
University of Huddersfield Repository

Kureshi, Ibad

An Intelligent Robust Mouldable Scheduler for HPC & Elastic Environments

Original Citation

Kureshi, Ibad (2016) An Intelligent Robust Mouldable Scheduler for HPC & Elastic Environments.

Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/28711/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

UNIVERSITY OF HUDDERSFIELD

An Intelligent Robust Mouldable
Scheduler for HPC & Elastic

Environments

Author:

Ibad KURESHI

Supervisor:

Dr. Violeta HOLMES

A thesis submitted to the University of Huddersfield in partial fulfilment of the

requirements for the degree of Doctor of Philosophy

High Performance Computing

School Of Computing and Engineering

April 2016

http://www.hud.ac.uk
Research Group Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Copyright

i The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The Uni-

versity of Huddersfield the right to use such Copyright for any administrative,

promotional, educational and/or teaching purposes.

ii Copies of this thesis, either in full or in extracts, may be made only in ac-

cordance with the regulations of the University Library. Details of these regula-

tions may be obtained from the Librarian. This page must form part of any such

copies made.

iii The ownership of any patents, designs, trademarks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Property

Rights”) and any reproductions of copyright works, for example graphs and

tables (“Reproductions”), which may be described in this thesis, may not be

owned by the author and may be owned by third parties. Such Intellectual Prop-

erty Rights and Reproductions cannot and must not be made available for use

without the prior written permission of the owner(s) of the relevant Intellectual

Property Rights and/or Reproductions.

1

“With faith, discipline and selfless devotion to duty, there is nothing worthwhile

that you cannot achieve.”

Mohammed Ali Jinnah

“Scientific thought and its creation is the common and shared heritage of mankind.”

Abdus Salam

“The desire to be rewarded for one’s creativity does not justify depriving the

world in general of all or part of that creativity.”

Richard Stallman

Abstract

Traditional scheduling techniques are of a by-gone era and do not cater for

the dynamism of new and emerging computing paradigms. Budget constraints

now push researchers to migrate their workloads to public clouds or to buy into

shared computing services as funding for large capital expenditures are few

and far between. The sites still hosting large or shared computing infrastructure

have to ensure that the system utilisation and efficiency is as high as possible.

However, the efficiency can not come at the cost of quality of service as the

availability of public clouds now means that users can move away.

This thesis presents a novel scheduling system to improve job turn-around-time.

The Robust Mouldable Scheduler outlined in these pages utilises real applica-

tion benchmarks to profile system performance and predict job execution times

at different allocations, something no other scheduler does at present. The

system is able to make an allocation decisions ensuring the jobs can fit into

spaces available on the system using fewer resources without delaying the job

completion time. The results demonstrate significant improvement in workload

turn-around-times using real High Performance Computing (HPC) trace logs.

Utilising three years of the University of Huddersfield trace logs the mouldable

scheduler consistently simulated faster workload completion. Further, the re-

sults establish that by not relying on the user to suggest resource allocations for

jobs the system is able to mitigate bad-put into the system leading to improved

efficiency.

A thorough investigation of Research Computing Systems (RCS), workload

management systems, scheduling algorithms and strategies, benchmarking and

profiling toolkits, and simulators is presented to establish the state of the art.

Within this thesis a method to profile applications and workloads that lever-

ages common open-source tools on HPC systems is presented. The resultant

toolkit is used to profile the University of Huddersfield workload. This workload

forms the basis to evaluate the mouldable scheduler. The research includes ad-

vance computing paradigms such as utilising Artificial Intelligence methods to

improve the efficiency of the scheduler, or Surge Computing, where workloads

are scaled beyond institutional firewalls through elastic compute systems.

Acknowledgements

I would like to take this opportunity to thank all those who have supported and

helped me along the way. I thank my parents, Mr. Nadeem Islam and Dr.

Naseem Islam, who have stood by me throughout and pushed me to never

settle. To my wife Anita, for her incredible support whenever I questioned every-

thing, thank you! I would Like to thank my brother Jehanzeb, for always being

there to help out.

None of this would have been possible without the support of my supervisor Dr.

Violeta Holmes, without whose perseverance I may have never undertaken a

research career. I would also like to thank Dr. David Cooke and Dr. Robert

Alan for their guidance and direction.

I also thank all of my family and friends, of which there are too many to mention

here. To name just a few, many thanks to my ’little ones’, Sanam Islam and

Sania Islam and my ’besties’, Ahmad Khokhar and Maria Kamal.

I would like to thank all my friends and colleagues at the University Of Hudder-

sfield, particularly the members of the High Performance Computing Research

Group: David Gubb, John Brennan, Mathew Newall, Mohd El Desouki, Shuo

Liang, Stephen Bonner and Yvonne James.

I would also like to acknowledge the use of the University of Huddersfield Queens-

gate Grid in carrying out this work.

4

Contents

Copyright 1

Abstract 3

Acknowledgements 4

List of Figures 9

List of Tables 12

1 Introduction 16

1.1 Background . 17

1.2 Aim . 21

1.3 Objectives . 21

1.4 Outline of Work . 22

2 Research Computing Systems 27

2.1 Introduction . 27

2.2 High Performance Computing (HPC) Systems 29

2.3 High Throughput Computing (HTC) Systems 31

2.4 Grid Computing Systems . 33

2.5 Elastic and Shared Systems . 34

2.6 Security . 39

2.7 Summary . 41

3 Requirements of a Job Scheduler 42

3.1 Introduction . 42

3.2 Job Management Systems . 43

3.2.1 Batch Queuing Systems 43

3.2.2 Job Schedulers . 44

3.3 Scheduling Decisions . 46

3.4 Available Schedulers . 48

5

Contents 6

3.5 Simulators . 49

3.6 Summary . 50

4 Literature Review 52

4.1 Introduction . 52

4.2 Scheduling Techniques . 53

4.2.1 Traditional Scheduling Strategies 53

4.2.2 Mouldable Scheduling . 56

4.2.3 Scheduling in Elastic Environments 57

4.3 Review of AI in Scheduling . 59

4.3.1 Intelligent Schedulers . 59

4.3.2 Heuristics in HPC . 61

4.4 Benchmarking Schemes and Schemas 63

4.5 Seminal Works . 68

4.6 Summary . 71

5 University of Huddersfield Research Computing Infrastructure 72

5.1 Introduction . 72

5.2 Research Computing Infrastructure 73

5.2.1 Systems . 73

5.2.2 Applications . 78

5.3 System Usage . 79

5.4 Workload Sample . 81

5.5 Summary . 83

6 Application and System Performance Profiling 84

6.1 Introduction . 84

6.2 Development of the Toolkit . 85

6.2.1 Toolkit Architecture . 86

6.2.2 Generating Benchmarks 88

6.2.3 Information Retrieval and Postprocessing 90

6.3 Testing and Results . 91

6.3.1 Test Platform . 91

6.3.2 Profiling the CFD Application 94

6.3.3 Profiling the MD Applications 96

6.3.4 Discussion . 96

6.4 Summary . 99

7 Workload Manager Simulator 101

7.1 Introduction . 101

7.2 Design . 102

7.3 Implementation . 103

7.4 Testing . 107

7.5 Validation . 109

7.6 Summary . 115

Contents 7

8 Rule Based Mouldable Workload Manager 116

8.1 Introduction . 116

8.2 System Design . 118

8.2.1 Submission Protocols . 123

8.2.2 Performance Prediction 124

8.2.2.1 Testing Performance Predictions 128

8.3 Testing Mouldable Scheduler . 130

8.4 Summary . 136

9 Scheduling Paradigms 138

9.1 Introduction . 138

9.2 Fuzzification of the Workload Manager 139

9.2.1 Background . 139

9.2.2 Implementation . 141

9.2.3 Discussion . 144

9.3 Surge Computing: Elasticity in Scheduling 145

9.3.1 Motivation . 145

9.3.2 Implementation . 148

9.3.2.1 Decision Metrics 148

9.3.2.2 Surge Wrapper for TORQUE 150

9.3.3 Discussion . 152

10 Conclusion 154

11 Further Work 159

A Appendix A: Dataset 163

A.1 Real Tracelogs . 163

A.2 Real Data with Moulding Information 173

A.3 Normalised Data with Moulding Information 184

B Appendix B: Simulator 189

B.1 Code . 189

B.2 Verficiation Sheet . 208

C Appendix C: Mouldable Scheduler 209

C.1 Code . 209

D Appendix D: Application and System Performance Profiler Code 245

D.1 Code . 245

E Appendix E: Simulated Outputs 261

E.1 Real data First Come First Served (FCFS) 261

E.2 Normalised data with FCFS . 273

Contents 8

E.3 Normalised data with Moulding 284

F Appendix F: Simulated Logs 294

F.1 Real data FCFS . 294

F.2 Normalised data FCFS . 300

F.3 Normalised data Moulded . 303

References 308

References 308

Glossary 324

List of Figures 9

Document Word Count 43,165

List of Figures

1.1 The proposed Mouldable Scheduler 26

5.1 The Beowulf cluster Eridani: Cold Isle 73

5.2 Networking and Power for Eridani: Hot Isle 74

5.3 SOL Cluster in the University Datacentre 74

5.4 Load on Eridani Cluster by Node Count 80

5.5 Load on Eridani Cluster by Job Duration 81

6.1 Benchmarking Suite . 86

6.2 Flowchart for the Benchmarking Suite 87

6.3 Extract from Sample Application Configuration File 88

6.4 CFD Performance Curves as provided by Application and System
Performance Profiler (ASPP) m-file 95

6.5 Surface plot for CFD Performance as provided by ASPP m-file . 95

6.6 MD Performance Curves as provided by the ASPP m-file 97

7.1 Flowchart showing system behaviour when interfaced
with an FCFS algorithm . 106

7.2 Comparison of Arrival and Completion Rates over 2013 108

7.3 Comparison of Original and Simulated Data
for 2013 (Log Scale) . 110

7.4 Comparison of Original and Simulated Data during period of av-
erage system load (AVG) [Log Scale] 111

7.5 Comparison of Original and Simulated Data:
2 Week Period 23/03/2013 - 06/04/2013 112

7.6 Comparison of Original and Simulated Data
for period with System Intervention (SI) 113

7.7 Comparison of Original and Simulated Data:
for period with heavy User Intervention (UI) 114

8.1 Mouldable Scheduler System Layout 119

8.2 FCFS Mouldable Scheduler Flowchart 121

8.3 Suboptimal Decision Making . 122

8.4 Job Submission file for the Mouldable Scheduler System 123

8.5 Real Data vs Normalised Data FCFS [15min Intervals] 132

8.6 Real Data vs Normalised Data FCFS [1hour Intervals] 132

8.7 Real Data vs Normalised Data FCFS [24hour Intervals] 133

10

List of Figures 11

8.8 Normalised Data FCFS vs Mouldable [15min Intervals] 134

8.9 Normalised Data FCFS vs Mouldable [1hour Intervals] 134

8.10 Normalised Data FCFS vs Mouldable [24hour Intervals] 135

9.1 The Moulding Decision in a Fuzzy Engine 140

9.2 Rule Sets Applied Using Fuzzy Logic 142

9.3 Linguistic representation of System State 143

9.4 Linguistic representation of Job Size 144

9.5 Moulding Decisions based on Fuzzy Logic 145

9.6 Surface Plot of Resultant Ruleset 146

9.7 Example Case of Fuzzy Scheduling 147

9.8 Flowchart depicting the decision making process in HPC Cloud
Surging . 149

9.9 Control bus depicting the sequence of events in an HPC Surge . 150

B.1 Manual Verification of Simulated logs - truncated 208

List of Tables

5.1 Average breakdown of Jobs on the Eridani Cluster 79

5.2 Breakdown of Jobs by Power Users in the month of April 82

6.1 Classifications with corresponding Resource Ranges 92

6.2 ANSYS Fluent Benchmark Inputs and Classifications 93

6.3 DL POLY Benchmark Inputs and Classifications 93

6.4 ANSYS Fluent Benchmark Results by Classification for Single
Workload . 94

6.5 DL POLY Classic Benchmark Results by Classification for Single
Workload . 96

7.1 Details of Tables/Queues within the Cluster Discrete Event Sim-
ulator (CDES) system . 104

7.2 15min Interval Snaphots . 114

7.3 1hr Interval Snaphots . 115

7.4 24hr Interval Snaphots . 115

8.1 DL POLY MEDIUM benchmarks interpolated for 6 and 10 cores . 128

8.2 ANSYS Fluent benchmarks with 12M elements 129

8.3 Input Data for the Mouldable Scheduler 131

9.1 Linguistic Variable Value Pairs for Mouldable Scheduling 141

12

Abbreviations

A.I. Artificial Intelligence

ASPP Application and System Performance Profiler

CAD Computer Aided Design

CDES Cluster Discrete Event Simulator

CentOS Community Enterprise Operating System

CFD Computational Fluid Dynamics

CPU Central Processing Unit

FLOPS Floating Point Operations Per Second

FCFS First Come First Served

GFLOPS Giga FLOPS

GPU Graphic Processing Unit

HPC High Performance Computing

HPC-RC High Performance Computing Resource Centre

HPC-RG High Performance Computing Research Group

HPL High Performance Linpack

HTC High Throughput Computing

HTCondor High Throughput Condor

JDL Job Description Language

13

List of Tables 14

JMS Job Management Systems

LINPACK LINear equations software PACKage

MD Molecular Dynamics

MPI Message Passing Interface

OEM Original Equipment Manufacturers

OP-EX Operational Expense

OSCAR Open Source Cluster Application Resources

PCI-E Peripheral Component Interconnect - Express

PBS Portable Batch System

QGG Queensgate Grid

QoS Quality of Service

RCI Research Computing Infrastructure

RCS Research Computing Systems

STFC Science and Technology Facilities Council

TRL Technology Readiness Level

TFLOPS Tera FLOPS

TORQUE Terascale Open-Source Resource and QUEue Manager

VO Virtual Organisation

Dedicated to future generations who can find beauty in
the breeze.

15

Chapter 1

Introduction

With funding for research hardware declining around the world and academics

favouring more flexible payment models for infrastructure, e.g. using a cloud,

High Performance Computing (HPC) systems need to adapt. Shared facilities

and systems utilised by diverse user groups are now a reality, and systems can

no longer be optimised for certain algorithms or any single application. Previous

funding models allowed research groups and projects to acquire small systems

of their own. Now with a more centralised approach and shared resources, HPC

systems need to cater to many different applications and algorithms.

At the same time investment in HPC and e-infrastructure is vital as it leads

to economic growth and helps accelerate research and development. A UK

government report from 2012 has stated:

”High Performance Computing (HPC) and e-infrastructure in general are

drivers of economic growth and societal well-being. They are also vital for

maintaining international competitiveness in the generation of knowledge and

its application.”

(Kenway, 2012)

16

1. Introduction 17

Energy efficiency and a reduction of carbon footprints is now a cornerstone

of many IT related business and sustainability plans. System administrators

and IT managers are constantly trying to maintain a balance between system

efficiency and quality of service. To meet the various requirements of the user

community, the system scheduling parameters have to be loosely configured

to allow flexibility. However to get the maximum efficiency out of a system it

must be governed with stringent rules that would result in maximum utilisation.

Users only see the quality of service and find a system useful when just the

right balance is struck. This balance depends on the applications behaviour

and characteristics.

Reiterating the importance of Research Computing Infrastructure (RCI) in academia

and industry, the UK Minister of State for Universities and Science stated:

”UK universities are tremendous drivers of the economy and our success is

crucial to the nation as a whole ... But we know we need to use our resources

in better ways to deliver maximum efficiency. One key innovation detailed in

the report is the emergence of asset-sharing arrangements within groups of

universities, such as the N8 and M5. These schemes allow institutions access

to research equipment across the groups, maximising their usage and also

opening up university facilities to industry”

(Kelly, 2014)

1.1 Background

Between October 2009 and August 2010 the University of Huddersfield launched

an ambitious project to setup a vast RCI, which would serve the University’s re-

search community by providing robust computing solutions. These solutions

1. Introduction 18

took into account the various kinds of requirements different fields have, with

regards to computing, data processing, visualisation, and the tools available to

meet these specific needs. During the 10 month project the High Performance

Computing Research Group (HPC-RG) was both formed and set about posi-

tioning the University of Huddersfield as a recognised institution in the field of

parallel and distributed computing.

Several HPC clusters were deployed along with multiple High Throughput Com-

puting (HTC) resources. These various resources were then unified to form

a monolithic campus grid known as the Queensgate Grid (QGG). This com-

putational grid is heterogeneous and caters for Art and Design students and

researchers who need Windows or *NIX platforms for 3D rendering; to math-

ematicians and physicists who need to processes many thousand’s of small

calculations; and then engineers and chemists who need many processors to

carry out simulations that even the most advanced workstations are unable to

handle. These systems have fed into the teaching and learning environment as

well, so they are not just seen as purely research equipment but also make up

a part of the undergraduate and postgraduate student experience. (Bonner et

al., 2013)1.

Being a small-medium University with a cap on space and power, the local

RCI can not be scaled to the levels seen in large HPC centres. To meet the

ever growing user requirements the University of Huddersfield grid was then

interfaced with the then UK National Grid Service and the North East Grid. This

gave researchers access to national supercomputers and led to an acceleration

of research within the University. Huddersfield was also able to feedback into

these National Grids as the QGG brought many softwares that were previously

unavailable on the network.

1A second paper about introducing HPC into a teaching environment is ready for submission
to an appropriate call.

1. Introduction 19

Feedback on publications (Kureshi, 2010; Holmes & Kureshi, 2010) relating to

the establishment of this Grid included:

“This is an interesting case study of rolling out a grid in a campus environment;

it will no doubt be of interest to both researchers and IT professionals on many

such campuses...”

By the end of 2010 a platform was established for the HPC-RG to begin re-

search in new computing paradigms like co-processors, elastic computing and

data centric computing. To this end a GPU cluster, a private Cloud, and an

Apache R©Hadoop cluster was deployed to tackle research challenges (Bonner

et al., 2013; Newall, Holmes, & Lunn, 2014; Kureshi et al., 2013; Bonner et al.,

2014).

To meet the internal demand for more computing power, the University of Hud-

dersfield bought into a shared HPC facility at the Science and Technology Fa-

cilities Council (STFC) Daresbury. Keeping in mind the power and space limita-

tions, and the need to reduce the carbon footprint, switching to this Operational

Expense (OP-EX) model was the most feasible solution. While modern cloud

computing is usually associated with the term pay-as-you-go, the arrangements

in this deal are more OP-EX as the arrangement was to pay for a fixed number

of CPU hours (CPU-hrs) on a monthly contract, with a percentage rollover of

unused hours from month to month.

During the lifetime of this agreement the author and other system administrators

at Huddersfield began to notice high-levels of ”bad-put” (bad-throughput) in user

workloads. At a most basic level bad-put from the users would lead to over

subscribing (or under booking) resources and causing system down time. This

system was shared between several customers (commercial and academic)

and such downtimes are frowned upon. At a price-performance level user over

bookings cost the University hundreds if not thousands of Pounds. If a user

1. Introduction 20

booked 12 cores for 12 hours but only used 1 core, the University was still billed

144 CPU-hrs.

One of the exciting features of being part of the shared facility is that when

certain sections of the system were unused the University of Huddersfield could

extend its load to the entire system. However bad-put of expected program run

times meant that scheduling, for these extended usages, was near impossible.

One method of countering the bad-put that was employed was to limit the overall

time a single job could run. Therefore if Huddersfield users were occupying the

whole system and another customer submitted a job, a guaranteed start time

could be presented to the customer. But this adversely affected users whose

simulations required long run times and could not be check-pointed to restart at

a later time.

Similarly on the internal HPC systems large jobs would either jam the queues

waiting for resources and leave the systems idle for long periods, or if out-of-

order execution (explained in Section 4.2) was enabled, the large jobs would

get stuck behind smaller jobs leaving users unhappy with the over all Quality

of Service (QoS). On closer observation the bad-put observed on the shared

facility existed within the QGG as well, but because the system and job sizes

were smaller and as there was no direct cost associated to using the system,

these bad-puts went largely unnoticed.

In order to negate the bad-put it was felt that automating the process of resource

allocation was required. To do this the system would need to know several key

things about the job at submission time: the performance characteristics of the

application (on the system), and the size of the users workloads. Using this key

information a scheduler could be devised to make resource allocation decisions

and execute out-of-order job processing without adversely affecting the quality

of service (QoS) delivered to the end user. The term quality of service within this

1. Introduction 21

thesis is derived from the turn around time for a job. Upon submission of a job its

time to completion can be calculated by adding the execution time and the time

spent waiting for the required resources to become available. If the job sticks to

this schedule despite out-of-order execution, where a job submitted later runs

first, then the QoS is considered to be good/unaffected. However if jobs end

up waiting longer in queues due to resources being allocated to out-of-order

jobs then the assumption here is that the quality of service has decreased. The

work to develop this novel scheduler was carried out between January 2011

and December 2013 at the University of Huddersfield.

1.2 Aim

This thesis aims to explain novel approaches to automating resource allocation

in order to facilitate better utilisation of HPC resources, with minimal operator

input and maintain the QoS for the user.

Using the University of Huddersfield research computing environment (its infras-

tructure and its drivers) this thesis describes a mouldable scheduler that utilises

application performance profiles to efficiently allocate resources and predict end

times for running jobs. This ability to look into the future will allow for better re-

ordering of queues to maximise both the efficiency and the observed QoS.

1.3 Objectives

The objectives of the project are to:

1. Design and develop a scheduling system to take into account application

performance;

1. Introduction 22

2. Devise a mechanism for a system to determine the performance char-

acteristics of an application. The benchmarking system should take into

account the size of the input data and then feedback expected run times

versus required resources to the scheduler;

3. Evaluate and develop methods to simulate HPC environments to test the

new scheduler. The simulator should be able to analyse realistic work-

loads to assess the true effectiveness of the system;

4. Investigate existing workload management systems, in industry and in the

theoretical realm to incorporate best practices during the development of

the scheduling system;

5. Investigate research computing environments to determine where the short-

falls noted in Section 1.1 can be observed. This investigation will include

changes in scheduling requirements in emerging computing paradigms

(e.g. clouds);

6. Analyse scheduling techniques and practices to understand the best al-

gorithms which aim to meet the needs of utilisation vs. QoS to integrate

within the mouldable scheduler.

1.4 Outline of Work

This thesis is structured to match the chronological order of the mouldable

scheduler project’s research and development activities. In the first half of the

project an exhaustive analysis was undertaken covering scheduling techniques,

scheduling systems, distributed computing paradigms, and advanced computer

management techniques. As the problem of bad put was observed within the

University of Huddersfield’s own workload, an in-depth analysis was carried out

1. Introduction 23

on the nature of applications and the characteristics of all jobs that were exe-

cuted on the local RCI.

In order to achieve the aim described in Section 1.2, development on mecha-

nisms for analysing application and system performance was carried out after

the background study. In parallel a simulator was also developed so that a sta-

ble testing environment was available for evaluation. With the simulator and

benchmarking tools ready, data was collected on application performance and

system utilisation. The mouldable scheduling algorithm was then developed

and implemented within the simulation environment.

All code, reports, and documentation in this project has been version controlled

and archived in the central repositories of University of Huddersfield HPC-RG2.

Chapter 2 outlines research computing paradigms and aims to create a broad

picture of how these complex computer systems work. The evolutionary path

these systems take, shows the challenges and requirements of industry and

end-users. This is followed by a chapter explaining how Job Management Sys-

tems (JMS) work and what is required of them. It elaborates on the mechanisms

whereby divergent user requirements are balanced against limited resources

available within Research Computing Systems (RCS).

A detailed review of publications relating to benchmarking, scheduling, and in-

telligent systems is presented in Chapter 4. Furthermore different approaches

to scheduling in traditional rigid environments and previous attempts at mould-

able scheduling are also explained in detail. Additionally a close look is taken

at scheduling in new and emerging computing paradigms.

Chapter 5 builds on Section 1.1 and explains the University of Huddersfield’s

RCI. A detailed outline of usage characteristics of one of the HPC systems is

2http://repo.qgg.hud.ac.uk/

1. Introduction 24

also presented. The actual user workloads presented in this chapter form the

input used to test the various components designed in this project.

The Application and System Performance Profiler (ASPP) explained in Chapter

6 is the result of designing and deploying an open-framework benchmarking

suite for HPC systems. This suite allows a system administrator to plug-in a

real application, with associated datasets and workloads, to benchmark the sys-

tems. The suite autonomously creates a parameterised sweep of the datasets

over the system, to determine the application’s performance using different HPC

resource allocations from the system. Deployed against the Terascale Open-

Source Resource and QUEue Manager (TORQUE) JMS, ASPP can interpret

job logs from each parameterised run and generate a knowledge base. These

results are stored in a database for further use but can also be outputted as

performance characteristic curves using open source statistical packages.

Chapter 7 presents the Cluster Discrete Event Simulator (CDES) as a strong

candidate for HPC workload simulation. Built around an open framework, CDES

can take system definitions, multi-platform real usage logs and can be interfaced

with any scheduling algorithm. CDES has been tested against 3 years of us-

age logs from a production level HPC system and verified to greater than 95%

accuracy.

The design and testing of the mouldable scheduler (shown in Figure 1.1, re-

visited in Chapter 8) is described in detail in Chapter 8 . The scheduling al-

gorithm is implemented within the CDES simulator and utilises the application

profiles generated by the ASPP. The scheduling decisions outlined in this chap-

ter are rigid or rule based and job resource allocations are evaluated at execu-

tion time. The mouldable scheduler is driven at a base level by a First Come

First Served (FCFS) algorithm. The conclusions of this chapter include current

observed limitations of the mouldable scheduler.

1. Introduction 25

Chapter 9 outlines further work carried out using the mouldable scheduler’s

components and is divided in two parts. The first part (Section 9.2) explains

how fuzzy logic can be used to tackle the limitations observed in Chapter 8.

The intelligence introduced into the system by the fuzzy logic opens the door

to out-of-order scheduling of jobs. The second part of this chapter includes

developments in surge computing. Surge computing allows for traditional HPC

systems to scale up into elastic compute services, driven by heavy loads or to

meet specific requirements by users.

Chapters 11 and 10 cover further work being carried out and the conclusions

of this thesis, respectively. The motivations, direction and implementation of a

strategy for a mouldable scheduling system will become apparent at the con-

clusion of these chapters.

1. Introduction 26

FIGURE 1.1: The proposed Mouldable Scheduler

Chapter 2

Research Computing Systems

2.1 Introduction

The term Research Computing Infrastruction (RCI) refers to Information Tech-

nology (IT) infrastructure that is used to do scientific research. While this can

include the individual laptops, desktops and workstations available to a re-

searcher, the term Research Computing System (RCS) generally implies ”big

metal” systems. Racks of powerful servers or buildings full of workstations all

coming together to work on one problem make up the main thrust of any insti-

tution’s RCI.

As science has progressed the computational requirements have grown expo-

nentially. Scientists aim to reproduce the living-world as computational models

to test new hypothesis. These models are used in many disciplines such as

weather forecasting, earthquake predictions or urban planning. To get these

models as accurate as possible a researcher requires more storage, memory

and processing power than is available in workstation or desktop configurations.

27

2. Research Computing Systems 28

The analysis of automobile aerodynamics using Computational Fluid Dynam-

ics (CFD) is a good example of how a problem increases its computational

demands as researchers make their models more realistic. The more accurate

the simulation required, the more compute power is required. Accurate here

means more degrees of precisions and an analysis over a finer sampling time.

Simulations with high degrees of precision would take days to execute on an

ordinary workstations. Using RCS this computational time can be reduced to

a matter of hours. If a researcher wants to precisely model their automobile,

the granularity of the mesh or surfaces of the model grow. Larger mesh sizes

need more working memory to process the data. Workstations and desktops

struggle to meet the RAM requirements of a fine grain to-scale model of an au-

tomobile. Finally, any design of an automobile or its components, needs to be

tested and simulated under different conditions. As the granularity of the model

and the accuracy of simulations increase so does the size of the data files. The

larger the number of simulations performed under different conditions the more

subsequent data is generated. Eventually this data will not fit on the standard

desktops and conventional storage, slowing down file access and increasing

search times.

To satisfy this need for higher processing power, larger memory and greater

storage, High Performance Computing (HPC), High Throughput Computing (HTC)

and other Research Computing Systems (RCS)’s are required. In Sections 2.2

and 2.3 traditional High Performance and High Throughput configurations of re-

search infrastructure are discussed. This is followed by an analysis of a new

computing paradigm - cloud computing, that is now being adopted within RCI’s,

in Section 2.5.

2. Research Computing Systems 29

2.2 High Performance Computing (HPC) Systems

High Performance Computing (HPC) systems refer broadly to supercomputers

or computer clusters. These are large computer systems made up of many

compute cores and large amounts of RAM. Cluster Computers are a collection

of servers tightly integrated using fast network interconnects. Supercomputer

refers to proprietary systems with custom designs and interconnects, typically

with large amounts of memory and Central Processing Unit (CPU) on an inte-

grated circuit. They are not modular like compute clusters. As of June 2014,

Compute clusters make up over 80% of the world’s top 500 supercomputers

(J. Dongarra, 2014).

Small computer clusters can be built simply by combining commodity of-the-

shelf workstations networked by an ethernet connection. At the higher end

clusters can be a set of highly optimised and dense servers linked with high

bandwidth, low latency fibre optic interconnects. Systems based on commodity

of-the-shelf hardware are known as Beowulf clusters. Commonly a Linux family

operating system is deployed on the system. Linux clusters make up more than

90% of the worlds top 500 clusters (J. Dongarra, 2014).

IBM’s Bluegene, Cray’s XK7 and the SGI UV are examples of modern super

computers. The current iteration of the IBM super computer is known as the

Blue Gene/Q. This system uses IBM’s proprietary processor architecture known

as Power PC. Special interconnects link each processor electrically in a 5D

Torus configuration to create a ’node’ of 512 processing elements. The Cray

XK7 uses conventional x86 processors from AMD but use their own proprietary

interconnect to link the cores. This system is called Gemini.

The SGI UV forms a different class of supercomputer known as Shared Memory

2. Research Computing Systems 30

systems. Due to proprietary design these systems are still considered super-

computers but they differ from the previous two examples in that they generate

a single system image where large banks of memory are connected. Shared

memory supercomputers create a large addressable memory space for a single

operating system to reference directly.

Cluster computers are mostly distributed memory systems composed of gen-

eral purpose servers. Broken down to their base systems each node can be

used for general IT infrastructure purposes. Due to advancements in x86 archi-

tecture processors, network interconnect technologies, operating system and

middlewares, computer clusters can be as fast, if not faster that supercomput-

ers (Sloan, 2004).

A middleware is used to harness the power of the individual systems or nodes

and give the user the illusion of one very big system. A middleware is a suite

of software that are used to tightly couple the disparate resources to create

a single system image. Typically a middleware has some mechanism to put

a working operating system on every node; synchronise user information and

data across all nodes; enforce security and policies and finally to organise and

deal with multiple users. The latter is the purview of a Job Management System

(Sloan, 2004).

Using a special set of libraries defined by standard Message Passing Interface

(MPI), software can be written to harness the power of the many cores in a clus-

ter. MPI routines allows remote processors to communicate directly with each

other. Remote here implies that those cores do not share space on a silicon

chip or motherboard, though MPI can also be used for on-chip communication

(Sloan, 2004).

HPC systems are not always used to process a single problem. Due to licensing

or the limitation of software a single simulation may not be able to use all the

2. Research Computing Systems 31

processors on a large HPC system. Consequently the job management system

segregates cores for different jobs and restricts the MPI ’world’(Sloan, 2004).

Supercomputers and clusters can be designed for specialist applications. The

SGI Altix supercomputer is designed for graphic and large image rendering.

