1881
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Fig. 9 Raman spectra in the 550–100 cm�1 region of (a) citric acid, (b) paracetamol and (c) CIT–Pa cocrystal prepared from solution.
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are shifted to higher or lower wavenumbers by 8 to 23 cm�1

accompanied by corresponding decreases in the band intensities;

which suggest that the molecular complex of citric acid and

paracetamol is a cocrystal and not simply a physical mixture of

these components. In addition, the doublet at 1514 and

1505 cm�1 in the spectrum of pure paracetamol now appears as

a single band at 1508 cm�1 in the cocrystal spectrum.

The CH2 scissors band at 1466 cm�1 in the spectrum of citric

acid and (sasCH3) band at 1445 cm�1 in the spectrum of para-

cetamol are shifted to appear as a single broad band at

1453 cm�1. In the citric acid spectrum the peaks at 1430 (C–OH

def.) and 1387 cm�1 disappeared during cocrystal formation,
Table 2 Crystal data and structure refinement for [para]2[cit]

Identification code me_para_citric_0m
Empirical formula C22H26N2O11

Formula weight 494.45
Temperature 296(2) K
Wavelength 0.71073 �A
Crystal system Monoclinic
Space group C2/c
Unit cell dimensions a ¼ 24.2864(10) �A, a ¼ 90�

b ¼ 11.3217(5) �A, b ¼ 107.988(2)�

c ¼ 16.9668(7) �A, g ¼ 90�

Volume 4437.2(3) �A3

Z 8
Density (calculated) 1.480 mg m�3

Absorption coefficient 0.120 mm�1

F(000) 2080
Crystal size 0.35 � 0.27 � 0.23 mm3

q Range for data collection 2.00 to 27.49�

Index ranges �27 # h # 24, �14 # k # 12, �12
# l # 22

Reflections collected 10 850
Independent reflections 4056 [R(int) ¼ 0.0350]
Completeness to q ¼ 27.49� 79.6%
Absorption correction None
Max. and min. transmission 0.9731 and 0.9587
Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 4056/0/349
Goodness-of-fit on F2 1.011
Final R indices [I > 2s(I)] R1 ¼ 0.0474, wR2 ¼ 0.0811
R indices (all data) R1 ¼ 0.0839, wR2 ¼ 0.0920
Largest diff. peak and hole 0.221 and �0.249 e �A�3

1882 | CrystEngComm, 2011, 13, 1877–1884
while the peak at 1367 cm�1 in the pure paracetamol was shifted

to a higher wavenumber and centred at 1375 cm�1.

The spectrum of citric acid showed a peak corresponding to

the O–CO bending of the carboxylic group at 1346 cm�1 and this

band also appears in the cocrystal spectrum. In the spectrum of

paracetamol, the bands observed at 1256, 1234 and 1269 cm�1

were assigned to the (nC–O, sipHCC, nCC, sCCC), (nCC,

sipHOC, sipHCC, nCNC) and sipHCC, nCC, respectively.

These bands in the cocrystal were shifted to 1246 cm�1 as a weak

broad band, 1233 cm�1 as a broad band with decreased intensity

and 1268 cm�1 as a weak shoulder, respectively. Moreover, two

new medium bands are now observed at 1175 and 776 cm�1,

which do not occur in either the citric acid or the paracetamol

(Fig. 7 and 8). The Raman spectrum of citric acid starting

material has bands at 1050, 939 and 900 cm�1 assigned to C–O

stretching, C–C symmetric stretching and C–C bending and OH

out-of-plane bending, respectively. During the cocrystal forma-

tion, the band at 1050 cm�1 was shifted to 1061 cm�1 and now

appears as a broad weak band, while the peaks at 939 and

900 cm�1 disappear all together from the spectrum.

On the other hand, the Raman spectrum of paracetamol has

a single peak at 966 cm�1 attributed to H–C–C bending; through

cocrystal formation this peak becomes a doublet with intensity

increasing as shown in Fig. 8. The peak at 682 cm�1
Table 3 Hydrogen bond dimensions (d/�A; :/�) in the 2 : 1 co-crystal of
citric acid and paracetamol

D–H d(D–H) d(H/A) :(D–H/A) d(D/A) A

O3–H3O 0.831 1.938 171.57 2.763 O1A
O5–H5O 0.882 1.809 169.65 2.681 O3a

O6–H6O 0.996 1.622 176.83 2.617 O7b

O8–H8O 0.942 1.677 176.64 2.618 O9b

N1A–H1NA 0.880 2.267 172.59 3.141 O1Bc

O1A–H1OA 0.832 1.839 166.57 2.656 O2Bd

N1B–H1NB 0.854 2.150 145.79 2.896 O2Ae

O1B–H1OB 0.851 2.156 176.29 3.006 O4

a [�x + ½, y + ½, �z + ½]. b [�x + ½, �y + ½, �z + 1]. c [x, �y, z � ½].
d [x, �y + 1, z � ½]. e [x, y, z + 1].