These systems are connected to large video arrays and the end user gets to

directly interact with the system. Another major field that is rekindling the HPC

world is big-data analysis. Software like Apache Hadoop (developed by Ya-

hoo) utilise fast storage, memory and processor arrangements to process large

quantities of data. Some computer clusters are designed specifically to handle

only Hadoop and therefore use specialist middleware, but traditional clusters

can also be configured (with direct intervention of the job scheduler) to do big

data analysis (Sloan, 2004).

2.3 High Throughput Computing (HTC) Systems

A second paradigm within research computing is that of High Throughput Com-

puting (HTC). Small distributed systems are linked to handle simulations that

are ”embarrassingly parallel”. The problems that can be broken down into many

discrete parts are ideal for high throughput computing environments. It is the

divide and conquer approach that allows large problems to be quickly solved,

thus lending to the HTC name. HTC differs from HPC, in that HTC handles

discretised problems and they systems are loosely coupled.

In an academic or corporate setting, the HTC paradigm offers a low cost of entry

into research computing. These two environments tend to have many worksta-

tions across their real estate. When students/faculty or employees are not at

their desks these machines are idle and yet consuming power. Harnessing

2. Research Computing Systems 32

these idle systems is the easiest way for any organisation to build its Research

Computing Infrastructure (RCI).

HTC middleware is required to manage very dynamic environments. An idle

node may not remain in that state for long and unlike an HPC system, the load

can be introduced external to the middleware. Also, there could be a poor net-

work connection between the primary system and the remote machine. Finally

one of the biggest differences of an HTC system, compared to an HPC system,

is that the working environment can be totally heterogeneous. It is not uncom-

mon to have Windows, LINUX and OSX systems in a single pool of systems.

The HTC middleware has to ensure that appropriate executables and data are

migrated to the end point.

Two popular middleware for HTC based research computing are HTCondor and

BOINC. The Berkley Open Infrastructure for Network Computing (BOINC) is a

high throughput middleware that is commonly used to crowdsource compute

power for research projects (Anderson, 2004). It is a small tool that the pub-

lic can install and set the rules as to when the middleware can operate. Once

configured, it is up to the downloader to choose to which project they would

like to contribute resources. When the use conditions are met, the public com-

puters connect to the head node of the project. The head node can transfer

executables and data to the remote nodes. BOINC is used by projects like Fold-

ing@home (related to DNA folding) and SETI@home (Search for Extra Terres-

trials)

HTCondor is developed by the University of Wisconsin and is a very mature

piece of software. HTCondor is ideal for trusted single ownership environments.

HTCondor is able to group multiple machines together to support parallel pro-

cessing similar to HPC environments. Multiple Condor pools that are geograph-

ically disparate can be linked together forming a grid.

2. Research Computing Systems 33

2.4 Grid Computing Systems

Grid computing brings elements from HPC and HTC technologies together to

integrate traditional research computing provisions. Computational grids are

composed of geographically remote HPC and HTC systems that are linked to-

gether through the internet. Usually owned by different entities, access to the

disparate systems is enforced by service level agreements (SLA), leading to

the formation of a Virtual Organisation (VO). Gird computing can be used to

harness the power of multiple HPC systems to tackle one problem or can be

used for high throughput distribution of high performance type jobs across mul-

tiple systems.

Differing from HTC systems, the grid middleware needs to be provided with

information (usually a Uniform Resource Locator (URL) or Internet Protocol (IP)

Address) about all the execution end points. The grid middleware on the local

system connects to the installation of the grid middleware at the remote site to

get system information. These grid middleware sit on top of the HPC or HTC

middleware. Therefore between an end user and an execution endpoint there

are now two distinct middleware.

The Globus grid middleware is a popular middleware used to link HPC and HTC

systems around the world. Globus was developed in the United States at the

University of Chicago (Foster, 2011; Allen et al., 2012). The Globus Toolkit in-

cludes packages to handle resource reporting, file transfer, remote terminal ac-

cess and remote job submission. The gLite middleware is developed in Europe

and is the middleware of choice for the Conseil Europeen pour la Recherche

Nucleaire (CERN) project (Laure et al., 2006). gLite is able to directly interact

with HPC and HTC schedulers (like PBS and HTCondor) and it is able to inter-

face with other grid middleware including Globus. gLite also has the advantage

of having a modicum of resource discovery.

2. Research Computing Systems 34

Grids were envisioned as the answer to provide end-users computing power as

easily as plug and play. The name and inspiration comes from electric grids,

where an end user can plug in their appliance and the power is instantly pro-

vided. In case of electric power the user does not need to know if the power

comes from a nuclear or solar power source. Similarly on a computational grid

the end-user would use compute power, regardless of its source or location.

Unfortunately, due to software limitations and licensing along with the overheads

of SLA’s, grid computing was not able to deliver that ”fourth utility” aspect the

developers and scientists had hoped for. This title was taken by a new com-

puting paradigm ’Cloud Computing’. Building on the power of HPC and HTC

systems and the resiliency and distributed nature of the grid, Cloud Computing

delivers IT infrastructure to the end user over the internet, using a commercial

(pay for a service) model.

2.5 Elastic and Shared Systems

Centred on Service Oriented Architecture (SOA) Cloud computing has many

facets. As everyday operations move towards being ”internet ready” it is very

difficult to limit those services that actually form the cloud. It appears that there

is no fixed definition for a cloud and any on-demand internet service becomes a

cloud service. This lack of definition reflects in the name. A definition provided

by the Ian Foster et al., the authors that wrote the book on Grid computing (the

predecessor to clouds providing on demand infrastructure), states:

”A large-scale distributed computing paradigm that is driven by economies of

scale, in which a pool of abstracted virtualised, dynamically-scalable, managed

computing power, storage, platforms and services are delivered on demand to

external customers over the internet.”

2. Research Computing Systems 35

(Foster, Zhao, Raicu, & Lu, 2008)

This definition while giving a good generalised overview can now be attributed

to a public cloud infrastructure. Currently many services being offered under the

banner of cloud computing may not be virtualised and are surely not dynamically

scalable. A paradigm that this definition does not acknowledge is the private

cloud. Private clouds are devoted resources belonging to a single organisation

that provide on-demand resources to its internal user base. They are usually

used as an easy method to increase capacity or provide testing environments

with minimal effort (Grossman, 2009).

While there is a dispute on the definition of a cloud, there is consensus that

there are three major services – IaaS, PaaS, and SaaS. In an ACM article IaaS

is defined as Infrastructure-as-a-Service, PaaS is Platform-as-a-Service and

SaaS is defined as Software-as-a-Service (Armbrust et al., 2010). Software-

as-a-Service refers to the delivery of a software package over the interface via

a web browser interface. The actualy compute power is on the server in a

remote datacentre. Good examples of SaaS are Google AppsTM, Force.com

and Facebook. Platform as a Service closely resembles an Operating System

over the Internet where users or developers can experiment on a fixed config-

uration of infrastructure. This is very popular with application developers and

commercial providers of PaaS include Google R© App EngineTM and Microsoft R©

AzureTM. IaaS is facet of cloud computing that can be defined as the ”killer ap-

plication” for cloud computing. The ability for a company, with just one computer

in their inventory to be able to set up a vast datacentre, meeting all their busi-

ness needs without needing the real estate, tenders, power etc. is where the

hype lies. Commercial providers of IaaS include Amazon’s R© EC2TM and S3TM,

Ubuntu OneTM (Weiss, 2007; Foster et al., 2008; Armbrust et al., 2010; Va-

quero, Rodero-Merino, Caceres, & Lindner, 2008; Dikaiakos, Katsaros, Mehra,

2. Research Computing Systems 36

Pallis, & Vakali, 2009; Hayes, 2008; L. Wang et al., 2008; A Vouk, 2008; Buyya,

Yeo, Venugopal, Broberg, & Brandic, 2009).

The Foster el al. definition also leaves the term ”delivered on demand” very

vague. There is a school of thought that believes that if there is human interac-

tion between the demand and the delivery of the service then this is not cloud

computing and should be instead classified as an e-commerce activity (Weiss,

2007). The terms economies of scale and dynamically scalable from the Foster

et al. definition seems to tend to the same concept of the system being fully

automated. For the definition of Infrastructure as a Service cloud we will adopt

the Foster definition with the caveat that the service must be virtualised, full

automated and can include private resources or commercially available public

resources. This was enforces by David Wallom in his presentation about the

NGS cloud pilot (Wallom, 2010).

Cloud computing has been described as the next paradigm in computing. It

promises to deliver computing power as the fourth utility direct to the end user.

While large enterprises have yet to move their IT infrastructure into the cloud,

startups and small businesses have benefited greatly from the cloud. The

shorter barrier to entry means that researchers can get access to computa-

tional power just by swiping their credit card (Foster et al., 2008).1

Small to medium enterprises (SME) have successfully employed cloud comput-

ing in scaling their existing infrastructure, as and when required. Most organ-

isations maintain their internal infrastructure but during periods of heavy load

the ICT footprint can be scaled beyond the institutional firewalls. The compa-

nies can therefore guarantee a high quality of service while limiting the amount

of capital investment. This form of provisioning is known as surge computing

(Van den Bossche, Vanmechelen, & Broeckhove, 2010).

1This work has been published in the International Journal of Advanced Computer Science
and Applications (Kureshi et al., 2013).

2. Research Computing Systems 37

In their paper Scientific Cloud Computing: Early Definition and Experience,

Wang et al. outline how cloud computing can be used for scientific research

and how this relates to a QoS guarantee to the end-users. This effort moves

away from the traditional use of clouds from an implementation of infrastructure

for general IT purposes to an implementation of e-Infrastructure for academic

and scientific purposes (L. Wang et al., 2008). It should be noted here that

Wang et al. incorporate system up-time, access to faster processors and scal-

ability in their definition of Quality of Service (QoS) i.e. it is not only the wait

time of the job but also the run time of the job that they hope cloud computing

will improve. To the end user of HPC in the cloud Brandt et al. use the notion

of a private cloud to deploy what can only be described as an HPC system in

a cloud sitting on an HPC system. Their findings conclude that the just-in-time

provisioning of hardware and software helps create a more flexible system to

meet the needs of a diverse end user group (Brandt et al., 2009).

From there the concept of surge computing has also emerged. Surge comput-

ing is used when a site’s HPC resources have reached capacity consumption

and needs to scale up to a private cloud or a shared resource and then out to

a public/commercial cloud (Marshall, Keahey, & Freeman, 2010). While these

concepts have been executed in the past the approach has been rigid and it

takes a system administrator to realise that a system is at capacity, provision

the resources in a cloud and make the connection to the local site. If the Wal-

lom and Foster definitions are to be followed to the letter this would not classify

as cloud computing as there is human interaction between the end-user execut-

ing his/her job and the resource becoming available.

While the industry is primarily focussed on surging Web 2.0 workloads (Chieu,

Mohindra, Karve, & Segal, 2009; Vaquero, Rodero-Merino, & Buyya, 2011;

Mao, Li, & Humphrey, 2010) there are many who advocate migrating HPC

2. Research Computing Systems 38

workloads to the cloud (Nurmi et al., 2009; He, Zhou, Kobler, Duffy, & McG-

lynn, 2010; Bientinesi, Iakymchuk, & Napper, 2010). However, there has been

little existing work in creating a HPC Job Manager and Scheduler that is truly

dynamic and elastic. The HTCondor project is a dynamic HPC scheduler, but

it lacks elasticity, working on the principle that execution nodes can start up

and then connect to the control node. The control node itself does not ’hunt’

for execution endpoints or tries waking end points. However the dynamism in

HTCondor can be utilised statically for HPC type workloads in the cloud. It has

been utilised by pharmaceutical companies to create large clusters on Amazon

EC2 (Brodkin, 2011). The major limit to the dynamism currently provided is that

based on the workload on the head node there is no mechanism to automati-

cally generate execution endpoints.

There are several commercial ventures that use existing IaaS systems as a

platform to offer High Performance Computing as a Service (Brodkin, 2011;

Trader, 2012). These companies offer virtual instances of popular HTC tools

that will work in the cloud environment. Developers of job management systems

have also paid close attention to this ”fifth utility” (Buyya, Yeo, & Venugopal,

2008) and are in the process of developing next generation tools that will scale

automatically (Wilson, 2010).

Traditional HPC Job managers are very rigid. Job managers like TORQUE

and Grid Engine need to be given endpoint information, e.g. hostnames or

IP addresses, at startup. If a change is required then the whole job manage-

ment suite needs to be restarted. This obviously makes such schedulers in-

elastic. Recently however, IBM (in collaboration with Platform Computing) have

released a version of the Platform LSF that dynamically creates nodes within

elastic environments to meet such HPC needs. The Enterprise Edition of the

MOAB HPC Suite now also includes dynamic cloud based provisioning func-

tionality. Penguin Computing too have a cloud based initiative for enterprise

2. Research Computing Systems 39

clients (Bernstein & McMahon, 2012).

2.6 Security

Each of the systems outlined in this Chapter have different approaches to se-

curity. For HPC systems the head node of the cluster is the primary gatekeeper

and all security exists on it. Within the cluster there are typically no firewalls or

restrictions between nodes and with the head node. This is because when a

job runs on a subsection of the cluster one of the nodes assumes the role of

master and needs to execute instructions on other remote nodes. As a standard

practice internode communication takes place over Secure Shell and so the in-

structions are encrypted preventing users snooping on each other. However

as HPC systems typically tend to be own and utilised solely by organisations

there is an implicit trust between the users. Further layers of security will add

to the latency of the system. The head node typically has firewalls, encryption

and strict user access lists to ensure that no external sources can breach the

systems security. The internal network is kept strictly segregated.

HTC systems take security considerably more seriously as the internode com-

munication and data utilises public networks (although these still tend to be

within the organisation). Encryption between internode communication is com-

mon and nodes have access control lists to ensure only authorised nodes are

connecting in. As bag-of-task type workloads are run on HTC systems there

is little internode communication and nodes only need to be concerned with

the master node, the scheduler node and a small list of submit nodes (these

services could all be encapsulated within one node).

2. Research Computing Systems 40

Grid system use the internet to communicate and access by non-organisational

users is a requirement there is much stronger encryption and two-way identi-

fication. Users and data are secured using X509 certificates and encryption

enhancements to openSSH (Novotny, Tuecke, & Welch, 2001). A trusted 3rd

party certificate authority generates host certificates to identify all systems and

access points within the grid. User certificates are also generated so that users

can be uniquely identified to their organisation. This way the authentication of

users from different organisations can be done and depending on the SLA’s

agreed between each site the authorisations can also be managed.

Cloud computing has adopted a reduce level of security as compared to grids.

The 3rd party driven two-way authentication and SLA based service was deemed

to restrictive for wide scale adoption. Beyond payment and account manage-

ment webpages (that are encrypted based on typical SSL encryption) security

on the cloud is what the end users wants it to be. Security of point-to-point

communication must be handled by the end user. Commercial contracts and

the threat of legal action protect users data while it is in the service providers

data centre. For users deploying surge environments in public clouds encryp-

tion of their data from the local system to the remote instance will need to be

the primary concern. This can be handled through the encryption and authenti-

cation tools with network files systems.

The scheduler being described in this thesis sits within the application layer

(right on top) of the 7 layer Open Systems Interconnection model (OSI model)

and manages other applications. It relies on external systems for security that

are usually provided by the operating system. Within HPC systems, whether

deployed on physical infrastructure or in the cloud or across both, scheduling

decisions are not made on the head node itself. Jobs are submitted to the

queue and the scheduler decides the order of the jobs within the queue. The

job management system then delegates the job. The scheduler does not need

2. Research Computing Systems 41

to take into account security as these are handled by the Job management

system and the operating system services.

2.7 Summary

In this Chapter an outline of the different parallel, distributed and elastic com-

puting paradigms have been presented. A key element to these RCSs is that

they are all typically shared computing systems, i.e. enabling more than one

user at a time, and usually consume large amounts of power. What is also in-

teresting to note here is that computing paradigms appear to be cycling back to

large compute resources centrally located with low powered satellite devices as

it was in the period preceding the microprocessor.

Due to the shared nature of the system users workloads have to be encapsu-

lated as discrete jobs. Due to the power requirements and general QoS for the

end users these jobs have to be scheduled appropriately to ensure maximum

QoS and minimum power consumption. In the next two chapters the character-

istics of job scheduling systems (3) and techniques (4) will be explained.

Chapter 3

Requirements of a Job Scheduler

3.1 Introduction

Since the early days of computing, Job Management Systems (JMS) have been

essential to the operation of large compute systems. Initially job management

systems were called batch processing systems. Modern computing differenti-

ates between batch processing system and job management systems, where

the batch system is part of the job management system. In this chapter the

importance of these systems and their evolution is outlined. Section 3.2 covers

batch queuing systems and job schedulers. In Section 3.3 the layers of com-

plexities associated to scheduling in different computing paradigms is outlined.

In Section 3.4 the features and functionality of publicly available schedulers is

reviewed. In the last Section 3.5 a brief description of exisiting workload simu-

lators is presented.

42

3. Requirements of a Job Scheduler 43

3.2 Job Management Systems

Job management systems are divided into two primary components; Batch

Queuing systems that accept execution jobs from users and assign them to

resources on the underlying system when available; and Job Schedulers which

determine the order of execution for each job.

3.2.1 Batch Queuing Systems

Batch Processing systems can trace their history back to early mainframes

(Tanenbaum & Tannenbaum, 1992). Data used to be input into systems us-

ing punch cards and similar ”slow” mechanisms. The mainframes were not

utilised in an online manner as it was not cost effective. For several hours

operators would upload data from tapes and punchcards into the system and

then the computer would process all the inputed data in a batch. Each discrete

simulation or program within the batch is commonly known as a job. With the

advent of the modern microcomputer, users have become used to a real time

response from their computers. As mainframe computers have evolved into

super computers and clusters, they have migrated from offline processing to

online processing.

Under this new approach to running large systems, batch processors are used

to effectively share the resources between multiple users. As modern High Per-

formance Computing (HPC) systems support multiuser environments the batch

processing systems’ primary function is to ensure that system resources are

not over subscribed. Thus batch processors can now be considered queuing

systems. Jobs are processed as they arrive but when the system becomes over

subscribed jobs begin to be queued. This class of software is still known as a

batch system because it is responsible for the execution of many jobs at the

3. Requirements of a Job Scheduler 44

same time. As mentioned in Section 2.2 modern systems tend to be very large

and not all applications can scale-up on these resources. The batch queuing

systems are responsible for dividing the system and assigning the appropriate

parts to different jobs. Commonly a user may submit more than one job at a

time. Since each job only needs a subset of the HPC system the batch pro-

cessing system becomes a good tool for users to manage their workloads.

Modern batch systems are defined as online systems because the moment a

job is submitted to the system it is considered to be executed. As discussed

previously when describing the offline batch system, all jobs in the batch had to

be uploaded before execution would begin. However, modern batch processors

are not considered real-time systems because under most conditions after the

user submits the job, they are unable to determine the state of the program or

its output until the execution cycle completes.

3.2.2 Job Schedulers

Once a job has been submitted to a batch queue the order of execution is de-

termined by the job scheduler. While first-come-first-served maybe the most

intuitive method to order the execution, it is not always the most effective solu-

tion. There are several reasons why system administrators may want or need

out of order execution. While scheduling algorithms are discussed in detail in

Section 4.2, this section covers the reasons for out-of-order execution and ex-

plains why the scheduler is an integral part of the job management system.

Large compute or HPC systems consume a lot of power and require special

cooling systems. Even when idle, large clusters tend to consume electricity in

megawatts (J. Dongarra, 2013). System administrators aim to maximise the

usage of these systems, so that while powered up the machines are always

fulfilling their purpose rather than sitting idle. There could occur a scenario

3. Requirements of a Job Scheduler 45

where an HPC system is under 80% load and the next job requires 30% of the

system. Under a first come first served approach 20% of the system will sit idle

awaiting the 10% required to begin the next job. However, in First Come First

Served (FCFS) with back-filling, if the second or third job in the queue require

less than 20% then these jobs can be executed first. This way the system

is always well utilised and for all the electrical power delivered in, the system

delivers computational power out.

Backfilling leads to issues of Quality of Service (QoS). Very large jobs will get

deferred in favour of small jobs and this will slow down users’ work. Schedulers

are therefore required to ensure that a certain QoS is maintained. This QoS can

be extended to include higher priorities for users or projects. Users may have

deadlines, or in case of commercial settings users could be paying for their

time on the system. The jobs submitted by these users can not be deferred for

business reasons. Job schedulers are required to handle such decisions.

As mentioned in the previous section, a single user can rely on a job scheduler

to mange his/her workflow. Some applications may have multiple stages within

their execution cycle. A user could submit two jobs where the second job de-

pends on the data generated from the first job. Without a scheduler the batch

queuing system will execute both jobs as soon as there is a resource available.

The scheduler however, will be able to hold the second job, awaiting the result

of the first. While holding the second job, other jobs that arrive on the system

can be executed out of order.

Chapter 4.2 details the different algorithms that have been developed to better

manage large computer systems, leading to better QoS and resource utilisation.

3. Requirements of a Job Scheduler 46

3.3 Scheduling Decisions

In Chapter 2 various different paradigms of research computing were outlined.

Each evolving paradigm (HPC to High Throughput Computing (HTC) to grids

and clouds), brings about its own challenges that job schedulers are expected

to manage. The more components there are to be managed within a system,

the more complex the scheduling problem becomes. If an element of dynamism

is added, the complexity increases even further.

Even in a single user system there is a small element of scheduling. All modern

personal computers support multitasking and the operating system must man-

age which compute cycle is allocated to which process. If done incorrectly the

user experience is severely hampered.

HPC systems, such as computer clusters, must also deal with multitasking at

node level. The multitasking on a node has to deal with running the application

on a node level as well as the cluster level, responding to the Job Management

Systems (JMS) polling for node health and job status. This node level schedul-

ing is then augmented by the cluster level scheduler. Since a cluster appears as

a single system, the scheduler within the JMS provides the multitasking element

at a macro level.

Within HTC environments the job schedulers have a different but still complex

problem to deal with. As HTC systems tend to operate on the principal of scav-

enging, a scheduler has to deal with the added complexity of an execution end-

point not being available or totally disappearing. The heterogeneity of the HTC

environment also poses additional challenges. An HTC scheduler needs to de-

termine which node or execution end-point is the most suitable for the current

job. Some of the questions that need to be considered are:

• Does a node meet all the requirements for the current job?

3. Requirements of a Job Scheduler 47

• Is the node reliable with its up time?

• Can the required data be transported to the node?

These types of constraints have to be weighed against the perceived QoS!

(QoS!) that needs to be delivered to the end user.

Grid Computing further compounds the complexity of the problem. Grid sched-

ulers are expected not only to be concerned with the job occupancy of tightly

coupled systems, but also with dynamically variable environments similar to

those present in HTC environments. Grid schedulers do not have complete

control over how jobs are executed at each remote site. Primarily, the grid

scheduler has to overcome the fact that the users may submit jobs directly at/to

the end-point, and therefore the load at each end-point can dynamically change

at a moments notice. Jobs submitted to the grids may be executed on multiple

systems simultaneously. Each end-point can be geographically very remote or

can have different local scheduling policies. The scheduler needs to factor the

in-flight time. In-flight time refers to the time taken for the job and associated

data to reach the computing end-point. To further complicate the matter a single

job may need to use compute cores over two sites simultaneously. The sched-

uler in a grid needs to know the eccentricities of each end-point and must have

sufficient interoperability to talk to multiple remote systems.

The new paradigm of Cloud computing brings about new challenges to schedul-

ing. While the challenges from grid computing, such as scheduling and load

management of distant systems still apply within cloud computing, there are

added complexities that have emerged from latencies introduced by the hyper-

visor. The latencies are not just due to network and performance, but also from

overheads that are a direct consequence of virtualisation. A finite amount of

time is required to provision the required execution end point. A scheduler

needs to take into account the execution end-points performance capability,

3. Requirements of a Job Scheduler 48

which is slowed down by hypervisor overheads, usual normal transfer over-

heads, and provisioning time.

3.4 Available Schedulers

There are many commercial job schedulers currently available in the market for

use on HPC systems. Along with experimental and proof of concept sched-

ulers there are several open source schedulers with a healthy development life

cycle. Without going into details of each, there are some names that must be

mentioned both for their importance in the market and to better understand the

development route for the Mouldable Scheduler.

One of the pioneering job management softwares is the Portable Batch System

(PBS), later known as openPBS (Bayucan & Henderson, 2000). This system

currently exists as a pay-for-use software in the form of PBS Pro which includes

both a job management system and a job scheduler. An open source variant

also exists as part of the Terascale Open-Source Resource and QUEue Man-

ager (TORQUE) suite (Computing & Computing, 2012). The Sun Grid Engine

(SGE) was another commercial alternative that was widely deployed. Since the

Oracle takeover of SUN, Grid Engine exists as its own project with commercial

and open source variants. Since TORQUE and PBS are just job management

systems or batch queuing systems they had limited scheduling capabilities. As

part of the Cluster Resources offering there is Maui that is a pure schedul-

ing software. It has the ability to integrate with the openPBS based queuing

systems. Cluster Resources also offer a comparable software suite known as

Moab. Moab is a commercial software that includes the functionality of both

TORQUE and Maui (Jackson, Snell, & Clement, 2001).

3. Requirements of a Job Scheduler 49

Other popular commercial offerings are Load LevellerTMand LSFTM. While the

former is tied to IBM systems only, LSF is becoming a popular middleware.

Due to a simple licensing structure and maintenance/support contracts, many

cluster Original Equipment Manufacturers (OEM)’s are supplying their systems

with LSFTM. The four commercial packages discussed above are now gearing

towards elastic and ”cloudy” environments.

HTCondor developed by the University of Wisconsin is a mature robust system

for job management and scheduling in high throughput environments. Apart

from the major differences introduced with regards to HTCondor being a HTC

middleware, it also differs from the above mentioned HPC schedulers because

its domain is fluid. This means that a HTCondor HTC system is dynamically

scalable without modifications to the central manager. End point resources can

connect and disconnect without disrupting the operations of the central man-

ager. While a node can go down in an HPC environment, a node cannot join in

unless it is predefined. This makes HTCondor a popular choice as a scheduler

in an elastic environment (Montero, Huedo, & Llorente, 2006).

3.5 Simulators

Modelling user behaviour is key when testing the effectiveness of a system.

The ability to model user behaviour is used by designers and manufactures in

the product design cycle and is also an important tool for system administra-

tors who are making changes to configurations. The users’ workloads - their

job submission behaviour, is an important metric for managing HPC, HTC and

grid systems and for designing systems or scheduling algorithms. Most pub-

licly available simulators are either inflexible or tied in to proprietary scheduling

3. Requirements of a Job Scheduler 50

systems. Academic literature relating to simulators does not link back to actual

programs that can be utilised for further research.

A variety of grid simulation tools already exist. These include SimGrid (Legrand,

Marchal, & Casanova, 2003), GridSim (Buyya & Murshed, 2002) and the Maui

(Sterling, 2002) scheduler in simulation mode. SimGrid and GridSim are pri-

marily focused on large geo-distributed systems. As a result these simulators

are more concerned with hardware specifications and process IO interactions

than the cluster schedulers.

The Maui scheduler does focus on cluster testing but does not allow for testing

of algorithms which are not a part of the Maui software. The significance of this

is an innate inability to test new algorithms, or alternative middleware platforms

that do not use the Maui scheduler. Further as Maui was originally written to

work with a multitude of batch queuing system it has its own nomaclature and

formating for data input. Poor documentation, a slow down in development,

and the lack of simple tools to convert logs from a batch queuing system e.g.

TORQUE, means simulating workloads is non trival.

3.6 Summary

Job Management Systems include two primary components - the batch queu-

ing system and the job schedulers. The batch queueing systems are typically

mature pieces of software that generally handle the mechanics of the system.

This thesis will concentrate on job schedulers and propose new paradigms to

improve the efficiency of the JMS.

As presented in Section 2.7 all shared systems, which make the bulk of the

new paradigms of large compute resources, require some form of system to

manage jobs submitted by the users. One of the biggest challenges for system

3. Requirements of a Job Scheduler 51

administrators and researchers is the lack of flexible simulators that are able to

give the operators some guidance as to how their actual workloads will perform

under different system characteristics. In an energy concious world for example

the question ”Do we really need so many nodes on at this time” is a fundamental

one that cant be answered without a proper simulator.

In the next chapter (4) a detailed description of scheduling alogirthms and their

associated literature will be presented. Chapter 5 will bring together the pre-

ceeding chapters, outline the Research Computing Infrastructure (RCI) present

at University of Huddersfield, and the short falls in Job Management faced.

Chapter 4

Literature Review

4.1 Introduction

This section analyses the existing research in several niche subject areas. Each

of these subject areas come together to inform the development of the Intelligent

Robust Mouldable Scheduler. The job management systems are governed by

scheduling algorithms, scheduling strategies and scheduling policies. Section

4.2 builds on the background presented in Chapter 3 and explores the different

layers that govern scheduling systems; Section 4.3 looks at the role of intelligent

scheduling systems in High Performance Computing (HPC); Section 4.4 covers

research and development in benchmarking techniques; and finally Section 4.5

addresses a key piece of work that has inspired the research reported in this

thesis.

52

4. Literature Review 53

4.2 Scheduling Techniques

There are three important paradigms of scheduling in a multi-user parallel en-

vironment that are reported in literature focusing on scheduling strategies. The

three paradigms are rigid scheduling, mouldable scheduling and malleable schedul-

ing. It is important to note that parallel environment in this case refers to a sys-

tem that can run multiple processes or jobs in parallel and not the traditional

meaning in HPC to imply a single job running across multiple cores. Parallel

environment also differs from the concept of multi-tasking. There is a degree of

time-splicing that takes place in multi-tasking which does not exist in a parallel

environment. Distributed environment also differs from parallel environments.

For the purposes of this report the former refers to multiple mutually exclusive

compute systems. These systems could be standard multi-tasking systems,

parallel systems or both. This section also covers scheduling strategies within

elastic or cloud based environments.

4.2.1 Traditional Scheduling Strategies

In parallel environments a job scheduler has two parts to consider – the selec-

tion of the machine and the scheduling of the jobs over time. Within the selection

strategies there are two constants: number of nodes available in the execution

environment and the number of free or available nodes/end points/slots at the

time of calculation. A limited list of strategies that a scheduler can follow is:

• Biggest Free, where a new job is given to that node which has the most

endpoints and slots free. The drawback being that wide jobs suffer as

earlier submitted narrow jobs make take vital resources

4. Literature Review 54

• Random, where a random machine meeting the criteria from the pool is

assigned the job. Mathematically this provides the fairest distribution over

time

• Best Fit, where the scheduler leaves the least amount of resources free.

While this provides the best utilisation and does not raise the issues from

Biggest Free, this sort of out of order execution can result in jobs being

delayed indefinitely

• Equal Utilisation, where the scheduler works as a load balancer favouring

least loaded machines. This too leads to vital jobs getting stuck in the

queue.

(Hamscher, Schwiegelshohn, Streit, & Yahyapour, 2000)

For scheduling jobs some of the popular algorithm are:

• First Come First Served (FCFS), as the name suggests only looks at the

submit time of the job. In a multi-profile job execution environment this

can lead to wide jobs blocking the queue waiting for resources to become

available while short narrow jobs may end up waiting a long time, resulting

in a poor quality of service. In distributed compute environments if there is

a centralised scheduler then this algorithm proves to be the most effective

in maximising utilisation and QoS (Hamscher et al., 2000).

• Backfill, which is an out of order FCFS strategy that does not hold a queue

to provide resources for wide jobs. Using running-time information the

scheduler fills in gaps with short narrow jobs. This algorithm has two

strategies

1. Conservative, where the system allows jobs to run out of order as

long as the expected start times of any other job do not change

4. Literature Review 55

2. Aggressive, where out of order execution is enabled to ensure max-

imum utilisation even if that correlates to a delay in other jobs. High

priority jobs are given preference

These refer to the time margins the scheduler is willing to keep when at-

tempting to maximise the utilisation. Studies have shown that Aggressive

backfilling is the most effective but can result in a poorer performance, sim-

ilar to the FCFS example, or in worst case scenarios when users provide

incorrect execution information.

• Pre-emptive, where at submit time the scheduler decides to which re-

sources the job will be assigned

(Hamscher et al., 2000; Feitelson, Rudolph, Schwiegelshohn, Sevcik, & Wong,

1997)

Aside from an applications profile there are also four types of job profiles.

• Rigid Jobs: The number of processors assigned to a job is specified ex-

ternal to the scheduler and that is not to be adjusted

• Mouldable Jobs: The number of processors assigned to a job is deter-

mined by the system scheduler using some constraints provided by the

user. These are determined either at the time of submission or scheduling

• Evolving Jobs: Through different stages a job requires different resources

and the scheduler makes provisions during the job run time

• Malleable Jobs: The resources assigned to a job change during execution

as the schedulers requirements vary over time.

(Feitelson et al. 1997)

4. Literature Review 56

Because most applications cannot accommodate Malleable jobs and current

production level schedulers have their own offline mechanisms to handle Evolv-

ing jobs this report will henceforth only address the requirements of Rigid and

Mouldable jobs.

4.2.2 Mouldable Scheduling

Expanding on the definition of a mouldable job given in Section 4.2.1, a mould-

able job is where the user provides some ”recommendations” for resources re-

quired, and possibly a deadline for the job. The scheduler then allocates re-

sources to best decrease the turnaround time (TaT) of the job. The quantity

of allocated resources is adjusted based on a constraint to help maximise the

throughput. This constraint can exist in the form of a variance provided by the

user or in some cases, if available, the decision can be based on the scalability

profiles (like the Downey Model) of the application being run (Cirne & Berman,

2001; Trystram, 2001; Cirne & Berman, 2002; Srinivasan, Krishnamoorthy, &

Sadayappan, 2003; Hungershofer, 2004; Huang, Shih, & Chung, 2009; Saule,

Bozdağ, & Catalyurek, 2010; Carroll & Grosu, 2010).

These studies referenced above, have shown that in comparison to rigid jobs in

a first come first served queue with backfilling (aggressive or otherwise) mould-

able jobs have a lower average queued time. Under other scheduling strategies

too, mouldable schedulers almost always give the best result for the contradic-

tory demands of lowest response times and highest utilisation rates (Cirne &

Berman, 2001, 2002; Srinivasan et al., 2003; Hungershofer, 2004).

Some of the ”mouldable scheduling algorithms” that have been developed in-

clude:

4. Literature Review 57

• Submit-time greedy: Users provide different partition sizes and expected

end times. Based on the conditions of the queue, the best partition is

chosen, to have the lowest possible completion time. This allocation is

then fixed.

• Submit-time fair share: This is similar to the previous strategy but incor-

porates a fair share aspect, which prevents any user from consuming too

much of the system at a job level.

• Schedule time greedy: A variant of the Submit-time greedy wherethe op-

timal partition is chosen at schedule time.

• Schedule time aggressive fair share: A hybrid of the Submit-time fair share

and the Schedule time greedy, this algorithm makes allocation decisions

at schedule time and restricts the partition size based on a fair-use pol-

icy. This algorithm however includes backfilling to further streamline the

utilisation.

(Cirne & Berman, 2001, 2002; Srinivasan et al., 2003)

4.2.3 Scheduling in Elastic Environments

In elastic environments job schedulers needs to take into account two new pa-

rameters. The first parameter is that the size of its execution environment is

not fixed. The Condor scheduler (discussed in detail in Section 3.4), has a

variable execution domain but when an end point joins or leaves the execution

environment the scheduler recalculates the order of the queue. In an elastic

environment (discussed in detail in Section 2.3: Review of Elastic and Shared

Resources) a scheduler has the option to scale up the system on its own ac-

cord. This has to factor in any scheduling algorithms. The second parameter

4. Literature Review 58

is how much can it scale? This is governed by whether the elastic environment

has a limit to it – may not a plausible scenario in a public cloud but definitely

a reality in a private cloud. There may be budgetary constraints limiting the

elasticity of the system.

The elastic environment also introduces a new constant in the calculations. This

constant is the provisioning and termination time and cost of an instance. A

study on efficient scheduling, keeping these factors in mind can be found here:

(Zaman & Grosu, 2011). Using the term Bag of Tasks for jobs executed un-

der High Throughput Computing (HTC) environments work carried out at Virje

University outlines scheduling under budget constraints (Oprescu & Kielmann,

2010). Similar to work carried out by (Srinivasan et al., 2003) developers have

looked at Just-in-time resource elasticity for cloud applications based on the

scalability of the different applications. Further, the nodes free constant tends

to go unused till the scheduler hits the elastic limit of the system (Jie, Qiu, & Li,

2009).

Several studies have also been carried out attempting to address automated

scheduling in timeshared parallel machines but in a majority of the cases, dur-

ing a time splice, a stakeholder gets the complete system (Stoica et al., 1996;

Kalé, Kumar, & DeSouza, 2002; Meredith et al., 2003; Padgett, Djemame, &

Dew, 2005). Al Jahdali et al. have addressed the challenge of scheduling jobs

in an elastic environment where the possibility of multi-tenancy on the execution

node can exist (Aljahdali, Townend, & Xu, 2013; AlJahdali et al., 2014). Having

the advantage of full access to Googles trace logs Al Jahdali et. al were able

to ”benchmark” the jobs and make scheduling and allocation decisions. Since

the Google dataset is homogenous for application type, the benchmarking ap-

proach is to average users requirements and the corresponding run time.

4. Literature Review 59

4.3 Review of AI in Scheduling

4.3.1 Intelligent Schedulers

The concept of intelligent schedulers to manage tasks is not a new one. Within

the realm of HPC the word ’intelligent’ is frequently used to describe features.

But the reality is that there is no element of machine learning and at best these

systems can be described as rigid rule based systems. There does not appear

to be actual production standard deployment of such systems.

Some forms of ’intelligent’ schedulers do exist for centralised grid resource bro-

kers. These systems use real time feedback from remote systems to decide

where jobs and data should migrate to. Using information of system load, sys-

tem specifications, network latency and bandwidth the scheduler tries to min-

imise the time for the job to complete the execution (including in-flight time).

Literature relating to intelligent schedulers at cluster level usually entail power

management features. These schedulers are ”smart” enough to turn-off nodes

when not being utilised and based on some rules only bring the nodes back up

when required. In their paper Goel et al. devise a way to get a per-core esti-

mation of power and the corresponding affect on ambient temperatures. Thus

the job management system is provided with more information leading to ’in-

telligent’ operations (Goel et al., 2010). While no mechanism is provided to

feed this information back, there are power management middlewares for HPC

systems that can utilise this information e.g. CLUES (De Alfonso, Caballer, &

Hernández, 2010; Alvarruiz, de Alfonso, Caballer, & Hern’ndez, 2012). Similar

works have been carried out by HPC vendors like Dell (Iqbal, Gupta, & Fang,

2005) and Xerox (Yao, Demers, & Shenker, 1995).

4. Literature Review 60

Fundamental work in designing an intelligent job management system using

job performance prediction has been presented in a paper entitled Evaluation

of a Workflow Scheduler Using Integrated Performance Modelling and Batch

Queue Wait Time Prediction (Nurmi et al., 2006). In this paper the authors have

presented a platform independent model of how an application will behave using

floating point operations and memory access patterns. These values are then

used to estimate how the program would perform on a given piece of hardware.

Using what they describe as a Binomial Method Batch-Queue Predictor and the

Downey model (Downey, 1997) their solution estimates batch queue wait times.

Using this data their aim is to reduce turn around times for Workflow based job

submission systems. With some success they modified the VGrADS workflow

scheduler (Ramakrishnan et al., 2009).

In their paper A Dynamic Scheduler for Balancing HPC Applications, Boneti et

al. propose improving application performance by balancing workloads by cre-

ating a better load balance within the system. Their solution deploys a kernel

extension for Linux on an IBM Power 5 system. Their definition of an HPC ap-

plication falls more on multi-threaded or single node with multi-core Message

Passing Interface (MPI) applications. The adaption to the Linux kernel has

allowed the system (using heuristics) to predict when an application enters a

core intensive phase and the system then load balances to allow for maximum

Central Processing Unit (CPU) efficiency (Boneti, Gioiosa, Cazorla, & Valero,

2008). While this is a good solution it does not scale to a Distributed Multicore

environment as the region of a Linux kernel does not extend beyond the node it

operates on.

Pandey et al. in 2010 proposed a heuristic scheduling workflow for applica-

tions in the cloud. Based on Particle Swarm Optimisation, the proposed system

selects and schedules applications in cloud computing environments by opti-

mising best resource selection taking into account both computation cost and

4. Literature Review 61

data transmission cost (Pandey, Wu, Guru, & Buyya, 2010).

Within grid environments, genetic algorithms utilising heuristic algorithms have

been proposed to address scheduling in directed acyclic graph (DAG) environ-

ments. DAG represents the precedence relations of the tasks of a parallel pro-

gram in a distributed computing system (Woo, Yang, Kim, & Han, 1997). The

Ianos middleware, developed in grids utilises an intelligent scheduling system

along with Viola the grid meta-scheduling system (Rasheed et al., 2007). Khalid

et al. and Stumm have done similar work of intelligently scheduling within scien-

tific grid utilising meta-data. The former concentrated on the spawning of Virtual

machines within the cluster while the later addressed decentralised scheduling

(Khalid et al., 2009; Stumm, 1988).

In their paper ”Fuzzy Logic Based QoS Optimization Mechanism for Service

Composition”, Avila and Djemame present an adaptation approach that imple-

ments self-optimization based on fuzzy logic. When allocating web-services in

elastic environments the decision of scaling up and the possible service provi-

sioning end points are decided based on costs, availability, historic analysis and

benefit of adaptation. This approach allows then to use linguistic variables to

make smarter decisions. Their experimentation has shown an improvement in

the global QoS and reductions up to 17.1% in response time, 17.38% in cost

and 40% in energy consumption (de Gyves Avila & Djemame, 2013).

4.3.2 Heuristics in HPC

In this section, we look at literature that uses heuristic information to improved

scheduler performance. While there is a limited amount of literature on the

application of heuristics in HPC environments, there are several approaches to

scheduling in grids.

4. Literature Review 62

Mönch et al. have used heuristics to improve the scheduling of batch machines

in the manufacturing process. The challenges cited in this paper are similar to

those faced in scheduling on HPC systems. Within their manufacturing process

there are different types of job families which have unequal ready times and un-

equal processing times. The most important criterion is to maximise customer

satisfaction. Using genetic algorithms and heuristics, the paper presents two

options for scheduling and assesses their effectiveness. In one approach jobs

are made into batches. These batches are then assigned to machines and pro-

cessed. In the second approach jobs are signed to machines and then batches

are formed before processing. In most test cases the first approach always

performs better. This result is to be expected as it allows the scheduler hind-

sight. Related to HPC scheduling, their approach will be effective in scheduling

jobs that are already in a queue. In HPC application arrival times for jobs are

not fixed therefore batches cannot be pre-made. In the manufacturing process

there is a limited number of systems that perform tasks, therefore it is easier to

predict runtimes. However, the application of heuristics in HPC will over time

make predictions more accurate (Mönch, Balasubramanian, Fowler, & Pfund,

2005).

Within grid environments the heuristic information collated relates to time-of-

flight of data and rough estimates of processing requirements and application

constraints. This information helps to decide the optimum system to allocate

to the job (Weng & Lu, 2005; Agarwala, Poellabauer, Kong, Schwan, & Wolf,

2003; Schwan et al., 2005). In both cases the quality of service or turn around

time of the job improves. Weng et al. propose an algorithm that copes better

with increasing input data size.

4. Literature Review 63

4.4 Benchmarking Schemes and Schemas

Benchmarking is an important facet of computer science. Following Moore’s

Law, computer architecture is evolving rapidly. Benchmarking schemes are the

main tool to gauge how effective these new developments are. Microprocessor

manufacturers have used benchmarking schemes to create hype in the market

and assist sales. Review magazines also utilise benchmarking schemes to

ensure consumers are better informed.

LINear equations software PACKage (LINPACK) (J. J. Dongarra, Bunch, Moler,

& Stewart, 1979) is one such benchmarking scheme that has been popular for

several decades. LINPACK uses linear algebra based FORTRAN problems to

calculate the Floating Point Operations Per Second (FLOPS) rating for a given

system. While LINPACK has been succeeded by LAPACK as a benchmarking

tool for shared memory and vector processor systems, High Performance Lin-

pack (HPL) is still the standard used to benchmark the fastest computers in the

world for the Top500 list (Petitet, 2004).

LINPACK and other benchmarking tools like it are classed as kernel bench-

marks (Sayeed et al., 2008). Kernel Benchmarks are usually specialised to-

wards measuring individual system components. These benchmarks are able

to give peak performance of the various components – though this is always as-

sumed to be under ideal conditions. Kernel Benchmarks are unable to give an

overall performance metric which can be used to fine-tune the system. Even by

combining various kernel metrics together we cannot predict the performance

improvement of one benchmark for a small change in another (Sayeed et al.,

2008).

For system administrators developing a new system, kernel benchmarks are

4. Literature Review 64

still effective in giving developers figures to improve upon. This sort of imple-

mentation has also led to tools to provide good analysis of CPU and system

utilisation leading to better efficiency (Said, Taib, & Yahya, 2008).

Another aspect of evaluating machines is to attempt a performance prediction

for a family of code. These predictions are based on the scalability models for

the code. Efforts by Allen B. Downey (Downey, 1997), outlined in a report ti-

tled ”A model for speedup of parallel programs” have led to the establishment of

what others have referred to as the Downey Model (Srinivasan et al., 2003). The

Downey model establishes ”a family of speedup curves that are parameterised

by the average parallelism of a program, A, and the variance in parallelism”

(Downey, 1997). The performance characteristic of a particular algorithm, like a

CFD code, is modelled to predict the run time if the cluster size is changed but

the dataset it kept the same. This model utilises observable and measurable

program characteristics, such as run times for a particular section of code and

then creates an average. However, at times it falls short when attempting to

calculate averages. If the timings are linear or near-linear on any range of sys-

tem size, for the particular dataset size, the model cannot calculate an average.

There is no guarantee that at a different dataset size the algorithm keeps the

same speed up profile.

Further efforts, like that done by the San Diego Supercomputer Center [sic], at-

tempt to create a multidimensional benchmarking scheme which provides more

information than Cycle-accurate models (similar to the Downey model only more

elaborate and detailed) and run times from real applications. Their approach ”at-

tempts to see how much of the factors that affect performance can be attributed

to few parameters only adding complexity as needed to explain observed phe-

nomena.” This approach sits between kernel benchmarks and real world appli-

cation testing. The authors are averse to benchmarking schemes that collect

many kernel benchmarks and algorithm specific characteristics to generate a

4. Literature Review 65

performance model. They have found that this, very accurate method, is not

feasible to model full application packages on large scale systems due to time

and monetary considerations (Snavely et al., 2002).

As mentioned before Benchmarking Schemes, especially kernel benchmarks

are mostly utilised by manufacturers to sell their products (Sayeed et al., 2008).

For many users of high end HPC systems predicting how their code or appli-

cation will run is of more pressing concern. As the Downey model laid the

foundations for analysing the scalability of algorithms other research and devel-

opment has been carried out to better model multidisciplinary software (Naik,

1992; Kerbyson et al., 2001; Amit, Caspi, Vitale, & Pinhas, 2006; Elton et al.,

2009). This does not however answer the question ”If I buy this system how fast

will my particular code for my particular problem run?”

The natural evolution from kernel benchmarks and then algorithm performance

modelling is real world application benchmarks. In their paper ”Measuring High-

Performance Computing with Real Applications” Sayeed et al. make a case for

the development of a benchmark that uses actual applications to grade sys-

tems. The paper is aimed at establishing an application based benchmark to

assess performance of machines to influence ”buying time” decisions. Aside

from the political and financial factors limiting the development of real world

application benchmarks, there are also technical limitations. Benchmarks dis-

cussed above aim to provide developers with figures to help steer improvement

of the hardware infrastructure. Real Applications will not be able to help with

this. Fine tuning components in a system to improve the performance of a

particular application is possible, but if the system runs more than one applica-

tion then this approach will lead to a fall in service quality. For manufacturers

and hardware designers real applications are not the best yardstick as ”today’s

real applications might not be tomorrow’s.” Propriety applications also cannot be

fairly utilised as manufacturers and developers can work together thus tainting

4. Literature Review 66

the results. Real application benchmarks, barring one use case, appear to be in

the same category as its predecessors like LINPACK – just marketing devices

sometimes leading to fine tuning monitoring and measuring devices (Sayeed et

al., 2008).

Work carried out by Simon et al. and Alam et al. creates a foundation for

benchmarking HPC Systems and new generation processors with real world

applications. Their work outlines how best to use such benchmarks to assess

the new hardware effectively before deployment. Alam et al. work also includes

bringing together kernel benchmarks and application specific benchmarking to

create a complete picture of a systems performance (Alam, Barrett, Kuehn,

Roth, & Vetter, 2006; Simon, Cable, & Mahmoodi, 2007).

For the purpose of assisting in new purchases, real application benchmarks can

be very effective. Our interest in real application benchmarks stems from the

question ”For a given application on a given system is it possible to create a

metric of performance versus dataset and problem size?” Benchmarking suites

like Perfect Benchmarks (Cybenko, Kipp, Pointer, & Kuck, 1990) and the Stan-

ford Performance Evaluation Corporation (SPEC) (Eigenmann & Hassanzadeh,

1996) are two real application benchmarks that have withstood the test of time

and are still up to date, unlike many others from that era (Sayeed et al., 2008).

The SPEC benchmarks are a compilation of popular applications from each

domain of scientific research with associated workloads and datasets. Further

work has been carried out to include some level of kernel benchmarks, though

these are limited to the application. When benchmarking, along with the turn-

around-time (TaT) gathered by SPEC, add-on components also provide infor-

mation about the inter-processor communication, instructions and FLOPS per

cycle and the I/O calls and performance. Thus meeting some of the shortfalls

outlined above (Eigenmann & Hassanzadeh, 1996; Sayeed et al., 2008).

4. Literature Review 67

Through experimentation with the above mentioned benchmarking suites it is

felt that while the benchmarks are able to provide information about an applica-

tions performance these benchmarks are lacking an ”open-framework” to allow

a user to put in his/her own workload and dataset into the mix. The benchmarks,

probably due to their maturity, are rigid in nature.

If adjusted, SPEC or Perfect Benchmark with their associated add-ons can be

used to feed information back to a running system to help improve the load.

Work has also been carried out to benchmark and predict the scalability of em-

barrassingly parallel or high throughput applications and workloads (da Silva

& Senger, 2010; Montero et al., 2006). Together these benchmarks will pro-

vide better insight of the workload running on the University of Huddersfield

Research Computing Systems (RCS), the Queensgate Grid (QGG).

As mentioned above, adjusting the benchmarks to feed information back to the

system would be a useful addition to help the system manage its workload.

Work has been carried out to develop a mechanism for interpretive performance

prediction (Parashar & Hariri, 1997). Using a modular approach this suite uses

a ”System Module” which characterises the hardware, an ”Application Module”

which incorporates the application characterisation methodology, an ”Interpre-

tation Engine” (module) which derives the execution costs and requirements

and the ”Output Module” which creates the performance metrics and returns

the results to the user. While the output from the previous example is geared

towards high performance application development, a similar approach to work

with the above benchmarks can lead to an innovative and useful product.

4. Literature Review 68

4.5 Seminal Works

This thesis takes inspiration from work being carried out at the Ohio State Uni-

versity by Srinivasan et al. Their paper ”A Robust Scheduling Strategy for Mold-

able Scheduling of Parallel Jobs” by Sudha Srinivasan, Savitha Krishnamoorthy

and P. Sadayappan (2003) has strongly influenced the system design and test-

ing approach adopted in this thesis.

Where most algorithms rely on users giving a recommendation on partition size

and will then choose the best option at submit or schedule time, Srinivasan et

al.’s approach includes algorithm scalability characteristics to further improve

the allocation decision. Adopting the Downey model as a framework Srinivasan

et al. are able to prove that letting the scheduler decide the variance, and

then allocate resources helps to improve turn-around times for jobs in a FCFS

queue with aggressive backfilling and a Fair Use policy. The results also show

improved usage efficiency and more robustness on the part of the system.

The initial premise to their paper is that up to that point mouldable algorithms

were still rigid as they were dependant on user input and didn’t take into account

application performance characteristics. Using real trace logs of a small system

at the San Diego Computing Centre and NAS benchmarks for their running al-

gorithms Srinivasan et al. are able to create a mouldable workload. Working

backwards, the execution time in the trace is matched to the results of the NAS

benchmark for the application. This approach gives the authors a point on a

scalability curve derived by the Downey model for the application. This point on

the line uses the following information: application, number of cores requested

and the execution time. The Downey model is then employed to calculate exe-

cution times at other node allocations.

4. Literature Review 69

With this scalability information and use of the aggressive backfilling algorithm

Srinivasan et al. are able to ensure improved performance across all classes of

jobs. The class divisions are created along the lines of workload-weight. Work-

load weights are calculated using number of cores requested and execution

time. The authors maintain that FCFS systems cause fragmentation and un-

der utilisation and the introduction of backfilling in mouldable scheduling leads

to poor turn around time for some workload-weights (it is assumed they mean

despite mouldable scheduling large jobs get delayed, but they do not explicitly

state this) (Srinivasan et al., 2003).

Srinivasan et al.’s work signals a step change in thinking when it comes to

mouldable scheduling. Taking out the rigidity within existing mouldable schedul-

ing approaches by allowing the system to make allocation decisions using ap-

plication performance characteristics is a major step towards autonomic work-

load management. While they did not emphasise it, their approach to creating

synthetic logs to test mouldable schedulers is novel and very important. Other

papers around the same time have not strongly documented how they have cre-

ated their workloads or how their workloads correlate to real observable work-

loads on HPC systems.

However there are some assumptions made which lead to shortfalls in the ap-

proach. Primarily it is the use of the Downey Model to evaluate scalability of

workloads. The Downey model is a system agnostic approach to determine

application scalability. The Downey model does not take into account network

speeds and overheads (e.g. in clusters), location of the data (e.g. in clusters

and clouds), or multi-tenancy nodes (e.g. in clouds). Even though the authors

used the NAS benchmarks, the results are not used to find the true scalability

across the range of allocations. They use the user specified core allocations

in the trace logs to make assumptions about both the size of the dataset and

4. Literature Review 70

the workload information. Observation of workloads on the University of Hud-

dersfield Queensgate Grid reveals allocations of 2 or 4 nodes are very common

and cover a large range of dataset size1. However the execution time of two

jobs using the same application can be in the same range but have different

workload and dataset sizes. This is why Srinivasan et al. assumptions seem to

introduce larger errors into their testing.

Srinivasan et al. also do not take into account queue wait times in their system

workload. This over sight is further compounded by the fact that the authors as-

sumption of under-utilisation in a FCFS scheduling strategy refers to assertions

made by Krallmann et al. in their 1999 paper entitle ”On the Design and Evalua-

tion of Job Scheduling Algorithms”. This paper does not take in account mould-

able scheduling, and only tests and refers to rigid workloads where only a single

user specified allocation can be made for any job (Krallmann, Schwiegelshohn,

& Yahyapour, 1999).

Under a mouldable environment the scheduling algorithm should be able to fit

jobs into vacant spaces if the turn around time can be improved. A mouldable

scheduler needs to take into account the queue time of a job into the ”total time”

for the job. Based on this and the ability to mould a job, the chances of large

swathes of the system sitting idle are very small. The exception would usually

occur if the system assumes the minimum allocatable node count is greater

than 50% of the system. In a heterogeneous user system the introduction of

backfilling will also remove the small percentages of idle system.

1Section 6.3.2 shows how many classes of datasets for one application and one workload
share this allocation range

4. Literature Review 71

4.6 Summary

This chapter presented an outline of the various scheduling algorithms, policies

and strategies. At a fundamental level, there are scheduling algorithms that can

be applied to many scheduling strategies. This thesis is focused on a mouldable

scheduling strategy and will take into account First Come First Served and First

Come First Served with Backfilling scheduling algorithms.

As efforts to make large, complex and more autonomous schedulers are on-

going, the use of Artificial Intelligence (A.I.) techniques like fuzzy logic, heuris-

tics and machine learning are being adopted. These improve the overall schedul-

ing performance of HPC systems with minimal operator input.

Thus far this thesis has outlined the key characteristics of RCS, Job Manage-

ment Systems, and Scheduling techniques. The next Chapter will explore the

University of Huddersfield research computing environment and analyse the

typical users and workloads handled.

Chapter 5

University of Huddersfield

Research Computing Infrastructure

5.1 Introduction

Since 2009 the University of Huddersfield has invested heavily in developing

its in-house Research Computing Infrastructure (RCI). As the University has

moved towards being more research led, giving researchers access to Research

Computing Systems (RCS) type machines became essential. Within the Uni-

versity environment the computer clusters and other systems had to support

a wide array of applications. The roadmap for research computing at the Uni-

versity is set by the High Performance Computing Research Group (HPC-RG),

which is a group of academics from different disciplines and members of the

University’s IT services. The day-to-day management of the RCI is handled by

the High Performance Computing Resource Centre (HPC-RC).

The different systems that have been deployed to support research computing

along with the software stack and supported applications are outlined in Section

5.2. The profile of users and the systems utilisation is discussed in Section 5.3.

72

5. University of Huddersfield RCS 73

FIGURE 5.1: The Beowulf cluster Eridani: Cold Isle

The need to provide Quality of Service (QoS) to our users and improve resource

utilisation has lead to the development of a new mouldable job scheduler.

To evaluate the mouldable scheduler, and the intelligent mouldable scheduler,

described in detail in Section 8 and 9.2 respectively, a snapshot of a real work-

load from an existing system is utilised. This snapshot forms the input for the

simulations when the tool is tested and evaluated. The Workload Sample (de-

scribed in Section 5.4) evaluates, in detail, resource utilisation. Job arrival and

completion rates are presented to illustrate QoS that is inherent in the system.

5.2 Research Computing Infrastructure

5.2.1 Systems

In an effort to become a world leading research institution the University recog-

nised the importance of High Performance Computing (HPC) for research and

deployed several HPC systems. HPC systems are the most effective in process-

ing large computational problems. The University’s two primary HPC systems

are known as Eridani and Sol. All systems on the campus are linked together

to form the Queensgate Grid (QGG) (Holmes & Kureshi, 2010).

Eridani, shown in Figure 5.1 and 5.2 is a Beowulf type HPC cluster. It is capa-

ble of delivering a peak of 500 Giga FLOPS (GFLOPS) of computational power

with a sustained power rating of 380 GFLOPS. It comprises of thirty six com-

modity workstations linked together over a gigabit backplane. Each node has

5. University of Huddersfield RCS 74

FIGURE 5.2: Networking and Power for Eridani: Hot Isle

FIGURE 5.3: SOL Cluster in the University Datacentre

a 4 core Intel R© processor. Entire system control, monitoring, Message Pass-

ing Interface (MPI), and user data is delivered over the single gigabit network

channel. The nodes are housed in a custom build shelf. The system uses

Community Enterprise Operating System (CentOS) version 5 as the operating

system with Open Source Cluster Application Resources (OSCAR) 5.1b2 pro-

viding the linking middleware. Terascale Open-Source Resource and QUEue

Manager (TORQUE) 2.5.7 with Maui 2 manage the system resources and jobs.

Users home storage is mounted from a mirrored Gluster File System Storage

Server.

The second HPC cluster Sol is a more tightly coupled system. It consists of 64

5. University of Huddersfield RCS 75

compute nodes that are based on SUN X4200 server hardware with two dual

core AMD R© OpteronTM processors each. The system is housed in two server

racks (as shown in figure 5.3). There is a separate gigabit network layer for each

of monitoring and control; user data; and interprocessor MPI. Each rack, which

has 32 nodes, has three of its own switches to deliver the different network lay-

ers. Each switch is linked across each rack using an ring configuration giving

a throughput of 80 gbps. Sol runs CentOS 6 as the operating system, with

Warewulf Cluster Manager as the middleware. Jobs and resources are man-

aged by TORQUE 4 and Maui 3.3.0. Despite the hardware being older, the ad-

ditional network layers and the latest software has ensured that Sol is the most

powerful system available on-campus. Using High Performance Linpack (HPL)

Sol achieved a sustained performance rating of 1.03 Tera FLOPS (TFLOPS)

with a peak of 1.9 TFLOPS.

In addition to two HPC clusters, there are two specialised HPC systems that

make up the Huddersfield RCI. The first is an Nvidia R© and Intel R© based Graphic

Processing Unit (GPU) cluster. This cluster comprises of two compute nodes

and a head node linked via Gigabit Ethernet. The nodes connect to the GPUs,

housed in a special chassis, using a Peripheral Component Interconnect - Ex-

press (PCI-E) interface. This system runs Microsoft R© Windows HPC Server

2008TM as its operating system and middleware.

The second system is data mining cluster made up of 14 nodes. This cluster,

QGG-Hadoop, uses CentOS 6 as its operating system and Apache’s Hadoop

software as the job manager. This system is utilised to tackle big data problems,

like error detection in medical records.

In order to deliver the latest in HPC technology to the users the University of

Huddersfield has bought into a shared HPC service. This system is housed at

the Science and Technology Facilities Council (STFC) Daresbury. The system

5. University of Huddersfield RCS 76

has been listed on the Top500 list since 2012. The University of Huddersfield

pays for priority access to a set amount of CPU hours each month. Once the

CPU quota is exceeded, jobs initiated by the Huddersfield group on the system

become the lowest priority.

The University of Huddersfield campus network is also linked by several High

Throughput Computing (HTC) middleware. This allows the HPC-RC to farm

jobs to idle CPUs on campus. The primary HTC system is known as QGG-

Condor. QGG-Condor is a heterogeneous pool of resources linked using HT-

Condor. All the major schools of the University share their systems by deploying

the HTCondor client on their lab machines. This has led to the creation of a

computing network with over 5000 processing slots. The engineering depart-

ment runs virtualised Linux environments that HTCondor can utilise when idle.

Even at the absolute peak hours of term, it has been observed that there are

at least 500+ slots available for use (Gubb, Holmes, Kureshi, Liang, & James,

2012).

The School of Arts does not run HTCondor within their labs. To meet their com-

putational needs a second high throughput middleware Autodesk R© BackburnerTM

is utilised to harness idle CPUs. Backburner is a proprietary middleware that

can only be used by Autodesk software. Within the University of Huddersfield it

is primarily used for rendering graphics from 3D Studio Max.

All systems on the Huddersfield Queensgate campus are linked by multiple grid

interfaces. This allows users to stay with the Job Description Language (JDL)

they are most comfortable using. Primarily, the campus grid is a single sign-on

network with a globally shared file system. All users must connect and authenti-

cate to the central access server named Bellatrix. This system is connected by

very high speed to the University backbone and to a storage server. Users can

seamlessly SSH to any computing end-point and submit natively. This creates a

5. University of Huddersfield RCS 77

”trusted grid” environment. The links are established over a private high speed

fibre optic network that is dedicated to the HPC environment.

The more traditional form of the grid is delivered using the Globus middleware.

From any of the compute end-points or the central access node, a user can

invoke processes on remote end-points using the Globus toolkit. Each system

on the QGG trusts a Huddersfield only Virtual Organisation (VO). Using the

Globus JDL a user can submit jobs to the HTCondor or the HPC clusters. Users

however need to know the location of the required applications, that is, which

system the application is installed on and where on the system the binaries

exist.

Those users familiar with HTCondor can use the Condor-G features to submit

jobs from the HTCondor node to the other HPC clusters on the campus net-

work. While HTCondor is configured to ”know” about all the HPC resources in

the network, users still need to know the location of their applications. Build-

ing on top of the Globus and HTCondor installations is the gLite middleware.