This journal is ª The Royal Society of Chemistry 2011
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Fig. 10 The chain of citric acid molecules formed from centrosymmetric

acid–acid dimer motifs propagating parallel to the c-axis of the unit cell.

Fig. 12 Amide NH/O hydrogen bonding linking pairs of paracetamol

molecules in the crystal.
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corresponding to C]O stretching was observed at 692 cm�1 as

a weak broad band in the cocrystal spectrum.

Furthermore, the peaks at 636 and 550 cm�1 disappear in the

cocrystal (Fig. 9). The peaks at 626 cm�1 (H–N–C deformation)

and 463 cm�1 (aromatic ring bend), cocrystal formation are now

centred at 648, 623 and 389 cm�1 as broad weak peaks. Hydrogen

bonding is a significant intermolecular interaction, which is

responsible for the different crystal packing.28 Raman spectros-

copy results suggest that the citric acid and paracetamol are now

in the cocrystal form and they are not a simple physical mixture.
3.4. Single-crystal X-ray diffraction

The single crystal X-ray structure confirmed that a cocrystal had

been formed and showed the structural centrepiece of the crystal

system to be 2 : 1 with respect to paracetamol and citric acid

(Tables 2 and 3). The asymmetric unit of the crystal contains two

paracetamol molecules hydrogen-bonded to the citric acid; one

of these acts as a phenolic-OH hydrogen bond donor to the

carbonyl of a carboxylic acid arm of citric acid. In contrast,

the other phenolic-OH acts as a hydrogen bond acceptor from

the quaternary C–OH of citric acid.

The structural centrepiece in the crystal packing is the citrate

chain formed by centrosymmetric carboxylic acid dimmers. The

chain propagates parallel to the c-axis (Fig. 10).

Citric acid molecular chains cross-link through the formation

of COOH/OH hydrogen bonds to the COH of an adjacent

chain resulting in a sheet structure (Fig. 11). Pairs of paracetamol

molecules, hydrogen bonded through intermolecular amide/
amide bonds (Fig. 12) span every other citric acid molecule in the

chain, forming a phenolic OH to carbonyl H-bond at one end of
Fig. 11 Cross-linking of citric acid chains
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the pair and citric OH/O of the phenolic OH at the other end of

the pair (Fig. 13). Curiously, one NH amide does not appear to

be involved in hydrogen bonding.

The paracetamol phenolic OH also cross-links the chain

structures. The phenol with H-bonding through the oxygen to

the citrate chain also acts as an H-bond donor to the amide

oxygen (O2B) of the adjacent chain. This relationship corre-

sponds with the c-glide plane of the crystal symmetry (Fig. 14).
4. Conclusion

A pharmaceutical cocrystal of citric acid with paracetamol was

designed employing crystal engineering strategies. Citric acid–

paracetamol cocrystal was prepared via a slow evaporation

method and formed 1 : 2 complexes. The single crystal structure

of citric acid–paracetamol cocrystal was determined. Also, DSC,

PXRD, and Raman data confirmed the formation and stability

of the citric acid–paracetamol cocrystal. Raman spectroscopy

was found to be a useful spectroscopic technique for character-

ization of these products. Formation of the cocrystal results in

changes in the carbonyl band region that is diagnostic for the

existence of the citric acid–paracetamol cocrystal.

The single crystal X-ray structure confirmed that a cocrystal

had been formed. The asymmetric unit of the crystal contains

two paracetamol molecules hydrogen-bonded to the citric acid;

one of these acts as a phenolic-OH hydrogen bond donor to the

carbonyl of a carboxylic acid arm of citric acid. In contrast, the
viewed down the a-axis of the unit cell.
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Fig. 13 The attachment of pairs of paracetamol molecules to the citric acid molecular chain viewed down the b-axis of the unit cell.

Fig. 14 The crystal packing of the 2 : 1 cocrystal of paracetamol and citric acid showing the ‘crosslinking’ between chains of paracetamol and citric acid

units viewed down the a-axis of the unit cell.
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other phenolic-OH acts as a hydrogen bond acceptor from the

quaternary C–OH of citric acid.

Citric acid molecular chains cross-link through the formation

of COOH/OH hydrogen bonds to the COH of an adjacent

chain resulting in a sheet structure. Pairs of paracetamol mole-

cules, hydrogen bonded through intermolecular amide/amide

bonds span every other citric acid molecule in the chain, forming

a phenolic OH to carbonyl H-bond at one end of the pair and

citric OH/O of the phenolic OH at the other end of the pair.

Curiously, one NH amide does not appear to be involved in

hydrogen bonding.
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