Through gLite users get the advantage of a single sign-on, single JDL, and ac-

cess to all the applications and execution end-points without having to explicitly

know about them (J. Brennan et al., 2013). This system has its benefits and

drawbacks. Debugging errors becomes more cumbersome as there are now

multiple points of failure. However the gLite system can lead to a degree of load

balancing, as gLite will divide jobs across different systems if the application is

available. A second advantage is that users can use the gLite system to seam-

lessly scale beyond the campus grid to the UK national grid and the European

grid.

The University of Huddersfield was an affiliate member of the now defunct UK

National Grid Infrastructure for eScience. Local compute resources at Hudder-

sfield were linked to the national gLite deployment for use by researchers at

5. University of Huddersfield RCS 78

other institutions. Several institutions still share resources for training purposes.

5.2.2 Applications

The QGG is regularly used by researchers from 7 departments in 3 schools.

The suite of applications installed globally on the QGG are a reflection of this

diverse group of researchers. Each application has a different performance

profile and execution behaviour. Some applications that make up the ”usual”

workload are described below.

ANSYS R©Fluent This software package is the mechanical engineers primary

tool on the QGG. Fluent is one of the Computational Fluid Dynamics (CFD)

components that make up the ANSYS engineering software suite. A CFD

simulation is an evaluation of fluid flow problems using numerical methods.

Scientists can use highly accurate models within the CFD packages by using

Computer Aided Design (CAD) software packages to create the object geom-

etry. The use of HPC systems has enabled these complex geometries to be

evaluated against various numerical algorithms which was not possible using

standard workstations. While Fluent incorporates many common algorithms to

solve a problem domain, ANSYS boasts of algorithm improvements and optimi-

sations in their solvers. Since the software is proprietary and closed source it is

difficult to judge the true appearance of the solvers.

DL POLY is a general purpose serial and parallel molecular dynamics simula-

tion package developed at Daresbury Laboratory by W. Smith, T.R. Forester and

I.T. Todorov. The original package was developed by the Molecular Simulation

Group (now part of the Computational Chemistry Group, MSG) at Daresbury

Laboratory funded by the Engineering and Physical Sciences Research Council

(EPSRC) and supported by CCP5. Later developments were also supported by

5. University of Huddersfield RCS 79

1node 2nodes 3nodes 4nodes 5-7nodes >=8nodes

Daily(jobs) 13 5 0.6 1 0.5 0.5

Weekly(jobs) 63 35 3 6 2 2

Monthly(jobs) 280 155 13 26 7 9

Duration(hr) 8 12 2 16 11 14

TABLE 5.1: Average breakdown of Jobs on the Eridani Cluster

the Natural Environment Research Council through the eMinerals project. The

package is the property of the Central Laboratory of the Research Councils.

5.3 System Usage

The Eridani Cluster has been operational since 2011. It serves as the stepping

stone for all new users of HPC/HTC technologies. It is used as a teaching tool

for students studying HPC technologies and those who need HPC for their dis-

cipline (e.g. mechanical engineers). The system is also utilised by researchers

(staff and students) from different disciplines. Eridani serves as the training and

simulation platform for early to mid-career PhD students. While researchers

have small or developing data sets Eridani is the preferred platform. It also

serves as a platform for post-processing.

Due to the University of Huddersfield’s lab computing environment being pre-

dominantly Microsoft Window based, the High Throughput Condor (HTCondor)

service (particularly in its initial days) did not meet the needs of many users.

Since many codes emerging from the Daresbury Laboratories and CERN are

*nix based, Eridani fields many serial/high throughput jobs. Isolating those jobs

requiring parallel libraries job submission patterns for parallel loads can be de-

duced. Table 5.1 shows how resource requests are broken down on the Eridani

cluster on a weekly and monthly basis. The average duration of these jobs is

also shown in Table 5.1.

5. University of Huddersfield RCS 80

57%

32%

8%

3%

Load by Node Count

1 node job

2 node job

3‐4 node job

5‐8 node job

FIGURE 5.4: Load on Eridani Cluster by Node Count

These statistics are based on three years of usage logs of the Eridani Cluster

(2011-2013). During this time a total of 112,390 jobs were executed amounting

to 439,210 hours of computing. Ignoring the serial jobs or single core jobs

we can see that there are more single node jobs than any other configuration

(57%). But multi-node jobs did account for a majority of the total time spent

computing (52%). Figures 5.4 and 5.5 present a node level break down of job

requests over the three years.

5. University of Huddersfield RCS 81

48%

38%

10%

4%

Load by Wall Time Used

1 node job

2 node job

3‐4 node job

5‐8 node job

FIGURE 5.5: Load on Eridani Cluster by Job Duration

5.4 Workload Sample

To test the mouldable scheduler the month of April 2013 was identified as an

ideal case study month. April is typically a busy time for the system. There are

Conference and Camera Ready papers, assignments, and Research Progres-

sion deadlines in May/June. Unlike large national systems or tightly coupled

large parallel systems, the load on University of Huddersfield systems varies.

This variation is predicable and is quite often seasonal. The month of April 2013

is also significant as it saw three power users and one new user heavily use the

system. The users were equally split between Engineering (using a CFD pack-

age) and Applied Sciences (using a Molecular Dynamics (MD) package). Using

5. University of Huddersfield RCS 82

User Total Jobs Average #Nodes Max #Nodes Average Duration

CFD-User1 226 2 4 24hr

CFD-User2 80 3 3 13hr

MD-User1 703 2 4 16hr

MD-User2 141 4 8 12hr

TABLE 5.2: Breakdown of Jobs by Power Users in the month of April

the system logs and figures from Ganglia (the Eridani system monitoring tool),

the occupancy rate of the cluster for the whole month has been identified as

99-100%.

During this period the identified users submitted a total of 1150 parallel jobs.

Outlined in Table 5.2 is an anonymised breakdown of jobs submitted to the sys-

tem by users. Using a data mining techniques (via Apache Hadoop) the aver-

age job arrival rate and completion rate for this time period have been identified.

This is discussed further in Section 7.5.

This submission pattern and workload forms the basis for the specific testing in

further chapters.

The Eridani cluster is geared to handle core-serial, node-serial and multi-node

jobs. Therefore not all jobs are mouldable. Due to the specification of other

clusters within the University of Huddersfield RCI the workloads on the other

cluster are 100% mouldable. If a job can scale across nodes using MPI and the

data does not need to be pre-partitioned then it can be considered a mouldable

job. Standard practices within MPI based programming mean that by and large

most applications that use multi-node communications are mouldable.

5. University of Huddersfield RCS 83

5.5 Summary

In this chapter, the computing environment at the University of Huddersfield

has been outlined. The typical applications and the typical load characteristics

have been presented. From these statistics, 5 users and their workloads have

been identified as quantifying the ”average load” on the Eridani cluster. As the

mouldable scheduler is designed, to ensure accuracy, these users submission

rates and completion rates were monitored.

Chapter 6

Application and System

Performance Profiling

6.1 Introduction

In order to manage resources and queues within an High Performance Com-

puting (HPC) system it is essential to know how an application will perform. As

observed in Sections 1.1, 2.2 and 3.2 this information is typically taken from

the user in the form of a job property specifying the ’maximum required time

required’. Job schedulers also rely on the users prescribing the required re-

sources (nodes/cores or memory).

This method has proved to include a lot of ’bad-put’ and inevitably the system

can not be optimised beyond a point. As discussed in Sections 1.1 and 4.5

this bad-put can either be resource under-booking leading to system crashes

making the system less robust. Alternatively resources are more often than not

over-booked (Chen, Lu, & Pattabiraman, 2014), wasting resources (computa-

tional and electrical/cooling) and reducing the overall Quality of Service (QoS)

delivered to the users.

84

6. Application and System Performance Profiling 85

The work carried out for this thesis aimed to explain novel approaches to au-

tomating resource allocation in order to facilitate better utilisation of HPC re-

sources. To be able to autonomically managed the job occupancy within HPC

system it is critical to predict application run times, optimum resource alloca-

tions, and minimum resource allocations. As has been observed in Section

4.2.2 many solutions utilise the Downey model. The limitation of this system

agnostic approach, especially when dealing with proprietary closed source soft-

ware has been explained in 4.4. The best approach to get as close to accurate,

the applications performance characteristics, is to benchmark the application

on the system against realistic workloads and datasets1.

This chapter explains the approach adopted to benchmark and collect the ap-

plication performance data and how this data can be fed back to the system

for mouldable scheduling (explained in Chapter 8). The end product can be

utilised as a stand alone performance profiler. The code base is - Application

and System Performance Profiler. This chapter is divided into two parts. The

first Section 6.2 explains the development process, including design methodol-

ogy, implementation and data processing. The second Section 6.3 explains the

testing platform; testing applications, workloads and datasets; and the results

of the application profiling.

6.2 Development of the Toolkit

When devising the Application and System Performance Profiler (ASPP) the

goal was to create an open-framework benchmarking toolkit implemented in

Python and MySQL. This toolkit should be fully customisable and adaptable

to the system on which it is being deployed. The benchmarking categories,

1This work has been partially published at the 5th Balkan Conference on Informatics
(Kureshi, Holmes, & Cooke, 2012)

6. Application and System Performance Profiling 86

FIGURE 6.1: Benchmarking Suite

datasets, system size etc, all should be defined by the end user (who in this

case is the system administrator) as shown in Figure 6.1.

The toolkit is not focused on presenting the maximum power that can be squeezed

out of the system but how an application would behave with different resource

allocations passed to it. This open-framework has been adopted to ensure

reusability of the software external to the Mouldable Scheduler project.

6.2.1 Toolkit Architecture

As seen in Figure 6.2, the benchmarking suite works in two phases. Phase 1 is

the pre-processing stage and Phase 2 is the post-processing stage. The actual

’processing’ stage is performed when the datasets are running on the system

and these are external to the actual benchmarking suite.

Initially, a system administrator starts the profiler with a new application and

dataset combination. These are defined in a benchmark config file (see Figure

6.3). Each set of benchmarks needs a new configuration file. The toolkit uses

the configuration file-name as the name for the set of benchmarks. Within the

configuration file the administrator needs to define the application being used,

the locations of the sample datasets and some worded classification of what

6. Application and System Performance Profiling 87

FIGURE 6.2: Flowchart for the Benchmarking Suite

each dataset is i.e. SMALL, MEDIUM, LARGE. The configuration file also in-

cludes meta information about the dataset and workflow, e.g. dataset could

be in terms of molecules or elements while workload could be in terms of time

or iterations. This way a mechanical engineer can query the profiler about the

performance profile for his/her application in terms of elements and iterations

(keywords native to CFD softwares).

The toolkit then ensures that the config file is error free before it imports sys-

tem related information that the benchmarking suite will use. One such import

is the system information configuration file. This file contains the system size

6. Application and System Performance Profiling 88

FIGURE 6.3: Extract from Sample Application Configuration File

information and the range of resources that are associated to the various clas-

sifications of job sizes (for example SMALL 1-2 nodes, MEDIUM 2-3 nodes,

LARGE 4 nodes etc). The next configuration file that is imported is the applica-

tion information configuration file. This contains command line instructions and

environment variables required to start the application. The third configuration

file is the plugin for the underlying batch system. The ASPP then verifies that

the input datasets defined in the benchmark configuration file do exist.

To keep the Application and System Performance Profiler as flexible as possible,

it has been created to be very modular. Ideally, it should be able to interface

with any batch system by the use of a plugin. As shown in Figure 6.2 the

third configuration file is the plugin. For the purposes of this research, efforts

have been limited to PBS/Torque (Computing & Computing, 2012) based batch

queuing systems but additional plug-ins for SGE and LSF are possible.

6.2.2 Generating Benchmarks

The ASPP aims to provide benchmarking information that is characteristic of

normal workloads for the system. Therefore it requires user specified input files

with classifications. By taking the user specified ranges of resources for each

6. Application and System Performance Profiling 89

classification, the ASPP generates several benchmark jobs. The aim is that for

every workload and dataset size, the ASPP should be able to get 3 run times

on different hardware allocations. The ASPP generates at least 3 benchmark

jobs for every dataset and workload size within the range of its classification.

For example, a CFD application with 2M+ elements and a workload of 1000

iterations can be defined as a medium workload so the ASPP will generate 3-

4 jobs (the more points the better) which will run the simulation at 1 node (4

cores), 2 nodes, 3 nodes and 4 nodes.

The aim is to generate a curve of wall-time versus nodes. Each curve is a

benchmark set that corresponds to 1 dataset and workload pair. Using the pre-

vious example, the CFD benchmark, using the 2M+ element model and 1000

iterations, forms one set of benchmarks. The ASPP will generate all the com-

binations for all the workloads and datasets using the classifications. Referring

to the snippet of the configuration file seen in Figure 6.3 it can be assumed that

since there are 3 models and 2 workloads the ASPP will generate 6 benchmark

sets. Assuming a small cluster of 4 nodes (up to 16 cores) and the three classi-

fications given in the snippets, ASPP will generate a minimum of 3 benchmarks

per benchmark set. In total ASPP will generate 18 benchmark jobs to create a

basic profile of the cluster.

These multiple curves can be used to predict run times for resource configura-

tions not actually benchmarked. Multiple curves can be further expressed as

2 dimensional planes in a 3 dimensional space. The third dimension could be

either dataset size or workload size. This form of benchmarking then provides

the administrator or the users with a mechanism to predict run times at different

resource allocations, even if their actual model does not fit the benchmarks that

were previously run by ASPP.

Once the ASPP generates the job files for each job run, it begins to submit them

6. Application and System Performance Profiling 90

to the underlying batch scheduler. ASPP captures the returned job numbers

and stores them in a file. This file is used as a flag to indicate to ASPP that

the pre-processing has been done. ASPP then terminates and informs the

administrator to re-run the benchmark once all the running jobs are completed.

6.2.3 Information Retrieval and Postprocessing

When ASPP is started with the configuration file described in section 6.2.1 it

uses the configuration file-name as the key name for the whole benchmark se-

ries. The flag file shares this name, for example in case of a cfd.conf file, the

flag file would be called .cfd.0. If the flag file exists, the ASPP launches the

post-processor instead of the pre-processor, which is the default behaviour. For

post-processing the ASPP should be run as a privileged user.

The post processor ensures that all the jobs defined within the flag file have

completed and terminated naturally. In the event that the job state indicates an

exit condition other than 0, the ASPP informs the administrator. It is left to the

system administrator to ensure that the profiling jobs run through normally for

the purpose of benchmarking. Some programs may output internal errors and

still terminate in such a way that the batch scheduler does not identify an error.

In the event when a job has ended due to an error, all the job files are available

along with instructions on how to re-run them. Once an administrator has re-

run the jobs, there is a script available to update the flag file with updated job

numbers. This should be run before launching the post-processor.

There are conditions under which a job terminates with an error because the

underlying system itself cannot cope with the load. A job could fail because

the memory requirements for a particular resource combination is insufficient.

These situations are handled by setting a flag to notify the post processor that

such jobs can not be handled by this system. Furthermore some datasets or

6. Application and System Performance Profiling 91

workloads may not finish in an ”appropriate” time frame. There maybe no errors

but a maximum wall clock time may be reached. This value is defined in the

system configuration file.

Using the job numbers and meta data stored in the flag file, the post proces-

sor within the ASPP begins to generate records for each benchmark. ASPP

processes the accounting logs for the job scheduler and collects the wall-time

or running time for each of the jobs that was generated. Each record therefore

has an Applications Name, Dataset size, Workload size, Resource Allocation,

and finally a corresponding Running Time. If the maximum job duration for the

system has been exceeded or the memory requirements are exceeded for a

particular benchmark job then the profiler assumes the system can not handle

such jobs.

These records are pushed to a MySQL backend and the data can then be ac-

cessed by any other application. The post processor can generate a report

of execution information using an R (r-file) or Matlab (m-file) which details the

performance and provides visual representation of the performance curves and

surfaces.

6.3 Testing and Results

6.3.1 Test Platform

To evaluate the Application and System Performance Profiler testing of the

toolkit was carried out on a small system (nodes partitioned out of the Eridani

cluster) using two applications that are typical of the University of Huddersfield

research environment. The underlying HPC system is an Intel R©cluster with

a head-node, 4 compute nodes and a gigabit backplane. Each node has an

6. Application and System Performance Profiling 92

Intel Q8200, 4 Core, 2.33Ghz processor with 8GB of 800Mhz RAM. The head

node or control node of this cluster is separate from the 4 nodes outlined above.

Each node runs CentOS 5 (final) that is installed locally and is managed using

the Torque batch queuing system. Users’ home folders and applications are

delivered to the nodes using a network Gluster File system. The cluster man-

agement, data and MPI network paths all share the single gigabit back plane.

A maximum duration of 14 days (1209600 seconds) has been set as the appro-

priate maximum run time for a job.

ASPP is used to benchmark this system across a range of allocated resources.

It was decided to create seven bands or classifications. The user group supplied

data sets were fitted to these classifications. The range in the bands are best

guesses based on submission trends observed on our other HPC systems. The

seven classifications are shown in Table 6.1.

Classification Range of Cores

VVSMALL 1,2,4

VSMALL 2,4,6

SMALL 4,8,12,16

MEDIUM 4,8,12,16

LARGE 4,8,12,16

VLARGE 8,12,16

VVLARGE 12,14,16

TABLE 6.1: Classifications with corresponding Resource Ranges

ANSYS Fluent, version 13.0.0, was utilised as the first application. ANSYS

Fluent is a proprietary computational fluid dynamics software and is charac-

teristic of the computational fluid dynamics (CFD) application executed on the

Queensgate Grid (QGG), as discussed in Section 5.2.2. The dataset provided

by the end-users involves the calculation of forces on an object caused by air-

flow in a rectangular tube. The coarseness of the model has been varied across

the typical sorts of mesh our end-users simulate. To this end there are 7 data

sets that are shown in Table 6.2.

6. Application and System Performance Profiling 93

Classification Elements Shorthand

VVSMALL 312500 0.25M

VSMALL 496190 0.5M

SMALL 1014429 1M

MEDIUM 2193408 2M

LARGE 4093656 4M

VLARGE 8109956 8M

VVLARGE 16164981 16M

TABLE 6.2: ANSYS Fluent Benchmark Inputs and Classifications

Classification Atoms Shorthand

VSMALL 500 0.5k

MEDIUM 4000 4k

VLARGE 32000 32k

TABLE 6.3: DL POLY Benchmark Inputs and Classifications

The second application used is DL POLY Classic (Smith & Todorov, 2006).

DL POLY is a general purpose molecular dynamics (MD) simulation software

developed by Dr I. T. Todorov of the Science and Technology Facilities Council

(STFC). The model provided by the Applied Sciences user group are simula-

tions of bulk MgO. There is a single workload, which has 1000000 time steps,

where each step is 0.001 pico-seconds. Three datasets have been provided. In

each dataset the number of atoms are varied. According to the chemistry users

guidance these models have been given three classifications from Table 6.1.

The DL POLY models and the associated classifications can be seen in Table

6.3.

These benchmarks and corresponding classifications fit within the narrow win-

dow of the typical models and workloads generated by the CFD and MD user

base at the University of Huddersfield. These values and ranges may differ at

other institutions (Holmes & Kureshi, 2010).

6. Application and System Performance Profiling 94

Classification Dataset Cores Duration

VVSMALL 0.25M 1 1956

VVSMALL 0.25M 2 1254

VVSMALL 0.25M 4 952

VSMALL 0.5M 2 2154

VSMALL 0.5M 4 1499

VSMALL 0.5M 6 1011

SMALL 1M 4 3032

SMALL 1M 8 2800

SMALL 1M 12 1030

SMALL 1M 16 834

MEDIUM 2M 4 6636

MEDIUM 2M 8 3390

MEDIUM 2M 12 2220

MEDIUM 2M 16 2889

LARGE 4M 4 12573

LARGE 4M 8 10673

LARGE 4M 12 4095

LARGE 4M 16 5638

VLARGE 8M 8 12975

VLARGE 8M 12 8142

VLARGE 8M 16 11292

VVLARGE 16M 12 17024

VVLARGE 16M 14 15858

VVLARGE 16M 16 12873

TABLE 6.4: ANSYS Fluent Benchmark Results by Classification for Single

Workload

6.3.2 Profiling the CFD Application

The various datasets outlined in the previous section were run via the ASPP

toolkit. In the interest of space and clarity one workload of a 1000 iterations has

been explained below. The system generated a total of 24 benchmarks against

this workload size, three benchmarks each for the VVSMALL, VSMALL, LARGE

and VVLARGE classifications and four benchmarks each for the SMALL MEDIUM

and LARGE classifications. The increased granularity for the latter classifica-

tions is due to the wider band of resources provided. The tabulated results for

the benchmarks can be found in Table 6.4.

6. Application and System Performance Profiling 95

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.25 0.5 1 1.5 2 2.5 3 3.5 4

R
u
n
 T
im

e

Nodes

CFD Performance Curves

250000 VVSMALL

500000 VSMALL

1000000 SMALL

2000000 MEDIUM

4000000 LARGE

8000000 VLARGE

16000000 VVLARGE

Dataset Size

FIGURE 6.4: CFD Performance Curves as provided by ASPP m-file

250000

500000

1000000

2000000

4000000

8000000

16000000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.25
0.5

1

1.5
2

2.5

3

3.5

4

D
a
ta
se
t
S
iz
e

R
u
n
‐.
m
e

Nodes

Surface plot of Fluent Benchmarks

FIGURE 6.5: Surface plot for CFD Performance as provided by ASPP m-file

6. Application and System Performance Profiling 96

Classification Dataset Cores Duration

VSMALL 0.5k 2 29102

VSMALL 0.5k 4 16570

VSMALL 0.5k 6 45815

MEDIUM 4k 4 657791

MEDIUM 4k 8 142997

MEDIUM 4k 12 100019

MEDIUM 4k 16 80628

VLARGE 32k 8 1209601

VLARGE 32k 12 1209601

VLARGE 32k 16 1209601

TABLE 6.5: DL POLY Classic Benchmark Results by Classification for Single

Workload

6.3.3 Profiling the MD Applications

Based on feedback from the DL POLY user base, the ASPP was directed to

generate 3 batches of benchmarks. These were classified as VSMALL with 500

atoms, MEDIUM with 4000 atoms and VLARGE with 32000 atoms. As defined

in the ASPP configuration VSMALL classifications get mapped to 3 possible

hardware combinations; a MEDIUM classification gets mapped to 4 hardware

combinations; and VLARGE classified benchmark inputs get mapped to 3 hard-

ware configurations. To benchmark DL POLY Classic across our testbed sys-

tem ASPP generated 10 benchmark jobs. These jobs and their results can be

found in table 6.5.

6.3.4 Discussion

In this section we evaluate the results of the ASPP system and the system itself

as a stand-alone software.

The results of the Fluent benchmarks can be visualised as stacked curves,

shown in Figure 6.4. As can be seen by Figure 6.4 the difference between

6. Application and System Performance Profiling 97

0

100000

200000

300000

400000

500000

600000

700000

0.5 1 1.5 2 2.5 3 3.5 4

R
u
n
 T
im

e

Nodes

MD Performance Curves

500 VSMALL

4000 MEDIUM

Dataset Size

FIGURE 6.6: MD Performance Curves as provided by the ASPP m-file

4 cores and 12 cores for a SMALL dataset is insignificant and the user may

decide to submit multiple jobs requesting 4 cores to maximise his throughput,

rather than trying to increase the speed of each job but having to wait longer. In

the case of the MEDIUM dataset both the 4 and 12 Core configurations may not

be preferable as the former takes too long per simulation and the later wastes

resources. In the case of MEDIUM datasets, eights cores appears to be a good

compromise. This information once provided to the user base becomes invalu-

able, as it leads to better utilisation of the researchers time and the system itself.

It can also be seen that for different dataset sizes the performance/scalability

characteristic of the application changes. This proves our assertion that algo-

rithmic models for performance profiling do not give adequate results and that

real application and dataset profiling gives a more accurate measure of perfor-

mance. The performance curve for a 2M element benchmark has the opposite

shape as the 4M element benchmark.

6. Application and System Performance Profiling 98

Using different sized datasets provided by our mechanical engineers we clas-

sified them as VVLARGE, VLARGE, LARGE, MEDIUM, SMALL, VSMALL and

VVSMALL. Using ASPP on our 4 node test cluster we profiled each classifica-

tion of dataset across different combinations of cores. The ASPP demonstrated

that there is good scale up on our test system up to 3 nodes. The only exception

to that is for the VVLARGE family of simulations, which can scale to 4 nodes.

A 2D representation of the results of the DL POLY can be seen in in Figure 6.6.

As the wall clock time of the VLARGE benchmarks exceeded the 14 days upper

limit the ASPP assumes that for this size dataset and workload the system can

not reach a result. As Figure 6.6 shows for VSMALL models around the 500

atoms mark it is more expensive to scale beyond 4 cores on the test system.

Whereas for the MEDIUM sized dataset with 4000 atoms it is always beneficial

to scale up. However beyond 8 cores the speed up is not significant.

The models provided by our applied scientists fit their classifications of VS-

MALL, MEDIUM and VLARGE. The graph in Figure 6.6, generated by the ASPP

output m-file, shows that while the medium sized simulations benefit from scal-

ability, our test cluster is inefficient for small problems and is unable to cope with

significantly larger problems.

The ASPP generated figures can help system administrators and the research

community to make better use of the system. Users can be clearly advised of

the scalability of the system. The curves also provide the users with estimated

runtimes for their datasets. Users can decide if they would rather submit a job

consuming more cores or submit more jobs using fewer cores, based on the

estimated runtimes that have been derived by the benchmark.

Furthermore the results of ASPP can be used to identify different requirements

for various applications, which could leads to more informed purchasing deci-

sions. When purchasing a new system the end-users can evaluate the new

6. Application and System Performance Profiling 99

system performance and compare it with past performances. By not relying on

just the peak performance of the system (kernel or application specific) end-

users can also predict the throughput of the system. In addition, using the

benchmarks above, end-users can make license purchasing decision. As best

performances are observed at a certain number of cores, licenses can be pur-

chased as multiples of the optimum core count, leading to increased efficiency

of license utilisation.

During the development of the Mouldable Scheduler the figures generated by

the Application and System Performance Profiler lead to a greater insight into

the QGG user base’s requirement and led to significant changes in the way the

internal high end compute systems were utilised. It is hoped that with these per-

formance profiles and estimated run times, HPC usage on traditional clusters

can be made greener, job schedulers can be made more efficient and migra-

tions to cloud environments can be appropriately preplanned as running costs

can be estimated.

6.4 Summary

In this Chapter the efforts undertaken to create a mechanism to generate ba-

sic performance profiles for applications running on Research Computing Sys-

tems (RCS) has been outlined. To achieve the goal of autonomic allocation

of resources to jobs and thus creating a job scheduler capable of mouldable

scheduling this is the critical first step. Using datasets and workloads provided

by user communities within the University of Huddersfield new insight was de-

rived regarding the performance of the local application base. So in addition

to providing key data to the mouldable scheduler (described in Chapter 8) the

ASPP can be used as a stand alone system.

6. Application and System Performance Profiling 100

These benchmarks provide anchor points for an applications performance char-

acteristics. With the performance data stored in MySQL database, plugins can

be created for the job scheduler to access this vital information. For dataset

sizes not benchmarked by the Profiler the mouldable scheduler will need to

interpolate and extrapolate. It is too expensive to benchmark the entire sys-

tem but creating this baseline of resources required and expected run times is

enough to achieve the goals set out in this thesis. By providing more accurate

data to the scheduler a system administrator can expect better throughput and

utilisation within their system while maintaining a high quality of service.

In the next chapter the development of the scheduling algorithms is discussed

as well as the testing platform that is implemented for simulation and testing

purposes.

Chapter 7

Workload Manager Simulator

7.1 Introduction

In order to test the effectiveness of the various scheduling algorithms and ap-

proaches a flexible HPC Workload Simulator is required. In this section the

design, development and testing of the toolkit Cluster Discrete Event Simula-

tor (CDES) - an open framework workload simulator is discussed.

To meet the various needs and limitations outlined in Section 3.5 the CDES

system was developed as a strong candidate for HPC workload simulation.

This chapter is based on work that has been done in collaboration with a Grid

Scheduling project and published as a paper at the DS-RT 2014 conference

(J. Brennan, Kureshi, & Holmes, 2014). Built around an open framework, CDES

can take system definitions, multi-platform real usage logs and can be interfaced

with any scheduling algorithm through the use of an API. CDES has been tested

against 3 years of usage logs from a production level HPC system.

101

7. Workload Manager Simulator 102

Section 7.2 covers the design aspects of the CDES. The implementation meth-

ods are included in Section 7.3. Testing and Validation of the simulator are

presented in Sections 7.4 and 7.5 respectively.

7.2 Design

As discussed in Section 3.5 market available workload simulators are unable to

use real logs to evaluate new scheduling algorithms or paradigms. To meet this

requirements the Cluster Discrete Event Simulator was envisaged. The main

objectives in designing the CDES was to develop a system which would be able

to:

1. Create a simulated system of any required configuration.

2. Read in job information from historic Torque accounting logs.

3. Schedule the jobs to an appropriate simulated resource.

4. Allow for different scheduling algorithms to be interfaced.

5. Remove ’completed’ jobs from the simulated resource.

6. Produce updated modified logs for simulated system.

7. Match features and performance of existing schedulers

To ensure a truly flexible product extra care was taken not to hard-code any

aspect of the system so that an end user can customise the system to their re-

quirements. For example, a simulated system would be constructed of a num-

ber of nodes with a variable number of cores. However, if the system was hetro-

geneous then all nodes might not have the same number of cores. Hence, the

7. Workload Manager Simulator 103

simulator needed to be capable of simulating a system that was heterogeneous

and in some cases distributed in nature.

Essentially CDES is designed to take a real user workload and apply a user

specified scheduling algorithm to a user defined system layouts and configu-

rations - while mainting job execution times. What CDES is not designed to

do is predict changes in a single jobs run time due to changes in interconnect,

processors and memory. If a user needs to make the system adapt to such

changes then those need to be written into the scheduling algorithm.

7.3 Implementation

CDES has been implemented to read the historical logs pertaining to the com-

pletion of jobs. These records contain most of the job information, including

times and requested/consumed resources. The logs are read into a dynamic

table of tables (hereby known as the initial table). In order to maintain the data

integrity of the user behaviour, the time at which a job was created on the sys-

tem, referred to as ctime within Torque, is never modified. The simulator, as its

output, needs to produce new logs with modified records for the start, and end

of a job. This output is generated based on the new simulated start time for a

job and utilises the historic duration of the job to calculate the end time.

The final logs produced by the CDES include all pertinent information gathered

from the historical logs such as UID, job ID, time job was created etc. The sim-

ulated logs also provide, where appropriate, modified job completion times. All

times within these logs adhere to Unix epoch standard. For initial functionality

(and to accurately match the existing HPC systems within the University of Hud-

dersfield) the default scheduling algorithms within the CDES is the First Come

First Served (FCFS) and FCFS with Backfilling.

7. Workload Manager Simulator 104

Table Name Properties

Initial Table Holds the raw job information as read in from
real job logs

Queued Queue Holds the full job information as taken from
the Initial Table. This job has already triggered
a loop of the simulator. No values are changed

Sorting Table This queue includes any job that has gone into
either a running state or a queued state. The

queue holds the job number, a flag for running
or queued and a trigger time for the simulator
to decide exection time (Queued job trigger =

submit time, Running job trigger = expected end)

TABLE 7.1: Details of Tables/Queues within the CDES system

Along with the initial table, CDES maintins several other tables that simulate

queues. These are described in Table 7.1.

The approach applied to the simulator system has been to activate the system

logic upon the arrival of a new job. As the simulator iterates the table of unpro-

cessed jobs every new job acts as a trigger to the system. The system begins

to work its way down the initial table (simulating the arrival of a new job). The

first job will trigger the system and as there will be nothing in the master queue

this new job will enter into the system. Before creation, job requirements will

be matched against the system and the best fitting nodes (rows in the system

table) will be allocated. The system will evaluate the completion time and in the

sorting table will put the job number and the completion time and a flag to depict

a running job. The sorting table is kept sorted on its trigger time.

When no more jobs exist then the system clears up the queues by flushing out

jobs. This has been the most effective and least CPU intensive mechanism

to model large usage data. A second approach that was attempted, during

early design implementations, was to have a counter increment through the

epoch time and trigger system behaviour appropriately. This creates operational

overheads and is susceptible to incomplete runs.

7. Workload Manager Simulator 105

Using the trigger approach (as seen in Figure 7.1, usage logs from the physical

HPC system are pushed into an array (initial table) and sorted with respect

to creation time. The system has three further arrays or queues, the running

jobs array, the queued jobs array and a master array outlining job positions and

trigger (when action needs to be taken) times. At start up CDES also looks at

the system definition file and generates a 2D array which mimics the system

(e.g. 2 nodes with 4 cores, and 2 nodes with 8 cores will result in a 4 row array

with 2 columns of length 4 and 8, respectively, being generated).

In the next cycle when a new jobs arrives the system compares the ctime (arrival

time) for the new job with the trigger time at the top of the master list. If the trig-

ger time is in the past, when compared to the new job the existing job is popped

from the array of running jobs and the master table (depicting an eviction from

the system). Based on the type of scheduling algorithm that is in place the new

job is either executed or the queued jobs (if they exist) will be dealt with. If there

are no resources available then this new job will be pushed into the queued

queue. It will be added into the master queue as well. It will have a queued flag

and its trigger time will be the creation time. This way the master queue can be

kept sorted for running jobs and queued jobs with increasing trigger times.

Assuming an FCFS system (as depicted in 7.1) and some jobs in the running

and queued queues, on a new job trigger:

1. any running job with an earlier end time to the trigger to be popped and all

queues resorted. Its logs will be written out to a new file.;

2. if there is still a running job at the top of the master list 1) is repeated.

3. the top queued job to be pushed into the running queue if space is avail-

able. Its new completion time calculated based on what time a running job

was popped, making space for the queued one;

7. Workload Manager Simulator 106

FIGURE 7.1: Flowchart showing system behaviour when interfaced

with an FCFS algorithm

7. Workload Manager Simulator 107

4. any subsequent ”newly” calculated trigger times to be evaluated as de-

picted in 1).

5. with no more pops or pushes the new job would either be queued (if there

are still jobs waiting to run, or not enough resources were available) or set

to run (if there are no more queued jobs and resources are available).

With no more triggers the system would go through steps 1-5 as outlined above

popping running jobs, pushing queued jobs and finally popping those jobs, cre-

ating appropriately updated accounting logs.

7.4 Testing

The CDES system has been tested against the entire High Performance Com-

puting (HPC) workload on the Eridani system (3 years worth of job logs). Once

again, for clarity, only results from jobs completed within 2013 are preseneted

here to establish the performance of the CDES system.

Arrival rates of jobs will always remain the same, because the CDES can not

modify the time a job had been historically created. This was taken as the first

validation of correct behaviour. As highlighted in Figure 7.2 this comparison was

encouraging. Visibly there is also a very close correlation between the amount

of jobs submitted by users and the subsequent completion of those tasks.

Considering job completion data for 2013, Figure 7.3 shows the results, on a

logarithmic scale, for the original Torque logs and those for the simulated com-

pletion, they are almost identical showing only minor discrepancies in the num-

ber of jobs completed within each interval. These discrepancies are explained

further down as the completion rates are broken down into more manageable

sections. The following are four sections analysed here:

7. Workload Manager Simulator 108

N
u

m
b

e
r

o
f
J
o

b
s

0

1500

3000

4500

6000

Interval

0 29 58 87 116 145174203232261290319348

Arrival

Original Completion

Simulated Completion

FIGURE 7.2: Comparison of Arrival and Completion Rates over 2013

1. 2013 or Annual Period

2. Average Load (AVG) Period

3. User Intervention (UI) Period

4. System Intervention (SI) Period

7. Workload Manager Simulator 109

7.5 Validation

In the first period of focus, this is a period where the system is considered

under an average load (AVG), which covers the days between 11/11/2013 to

08/12/2013, shown in figure 7.4. This period is considered average load be-

cause the systems utilisation is around the 70% mark. This corresponds to the

systems average utilisation over the year. This period also has a mix of parallel,

core-serial and node-serial jobs from users in different disciplines. During this

AVG period the simulated results exactly match those of the real system, as de-

picted by the perfect overlap of the lines. This result is extremely encouraging.

A two week period between March and April 2013 shown in Figure 7.5 this

is another period with no system or user intervention in the execution of jobs.

There is a 100% correlation of job completion rates, as depicted by the matching

blue and green peaks. This is also the time period outlined in Section 5.4 as

the period where the typical users and typical applications all run. These tests

have shown that with simple FCFS with backfilling CDES is able to accurately

predict the performance of the HPC system.

Figure 7.6 shows a period that has been designated as the System Intervention

(SI) Period. During this period (in late April) the workload was exceedingly

heavy and the Maui scheduler resorted to out-of-order execution due to Fair Use

policies. In this one month period 5564 jobs had been completed on the Eridani

system within a single day and a total of 24,716 jobs completed across the

period. Within this period the fair share component of Maui had an impact upon

the real system, which created discrepancies between the two datasets. As

the granularity of the samples is decreased these discrepancies also decrease.

Since the FCFS algorithms implemented in CDES did not have a fair share

feature, it could not make decisions within that scope and hence the simulation

deviated from the real results. The impact of this manifested in a total difference

7. Workload Manager Simulator 110

N
u

m
b

e
r

o
f
J
o

b
s
 (

L
o

g
1

0
)

0

10

20

30

40

Interval

0 28 56 84 112 140 168 196 224 252 280 308 336 364

Orignal Completion Simulated Completion

FIGURE 7.3: Comparison of Original and Simulated Data

for 2013 (Log Scale)

in completion over the period of 286 jobs which was only 1.16% of the period

total.

The period in 2013 that created the largest differences in the results, referred

to as the User Intervention (UI) period, was between May and August, shown in

figure 7.7. During the UI period there was a difference of 1816 out of a total of

5861 jobs. This figure approximates to around 31% which is quite unfavourable.

However taken together with the raw data this problem can be explained. During

this time a large number of the jobs submitted to the real system were subse-

quently deleted by the user. As this behaviour was not accounted for during the

7. Workload Manager Simulator 111

N
u

m
b

e
r

o
f
J
o

b
s
 (

L
o

g
1

0
)

0

7.5

15

22.5

30

Interval

315 318 321 324 327 330 333 336 339 342

Orignal Completion

Simulated Completion

FIGURE 7.4: Comparison of Original and Simulated Data during period of av-

erage system load (AVG) [Log Scale]

development of the CDES the software could not respond to those events, this

will be addressed in further revisions of the simulator.

The discrepancies within the defined periods only actually represents a 4.89%

variance in completion rates within the results gathered for 2013, this includes

the large 31% difference observed during the UI period. A total of 62376 jobs

were completed within 2013, and in the 24hr interval results the average differ-

ence between real and simulated data was only 8.4 jobs per day. This gives

an average annual difference of 3052 jobs which is <5% of the total number

of jobs processed. These differences were entirely due to the CDES lacking

7. Workload Manager Simulator 112

N
u

m
b

e
r

o
f

J
o

b
s

0

31.25

62.5

93.75

125

Interval

83 84 85 86 87 88 89 90 91 92 93 94 95 96

Original Completion
Simulated Completion

FIGURE 7.5: Comparison of Original and Simulated Data:

2 Week Period 23/03/2013 - 06/04/2013

implementation of a fair share component and handling of job deletions.

Tables 7.2, 7.3 and 7.4 include aggregated data from the periods included in

the previous graphs. The tables show the number of jobs completed within a

given period; the number of intervals within that period; the number of variant

jobs, those jobs which the CDES did not complete in the same interval as the

real system; the average number of jobs completed per interval (Jobs/Int) and

the average variant jobs per interval (VJ/Int).

Table 7.2 shows that when using 15 minute intervals the average number of

7. Workload Manager Simulator 113

N
u

m
b

e
r

o
f

J
o

b
s

0

1500

3000

4500

6000

Interval

91 94 97 100 103 106 109 112 115 118

Original Completion Simulated Completion

FIGURE 7.6: Comparison of Original and Simulated Data

for period with System Intervention (SI)

variant jobs with the actual number of average jobs was not encouraging, par-

ticularly within the UI period. Such a short sample period is however very fine

grained and not very representative of an overall system view. The results im-

prove significantly when looking at 1 hour samples, in table 7.3, showing an

11.2% improvement in overall correlation. The final table, examining 24 hour in-

tervals, shows that during the UI period the results still differ significantly. How-

ever all the other periods show a very strong correlation with the result from the

real system, particularly within the AVG period where there is no deviation at

all.

7. Workload Manager Simulator 114

N
u

m
b

e
r

o
f
J
o

b
s

0

450

900

1350

1800

Interval

134 142 150 158 166 174 182 190 198 206 214 222 230

Original Completion Simulated Completion

FIGURE 7.7: Comparison of Original and Simulated Data:

for period with heavy User Intervention (UI)

These results allow confidence that the simulator would be capable of predicting

future system behaviours, for a variety of hardware configurations.

Period # of Jobs # of Intervals Variant Job Jobs/Int VJ/Int

2013 62373 35054 16148 1.78 0.46

AVG Period 2363 2592 560 0.91 0.21

UI Period 5844 9216 5370 0.63 0.58

SI Period 24699 2784 2814 8.87 1.01

TABLE 7.2: 15min Interval Snaphots

7. Workload Manager Simulator 115

Period # of Jobs # of Intervals Variant Job Jobs/Int VJ/Int

2013 62373 8766 10742 7.12 1.23

AVG Period 2363 648 140 3.65 0.22

UI Period 5844 2304 4572 2.54 1.98

SI Period 24699 696 1546 35.49 2.22

TABLE 7.3: 1hr Interval Snaphots

Period # of Jobs # of Intervals Variant Job Jobs/Int VJ/Int

2013 62373 365 3052 170.88 8.36

AVG Period 2363 27 0 87.52 0

UI Period 5844 96 1816 60.88 18.92

SI Period 24699 29 286 851.69 9.86

TABLE 7.4: 24hr Interval Snaphots

7.6 Summary

The Cluster Discrete Event Simulator provides a platform to test the mouldable

scheduler against a realistic workload. It has been designed in such a way

that researchers and system administrators can utilise it to model actual HPC

workloads. The software allows for users to plug in their own designed schedul-

ing algorithms for testing (as it currently support FCFS, FCFS with aggressive

back filling and the mouldable scheduler. Any sort of workload can also be sup-

plied to the software to predict the performance of the system. As CDES very

closely matches the performance of actual HPC systems it will form the basis

for the analysis of the mouldable scheduler. The system has been presented at

the DS-RT 2014 conference in Toulouse France. The datasets outlined in this

Chapter have been anonymised and made publicly available so that the results

can be further validated.

Chapter 8

Rule Based Mouldable Workload

Manager

8.1 Introduction

High Performance Computing (HPC) systems have tremendously grown in size,

and increasingly they are required to manage diverse workloads. The one given

constant over the years has been system size (or available processing end

points)1. With the advent of cloud computing this fixed parameter is no longer

static, and system are going to have to adapt and make decisions to scale up.

As described in Section 1.1, HPC systems are rigid and can not cope with dy-

namic situations where a system is either elastic or is shared between different

user groups with a fixed Quality of Service (QoS). The way systems maintains

the QoS is by keeping at times very large portions of the systems idle. It does

this because it is unable to guarantee or even estimate the expected run times

of jobs on the system. This leads to frustration amongst some users who see

1The only exception to this is if a node is down but this can be seen as a constraint - similar
to an indefinitely busy node

116

8. Rule Based Mouldable Workload Manager 117

the system as idle but have their jobs queued. From a management perspective

systems remaining idle is a waste of money.

Scheduling algorithms as described in Chapter 4 have evolved over the last

few decades to improve system management. However inevitably these ap-

proaches all require user prescribed information to make scheduling decisions.

Even within the mouldable computing paradigm authors have required the users

to give a range of resource allocation possibilities and then the system chooses

the best one. While a step in the right direction, this approach suffers from

the same bad-put observed in static scheduling. Unless their simulations crash

users are inherently not diligent enough to modify their submission files when

they modify their data and application parameters. Further user parameters ex-

ist in the form of ’number of cores or memory’, and ’wall time’. These is not

native information for early researchers. A researcher from chemical sciences

is more likely to know ’atoms or molecules’ and ’time steps or iterations’. The

balance of getting performance vs. run-time for their dataset and their applica-

tion against a set of resources is best described as gut instinct that a researcher

develops over time. However as their research advances and becomes more

complex, users migrate to newer and bigger systems making their previous in-

tuition of no use in the new context.

A novel and significant approach to counter these sort of allocation problems

is described Section 4.5 from the paper by Srinivasan et al. The use of the

Downey model (Downey, 1997) to estimate the performance of an application

based on algorithm parallelism help Srinivasan et al. to mould a synthesised

trace log of real jobs and achieve a better turn-around-time (Srinivasan et al.,

2003). There are several shortcomings and omissions in this approach. Pri-

marily the Downey model is system agnostic. So it assumes ideal scalability

and not actual. Actual scalability is usually constrained by network overheads,

data location and data read/write speeds. Further the Downey model is based

8. Rule Based Mouldable Workload Manager 118

around algorithm scalability and most software vendors would argue that they

have included special optimisations to improve performance and accuracy, and

therefore a comparison to a standard algorithm is unfair. Because their ap-

proach is based on Schedule time aggressive fair share their approach ignores

the amount of time a job sits in the queue before its time to be considered. Fi-

nally in their work Srinivasan et al. have not described implementation methods

of their algorithm. Their synthesised logs approach makes it difficult to visu-

alise the actual implementation method as the parameters used to mould are

not intuitive for a user.

In this Chapter a new method for Mouldable Scheduling, influenced by Srini-

vasan, is described. Using the real application benchmarks described in Chap-

ter 6 and the workloads described in Section 5.4 the mouldable scheduler de-

scribed below will aim to improve the performance of the turn-around-time of

the system. Section 8.2 explains the design of the mouldable scheduler. There

are two further subsections that include real world implementations to capture

user input (8.2.1) and a detailed break down of the mathematics behind the

moulding component (8.2.2). Finally in Section 8.3 the testing and results of the

mouldable scheduler are described in detail.

8.2 System Design

The mouldable scheduler is based on discrete components and is laid out as

seen in Figure 8.1. This system will request the application name, job family

name (simulation name), dataset size and workload size from users at submit

time. The system works on a two stage moulding mechanism. The system

flowchart is shown in Figure 8.2.

8. Rule Based Mouldable Workload Manager 119

At job submition the job scheduler will utilise the results of Application and Sys-

tem Performance Profiler (ASPP) when making its scheduling decision. As dis-

cussed in Chapter 6, the results of ASPP are stored in a database. This output

is in the form of points on an application performance characteristic curve. Us-

ing the metadata provided in the job-submission file the scheduler can query

the database and request the coordinate points for relevant benchmarks. Using

these points (coordinates on a nodes-vs-time graph) the scheduler can model

the curves. This request and generation of the curves is explained in detail in

Section 8.2.2.

FIGURE 8.1: Mouldable Scheduler System Layout

8. Rule Based Mouldable Workload Manager 120

Once the curves have been evaluated the workload manager can determine a

range of optimum resources to allocate to the job. This range gives the sched-

uler the maximum allocatable resources with expected runtime, the minimum

allocatable resources with runtime, and all run times for resource allocations

in the middle. At this stage the scheduler becomes application agnostic. For

the purposes of this research, the Mouldable scheduler will be tested using a

First Come First Served (FCFS) algorithm and all example decisions will be

explained using this premise.

The generation of the list of optimum resources is done at time of submission

and the scheduler assigns the ’most optimum’ allocation to the job. The most

optimum allocation is the resource allocation will the smallest expected runtime.

Referring to the performance curves in Figure 6.4 these optimum allocations

can be considered as the lowest point of each graph. If these is space in the

system to accept this optimum allocation then the job is pushed to the nodes for

execution. This concludes the first stage of moulding.

In the event that the system is busy and the job cannot be executed with op-

timum allocations the second moulding stage is initiated. The scheduler first

evaluates how long will it be till enough resources are free to make the opti-

mal allocation. As the scheduler knows the expected end times for all running

jobs this is a trivial exercise of simple lookups. With the expected start time

(ST) determined the scheduler adds the time value to the execution duration

of the optimal allocation. This now forms the value for total optimal execution

time (TOET). Within the second phase the scheduler takes all other allocations

smaller than the optimal allocation and determines run times. If any of these

’suboptimal’ allocations gives a time less than TOET the scheduler makes the

suboptimal allocation and starts the job. In the event the suboptimal execution

time (TSOET) exceeds the TOET the scheduler puts the job in the queue await-

ing a change in the system. The system does not look at allocations greater that

8. Rule Based Mouldable Workload Manager 121

FIGURE 8.2: FCFS Mouldable Scheduler Flowchart

8. Rule Based Mouldable Workload Manager 122

FIGURE 8.3: Suboptimal Decision Making

the optimal as those will likely suffer from diminishing returns. This is depicted

in Figure 8.3.

For the FCFS scheduler to save on compute cycles the system does not evalu-

ate the expected wait times for suboptimal allocations. When there is a change

in the system status (i.e. a job finishes and vacates a system) the scheduler

re-evaluates the job at the top of the queue for optimal and sub-optimal alloca-

tions. With jobs waiting in the queue the system will carry out first stage moulds

(i.e. determine optimal allocation) and just place the job in the queue behind

the waiting jobs.

Once execution begins the rest of the process behaves in the way any scheduler

would.

If mouldable scheduling is to be applied to a FCFS backfilling algorithm the

primary objective would be to maximise utilisation while ensuring that the TOET

of the job at the top of the queue is not affected. So to evaluate the backfill the

8. Rule Based Mouldable Workload Manager 123

scheduler will go through the queued jobs and compare their TOET and TSOET

to the ST for the job waiting at the top of the queue. If:

1. the TOET <ST then it will run the job optimally, else

2. the TSOET <ST then it will run the job sub-optimally, else

3. leave the job in the queue and move on to the next job

In the next section the job submission mechanism is briefly discussed followed

by a detailed section of how the scheduler uses the benchmarking information

from the ASPP to generate performance characteristic curves.

8.2.1 Submission Protocols

With the Application and System Performance Profiler holding benchmarking

and meta information regarding to applications, the scheduler can make alloca-

tion decisions based on the application, workload and dataset. All the system

requires is for the user to provide this information to the scheduler. For the user

this feature is a major shift from the traditional mechanism of submitting jobs.

However this new process is more intuitive as the user needs to be concerned

only about the parameters that are relevant to their domain. Figure 8.4 illus-

trates an example of a submission script where a user provides a job name,

selects the application and defines relevant parameters.

$ jobname=mytest.job

$ application=fluent

$ iteration=1000

$ elements=8000000

$ input=~/simulation/input.trn

FIGURE 8.4: Job Submission file for the Mouldable Scheduler System

8. Rule Based Mouldable Workload Manager 124

The parameters are based on the metadata that the ASPP has stored away

when benchmarking. The ‘jobname’ field is used to track this particular job and,

on its termination, the heuristics module (shown in Figure 8.1 and discussed

in Chapter 11) will use the job name with the run time information to gener-

ate heuristic records. The workload manager will then decide on the resource

allocation for the job based on the status of the system.

This approach of utilising application specific parameters makes the system

more intuitive specially for new users. It makes implementation just as intuitive

as now the parameters correlate against the performance characteristics.

It should be noted here that to simplify the development and deployment of the

mouldable scheduling algorithm on a real cluster the scheduler currently main-

tains its own queues and only passes the job that needs to be run down to the

TORQUE system. Through future code hardening processes the scheduler will

behave as an independant service that will utilise TORQUE’s API to manipulate

the queues with TORQUE. Further the testing carried out and described for this

thesis utilises the Cluster Discrete Event Simulator (CDES) system and is not

based on runs on a real system. The real system testing was done as a proof

of concept only.

8.2.2 Performance Prediction

After the ASPP has finished benchmarking a system across different dataset

and workload sizes the mouldable scheduler has several data points to profile

the application on the system. What makes the benchmarks truly effective is

that the scheduler can calculate expected performances for datasets or work-

loads that have not been benchmarked, using interpolation and extrapolation

methods. This dynamism is important as it enables the system to deal with a

new user or new datasets/workloads.

8. Rule Based Mouldable Workload Manager 125

When a job is submitted to the job management system the performance eval-

uator module within the scheduler can be invoked. This tool takes as its inputs

the user application, dataset size (DR) and workload (WR) size information and

returns an estimated runtime for the simulation. For the purpose of this thesis

the principles of linearisation and weighted averages are utilised to calculate

the estimated run times over a range of nodes in the system.

Figure 6.5 gives an example of a linearised surface plot. Any point on that

surface would give the corresponding node (x-axis) and time (y-axis) pairs for

a given dataset (z-axis). However this is a 4-dimensional problem as workload

size also needs to be taken into account. There are 4 cases that the evaluator

has to deal with. These are:

1. dataset and workload requested are already benchmarked,

2. dataset requested has not been benchmarked but workload has been,

3. dataset requested has been benchmarked but workload has not been,

4. dataset and workload requested have not been benchmarked.

Case 1: dataset and workload requested are already benchmarked. If the

dataset and workloads have already been benchmarked by the ASPP then the

evaluator queries the database for the known data-points in that configuration.

Using linearisation between the known points the evaluator calculates the es-

timated performance time for the node/core combinations that do not exist in

the database. For an application that has been benchmarked at 4, 8, 16 and 32

cores, the predictor tool can estimate performance times at 12, 20 and 24 cores.

If the dataset or workload size exceeds the last known benchmarked data point

then the evaluator collects the last two known data points and thus extrapolates

the performance. This however is limited to one resource combination in either

direction.

8. Rule Based Mouldable Workload Manager 126

Case 2: dataset requested has not been benchmarked but workload has

been. If the user requests the estimated performance of an unknown dataset

size DR, the evaluator queries the database for the two known benchmarks

immediately adjacent to the requested dataset size (D0 and D1) where

D0 < DR < D1. (8.1)

We estimate that if DR is closer to D1 in value, then the performance curve

of Time-vs-Nodes for DR will behave like the curve for D1. The same can be

assumed if DR is close in value to D0. Calculating the percentage distance of

DR from D0 and D1, the evaluator estimate the predicted run time. This is shown

in equation (8.2).

f(TDR
) = f(TD0

) + (
DR −D0

D1 −D0

)(f(TD1
)− f(TD0

)) (8.2)

where f(TDR
), f(TD0

) and f(TD1
) are the range of run times across nodes for DR,

D0 and D1 respectively.

Equation (8.2) holds true where ASPP has a node-run time pair for both D0 and

D1. For node values where the ASPP has only got benchmarks for D0 equation

(8.3) is used. In conditions were the benchmarks exist for D1 then equation (8.4)

is utilised.

f(TDR
) = f(TD0

) + (
DR −D0

D1 −D0

)(f(TD0
)) | f(TD1

) = ∅ (8.3)

f(TDR
) = (

DR −D0

D1 −D0

)(f(TD1
)) | f(TD0

) = ∅ (8.4)

8. Rule Based Mouldable Workload Manager 127

With f(TDR
) evaluated for all possible node-vs-time value pairs, the performance

evaluator uses the method outlined in Case 1 to interpolate or extrapolate all

required values.

Case 3: dataset requested has been benchmarked but workload has not

been, In this case the users has requested a workload that has not been bench-

marked WR, the evaluator queries the database for the two known benchmarks

immediately adjacent to the requested workload size (W0 and W1) where:

W 0 < WR < W 1. (8.5)

Similar to Case 2, case three uses similar equations substituting unknown datasets

with unknown workloads. With the node-run time pairs determined for f(TWR
),

by the equations (8.6), (8.7) and (8.8), the methods described in Case 1 are

used to interpolate or extrapolate the intermediary values.

f(TWR
) = f(TW0

) + (
WR −W 0

W 1 −W 0

)(f(TW1
)− f(TW0

)) (8.6)

f(TWR
) = f(TW0

) + (
WR −W 0

W 1 −W 0

)(f(TW0
)) | f(TW1

) = ∅ (8.7)

f(TWR
) = (

WR −W 0

W 1 −W 0

)(f(TW1
)) | f(TW0

) = ∅ (8.8)

Case 4: dataset and workload requested have not been benchmarked.

While in Cases 2 and 3 we have transposed the two dimensional lines from

Case 1 into a three dimensional space, Case 4 becomes a four dimensional

problem. In Cases 2 and 3 the dataset size and the workload size formed the Z-

axis respectively and a surface was modelled. To simplify the problem in Case

4 we break the problem down into two three dimensional spaces. In the first

instance we evaluate the problem with workload in the Z axis and then pass the

8. Rule Based Mouldable Workload Manager 128

Cores Predicted Actual Variance

6 400394 394496 1.47%

10 121508 120030 1.21%

TABLE 8.1: DL POLY MEDIUM benchmarks interpolated for 6 and 10 cores

results to the second three dimensional space with dataset size being the third

dimension.

To accomplish this we first query the database for those values of D0 and D1

that meet the conditions in equation (8.1). For each of the values of D0 and D1

we query the database for the W0 and W1 values that meet equation (8.5). This

gives us four ranges in total. There is a W0 and W1 for D0, and a W0 and W1 for

D1. Using equations (8.6), (8.7) and (8.8), a new range of values for f(TD0
) and

f(TD1
) are generated. So from four performance profiles we are reduced to two.

Then using equations (8.2), (8.3) and (8.4) these two performance profiles are

reduced to a single profile given by f(TWDR
) that meets the users requested DR

and WR values.

8.2.2.1 Testing Performance Predictions

To test the accuracy of the Evaluator and the efficacy of the ASPP DL POLY

and ANSYS Fluent datasets have been used as discussed in the Chapter 6.

Three tests were carried out to analyse the accuracy of the profiler.

The first test was to analyse the accuracy of the profiler at interpolating wall-time

values for resource combinations not previously benchmarked. This was done

by using the MEDIUM DL POLY dataset and workload, running the simulation

over 6 and 10 cores. The results for this can be seen in Table 8.1

The second test was to assess the interpolation between two sets of bench-

marks. To do this the evaluator was tested using an ANSYS Fluent CFD model

8. Rule Based Mouldable Workload Manager 129

Cores Predicted Actual Variance

8 19463 18250 6.23%

12 12583 12341 1.92%

14 8512 8930 -4.91%

16 12083 12046 0.31%

TABLE 8.2: ANSYS Fluent benchmarks with 12M elements

with 12M elements. This model fits within the VLARGE and VVLARGE bench-

marks. The evaluator calculates four points of performance. These are over 8,

12, 14 and 16 cores. In the case of the 12 and 16 core calculations the evaluator

has a reference point from both the VLARGE and VVLARGE benchmarks. For

8 cores it has only the VLARGE benchmarking data and for 14 cores it only has

the VVLARGE benchmarking data. The results can be seen in Table 8.2. The

results show that the performance profiler tends to over estimate predicted run

times. With only one case where the predicted time was less than the actual

run time (indicated by the negative sign). In situations where the Predictor tool

is working with two coordinates the results are more accurate. The variance of

the results where two reference benchmarks exist, is less that 2%. Where the

Predictor tool needs to extrapolate using just one reference point the accuracy

decreases.

The third test was to extrapolate an existing benchmark line. This was tested

using both DL POLY and Fluent datasets. In this case due to the linearisation

the evaluator grossly over estimates the run times. In some cases this led to

a variance of over 50%. This can be overcome in future by using curve fitting

techniques rather than linearisation. An alternate solution would be to bench-

mark the maxima and minima of the system capacity, creating hard limits and

clearly defining the available number of cores. This would provide all the bound-

ary conditions and as the previous two tests have shown, when interpolating the

performance, the evaluator is accurate to more than 93%.

8. Rule Based Mouldable Workload Manager 130

8.3 Testing Mouldable Scheduler

To test the mouldable scheduler the workload trace of April 2013 was utilised.

Described in detail previously (Chapter 5.4), a total of 1150 parallel jobs revolv-

ing around 4 users were evaluated. Two of the users were using ANSYS Fluent

for Computational Fluid Dynamics (CFD), while the remaining two were using

DL POLY for Molecular Dynamics (MD). The four researchers engaged with

the development of the mouldable scheduler and passed on some information

relating to workload and dataset sizes.

Using the CDES system the trace log from the Eridani cluster is evaluated. Simi-

lar to Srinivasan et al. the trace log had to be manipulated to be able to carry out

the testing experiments. Initially, the trace log was augmented incorporate the

job related metadata. Tracking job IDs and job names, and with researcher in-

put application name, workload size (in meta format e.g. iterations) and dataset

size (in meta format e.g. atoms) was appended to the end of each job log. This

augmentation was carried out as it was believed that the results would be more

accurate if no synthesis of the actual torque logs takes place and essentially

a real workload is executed.. However upon further considerations a key flaw

became apparent and the efficacy of the results could be questioned.

A predicted run time may or may not be actual run time. That is just because

a scheduler believes a job will take (e.g.) 24 minutes to execute it does not

mean that on an actual system the job is guaranteed to end in that time. If

a scheduler would force a job to end based on its own predictions this would

cause great hinderance to the user. Unfortunately in a simulated environment

like CDES it is nearly impossible to model such behaviour. Uncertainties could

be programmed into the simulator however this would relate to very random

results with no reproducibility. HPC simulation generally revolves around the

8. Rule Based Mouldable Workload Manager 131

Type Description Truncated Logs

Real Logs Unaltered logs from Torque Appendix A.1

Moulded Log Augmented Logs with job meta Appendix A.2
information

Normalised Log Normalised logs with new durations Appendix A.3
and meta information

TABLE 8.3: Input Data for the Mouldable Scheduler

concept that if all things remain equal the trace logs can be used to reproduce

the system behaviour.

While in the trace log two jobs with identical applications, workloads and datasets

can have execution durations that differ, in the CDES moulded environment this

variance will be lost as the scheduler will force the job to end in the predicted

time. To mitigate this effect during the testing an intermediate simulation was

carried out. Aside from the real trace log, a normalised trace log was created.

The normalisation processes involved using the evaluator module (described

above in Section 8.2.2) and the user provided resource constraints to synthe-

sise new logs with revised durations for each job. Based on the moulding infor-

mation and the nodes/cores requested the evaluator module provided expected

runtimes as calculated from the benchmarks. Overall the total duration that any

users jobs took adds up to the same amount of time in the Real and Normalised

logs. The different logs are shown in Table 8.3.

For the purposes of testing the full workload of the month is not utilised. The

trace log is stripped of all serial jobs, parallel jobs where the applications were

not benchmarked, and those jobs for which meta information was not known.

The remaining workload was tested against a 16 node cluster rather than the

standard cluster size of 32-37 nodes.

Figures 8.5, 8.6, 8.7, shows the affect of normalisation on the real workload

8. Rule Based Mouldable Workload Manager 132

FIGURE 8.5: Real Data vs Normalised Data FCFS [15min Intervals]

FIGURE 8.6: Real Data vs Normalised Data FCFS [1hour Intervals]

broken down over a 15minute, hourly and daily completion rate. On a day-to-

day analysis normalisation only slightly affected the logs. There are only two

8. Rule Based Mouldable Workload Manager 133

FIGURE 8.7: Real Data vs Normalised Data FCFS [24hour Intervals]

spikes where the normalised workload finishes faster than the real data (on day

17 vs 19 and on day 34 vs 35). This would be due to earlier jobs being mostly

rounded down. Obviously rounding job times will cause greater variance when

viewed at the 15 minute granularity. Both workloads completed execution on

the same day, albeit several hours apart. Both logs were executed against the

FCFS with backfilling algorithm outlined in Chapter 7.

With the normalised workload in place and its similar execution profile to the

real benchmarks the same log file was used to test the mouldable scheduler.

Figure 8.8, 8.9, 8.10 show how the mouldable scheduler performed as apposed

to the normalised logs using the FCFS algorithm. In total 504 jobs (˜44%) were

moulded to different resource allocations at submit time. Of the 504 jobs that

were pre-moulded a majority of them (˜77%) we given allocations greater than

those provided by the user. This is a significant result even though at first ap-

pearance it would seem unintuitive. Most users would select 2 nodes over 3-4

8. Rule Based Mouldable Workload Manager 134

FIGURE 8.8: Normalised Data FCFS vs Mouldable [15min Intervals]

FIGURE 8.9: Normalised Data FCFS vs Mouldable [1hour Intervals]

node allocations because they would want better throughput. However these

results show that by giving optimal allocations overall the system throughput

8. Rule Based Mouldable Workload Manager 135

FIGURE 8.10: Normalised Data FCFS vs Mouldable [24hour Intervals]

increases.

During the execution 34 (˜3%) jobs were sub optimally moulded to improve sys-

tem throughput. The large 8 node jobs from the molecular dynamics group

were all run sub-optimally. In the FCFS with Backfilling situation these jobs

had to wait till most of the smaller jobs had passed through before enough re-

sources became available. By moulding them to 5 and 6 node allocations the

mouldable scheduler was able to get the jobs running quicker, even though the

jobs ran longer and processed the queue faster. From the users perspective the

turn-around-time improved, and from the systems perspective the system was

utilised more efficiently.

Overall the mouldable scheduler was able to complete the entire workload 8

days faster than its non-moulding counter part. That relates to being 1.28 times

faster over the month.

8. Rule Based Mouldable Workload Manager 136

8.4 Summary

As shown in the previous section the mouldable scheduler is able to dramat-

ically improve the turn around time of jobs in the system. As a significant

number of jobs were moulded at submit time and not at run time, these re-

sults would suggest that system performances will improve if users selected

optimum allocations rather than choosing the smallest possible allocations to

improve perceived throughput. This was a small subsection of jobs on a small

system. When scaled up these optimal allocations would greatly improve sys-

tem throughput.

Due to the lack of real world production systems able to do mouldable schedul-

ing this research, like others before it, has had to rely on augmented and synthe-

sised logs as well as a simulator. Efforts have been taken to ensure accuracy.

The augmentation of the trace logs does not affect the performance but the nor-

malisation, to create synthesised logs does slightly alter the throughput of the

system.

To algorithm to mould jobs is computationally expensive. While the cost does

not become apparent in a first come first served scheduler, if any out-of-order

execution is attempted the number of lookups and calculations required would

dramatically increased. In its current implementation it is strictly suited for a

FCFS environment. Section 9.2 addresses a novel method to reduce the com-

putational complexity and make the system more efficient in its decision making.

Overall the mouldable scheduler is able to out perform FCFS and FCFS with

backfilling, giving significant improvement to turn around time. The system also

adjusted for bad-put which to administrators was an obvious problem with jobs

on the system. What was surprising however that part of the bad-put that the

8. Rule Based Mouldable Workload Manager 137

system adjusted for was advance (power) users under-booking resources. Per-

haps with a full workload of serial and other parallel jobs, the scheduler would

attempt sub-optimal allocations for the power users jobs.

This system of dynamically determining appropriate resources is a significant

change which will aid in scaling HPC workloads into Cloud computing infras-

trucutres (shown in Section 9.3).

Chapter 9

Scheduling Paradigms

9.1 Introduction

With the creation of the mouldable scheduler (as described in Chapter 8) sev-

eral avenues of research opened up. In particular with the hype cycle and mat-

uration of cloud computing reaching its zenith the opportunity to leverage the

scheduler became apparent. In this Chapter the research and implementation

of surge computing is outlined (Section 9.3). The implementation described

here utilises standard scheduling techniques and the impact of the mouldable

scheduler in this context is presented. Section 9.2 outlines a method to speed

up the decision making processes of the mouldable scheduler to make the sys-

tem computationally inexpensive.

138

9. Advanced Scheduling Paradigms 139

9.2 Fuzzification of the Workload Manager

9.2.1 Background

Mouldable Scheduling strategies are complex and require system calls, com-

parisons and modelling predictions. These are computationally expensive tasks

which will not scale well under different scheduling algorithms. In Section 8.2

the mouldable scheduler is implemented in a First Come First Served (FCFS)

environment. While a backfilling implementation is briefly described, implemen-

tation of such a system has many challenges.

Within a FCFS environment only the job waiting at the top of the queue needs

to be moulded to space available in the system. Depending on the size of

the system and possible allocations for any job, the number of comparisons

and calculations required can number in the tens. The problem itself can be

classified as being O(n) as:

TotalCalculations = n−PossibleAllocations+n−EndT imeCalculations (9.1)

However if the mouldable scheduling strategy is applied to a FCFS with Backfill-

ing algorithm, then the complexity greatly increases. The problem escalates to

O(n2). For every iteration of moulding the system will need to work its way down

a list of jobs attempting to backfill. This makes the problem computationally very

expensive.

In order to reduce some of the complexity it is proposed that fuzzy logic tech-

niques are utilised to make moulding decisions. Fuzzy Logic is a technique

9. Advanced Scheduling Paradigms 140

within Artificial Intelligence for approximate reasoning. For a fuzzy implemen-

tation of the moulding decisions the characteristics of linguistic variables and

fuzzy rules are utilised. Linguistic variables are representation of state or value

using words instead of numbers (e.g. big,small,long,short). In a fuzzy system

the rules are used to make the decisions (Zadeh, 1994; L.-X. Wang, 1999).

From an operators perspective certain scheduling decisions appear obvious.

For example ”the system is very busy and this is a large job so there is no point

trying to mould it.” A standard decision system will not be able to reduce the

problems to these two conditions. With fuzzy logic the two variables can be

linked using certain rules (see Figure 9.1). Under the implementation described

in Section 8.2 the system will verify all possible allocations against the system

status before ruling that a job can not be moulded.

FIGURE 9.1: The Moulding Decision in a Fuzzy Engine

9. Advanced Scheduling Paradigms 141

Job Size System Status Scheduling Decision

SMALL FREE Run

SMALL NOT BUSY Run

SMALL AVERAGE Attempt Mould

SMALL BUSY Attempt Mould

SMALL FULL Wait

MEDIUM FREE Run

MEDIUM NOT BUSY Attempt Mould

MEDIUM AVERAGE Attempt Mould

MEDIUM BUSY Attempt Mould

MEDIUM FULL Wait

LARGE FREE Run

LARGE NOT BUSY Attempt Mould

LARGE AVERAGE Attempt Mould

LARGE BUSY WAIT

LARGE FULL Wait

TABLE 9.1: Linguistic Variable Value Pairs for Mouldable Scheduling

9.2.2 Implementation

The terms ”system is very busy” and ”this is a large job” can be described as

linguistic variable - value pair. There are several states the system can be in

like free or idle; not busy; average load; busy; and full. Similarly jobs can be

of different sizes e.g. small, medium and large. Table 9.1 shows the different

linguistic variables and the scheduling decisions to be made.

System operators through their experience can quantify linguistic variables such

as busy system and medium sized job. A small job can be a job requiring <25%

of the system, a medium job between 15% and 55%, and a large job >40%.

Similarly the system is free when there is 0% load and full with 100% load. Not

busy can be quanitied as <30% load, average between 20% and 55%, and

busy would be between 50% and 99%. This linguistic variables are hard and

fast conditions and the actual state can in fact be classed in 2 or more ways.

As shown in Table 9.1 moulding is only attempted in 7 out of 15 possible states.

Since the mouldable scheduler does not attempt a mould if the system is free

9. Advanced Scheduling Paradigms 142

and just runs the optimum allocation the total states where moulding is consid-

ered in a backfill are 12. With fuzzy logic techniques reducing that to 7 mould

states it means processing requirements in over 40% of conditions is avoided.

Figure 9.2 shows these rules applied in a Fuzzy Engine.

FIGURE 9.2: Rule Sets Applied Using Fuzzy Logic

These linguistic variables and corresponding membership functions have been

implemented in MATLAB. Figure 9.3 shows the membership functions for the

system conditions and Figure 9.4 shows the membership functions for the job

sizes. The overall system is shown in Figure 9.5.

Using the Mamdani Inference method the the rule sets are applied to the linguis-

tic variables to make decisions based on MIN-MAX conditions. Certain rules

have a higher weight as shown in Figure 9.2. In Figure 9.6 the resulting surface

plot of the actions is shown. Regions in Blue are where run conditions are met

9. Advanced Scheduling Paradigms 143

FIGURE 9.3: Linguistic representation of System State

and Yellow is where wait conditions are met. In other regions the system will

attempt to mould the jobs.

Figure 9.7 depicts a situation where the system can be classed as having an

”average load” bordering on being ”busy” (column 1). The Job can be classified

as small or medium (column 2). This is because the job size lies just as the

”small” size begins to taper off and where the ”medium” size begins to plateau.

The third column shows that 3 different rules get triggered, Rules 3, 5 and 7.

The fuzzy engines output is to mould the job.

9. Advanced Scheduling Paradigms 144

FIGURE 9.4: Linguistic representation of Job Size

9.2.3 Discussion

The Fuzzy Engine described in this section can greatly reduce the processing

overheads that will be introduced in out-of-order mouldable scheduling algo-

rithms. A second engine can also be implemented to further reduce the pro-

cessing required to verify the performance of sub-optimal allocations. The avail-

ability of Fuzzy Logic toolboxes in the major programming languages means

that integration with the Cluster Discrete Event Simulator (CDES) system and

traditional HPC schedulers is possible.

9. Advanced Scheduling Paradigms 145

FIGURE 9.5: Moulding Decisions based on Fuzzy Logic

9.3 Surge Computing: Elasticity in Scheduling

9.3.1 Motivation

The University of Huddersfield’s Research Computing Infrastructure (RCI) com-

prises of several High Performance Computing (HPC) clusters. They differ from

each other by core speed, interconnect speed, co-processor availability and

memory configurations. As discussed in Chapter 5 on average most systems

have a 2GB RAM per core core memory configuration and the maximum avail-

able memory configuration is 4GB RAM per core. At a node level memory is

limited to 16GB RAM per node.

Where surge computing was identified as a solution for internal HPC needs

was under the following scenario. A researcher using a commercial *NIX based

9. Advanced Scheduling Paradigms 146

FIGURE 9.6: Surface Plot of Resultant Ruleset

rendering package needed to generate high resolution visualisations of blood

flow. Under most conditions the rendering package divides the frames between

nodes and speeds up the render time. However, for the resolution required for

the final product each frame required more that 16GB of RAM at node level. Due

to the commercial nature of the software package, the application can not be

ported to other architectures (like POWER or BlueGenes available at the STFC-

Daresbury), nor can it be deployed on a partner institutions HPC system. Before

HPC deployment of this package, researchers bought 8GB RAM workstations,

followed by upgrades to 16GB and then finally a single 32GB RAM workstation.

The purchasing power of the research group has quite clearly been affected by

a single computational problem.

9. Advanced Scheduling Paradigms 147

FIGURE 9.7: Example Case of Fuzzy Scheduling

The purchased workstations are power hungry in an idle state and, for the ma-

jority of the time, are used for standard office work! Provisioning for such ap-

plications within a cloud allows for delivering different hardware configurations

that the researcher could not possibly get under their desk. The key however is

to remove the complexity of the cloud and to seamlessly integrate this system

within the existing HPC infrastructure so that the researchers workflow is not

significantly disrupted.

The University’s provision for cloud computing is build upon the cloud middle-

ware tool known as Openstack. Openstack is an Amazon EC2 compatible mid-

dleware that is popular for both private and public cloud implementations.

9. Advanced Scheduling Paradigms 148

9.3.2 Implementation

In the initial development, a wrapper script for PBS/TORQUE was designed.

Using Python extensions for Keystone, and a MySQL database to hold config-

urations, the wrapper script decides if a job should be directly submitted to the

underlying HPC system or surged to the prototype cloud system.

9.3.2.1 Decision Metrics

When a job is submitted to the cluster, the wrapper intercepts the job file. If

the requested resources (in the job file) match those resources that can be

found within the hardware scope (of the traditional cluster), then the job carries

on through the system as normal. If the requested resources exceed what is

available as bare metal, then the wrapper begins to provision a node in the

cloud. Using information defined in the configuration database, along with the

status of the load on the cloud, decisions are taken regarding the provisioning.

A flow chart showing the steps is shown in Figure 9.8.

If the requested resources can fit on pre-defined cloud limits, then the wrap-

per initiates a compute node instance within the cloud and submits the job to

TORQUE, along with a flag that ensures that this job will be routed to the new

cloud instance. If the requested resources exceed the limits of the local cloud

service, and the user/administrator has configured credentials to surge to a pub-

lic cloud, then the VM is instantiated within the public cloud. In the event that

there are no public cloud credentials, the job is returned to the user with an error

message.

To maximise the utilisation efficiency of the private cloud, the wrapper is able to

create a hardware flavour within cloud. This flexibility is essential in a private

cloud setting. Generally provision options on clouds tend to be configured in

9. Advanced Scheduling Paradigms 149

FIGURE 9.8: Flowchart depicting the decision making process in HPC Cloud

Surging

9. Advanced Scheduling Paradigms 150

binary increments. So after a 16GB RAM flavour the next flavour will have 32GB

of RAM. Therefore if a user requests 20GB of RAM for their simulation there will

be 12GB of RAM booked and not used. It will also limit the total number of

surge instances created.

9.3.2.2 Surge Wrapper for TORQUE

Users on the surge enabled HPC system have a custom script named ’qsub’

in their default paths. This qsub is not the standard TORQUE submission ex-

ecutable. The script passes the users submission to the surge wrapper. The

surge wrapper parses the arguments supplied by the user to PBS/TORQUE. If

a job is submitted with more than the job file argument, the wrapper automati-

cally passes the job down to the scheduler. To invoke the surge a user has to

define their job within a PBS job file.

<< OpenStack >>

:Controller

<< Mysql >>

:ConfigStore
Wrapper(jobscript):

Resource Query

return(resources) vm:WorkerInstance

Start Instance

Allocate IP

Start Monitor

Start Instance

Update DB

<< PBS >>

:Server

qsub

Monitor(Jobnum,ServerID,Fla

vID):

Job Query

Job State

Job Cleanup
Kill Instance

Handshake

Run Job

Job Status

FIGURE 9.9: Control bus depicting the sequence of events in an HPC Surge

Using PBS based functions, the wrapper queries the underlying HPC system

to assess the available capabilities. Once it has ascertained that the requested

9. Advanced Scheduling Paradigms 151

resources are not natively available via TORQUE, it calls the function to surge

the job into the cloud. Using the limits specified by the configuration database,

the wrapper then generates a hardware flavour template. This is injected into

OpenStack. The configuration database holds information such as: how elastic

the system is; the largest flavour instance possible; etc.

With the hardware flavour injected into the system, the wrapper starts a virtual

machine instance utilising a pre-configured image. This image mirrors a typical

node within the HPC system. Next, the job script is regenerated with a special

queue name and handed over to TORQUE. The wrapper also starts a small

service to monitor the job’s progress.

On the system TORQUE is pre-configured to recognise ’n’ number of nodes

(where n is equal to the maximum nodes that can be generated in the cloud).

These nodes are locked to the special queue. So when the wrapper submits

the job with the modified queue, TORQUE waits for the instance in the cloud

to start up and then matches the job to the cloud instance. From the TORQUE

point of view, a job has arrived which can only be assigned to a particular set of

nodes and, one of those nodes has just become available.

Within the cloud, OpenStack generates a new hardware flavour and instantiates

an image against this flavour. It then subtracts the requested resources from the

pool of resources the surge can request. This is fed back to the surge wrapper

to ensure the cloud does not get overly subscribed.

Upon completion of the job, the TORQUE MOM demon becomes idle and, once

the job monitoring service detects this, it injects a poison pill to terminate the

VM instance. The custom hardware flavour is additionally removed from the

OpenStack environment. Within TORQUE, the node becomes offline. Figure

9.9 depicts the sequence of events that take place when a job is surged to the

private cloud.

9. Advanced Scheduling Paradigms 152

Whether being used in a public or private cloud environment, the systems scal-

ability will always be controlled. In a public cloud the availability of resources

purchased (or some form of financial cap) will prevent an indiscriminate num-

ber of nodes being spawned. In a private cloud the elasticity itself is limited.

OpenStack controls the number of cores and instances a user can run through

group policies. In OpenStack parlance, this is know as ’Project Quotas’. In the

situation where the surge ’project’ on OpenStack is out of resources to spawn a

new node, the new job is simply queued. If the new job, e.g. job-B, can run on

already spawned virtual machines, then job-B is sent to TORQUE in the mod-

ified queue. The monitoring service that is awaiting the completion of already

started/running jobs, is passed the new jobs information. Upon completion of

the running jobs, the monitor refrains from injecting the poison pill, allowing

TORQUE to push job-B to the now idle node. If the spawned instances do not

meet the requirements of the new job, then job-B is held in a queue external

to TORQUE. Running jobs will terminate as normal, and instances are brought

down returning their resources to the quota. The job is then reconsidered for

execution when the monitor reports a change to the load on the cloud.

If a requested hardware configuration can never be met, an error is returned

to the user. Information pertaining to the maximum number of nodes, smallest

configuration of nodes, largest configuration possible, static flavours (if using

a public cloud) and credentials, are available to the wrapper from the MySQL

configurations database.

9.3.3 Discussion

The HPC surge solution described in this Section is a step towards automating

the migration of workloads to the cloud. Using the mouldable scheduler from

Chapter 8 and the fuzzy engine described in 9.2 it is envisaged that research

9. Advanced Scheduling Paradigms 153

groups may only need a single cluster head node on site and the computation

can take place in the cloud. Unlike rigid systems in the cloud the surge element

can help the system spawn only those nodes that are required. If this approach

to HPC in the Clouds becomes popular, application developers can themselves

carry out benchmarks on known Cloud services.

Chapter 10

Conclusion

As Research Computing Systems (RCS) move from single owner internal High

Performance Computing (HPC) systems to publicly shared national resources

and cloud computing platforms traditional scheduling methods are falling short.

These systems are unable to adapt to the dynamic nature of new computing

paradigms like cloud computing. By outsourcing the heavy infrastructure, in-

evitably the in-house system administrators are few and far between. Inexperi-

enced users will not have the safety net usually in place to help them understand

how to get the best performance for the systems for them to do their science.

There is a real need for an autonomic system to decide the best allocation of re-

sources to provision for a user, based on the application, dataset and workload

needs.

Where in-house systems exist the pressure to go green has never been higher.

Out-of-order executions are the norm to ensure 100% utilisation of the HPC

systems. However in these days of fast computers and fast networks holding a

users job back because ”it is to big to fit at current load” is simply unacceptable.

As is the money wasted in electricity and technician time due to ”bad-put” by

the users.

154

10. Conclusion 155

Mouldable Scheduling in general and the solutions presented in this thesis in

particular are the step changes needed within production environments to ad-

dress the challenges of these new computing paradigms. The Rule Based

Mouldable Workload Manager, the Fuzzy Moulding Engine and the Surge Com-

puting systems are the building blocks towards scheduling in the clouds and

towards exa-scale. With these stepping stones there is still much research do

be done.

Starting from some basic tools that already existed within HPC systems, bench-

marking, and scheduling, this thesis has demonstrated the steps required to

create a mouldable scheduler. In the first instance there needs to be a mecha-

nism for a system to understand how an application will perform given a partic-

ular dataset and workload. Previous attempts by other investigators either fell

short of this goal or utilised cycle counting methods to predict how an algorithm

would behave. These methods are system and network agnostic and also do

not take into account proprietary optimisations or compiler interventions. The

Application and System Performance Profiler (ASPP) presented in this thesis

is a step towards not just creating a benchmarking suite but to also profile an

application. While it is able to answer the question ”Whats the fastest my appli-

cation can run?” it also answers the critical question of ”How will my application

perform at different resource allocations”.

Data from the ASPP is then fed back to the proposed mouldable scheduler. For

the first time a scheduler is able to determine how the ”real” application performs

with the users ”real” problem set. The user too no longer needs to worry about

processor or memory allocations and needs to only be concerned with domain

specific variables such as ”atoms”, ”elements”, ”time steps” or ”iterations”. The

scheduler is able to then chose the best resource allocation to get the fastest

turn-around-time. If the system is very busy then the scheduler may make a

sub-optimal allocation as long as the execution times and associated wait times

10. Conclusion 156

are lower for the sub-optimal. While still susceptible to bad-put the system can

never the less ensure maximum utilisation by moulding jobs to fit gaps. The

current implementation is computationally expensive but in a First Come First

Served (FCFS) environment these are insignificant costs.

To tackle the challenge of computational complexity and expense an inference

decision engine based on the Mamdani algorithm for Fuzzy Logic has been

presented. This system is able to reduce the number of states during which

the scheduler attempts to mould a job, reducing the computation by 40%. This

method once implemented can help the mouldable scheduler to be adapted

to attempt out-of-order scheduling. Mouldable scheduling in a first come first

served with backfilling environment, coupled with very close predictions of ex-

pected job run times will solve the problem of efficiency vs. Quality of Ser-

vice (QoS). QoS is guaranteed as no out-of-order execution will take place if it

delays the top of the queue. But with moulding inevitably some job in the queue

will fit into idle resources, maximising utilisation.

A method of surge computing, which has been deployed in a production environ-

ment is also presented in the thesis as the next stage of advanced scheduling.

The surge computing add-on is not only able to scale beyond institutional fire-

walls to deal with high load but it is also able to provision for resource allocations

that are not offered or available on the underlying HPC system.

To test the systems, methods and algorithms presented in this thesis a simu-

lator was also designed and implemented. The Cluster Discrete Event Simula-

tor (CDES) is a highly flexible scheduler which can simulate with near perfect

accuracy a real HPC system. With no user or fair-share intervention the simula-

tor matched the scheduling decisions of the real cluster 100% of the time. The

design and results of this simulator has been peer-reviewed and published on

two separate occasions.

10. Conclusion 157

Alongside the simulator a ”real” workload from a production HPC at the Univer-

sity of Huddersfield was utilised. Since there are no standard mouldable work-

loads, as no mouldable schedulers exist in production, the real workload had to

be augmented with application information. These augmented trace logs were

further synthesised using standards outlined by other pioneers in the field of

mouldable scheduling. To perform more accurate testing the mouldable sched-

uler has to be moved from a simulated world to a real world system. This is

because in a simulated environment a job ends at the expected calculated time,

while in a real world system a job may complete earlier or later that the calcu-

lated end time.

Using logs from a busy month on the Eridani HPC system and tracking four

users in particular, the mouldable scheduler was able to dramatically reduce

the overall system turn-around-time. Reducing a workload that took 38 days for

processing to 30 days is a significant improvement. Scaled to large systems

cost savings are unparalleled. An 8 day improvement in job turn-around-time

for the end users is also very important. Such an improvement would be re-

markable for QoS guarantees. Another significant result was that the scheduler

did not improve turn-around-time by shrinking allocations. In fact for a majority

of the moulded jobs the scheduler in the first instance provisioned more re-

sources per job. After initially moulding the jobs to ”optimum” allocations, the

system proceeded to sub-optimally mould jobs just about 5% of the time. These

results also highlighted that contrary to popular assumption, bad-put can also

exist in the form of under-booking resources. The belief that choosing the min-

imum possible allocation to get maximum throughput may not always produce

the fastest turn-around-time for the whole workload.

With applications being delivered to end-users through clouds and users migrat-

ing their workloads into the cloud, the new dynamic and elastic nature of com-

puting is here to stay. For traditionally compute intensive workloads to adapt to

10. Conclusion 158

this new paradigms an Intelligent Robust Mouldable Scheduler is required.

Chapter 11

Further Work

To reach the target of designing a mouldable scheduler using real application

benchmarks several key milestones needed to be achieved. While not mature

in their own right these milestones (e.g. the creation of an application profiling

suite or a High Performance Computing (HPC) workload simulator) were suffi-

cient for the purpose of this project. Each of the Chapters from 6 to 9 are all

work in progress and there is still much research and much refinement to be

done. Most of the products created are of Technology Readiness Level (TRL)

4-6. This chapter briefly outlines some of the on-going research and improve-

ments that can be undertaken.

To make the Application and System Performance Profiler (ASPP) a robust and

stand alone tool for use in industry code hardening is required. The profilers

also needs to incorporate memory and network activity. This information will

help greatly in purchase time decisions and can aid the mouldable scheduler to

better predict the upper and lower bounds of resource allocations. The evaluator

module from the mouldable scheduler can be incorporated into the benchmark-

ing tool to provide end users a new dimension to their benchmarking.

159

11. Further Work 160

In the context of the mouldable scheduler, the linearisation and weighted aver-

ages technique utilised within the evaluator was a highly effective way to quickly

and computationally inexpensive get results to benchmark against. Utilising

curve fitting or ideally surface modelling algorithms should improve the pre-

dicted values. Curve fitting will automatically correct the problem faced when

extrapolating lines. Curves will be able to give the system an indication of when

diminishing returns will be observed.

Further the out-of-order execution algorithms as used to test Cluster Discrete

Event Simulator (CDES) should be used to assess effectiveness of the mould-

able scheduler. Standard job logs do not contain enough information for such a

test so either logs need to be synthesised or new datasets with the information

augmented need to be created from real workloads.

The CDES system has been used in other research projects to validate Bren-

nan’s results (J. D. Brennan, 2014) for scaling campus grids. As outlined in

Section 7.5 the existing algorithms are no able to cater to user interventions in

the trace log (i.e. a user kills a job that has not yet run). This and similar bugs

need to be corrected before wider dissemination is possible.

To allow other system administrators and developers to utilise the CDES sys-

tem, the API needs to be documented and base functions within the code need

to be made flexible. Others using the CDES will not need to replicate certain

functionality within their algorithms. For wider usability CDES needs to include

more algorithms by default for easier uptake.

While the mouldable scheduler has shown considerable improvement in job

turn-around-times under simulator settings (TRL5), it requires testing in a real

world deployment (TRL6/7). As discussed in Section 8.3 predicted end times

used in scheduling are not fixed times. A job may exceed the prediction or end

before (usually because of application behaviour). A simulated environment

11. Further Work 161

can not recreate this behaviour effectively and thus any testing carried out for

mouldable or even malleable scheduling can only rely on normalised data.

With real world deployment the Surge Computing add-ons discussed in Section

9.3 can benefit with the further layers of dynamism. As shown in Section 9.3.2

surging still relies on a user to prescribe their memory and processor require-

ments before a virtual machine is spawned. With many research groups moving

towards cloud computing solutions for their HPC needs, an automated surging

facility which can decide resource allocations based on real application bench-

marks will make cloud migration easier. This will also open a new variable for

the mouldable scheduler to base decisions on, that is price.

As more complex workloads and system configurations are implemented and

tested the computational overheads will increase. To aide in improving the

performance of the simulator (and later a production mouldable scheduler) the

fuzzy logic algorithm discussed in 9.2 needs to be implemented. Work is un-

derway to use the py fuzzy toolbox available for Python 1.7 to implement the

membership functions for integration with CDES.

In literature available for mouldable or malleable scheduling, no realistic method

is ever presented to help the system determine expected end times for different

resource allocations. The ASPP solution gives the scheduler a real chance

to predict end times. However, benchmarks are general purpose and it is too

expensive for every application to be benchmarked across the system. The

work in this thesis relies on system administrators benchmarking their system

at time of delivery as part of compliance testing. But new applications, new

projects - with new datasets and workloads, and new users can be introduced

to the system over time. Benchmarking for every situation is impossible. Further

the mouldable scheduler outlined here continues to rely on some user input and

11. Further Work 162

does not incorporate any adaptation process to correct for the inevitable bad put

where a user does not change their input file.

To counteract these elements machine and deep learning strategies have been

identified to help profile user activities and create models so that the scheduler

can adapt. Modelling the user with heuristic information will allow the system to

identify if a job is an outlier - possibly due to bad put, or can identify the exact

requirements of the user which may be different from the general benchmarks.

Appendix A

Appendix A: Dataset

This appendix contains the trace logs for the four users that made up the parallel

workloads testing on this system. These include the two Computational Fluid

Dynamics (CFD) users and the two Molecular Dynamics (MD) users The logs

a truncated to save space. 10 records per user are presented in the following

sections. The full logs may be downloaded from:

http://www.ibadkureshi.com/thesis/appendix-a.zip.

A.1 Real Tracelogs

28/04/2013 10:21 :15 ;E;73207. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366897046 qtime=1366897046 etime=1366897046 s t a r t =1366970945 end=1367140875

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =47:12:10

27/04/2013 13:24 :58 ;E;73269. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366898750 qtime=1366898750 etime=1366898750 s t a r t =1366970967 end=1367065498

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =26:15:31

27/04/2013 11:42 :08 ;E;73002. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366889417 qtime=1366889417 etime=1366889417 s t a r t =1366889417 end=1367059328

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =47:11:51

27/04/2013 04:50 :50 ;E;75252. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982459 qtime=1366982459 etime=1366982459 s t a r t =1367034615 end=1367034650

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:35

163

Appendix A. Dataset 164

27/04/2013 04:49 :56 ;E;75251. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982458 qtime=1366982458 etime=1366982458 s t a r t =1367034545 end=1367034596

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:51

27/04/2013 04:48 :58 ;E;75250. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982457 qtime=1366982457 etime=1366982457 s t a r t =1367034514 end=1367034538

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:24

27/04/2013 04:48 :05 ;E;75249. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982457 qtime=1366982457 etime=1366982457 s t a r t =1367034457 end=1367034485

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:28

27/04/2013 04:47 :26 ;E;75248. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982457 qtime=1366982457 etime=1366982457 s t a r t =1367034428 end=1367034446

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:18

27/04/2013 04:46 :57 ;E;75247. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982456 qtime=1366982456 etime=1366982456 s t a r t =1367034403 end=1367034417

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:14

27/04/2013 04:46 :30 ;E;75246. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982454 qtime=1366982454 etime=1366982454 s t a r t =1367034373 end=1367034390

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:17

04/03/2013 15:31 :12 ;E;77747. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue= s e r i a l s t d ct ime =1364999418 qtime=1364999418 etime=1364999418 s t a r t

=1364999418 owner=mduser2@qgg . hud . ac . uk exec host=enode32 . e r i d a n i . qgg . hud . ac . uk /3+

enode32 . e r i d a n i . qgg . hud . ac . uk /2+enode32 . e r i d a n i . qgg . hud . ac . uk /1+enode32 . e r i d a n i .

qgg . hud . ac . uk /0 Resource L is t . cput =192:00:00 Resource L is t . ncpus=1 Resource L is t .

neednodes =1:ppn=4 Resource L is t . nodect=1 Resource L is t . nodes =1:ppn=4 session=4398

end=1364999472 E x i t s t a t u s =271 resources used . cput =00:03:18 resources used .mem

=37392kb resources used .vmem=969072kb resources used . wa l l t ime =00:00:54

04/03/2013 22:10 :07 ;E;77761. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue= s e r i a l s t d ct ime =1364999649 qtime=1364999649 etime=1364999649 s t a r t

=1364999649 owner=mduser2@qgg . hud . ac . uk exec host=enode35 . e r i d a n i . qgg . hud . ac . uk /3+

enode35 . e r i d a n i . qgg . hud . ac . uk /2+enode35 . e r i d a n i . qgg . hud . ac . uk /1+enode35 . e r i d a n i .

qgg . hud . ac . uk /0 Resource L is t . cput =192:00:00 Resource L is t . ncpus=1 Resource L is t .

neednodes =1:ppn=4 Resource L is t . nodect=1 Resource L is t . nodes =1:ppn=4 session=7680

end=1365023407 E x i t s t a t u s =0 resources used . cput =26:22:14 resources used .mem=37372

kb resources used .vmem=967404kb resources used . wa l l t ime =06:35:58

04/04/2013 01:13 :50 ;E;77778. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue= s e r i a l s t d ct ime =1365000012 qtime=1365000012 etime=1365000012 s t a r t

=1365018811 owner=mduser2@qgg . hud . ac . uk exec host=enode19 . e r i d a n i . qgg . hud . ac . uk /3+

enode19 . e r i d a n i . qgg . hud . ac . uk /2+enode19 . e r i d a n i . qgg . hud . ac . uk /1+enode19 . e r i d a n i .

qgg . hud . ac . uk /0 Resource L is t . cput =192:00:00 Resource L is t . ncpus=1 Resource L is t .

neednodes =1:ppn=4 Resource L is t . nodect=1 Resource L is t . nodes =1:ppn=4 session=21974

end=1365034430 E x i t s t a t u s =0 resources used . cput =17:20:07 resources used .mem

=37372kb resources used .vmem=968520kb resources used . wa l l t ime =04:20:20

Appendix A. Dataset 165

04/04/2013 02:23 :07 ;E;77776. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue= s e r i a l s t d ct ime =1364999966 qtime=1364999966 etime=1364999966 s t a r t

=1365018810 owner=mduser2@qgg . hud . ac . uk exec host=enode18 . e r i d a n i . qgg . hud . ac . uk /3+

enode18 . e r i d a n i . qgg . hud . ac . uk /2+enode18 . e r i d a n i . qgg . hud . ac . uk /1+enode18 . e r i d a n i .

qgg . hud . ac . uk /0 Resource L is t . cput =192:00:00 Resource L is t . ncpus=1 Resource L is t .

neednodes =1:ppn=4 Resource L is t . nodect=1 Resource L is t . nodes =1:ppn=4 session=21176

end=1365038587 E x i t s t a t u s =0 resources used . cput =21:57:14 resources used .mem

=37388kb resources used .vmem=968520kb resources used . wa l l t ime =05:29:37

04/04/2013 02:49 :41 ;E;77775. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue= s e r i a l s t d ct ime =1364999921 qtime=1364999921 etime=1364999921 s t a r t

=1365017691 owner=mduser2@qgg . hud . ac . uk exec host=enode23 . e r i d a n i . qgg . hud . ac . uk /3+

enode23 . e r i d a n i . qgg . hud . ac . uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 . e r i d a n i .

qgg . hud . ac . uk /0 Resource L is t . cput =192:00:00 Resource L is t . ncpus=1 Resource L is t .

neednodes =1:ppn=4 Resource L is t . nodect=1 Resource L is t . nodes =1:ppn=4 session=12655

end=1365040181 E x i t s t a t u s =0 resources used . cput =24:57:36 resources used .mem

=37532kb resources used .vmem=968528kb resources used . wa l l t ime =06:14:50

04/04/2013 09:07 :40 ;E;77738. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue= s e r i a l s t d ct ime =1364999320 qtime=1364999320 etime=1364999320 s t a r t

=1364999320 owner=mduser2@qgg . hud . ac . uk exec host=enode30 . e r i d a n i . qgg . hud . ac . uk /3+

enode30 . e r i d a n i . qgg . hud . ac . uk /2+enode30 . e r i d a n i . qgg . hud . ac . uk /1+enode30 . e r i d a n i .

qgg . hud . ac . uk /0 Resource L is t . cput =192:00:00 Resource L is t . ncpus=1 Resource L is t .

neednodes =1:ppn=4 Resource L is t . nodect=1 Resource L is t . nodes =1:ppn=4 session=7671

end=1365062860 E x i t s t a t u s =0 resources used . cput =70:31:43 resources used .mem=36960

kb resources used .vmem=966112kb resources used . wa l l t ime =17:39:00

04/04/2013 12:07 :07 ;E;77768. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue= s e r i a l s t d ct ime =1364999749 qtime=1364999749 etime=1364999749 s t a r t

=1365002242 owner=mduser2@qgg . hud . ac . uk exec host=enode34 . e r i d a n i . qgg . hud . ac . uk /3+

enode34 . e r i d a n i . qgg . hud . ac . uk /2+enode34 . e r i d a n i . qgg . hud . ac . uk /1+enode34 . e r i d a n i .

qgg . hud . ac . uk /0 Resource L is t . cput =192:00:00 Resource L is t . ncpus=1 Resource L is t .

neednodes =1:ppn=4 Resource L is t . nodect=1 Resource L is t . nodes =1:ppn=4 session=8017

end=1365073627 E x i t s t a t u s =0 resources used . cput =79:14:18 resources used .mem=37208

kb resources used .vmem=967288kb resources used . wa l l t ime =19:49:45

04/04/2013 12:28 :22 ;E;77733. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue= s e r i a l s t d ct ime =1364999241 qtime=1364999241 etime=1364999241 s t a r t

=1364999241 owner=mduser2@qgg . hud . ac . uk exec host=enode28 . e r i d a n i . qgg . hud . ac . uk /3+

enode28 . e r i d a n i . qgg . hud . ac . uk /2+enode28 . e r i d a n i . qgg . hud . ac . uk /1+enode28 . e r i d a n i .

qgg . hud . ac . uk /0 Resource L is t . cput =192:00:00 Resource L is t . ncpus=1 Resource L is t .

neednodes =1:ppn=4 Resource L is t . nodect=1 Resource L is t . nodes =1:ppn=4 session=8773

end=1365074902 E x i t s t a t u s =0 resources used . cput =83:58:44 resources used .mem=37272

kb resources used .vmem=966120kb resources used . wa l l t ime =21:01:01

Appendix A. Dataset 166

04/23/2013 09:18 :53 ;E;101863. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue=parau l ct ime =1366640324 qtime=1366640324 etime=1366640324 s t a r t

=1366640325 owner=mduser2@qgg . hud . ac . uk exec host=enode35 . e r i d a n i . qgg . hud . ac . uk /3+

enode35 . e r i d a n i . qgg . hud . ac . uk /2+enode35 . e r i d a n i . qgg . hud . ac . uk /1+enode35 . e r i d a n i .

qgg . hud . ac . uk /0+enode34 . e r i d a n i . qgg . hud . ac . uk /3+enode34 . e r i d a n i . qgg . hud . ac . uk /2+

enode34 . e r i d a n i . qgg . hud . ac . uk /1+enode34 . e r i d a n i . qgg . hud . ac . uk /0+enode33 . e r i d a n i .

qgg . hud . ac . uk /3+enode33 . e r i d a n i . qgg . hud . ac . uk /2+enode33 . e r i d a n i . qgg . hud . ac . uk /1+

enode33 . e r i d a n i . qgg . hud . ac . uk /0+enode32 . e r i d a n i . qgg . hud . ac . uk /3+enode32 . e r i d a n i .

qgg . hud . ac . uk /2+enode32 . e r i d a n i . qgg . hud . ac . uk /1+enode32 . e r i d a n i . qgg . hud . ac . uk /0+

enode31 . e r i d a n i . qgg . hud . ac . uk /3+enode31 . e r i d a n i . qgg . hud . ac . uk /2+enode31 . e r i d a n i .

qgg . hud . ac . uk /1+enode31 . e r i d a n i . qgg . hud . ac . uk /0+enode30 . e r i d a n i . qgg . hud . ac . uk /3+

enode30 . e r i d a n i . qgg . hud . ac . uk /2+enode30 . e r i d a n i . qgg . hud . ac . uk /1+enode30 . e r i d a n i .

qgg . hud . ac . uk /0+enode29 . e r i d a n i . qgg . hud . ac . uk /3+enode29 . e r i d a n i . qgg . hud . ac . uk /2+

enode29 . e r i d a n i . qgg . hud . ac . uk /1+enode29 . e r i d a n i . qgg . hud . ac . uk /0+enode28 . e r i d a n i .

qgg . hud . ac . uk /3+enode28 . e r i d a n i . qgg . hud . ac . uk /2+enode28 . e r i d a n i . qgg . hud . ac . uk /1+

enode28 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t . ncpus

=1 Resource L is t . neednodes =8:ppn=4 Resource L is t . nodect=8 Resource L is t . nodes =8:

ppn=4 Resource L is t . wa l l t ime =336:00:00 session=29825 end=1366705133 E x i t s t a t u s =0

resources used . cput =11:22:01 resources used .mem=5823168kb resources used .vmem

=39016268kb resources used . wa l l t ime =18:00:08

04/23/2013 09:43 :57 ;E;101864. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue=parau l ct ime =1366706619 qtime=1366706619 etime=1366706619 s t a r t

=1366706619 owner=mduser2@qgg . hud . ac . uk exec host=enode35 . e r i d a n i . qgg . hud . ac . uk /3+

enode35 . e r i d a n i . qgg . hud . ac . uk /2+enode35 . e r i d a n i . qgg . hud . ac . uk /1+enode35 . e r i d a n i .

qgg . hud . ac . uk /0+enode34 . e r i d a n i . qgg . hud . ac . uk /3+enode34 . e r i d a n i . qgg . hud . ac . uk /2+

enode34 . e r i d a n i . qgg . hud . ac . uk /1+enode34 . e r i d a n i . qgg . hud . ac . uk /0+enode33 . e r i d a n i .

qgg . hud . ac . uk /3+enode33 . e r i d a n i . qgg . hud . ac . uk /2+enode33 . e r i d a n i . qgg . hud . ac . uk /1+

enode33 . e r i d a n i . qgg . hud . ac . uk /0+enode32 . e r i d a n i . qgg . hud . ac . uk /3+enode32 . e r i d a n i .

qgg . hud . ac . uk /2+enode32 . e r i d a n i . qgg . hud . ac . uk /1+enode32 . e r i d a n i . qgg . hud . ac . uk /0+

enode31 . e r i d a n i . qgg . hud . ac . uk /3+enode31 . e r i d a n i . qgg . hud . ac . uk /2+enode31 . e r i d a n i .

qgg . hud . ac . uk /1+enode31 . e r i d a n i . qgg . hud . ac . uk /0+enode30 . e r i d a n i . qgg . hud . ac . uk /3+

enode30 . e r i d a n i . qgg . hud . ac . uk /2+enode30 . e r i d a n i . qgg . hud . ac . uk /1+enode30 . e r i d a n i .

qgg . hud . ac . uk /0+enode29 . e r i d a n i . qgg . hud . ac . uk /3+enode29 . e r i d a n i . qgg . hud . ac . uk /2+

enode29 . e r i d a n i . qgg . hud . ac . uk /1+enode29 . e r i d a n i . qgg . hud . ac . uk /0+enode28 . e r i d a n i .

qgg . hud . ac . uk /3+enode28 . e r i d a n i . qgg . hud . ac . uk /2+enode28 . e r i d a n i . qgg . hud . ac . uk /1+

enode28 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t . ncpus

=1 Resource L is t . neednodes =8:ppn=4 Resource L is t . nodect=8 Resource L is t . nodes =8:

ppn=4 Resource L is t . wa l l t ime =336:00:00 session=30192 end=1366706637 E x i t s t a t u s =0

resources used . cput =00:00:00 resources used .mem=824kb resources used .vmem=13380kb

resources used . wa l l t ime =00:00:15

Appendix A. Dataset 167

04/02/2013 00:13 :54 ;E;77182. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case1 queue=parau l ct ime =1364858024 qtime=1364858024 etime=1364858024 s t a r t

=1364858024 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode19 . e r i d a n i . qgg . hud

. ac . uk /3+enode19 . e r i d a n i . qgg . hud . ac . uk /2+enode19 . e r i d a n i . qgg . hud . ac . uk /1+enode19 .

e r i d a n i . qgg . hud . ac . uk /0+enode18 . e r i d a n i . qgg . hud . ac . uk /3+enode18 . e r i d a n i . qgg . hud . ac

. uk /2+enode18 . e r i d a n i . qgg . hud . ac . uk /1+enode18 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 Resource L is t . wa l l t ime

=336:00:00 session=18948 end=1364858034 E x i t s t a t u s =271 resources used . cput

=00:00:00 resources used .mem=41296kb resources used .vmem=117408kb resources used .

wa l l t ime =00:00:10

04/02/2013 00:14 :03 ;E;77181. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case237 queue=parau l ct ime =1364858011 qtime=1364858011 etime=1364858011 s t a r t

=1364858011 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode17 . e r i d a n i . qgg . hud

. ac . uk /3+enode17 . e r i d a n i . qgg . hud . ac . uk /2+enode17 . e r i d a n i . qgg . hud . ac . uk /1+enode17 .

e r i d a n i . qgg . hud . ac . uk /0+enode16 . e r i d a n i . qgg . hud . ac . uk /3+enode16 . e r i d a n i . qgg . hud . ac

. uk /2+enode16 . e r i d a n i . qgg . hud . ac . uk /1+enode16 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 Resource L is t . wa l l t ime

=336:00:00 session=20312 end=1364858043 E x i t s t a t u s =0 resources used . cput =00:00:00

resources used .mem=112764kb resources used .vmem=1343808kb resources used . wa l l t ime

=00:00:32

04/02/2013 00:16 :22 ;E;77183. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case238 queue=parau l ct ime =1364858154 qtime=1364858154 etime=1364858154 s t a r t

=1364858154 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode17 . e r i d a n i . qgg . hud

. ac . uk /3+enode17 . e r i d a n i . qgg . hud . ac . uk /2+enode17 . e r i d a n i . qgg . hud . ac . uk /1+enode17 .

e r i d a n i . qgg . hud . ac . uk /0+enode16 . e r i d a n i . qgg . hud . ac . uk /3+enode16 . e r i d a n i . qgg . hud . ac

. uk /2+enode16 . e r i d a n i . qgg . hud . ac . uk /1+enode16 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 Resource L is t . wa l l t ime

=336:00:00 session=21285 end=1364858182 E x i t s t a t u s =0 resources used . cput =00:00:00

resources used .mem=88076kb resources used .vmem=1068672kb resources used . wa l l t ime

=00:00:28

Appendix A. Dataset 168

04/02/2013 00:16 :31 ;E;77184. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case239 queue=parau l ct ime =1364858161 qtime=1364858161 etime=1364858161 s t a r t

=1364858161 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode19 . e r i d a n i . qgg . hud

. ac . uk /3+enode19 . e r i d a n i . qgg . hud . ac . uk /2+enode19 . e r i d a n i . qgg . hud . ac . uk /1+enode19 .

e r i d a n i . qgg . hud . ac . uk /0+enode18 . e r i d a n i . qgg . hud . ac . uk /3+enode18 . e r i d a n i . qgg . hud . ac

. uk /2+enode18 . e r i d a n i . qgg . hud . ac . uk /1+enode18 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 Resource L is t . wa l l t ime

=336:00:00 session=19641 end=1364858191 E x i t s t a t u s =0 resources used . cput =00:00:00

resources used .mem=65360kb resources used .vmem=658444kb resources used . wa l l t ime

=00:00:30

04/02/2013 00:16 :34 ;E;77185. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case240 queue=parau l ct ime =1364858167 qtime=1364858167 etime=1364858167 s t a r t

=1364858167 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode22 . e r i d a n i . qgg . hud

. ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac . uk /2+enode22 . e r i d a n i . qgg . hud . ac . uk /1+enode22 .

e r i d a n i . qgg . hud . ac . uk /0+enode21 . e r i d a n i . qgg . hud . ac . uk /3+enode21 . e r i d a n i . qgg . hud . ac

. uk /2+enode21 . e r i d a n i . qgg . hud . ac . uk /1+enode21 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 Resource L is t . wa l l t ime

=336:00:00 session=21144 end=1364858194 E x i t s t a t u s =0 resources used . cput =00:00:00

resources used .mem=3004kb resources used .vmem=95216kb resources used . wa l l t ime

=00:00:27

04/02/2013 00:16 :36 ;E;77186. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case241 queue=parau l ct ime =1364858172 qtime=1364858172 etime=1364858172 s t a r t

=1364858172 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode24 . e r i d a n i . qgg . hud

. ac . uk /3+enode24 . e r i d a n i . qgg . hud . ac . uk /2+enode24 . e r i d a n i . qgg . hud . ac . uk /1+enode24 .

e r i d a n i . qgg . hud . ac . uk /0+enode23 . e r i d a n i . qgg . hud . ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac

. uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 Resource L is t . wa l l t ime

=336:00:00 session=13325 end=1364858196 E x i t s t a t u s =0 resources used . cput =00:00:00

resources used .mem=816kb resources used .vmem=13380kb resources used . wa l l t ime

=00:00:24

Appendix A. Dataset 169

04/02/2013 00:16 :55 ;E;77187. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case242 queue=parau l ct ime =1364858182 qtime=1364858182 etime=1364858182 s t a r t

=1364858182 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode26 . e r i d a n i . qgg . hud

. ac . uk /3+enode26 . e r i d a n i . qgg . hud . ac . uk /2+enode26 . e r i d a n i . qgg . hud . ac . uk /1+enode26 .

e r i d a n i . qgg . hud . ac . uk /0+enode25 . e r i d a n i . qgg . hud . ac . uk /3+enode25 . e r i d a n i . qgg . hud . ac

. uk /2+enode25 . e r i d a n i . qgg . hud . ac . uk /1+enode25 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 Resource L is t . wa l l t ime

=336:00:00 session=9402 end=1364858215 E x i t s t a t u s =0 resources used . cput =00:00:00

resources used .mem=60192kb resources used .vmem=529896kb resources used . wa l l t ime

=00:00:33

04/02/2013 13:58 :02 ;E;77192. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case239 queue=parau l ct ime =1364907453 qtime=1364907453 etime=1364907453 s t a r t

=1364907453 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode22 . e r i d a n i . qgg . hud

. ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac . uk /2+enode22 . e r i d a n i . qgg . hud . ac . uk /1+enode22 .

e r i d a n i . qgg . hud . ac . uk /0+enode21 . e r i d a n i . qgg . hud . ac . uk /3+enode21 . e r i d a n i . qgg . hud . ac

. uk /2+enode21 . e r i d a n i . qgg . hud . ac . uk /1+enode21 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 Resource L is t . wa l l t ime

=336:00:00 session=22282 end=1364907482 E x i t s t a t u s =0 resources used . cput =00:00:00

resources used .mem=816kb resources used .vmem=13380kb resources used . wa l l t ime

=00:00:29

04/02/2013 13:58 :15 ;E;77193. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case240 queue=parau l ct ime =1364907469 qtime=1364907469 etime=1364907469 s t a r t

=1364907469 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode24 . e r i d a n i . qgg . hud

. ac . uk /3+enode24 . e r i d a n i . qgg . hud . ac . uk /2+enode24 . e r i d a n i . qgg . hud . ac . uk /1+enode24 .

e r i d a n i . qgg . hud . ac . uk /0+enode23 . e r i d a n i . qgg . hud . ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac

. uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 Resource L is t . wa l l t ime

=336:00:00 session=14463 end=1364907495 E x i t s t a t u s =0 resources used . cput =00:00:00

resources used .mem=69828kb resources used .vmem=763400kb resources used . wa l l t ime

=00:00:26

Appendix A. Dataset 170

04/02/2013 13:58 :24 ;E;77194. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case241 queue=parau l ct ime =1364907481 qtime=1364907481 etime=1364907481 s t a r t

=1364907481 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode26 . e r i d a n i . qgg . hud

. ac . uk /3+enode26 . e r i d a n i . qgg . hud . ac . uk /2+enode26 . e r i d a n i . qgg . hud . ac . uk /1+enode26 .

e r i d a n i . qgg . hud . ac . uk /0+enode25 . e r i d a n i . qgg . hud . ac . uk /3+enode25 . e r i d a n i . qgg . hud . ac

. uk /2+enode25 . e r i d a n i . qgg . hud . ac . uk /1+enode25 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 Resource L is t . wa l l t ime

=336:00:00 session=10540 end=1364907504 E x i t s t a t u s =0 resources used . cput =00:00:00

resources used .mem=65084kb resources used .vmem=659600kb resources used . wa l l t ime

=00:00:23

04/04/2013 01:51 :38 ;E;78715. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365027644 qtime=1365027644 etime=1365027644 s t a r t

=1365036667 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode35 . e r i d a n i . qgg . hud

. ac . uk /3+enode35 . e r i d a n i . qgg . hud . ac . uk /2+enode35 . e r i d a n i . qgg . hud . ac . uk /1+enode35 .

e r i d a n i . qgg . hud . ac . uk /0+enode22 . e r i d a n i . qgg . hud . ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac

. uk /2+enode22 . e r i d a n i . qgg . hud . ac . uk /1+enode22 . e r i d a n i . qgg . hud . ac . uk /0+enode21 .

e r i d a n i . qgg . hud . ac . uk /3+enode21 . e r i d a n i . qgg . hud . ac . uk /2+enode21 . e r i d a n i . qgg . hud . ac

. uk /1+enode21 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t

. ncpus=1 Resource L is t . neednodes =3:ppn=4 Resource L is t . nodect=3 Resource L is t .

nodes =3:ppn=4 Resource L is t . wa l l t ime =336:00:00 session=23365 end=1365036698

E x i t s t a t u s =0 resources used . cput =00:00:01 resources used .mem=64984kb

resources used .vmem=787496kb resources used . wa l l t ime =00:00:31

04/04/2013 11:27 :50 ;E;79221. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365071243 qtime=1365071243 etime=1365071243 s t a r t

=1365071243 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode23 . e r i d a n i . qgg . hud

. ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac . uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 .

e r i d a n i . qgg . hud . ac . uk /0+enode22 . e r i d a n i . qgg . hud . ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac

. uk /2+enode22 . e r i d a n i . qgg . hud . ac . uk /1+enode22 . e r i d a n i . qgg . hud . ac . uk /0+enode21 .

e r i d a n i . qgg . hud . ac . uk /3+enode21 . e r i d a n i . qgg . hud . ac . uk /2+enode21 . e r i d a n i . qgg . hud . ac

. uk /1+enode21 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t

. ncpus=1 Resource L is t . neednodes =3:ppn=4 Resource L is t . nodect=3 Resource L is t .

nodes =3:ppn=4 Resource L is t . wa l l t ime =336:00:00 session=14219 end=1365071270

E x i t s t a t u s =0 resources used . cput =00:00:01 resources used .mem=6868kb

resources used .vmem=202120kb resources used . wa l l t ime =00:00:27

Appendix A. Dataset 171

04/04/2013 11:41 :35 ;E;79251. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365072064 qtime=1365072064 etime=1365072064 s t a r t

=1365072064 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode30 . e r i d a n i . qgg . hud

. ac . uk /3+enode30 . e r i d a n i . qgg . hud . ac . uk /2+enode30 . e r i d a n i . qgg . hud . ac . uk /1+enode30 .

e r i d a n i . qgg . hud . ac . uk /0+enode23 . e r i d a n i . qgg . hud . ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac

. uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 . e r i d a n i . qgg . hud . ac . uk /0+enode22 .

e r i d a n i . qgg . hud . ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac . uk /2+enode22 . e r i d a n i . qgg . hud . ac

. uk /1+enode22 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t

. ncpus=1 Resource L is t . neednodes =3:ppn=4 Resource L is t . nodect=3 Resource L is t .

nodes =3:ppn=4 Resource L is t . wa l l t ime =336:00:00 session=8494 end=1365072095

E x i t s t a t u s =0 resources used . cput =00:00:06 resources used .mem=4596kb

resources used .vmem=142224kb resources used . wa l l t ime =00:00:31

04/04/2013 12:18 :43 ;E;79348. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365074292 qtime=1365074292 etime=1365074292 s t a r t

=1365074292 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode30 . e r i d a n i . qgg . hud

. ac . uk /3+enode30 . e r i d a n i . qgg . hud . ac . uk /2+enode30 . e r i d a n i . qgg . hud . ac . uk /1+enode30 .

e r i d a n i . qgg . hud . ac . uk /0+enode23 . e r i d a n i . qgg . hud . ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac

. uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 . e r i d a n i . qgg . hud . ac . uk /0+enode22 .

e r i d a n i . qgg . hud . ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac . uk /2+enode22 . e r i d a n i . qgg . hud . ac

. uk /1+enode22 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t

. ncpus=1 Resource L is t . neednodes =3:ppn=4 Resource L is t . nodect=3 Resource L is t .

nodes =3:ppn=4 Resource L is t . wa l l t ime =336:00:00 session=9544 end=1365074323

E x i t s t a t u s =0 resources used . cput =00:00:00 resources used .mem=65684kb

resources used .vmem=851132kb resources used . wa l l t ime =00:00:31

04/04/2013 12:25 :13 ;E;79365. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365074685 qtime=1365074685 etime=1365074685 s t a r t

=1365074686 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode30 . e r i d a n i . qgg . hud

. ac . uk /3+enode30 . e r i d a n i . qgg . hud . ac . uk /2+enode30 . e r i d a n i . qgg . hud . ac . uk /1+enode30 .

e r i d a n i . qgg . hud . ac . uk /0+enode23 . e r i d a n i . qgg . hud . ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac

. uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 . e r i d a n i . qgg . hud . ac . uk /0+enode22 .

e r i d a n i . qgg . hud . ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac . uk /2+enode22 . e r i d a n i . qgg . hud . ac

. uk /1+enode22 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t

. ncpus=1 Resource L is t . neednodes =3:ppn=4 Resource L is t . nodect=3 Resource L is t .

nodes =3:ppn=4 Resource L is t . wa l l t ime =336:00:00 session=10584 end=1365074713

E x i t s t a t u s =0 resources used . cput =00:00:00 resources used .mem=90080kb

resources used .vmem=1330968kb resources used . wa l l t ime =00:00:27

Appendix A. Dataset 172

04/04/2013 12:37 :55 ;E;79397. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365075452 qtime=1365075452 etime=1365075452 s t a r t

=1365075452 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode23 . e r i d a n i . qgg . hud

. ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac . uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 .

e r i d a n i . qgg . hud . ac . uk /0+enode22 . e r i d a n i . qgg . hud . ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac

. uk /2+enode22 . e r i d a n i . qgg . hud . ac . uk /1+enode22 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 Resource L is t . wa l l t ime

=336:00:00 session=15483 end=1365075475 E x i t s t a t u s =0 resources used . cput =00:00:01

resources used .mem=120120kb resources used .vmem=1384756kb resources used . wa l l t ime

=00:00:23

04/04/2013 12:44 :24 ;E;79409. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365075736 qtime=1365075736 etime=1365075736 s t a r t

=1365075736 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode23 . e r i d a n i . qgg . hud

. ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac . uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 .

e r i d a n i . qgg . hud . ac . uk /0+enode22 . e r i d a n i . qgg . hud . ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac

. uk /2+enode22 . e r i d a n i . qgg . hud . ac . uk /1+enode22 . e r i d a n i . qgg . hud . ac . uk /0+enode21 .

e r i d a n i . qgg . hud . ac . uk /3+enode21 . e r i d a n i . qgg . hud . ac . uk /2+enode21 . e r i d a n i . qgg . hud . ac

. uk /1+enode21 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t

. ncpus=1 Resource L is t . neednodes =3:ppn=4 Resource L is t . nodect=3 Resource L is t .

nodes =3:ppn=4 Resource L is t . wa l l t ime =336:00:00 session=16452 end=1365075864

E x i t s t a t u s =0 resources used . cput =00:06:08 resources used .mem=2359792kb

resources used .vmem=4252684kb resources used . wa l l t ime =00:02:08

04/04/2013 12:53 :33 ;E;79432. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365076375 qtime=1365076375 etime=1365076375 s t a r t

=1365076375 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode37 . e r i d a n i . qgg . hud

. ac . uk /3+enode37 . e r i d a n i . qgg . hud . ac . uk /2+enode37 . e r i d a n i . qgg . hud . ac . uk /1+enode37 .

e r i d a n i . qgg . hud . ac . uk /0+enode35 . e r i d a n i . qgg . hud . ac . uk /3+enode35 . e r i d a n i . qgg . hud . ac

. uk /2+enode35 . e r i d a n i . qgg . hud . ac . uk /1+enode35 . e r i d a n i . qgg . hud . ac . uk /0+enode34 .

e r i d a n i . qgg . hud . ac . uk /3+enode34 . e r i d a n i . qgg . hud . ac . uk /2+enode34 . e r i d a n i . qgg . hud . ac

. uk /1+enode34 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t

. ncpus=1 Resource L is t . neednodes =3:ppn=4 Resource L is t . nodect=3 Resource L is t .

nodes =3:ppn=4 Resource L is t . wa l l t ime =336:00:00 session=7069 end=1365076413

E x i t s t a t u s =0 resources used . cput =00:00:00 resources used .mem=816kb resources used

.vmem=13380kb resources used . wa l l t ime =00:00:38

Appendix A. Dataset 173

04/04/2013 13:02 :53 ;E;79462. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365076875 qtime=1365076876 etime=1365076876 s t a r t

=1365076876 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode34 . e r i d a n i . qgg . hud

. ac . uk /3+enode34 . e r i d a n i . qgg . hud . ac . uk /2+enode34 . e r i d a n i . qgg . hud . ac . uk /1+enode34 .

e r i d a n i . qgg . hud . ac . uk /0+enode23 . e r i d a n i . qgg . hud . ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac

. uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 Resource L is t . wa l l t ime

=336:00:00 session=8921 end=1365076973 E x i t s t a t u s =0 resources used . cput =00:04:16

resources used .mem=1953136kb resources used .vmem=2599216kb resources used . wa l l t ime

=00:01:37

04/04/2013 13:34 :52 ;E;79537. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365078333 qtime=1365078333 etime=1365078333 s t a r t

=1365078703 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode37 . e r i d a n i . qgg . hud

. ac . uk /3+enode37 . e r i d a n i . qgg . hud . ac . uk /2+enode37 . e r i d a n i . qgg . hud . ac . uk /1+enode37 .

e r i d a n i . qgg . hud . ac . uk /0+enode23 . e r i d a n i . qgg . hud . ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac

. uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 Resource L is t . wa l l t ime

=336:00:00 session=8693 end=1365078892 E x i t s t a t u s =0 resources used . cput =00:10:39

resources used .mem=3347388kb resources used .vmem=4628624kb resources used . wa l l t ime

=00:03:09

A.2 Real Data with Moulding Information

27/04/2013 22:54 :03 ;E;73207. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 group=pgr jobname=

d l p o l y queue=parastd ct ime =1366897046 qtime=1366897046 etime=1366897046 s t a r t

=1366970945 owner=mduser1@qgg . hud . ac . uk exec host=enode17 . e r i d a n i . qgg . hud . ac . uk /3+

enode17 . e r i d a n i . qgg . hud . ac . uk /2+enode17 . e r i d a n i . qgg . hud . ac . uk /1+enode17 . e r i d a n i .

qgg . hud . ac . uk /0+enode15 . e r i d a n i . qgg . hud . ac . uk /3+enode15 . e r i d a n i . qgg . hud . ac . uk /2+

enode15 . e r i d a n i . qgg . hud . ac . uk /1+enode15 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput

=10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn=4 Resource L is t .

nodect=2 Resource L is t . nodes =2:ppn=4 session=816 end=1367099643 E x i t s t a t u s =0

resources used . cput =188:42:46 resources used . wa l l t ime =35:44:58 app name= d l p o l y

i t e r a t i o n s =900000 atoms=4000

Appendix A. Dataset 174

27/04/2013 22:54 :25 ;E;73269. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 group=pgr jobname=

d l p o l y queue=parastd ct ime =1366898750 qtime=1366898750 etime=1366898750 s t a r t

=1366970967 owner=mduser1@qgg . hud . ac . uk exec host=enode25 . e r i d a n i . qgg . hud . ac . uk /3+

enode25 . e r i d a n i . qgg . hud . ac . uk /2+enode25 . e r i d a n i . qgg . hud . ac . uk /1+enode25 . e r i d a n i .

qgg . hud . ac . uk /0+enode22 . e r i d a n i . qgg . hud . ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac . uk /2+

enode22 . e r i d a n i . qgg . hud . ac . uk /1+enode22 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput

=10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn=4 Resource L is t .

nodect=2 Resource L is t . nodes =2:ppn=4 session=19341 end=1367099665 E x i t s t a t u s =0

resources used . cput =104:57:17 resources used . wa l l t ime =35:44:58 app name= d l p o l y

i t e r a t i o n s =900000 atoms=4000

27/04/2013 00:15 :15 ;E;73002. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 group=pgr jobname=

d l p o l y queue=parastd ct ime =1366889417 qtime=1366889417 etime=1366889417 s t a r t

=1366889417 owner=mduser1@qgg . hud . ac . uk exec host=enode05 . e r i d a n i . qgg . hud . ac . uk /3+

enode05 . e r i d a n i . qgg . hud . ac . uk /2+enode05 . e r i d a n i . qgg . hud . ac . uk /1+enode05 . e r i d a n i .

qgg . hud . ac . uk /0+enode04 . e r i d a n i . qgg . hud . ac . uk /3+enode04 . e r i d a n i . qgg . hud . ac . uk /2+

enode04 . e r i d a n i . qgg . hud . ac . uk /1+enode04 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput

=10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn=4 Resource L is t .

nodect=2 Resource L is t . nodes =2:ppn=4 session=2283 end=1367018115 E x i t s t a t u s =0

resources used . cput =188:43:16 resources used . wa l l t ime =35:44:58 app name= d l p o l y

i t e r a t i o n s =900000 atoms=4000

27/04/2013 04:50 :58 ;E;75252. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 group=pgr jobname=

d l p o l y queue=parastd ct ime =1366982459 qtime=1366982459 etime=1366982459 s t a r t

=1367034615 owner=mduser1@qgg . hud . ac . uk exec host=enode09 . e r i d a n i . qgg . hud . ac . uk /3+

enode09 . e r i d a n i . qgg . hud . ac . uk /2+enode09 . e r i d a n i . qgg . hud . ac . uk /1+enode09 . e r i d a n i .

qgg . hud . ac . uk /0+enode01 . e r i d a n i . qgg . hud . ac . uk /3+enode01 . e r i d a n i . qgg . hud . ac . uk /2+

enode01 . e r i d a n i . qgg . hud . ac . uk /1+enode01 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput

=10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn=4 Resource L is t .

nodect=2 Resource L is t . nodes =2:ppn=4 session=14801 end=1367034658 E x i t s t a t u s =0

resources used . cput =00:00:00 resources used . wa l l t ime =00:00:43 app name= d l p o l y

i t e r a t i o n s =300 atoms=4000

27/04/2013 04:49 :48 ;E;75251. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 group=pgr jobname=

d l p o l y queue=parastd ct ime =1366982458 qtime=1366982458 etime=1366982458 s t a r t

=1367034545 owner=mduser1@qgg . hud . ac . uk exec host=enode09 . e r i d a n i . qgg . hud . ac . uk /3+

enode09 . e r i d a n i . qgg . hud . ac . uk /2+enode09 . e r i d a n i . qgg . hud . ac . uk /1+enode09 . e r i d a n i .

qgg . hud . ac . uk /0+enode01 . e r i d a n i . qgg . hud . ac . uk /3+enode01 . e r i d a n i . qgg . hud . ac . uk /2+

enode01 . e r i d a n i . qgg . hud . ac . uk /1+enode01 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput

=10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn=4 Resource L is t .

nodect=2 Resource L is t . nodes =2:ppn=4 session=14725 end=1367034588 E x i t s t a t u s =0

resources used . cput =00:00:00 resources used . wa l l t ime =00:00:43 app name= d l p o l y

i t e r a t i o n s =300 atoms=4000

Appendix A. Dataset 175

27/04/2013 04:49 :17 ;E;75250. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 group=pgr jobname=

d l p o l y queue=parastd ct ime =1366982457 qtime=1366982457 etime=1366982457 s t a r t

=1367034514 owner=mduser1@qgg . hud . ac . uk exec host=enode09 . e r i d a n i . qgg . hud . ac . uk /3+

enode09 . e r i d a n i . qgg . hud . ac . uk /2+enode09 . e r i d a n i . qgg . hud . ac . uk /1+enode09 . e r i d a n i .

qgg . hud . ac . uk /0+enode01 . e r i d a n i . qgg . hud . ac . uk /3+enode01 . e r i d a n i . qgg . hud . ac . uk /2+

enode01 . e r i d a n i . qgg . hud . ac . uk /1+enode01 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput

=10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn=4 Resource L is t .

nodect=2 Resource L is t . nodes =2:ppn=4 session=14649 end=1367034557 E x i t s t a t u s =0

resources used . cput =00:00:00 resources used . wa l l t ime =00:00:43 app name= d l p o l y

i t e r a t i o n s =300 atoms=4000

27/04/2013 04:48 :20 ;E;75249. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 group=pgr jobname=

d l p o l y queue=parastd ct ime =1366982457 qtime=1366982457 etime=1366982457 s t a r t

=1367034457 owner=mduser1@qgg . hud . ac . uk exec host=enode09 . e r i d a n i . qgg . hud . ac . uk /3+

enode09 . e r i d a n i . qgg . hud . ac . uk /2+enode09 . e r i d a n i . qgg . hud . ac . uk /1+enode09 . e r i d a n i .

qgg . hud . ac . uk /0+enode01 . e r i d a n i . qgg . hud . ac . uk /3+enode01 . e r i d a n i . qgg . hud . ac . uk /2+

enode01 . e r i d a n i . qgg . hud . ac . uk /1+enode01 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput

=10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn=4 Resource L is t .

nodect=2 Resource L is t . nodes =2:ppn=4 session=14573 end=1367034500 E x i t s t a t u s =0

resources used . cput =00:00:00 resources used . wa l l t ime =00:00:43 app name= d l p o l y

i t e r a t i o n s =300 atoms=4000

27/04/2013 04:47 :51 ;E;75248. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 group=pgr jobname=

d l p o l y queue=parastd ct ime =1366982457 qtime=1366982457 etime=1366982457 s t a r t

=1367034428 owner=mduser1@qgg . hud . ac . uk exec host=enode09 . e r i d a n i . qgg . hud . ac . uk /3+

enode09 . e r i d a n i . qgg . hud . ac . uk /2+enode09 . e r i d a n i . qgg . hud . ac . uk /1+enode09 . e r i d a n i .

qgg . hud . ac . uk /0+enode01 . e r i d a n i . qgg . hud . ac . uk /3+enode01 . e r i d a n i . qgg . hud . ac . uk /2+

enode01 . e r i d a n i . qgg . hud . ac . uk /1+enode01 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput

=10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn=4 Resource L is t .

nodect=2 Resource L is t . nodes =2:ppn=4 session=14497 end=1367034471 E x i t s t a t u s =0

resources used . cput =00:00:00 resources used . wa l l t ime =00:00:43 app name= d l p o l y

i t e r a t i o n s =300 atoms=4000

27/04/2013 04:47 :26 ;E;75247. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 group=pgr jobname=

d l p o l y queue=parastd ct ime =1366982456 qtime=1366982456 etime=1366982456 s t a r t

=1367034403 owner=mduser1@qgg . hud . ac . uk exec host=enode09 . e r i d a n i . qgg . hud . ac . uk /3+

enode09 . e r i d a n i . qgg . hud . ac . uk /2+enode09 . e r i d a n i . qgg . hud . ac . uk /1+enode09 . e r i d a n i .

qgg . hud . ac . uk /0+enode01 . e r i d a n i . qgg . hud . ac . uk /3+enode01 . e r i d a n i . qgg . hud . ac . uk /2+

enode01 . e r i d a n i . qgg . hud . ac . uk /1+enode01 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput

=10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn=4 Resource L is t .

nodect=2 Resource L is t . nodes =2:ppn=4 session=14421 end=1367034446 E x i t s t a t u s =0

resources used . cput =00:00:00 resources used . wa l l t ime =00:00:43 app name= d l p o l y

i t e r a t i o n s =300 atoms=4000

Appendix A. Dataset 176

27/04/2013 04:46 :56 ;E;75246. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 group=pgr jobname=

d l p o l y queue=parastd ct ime =1366982454 qtime=1366982454 etime=1366982454 s t a r t

=1367034373 owner=mduser1@qgg . hud . ac . uk exec host=enode09 . e r i d a n i . qgg . hud . ac . uk /3+

enode09 . e r i d a n i . qgg . hud . ac . uk /2+enode09 . e r i d a n i . qgg . hud . ac . uk /1+enode09 . e r i d a n i .

qgg . hud . ac . uk /0+enode01 . e r i d a n i . qgg . hud . ac . uk /3+enode01 . e r i d a n i . qgg . hud . ac . uk /2+

enode01 . e r i d a n i . qgg . hud . ac . uk /1+enode01 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput

=10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn=4 Resource L is t .

nodect=2 Resource L is t . nodes =2:ppn=4 session=14345 end=1367034416 E x i t s t a t u s =0

resources used . cput =00:00:00 resources used . wa l l t ime =00:00:43 app name= d l p o l y

i t e r a t i o n s =300 atoms=4000

04/04/2013 14:31 :08 ;E;77747. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue= s e r i a l s t d ct ime =1364999418 qtime=1364999418 etime=1364999418 s t a r t

=1364999418 owner=mduser2@qgg . hud . ac . uk exec host=enode32 . e r i d a n i . qgg . hud . ac . uk /3+

enode32 . e r i d a n i . qgg . hud . ac . uk /2+enode32 . e r i d a n i . qgg . hud . ac . uk /1+enode32 . e r i d a n i .

qgg . hud . ac . uk /0 Resource L is t . cput =192:00:00 Resource L is t . ncpus=1 Resource L is t .

neednodes =1:ppn=4 Resource L is t . nodect=1 Resource L is t . nodes =1:ppn=4 session=4398

end=1365082268 E x i t s t a t u s =271 resources used . cput =00:03:18 resources used .

wa l l t ime =23:00:50 app name= d l p o l y i t e r a t i o n s =5000000 atoms=500

04/04/2013 14:34 :59 ;E;77761. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue= s e r i a l s t d ct ime =1364999649 qtime=1364999649 etime=1364999649 s t a r t

=1364999649 owner=mduser2@qgg . hud . ac . uk exec host=enode35 . e r i d a n i . qgg . hud . ac . uk /3+

enode35 . e r i d a n i . qgg . hud . ac . uk /2+enode35 . e r i d a n i . qgg . hud . ac . uk /1+enode35 . e r i d a n i .

qgg . hud . ac . uk /0 Resource L is t . cput =192:00:00 Resource L is t . ncpus=1 Resource L is t .

neednodes =1:ppn=4 Resource L is t . nodect=1 Resource L is t . nodes =1:ppn=4 session=7680

end=1365082499 E x i t s t a t u s =0 resources used . cput =26:22:14 resources used . wa l l t ime

=23:00:50 app name= d l p o l y i t e r a t i o n s =5000000 atoms=500

04/04/2013 19:54 :21 ;E;77778. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue= s e r i a l s t d ct ime =1365000012 qtime=1365000012 etime=1365000012 s t a r t

=1365018811 owner=mduser2@qgg . hud . ac . uk exec host=enode19 . e r i d a n i . qgg . hud . ac . uk /3+

enode19 . e r i d a n i . qgg . hud . ac . uk /2+enode19 . e r i d a n i . qgg . hud . ac . uk /1+enode19 . e r i d a n i .

qgg . hud . ac . uk /0 Resource L is t . cput =192:00:00 Resource L is t . ncpus=1 Resource L is t .

neednodes =1:ppn=4 Resource L is t . nodect=1 Resource L is t . nodes =1:ppn=4 session=21974

end=1365101661 E x i t s t a t u s =0 resources used . cput =17:20:07 resources used . wa l l t ime

=23:00:50 app name= d l p o l y i t e r a t i o n s =5000000 atoms=500

04/04/2013 19:54 :20 ;E;77776. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue= s e r i a l s t d ct ime =1364999966 qtime=1364999966 etime=1364999966 s t a r t

=1365018810 owner=mduser2@qgg . hud . ac . uk exec host=enode18 . e r i d a n i . qgg . hud . ac . uk /3+

enode18 . e r i d a n i . qgg . hud . ac . uk /2+enode18 . e r i d a n i . qgg . hud . ac . uk /1+enode18 . e r i d a n i .

qgg . hud . ac . uk /0 Resource L is t . cput =192:00:00 Resource L is t . ncpus=1 Resource L is t .

neednodes =1:ppn=4 Resource L is t . nodect=1 Resource L is t . nodes =1:ppn=4 session=21176

end=1365101660 E x i t s t a t u s =0 resources used . cput =21:57:14 resources used . wa l l t ime

=23:00:50 app name= d l p o l y i t e r a t i o n s =5000000 atoms=500

Appendix A. Dataset 177

04/04/2013 19:35 :41 ;E;77775. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue= s e r i a l s t d ct ime =1364999921 qtime=1364999921 etime=1364999921 s t a r t

=1365017691 owner=mduser2@qgg . hud . ac . uk exec host=enode23 . e r i d a n i . qgg . hud . ac . uk /3+

enode23 . e r i d a n i . qgg . hud . ac . uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 . e r i d a n i .

qgg . hud . ac . uk /0 Resource L is t . cput =192:00:00 Resource L is t . ncpus=1 Resource L is t .

neednodes =1:ppn=4 Resource L is t . nodect=1 Resource L is t . nodes =1:ppn=4 session=12655

end=1365100541 E x i t s t a t u s =0 resources used . cput =24:57:36 resources used . wa l l t ime

=23:00:50 app name= d l p o l y i t e r a t i o n s =5000000 atoms=500

04/04/2013 09:07 :40 ;E;77738. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue= s e r i a l s t d ct ime =1364999320 qtime=1364999320 etime=1364999320 s t a r t

=1364999320 owner=mduser2@qgg . hud . ac . uk exec host=enode30 . e r i d a n i . qgg . hud . ac . uk /3+

enode30 . e r i d a n i . qgg . hud . ac . uk /2+enode30 . e r i d a n i . qgg . hud . ac . uk /1+enode30 . e r i d a n i .

qgg . hud . ac . uk /0 Resource L is t . cput =192:00:00 Resource L is t . ncpus=1 Resource L is t .

neednodes =1:ppn=4 Resource L is t . nodect=1 Resource L is t . nodes =1:ppn=4 session=7671

end=1365062860 E x i t s t a t u s =0 resources used . cput =70:31:43 resources used . wa l l t ime

=17:39:00 app name= d l p o l y i t e r a t i o n s =5000000 atoms=500

04/04/2013 12:07 :07 ;E;77768. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue= s e r i a l s t d ct ime =1364999749 qtime=1364999749 etime=1364999749 s t a r t

=1365002242 owner=mduser2@qgg . hud . ac . uk exec host=enode34 . e r i d a n i . qgg . hud . ac . uk /3+

enode34 . e r i d a n i . qgg . hud . ac . uk /2+enode34 . e r i d a n i . qgg . hud . ac . uk /1+enode34 . e r i d a n i .

qgg . hud . ac . uk /0 Resource L is t . cput =192:00:00 Resource L is t . ncpus=1 Resource L is t .

neednodes =1:ppn=4 Resource L is t . nodect=1 Resource L is t . nodes =1:ppn=4 session=8017

end=1365073627 E x i t s t a t u s =0 resources used . cput =79:14:18 resources used . wa l l t ime

=19:49:45 app name= d l p o l y i t e r a t i o n s =5000000 atoms=500

04/04/2013 12:28 :22 ;E;77733. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue= s e r i a l s t d ct ime =1364999241 qtime=1364999241 etime=1364999241 s t a r t

=1364999241 owner=mduser2@qgg . hud . ac . uk exec host=enode28 . e r i d a n i . qgg . hud . ac . uk /3+

enode28 . e r i d a n i . qgg . hud . ac . uk /2+enode28 . e r i d a n i . qgg . hud . ac . uk /1+enode28 . e r i d a n i .

qgg . hud . ac . uk /0 Resource L is t . cput =192:00:00 Resource L is t . ncpus=1 Resource L is t .

neednodes =1:ppn=4 Resource L is t . nodect=1 Resource L is t . nodes =1:ppn=4 session=8773

end=1365074902 E x i t s t a t u s =0 resources used . cput =83:58:44 resources used . wa l l t ime

=21:01:01 app name= d l p o l y i t e r a t i o n s =5000000 atoms=500

Appendix A. Dataset 178

24/04/2013 12:06 :21 ;E;101863. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue=parau l ct ime =1366640324 qtime=1366640324 etime=1366640324 s t a r t

=1366640325 owner=mduser2@qgg . hud . ac . uk exec host=enode35 . e r i d a n i . qgg . hud . ac . uk /3+

enode35 . e r i d a n i . qgg . hud . ac . uk /2+enode35 . e r i d a n i . qgg . hud . ac . uk /1+enode35 . e r i d a n i .

qgg . hud . ac . uk /0+enode34 . e r i d a n i . qgg . hud . ac . uk /3+enode34 . e r i d a n i . qgg . hud . ac . uk /2+

enode34 . e r i d a n i . qgg . hud . ac . uk /1+enode34 . e r i d a n i . qgg . hud . ac . uk /0+enode33 . e r i d a n i .

qgg . hud . ac . uk /3+enode33 . e r i d a n i . qgg . hud . ac . uk /2+enode33 . e r i d a n i . qgg . hud . ac . uk /1+

enode33 . e r i d a n i . qgg . hud . ac . uk /0+enode32 . e r i d a n i . qgg . hud . ac . uk /3+enode32 . e r i d a n i .

qgg . hud . ac . uk /2+enode32 . e r i d a n i . qgg . hud . ac . uk /1+enode32 . e r i d a n i . qgg . hud . ac . uk /0+

enode31 . e r i d a n i . qgg . hud . ac . uk /3+enode31 . e r i d a n i . qgg . hud . ac . uk /2+enode31 . e r i d a n i .

qgg . hud . ac . uk /1+enode31 . e r i d a n i . qgg . hud . ac . uk /0+enode30 . e r i d a n i . qgg . hud . ac . uk /3+

enode30 . e r i d a n i . qgg . hud . ac . uk /2+enode30 . e r i d a n i . qgg . hud . ac . uk /1+enode30 . e r i d a n i .

qgg . hud . ac . uk /0+enode29 . e r i d a n i . qgg . hud . ac . uk /3+enode29 . e r i d a n i . qgg . hud . ac . uk /2+

enode29 . e r i d a n i . qgg . hud . ac . uk /1+enode29 . e r i d a n i . qgg . hud . ac . uk /0+enode28 . e r i d a n i .

qgg . hud . ac . uk /3+enode28 . e r i d a n i . qgg . hud . ac . uk /2+enode28 . e r i d a n i . qgg . hud . ac . uk /1+

enode28 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t . ncpus

=1 Resource L is t . neednodes =8:ppn=4 Resource L is t . nodect=8 Resource L is t . nodes =8:

ppn=4 session=29825 end=1366801581 E x i t s t a t u s =0 resources used . cput =11:22:01

resources used . wa l l t ime =44:47:36 app name= d l p o l y i t e r a t i o n s =1000000 atoms=8000

23/04/2013 09:43 :56 ;E;101864. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 group=mduser2 jobname=

j c l queue=parau l ct ime =1366706619 qtime=1366706619 etime=1366706619 s t a r t

=1366706619 owner=mduser2@qgg . hud . ac . uk exec host=enode35 . e r i d a n i . qgg . hud . ac . uk /3+

enode35 . e r i d a n i . qgg . hud . ac . uk /2+enode35 . e r i d a n i . qgg . hud . ac . uk /1+enode35 . e r i d a n i .

qgg . hud . ac . uk /0+enode34 . e r i d a n i . qgg . hud . ac . uk /3+enode34 . e r i d a n i . qgg . hud . ac . uk /2+

enode34 . e r i d a n i . qgg . hud . ac . uk /1+enode34 . e r i d a n i . qgg . hud . ac . uk /0+enode33 . e r i d a n i .

qgg . hud . ac . uk /3+enode33 . e r i d a n i . qgg . hud . ac . uk /2+enode33 . e r i d a n i . qgg . hud . ac . uk /1+

enode33 . e r i d a n i . qgg . hud . ac . uk /0+enode32 . e r i d a n i . qgg . hud . ac . uk /3+enode32 . e r i d a n i .

qgg . hud . ac . uk /2+enode32 . e r i d a n i . qgg . hud . ac . uk /1+enode32 . e r i d a n i . qgg . hud . ac . uk /0+

enode31 . e r i d a n i . qgg . hud . ac . uk /3+enode31 . e r i d a n i . qgg . hud . ac . uk /2+enode31 . e r i d a n i .

qgg . hud . ac . uk /1+enode31 . e r i d a n i . qgg . hud . ac . uk /0+enode30 . e r i d a n i . qgg . hud . ac . uk /3+

enode30 . e r i d a n i . qgg . hud . ac . uk /2+enode30 . e r i d a n i . qgg . hud . ac . uk /1+enode30 . e r i d a n i .

qgg . hud . ac . uk /0+enode29 . e r i d a n i . qgg . hud . ac . uk /3+enode29 . e r i d a n i . qgg . hud . ac . uk /2+

enode29 . e r i d a n i . qgg . hud . ac . uk /1+enode29 . e r i d a n i . qgg . hud . ac . uk /0+enode28 . e r i d a n i .

qgg . hud . ac . uk /3+enode28 . e r i d a n i . qgg . hud . ac . uk /2+enode28 . e r i d a n i . qgg . hud . ac . uk /1+

enode28 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t . ncpus

=1 Resource L is t . neednodes =8:ppn=4 Resource L is t . nodect=8 Resource L is t . nodes =8:

ppn=4 session=30192 end=1366706636 E x i t s t a t u s =0 resources used . cput =00:00:00

resources used . wa l l t ime =00:00:17 app name= d l p o l y i t e r a t i o n s =100 atoms=8000

Appendix A. Dataset 179

02/04/2013 00:14 :10 ;E;77182. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case1 queue=parau l ct ime =1364858024 qtime=1364858024 etime=1364858024 s t a r t

=1364858024 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode19 . e r i d a n i . qgg . hud

. ac . uk /3+enode19 . e r i d a n i . qgg . hud . ac . uk /2+enode19 . e r i d a n i . qgg . hud . ac . uk /1+enode19 .

e r i d a n i . qgg . hud . ac . uk /0+enode18 . e r i d a n i . qgg . hud . ac . uk /3+enode18 . e r i d a n i . qgg . hud . ac

. uk /2+enode18 . e r i d a n i . qgg . hud . ac . uk /1+enode18 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 session=18948 end=1364858050

E x i t s t a t u s =271 resources used . cput =00:00:00 resources used . wa l l t ime =00:00:26

app name= f l u e n t i t e r a t i o n s =1 elements=16000000

02/04/2013 00:13 :57 ;E;77181. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case237 queue=parau l ct ime =1364858011 qtime=1364858011 etime=1364858011 s t a r t

=1364858011 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode17 . e r i d a n i . qgg . hud

. ac . uk /3+enode17 . e r i d a n i . qgg . hud . ac . uk /2+enode17 . e r i d a n i . qgg . hud . ac . uk /1+enode17 .

e r i d a n i . qgg . hud . ac . uk /0+enode16 . e r i d a n i . qgg . hud . ac . uk /3+enode16 . e r i d a n i . qgg . hud . ac

. uk /2+enode16 . e r i d a n i . qgg . hud . ac . uk /1+enode16 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 session=20312 end=1364858037

E x i t s t a t u s =0 resources used . cput =00:00:00 resources used . wa l l t ime =00:00:26

app name= f l u e n t i t e r a t i o n s =1 elements=16000000

02/04/2013 00:16 :20 ;E;77183. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case238 queue=parau l ct ime =1364858154 qtime=1364858154 etime=1364858154 s t a r t

=1364858154 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode17 . e r i d a n i . qgg . hud

. ac . uk /3+enode17 . e r i d a n i . qgg . hud . ac . uk /2+enode17 . e r i d a n i . qgg . hud . ac . uk /1+enode17 .

e r i d a n i . qgg . hud . ac . uk /0+enode16 . e r i d a n i . qgg . hud . ac . uk /3+enode16 . e r i d a n i . qgg . hud . ac

. uk /2+enode16 . e r i d a n i . qgg . hud . ac . uk /1+enode16 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 session=21285 end=1364858180

E x i t s t a t u s =0 resources used . cput =00:00:00 resources used . wa l l t ime =00:00:26

app name= f l u e n t i t e r a t i o n s =1 elements=16000000

02/04/2013 00:16 :27 ;E;77184. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case239 queue=parau l ct ime =1364858161 qtime=1364858161 etime=1364858161 s t a r t

=1364858161 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode19 . e r i d a n i . qgg . hud

. ac . uk /3+enode19 . e r i d a n i . qgg . hud . ac . uk /2+enode19 . e r i d a n i . qgg . hud . ac . uk /1+enode19 .

e r i d a n i . qgg . hud . ac . uk /0+enode18 . e r i d a n i . qgg . hud . ac . uk /3+enode18 . e r i d a n i . qgg . hud . ac

. uk /2+enode18 . e r i d a n i . qgg . hud . ac . uk /1+enode18 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 session=19641 end=1364858187

E x i t s t a t u s =0 resources used . cput =00:00:00 resources used . wa l l t ime =00:00:26

app name= f l u e n t i t e r a t i o n s =1 elements=16000000

Appendix A. Dataset 180

02/04/2013 00:16 :33 ;E;77185. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case240 queue=parau l ct ime =1364858167 qtime=1364858167 etime=1364858167 s t a r t

=1364858167 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode22 . e r i d a n i . qgg . hud

. ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac . uk /2+enode22 . e r i d a n i . qgg . hud . ac . uk /1+enode22 .

e r i d a n i . qgg . hud . ac . uk /0+enode21 . e r i d a n i . qgg . hud . ac . uk /3+enode21 . e r i d a n i . qgg . hud . ac

. uk /2+enode21 . e r i d a n i . qgg . hud . ac . uk /1+enode21 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 session=21144 end=1364858193

E x i t s t a t u s =0 resources used . cput =00:00:00 resources used . wa l l t ime =00:00:26

app name= f l u e n t i t e r a t i o n s =1 elements=16000000

02/04/2013 00:16 :38 ;E;77186. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case241 queue=parau l ct ime =1364858172 qtime=1364858172 etime=1364858172 s t a r t

=1364858172 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode24 . e r i d a n i . qgg . hud

. ac . uk /3+enode24 . e r i d a n i . qgg . hud . ac . uk /2+enode24 . e r i d a n i . qgg . hud . ac . uk /1+enode24 .

e r i d a n i . qgg . hud . ac . uk /0+enode23 . e r i d a n i . qgg . hud . ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac

. uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 session=13325 end=1364858198

E x i t s t a t u s =0 resources used . cput =00:00:00 resources used . wa l l t ime =00:00:26

app name= f l u e n t i t e r a t i o n s =1 elements=16000000

02/04/2013 00:16 :48 ;E;77187. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case242 queue=parau l ct ime =1364858182 qtime=1364858182 etime=1364858182 s t a r t

=1364858182 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode26 . e r i d a n i . qgg . hud

. ac . uk /3+enode26 . e r i d a n i . qgg . hud . ac . uk /2+enode26 . e r i d a n i . qgg . hud . ac . uk /1+enode26 .

e r i d a n i . qgg . hud . ac . uk /0+enode25 . e r i d a n i . qgg . hud . ac . uk /3+enode25 . e r i d a n i . qgg . hud . ac

. uk /2+enode25 . e r i d a n i . qgg . hud . ac . uk /1+enode25 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 session=9402 end=1364858208

E x i t s t a t u s =0 resources used . cput =00:00:00 resources used . wa l l t ime =00:00:26

app name= f l u e n t i t e r a t i o n s =1 elements=16000000

02/04/2013 13:57 :59 ;E;77192. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case239 queue=parau l ct ime =1364907453 qtime=1364907453 etime=1364907453 s t a r t

=1364907453 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode22 . e r i d a n i . qgg . hud

. ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac . uk /2+enode22 . e r i d a n i . qgg . hud . ac . uk /1+enode22 .

e r i d a n i . qgg . hud . ac . uk /0+enode21 . e r i d a n i . qgg . hud . ac . uk /3+enode21 . e r i d a n i . qgg . hud . ac

. uk /2+enode21 . e r i d a n i . qgg . hud . ac . uk /1+enode21 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 session=22282 end=1364907479

E x i t s t a t u s =0 resources used . cput =00:00:00 resources used . wa l l t ime =00:00:26

app name= f l u e n t i t e r a t i o n s =1 elements=16000000

Appendix A. Dataset 181

02/04/2013 13:58 :15 ;E;77193. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case240 queue=parau l ct ime =1364907469 qtime=1364907469 etime=1364907469 s t a r t

=1364907469 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode24 . e r i d a n i . qgg . hud

. ac . uk /3+enode24 . e r i d a n i . qgg . hud . ac . uk /2+enode24 . e r i d a n i . qgg . hud . ac . uk /1+enode24 .

e r i d a n i . qgg . hud . ac . uk /0+enode23 . e r i d a n i . qgg . hud . ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac

. uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 session=14463 end=1364907495

E x i t s t a t u s =0 resources used . cput =00:00:00 resources used . wa l l t ime =00:00:26

app name= f l u e n t i t e r a t i o n s =1 elements=16000000

02/04/2013 13:58 :27 ;E;77194. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 group=pgr jobname=

case241 queue=parau l ct ime =1364907481 qtime=1364907481 etime=1364907481 s t a r t

=1364907481 owner=cfduser1@eridani . qgg . hud . ac . uk exec host=enode26 . e r i d a n i . qgg . hud

. ac . uk /3+enode26 . e r i d a n i . qgg . hud . ac . uk /2+enode26 . e r i d a n i . qgg . hud . ac . uk /1+enode26 .

e r i d a n i . qgg . hud . ac . uk /0+enode25 . e r i d a n i . qgg . hud . ac . uk /3+enode25 . e r i d a n i . qgg . hud . ac

. uk /2+enode25 . e r i d a n i . qgg . hud . ac . uk /1+enode25 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 session=10540 end=1364907507

E x i t s t a t u s =0 resources used . cput =00:00:00 resources used . wa l l t ime =00:00:26

app name= f l u e n t i t e r a t i o n s =1 elements=16000000

04/04/2013 01:53 :43 ;E;78715. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365027644 qtime=1365027644 etime=1365027644 s t a r t

=1365036667 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode35 . e r i d a n i . qgg . hud

. ac . uk /3+enode35 . e r i d a n i . qgg . hud . ac . uk /2+enode35 . e r i d a n i . qgg . hud . ac . uk /1+enode35 .

e r i d a n i . qgg . hud . ac . uk /0+enode22 . e r i d a n i . qgg . hud . ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac

. uk /2+enode22 . e r i d a n i . qgg . hud . ac . uk /1+enode22 . e r i d a n i . qgg . hud . ac . uk /0+enode21 .

e r i d a n i . qgg . hud . ac . uk /3+enode21 . e r i d a n i . qgg . hud . ac . uk /2+enode21 . e r i d a n i . qgg . hud . ac

. uk /1+enode21 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t

. ncpus=1 Resource L is t . neednodes =3:ppn=4 Resource L is t . nodect=3 Resource L is t .

nodes =3:ppn=4 session=23365 end=1365036823 E x i t s t a t u s =0 resources used . cput

=00:00:01 resources used . wa l l t ime =00:02:36 app name= f l u e n t i t e r a t i o n s =12 elements

=8100000

Appendix A. Dataset 182

04/04/2013 11:29 :59 ;E;79221. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365071243 qtime=1365071243 etime=1365071243 s t a r t

=1365071243 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode23 . e r i d a n i . qgg . hud

. ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac . uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 .

e r i d a n i . qgg . hud . ac . uk /0+enode22 . e r i d a n i . qgg . hud . ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac

. uk /2+enode22 . e r i d a n i . qgg . hud . ac . uk /1+enode22 . e r i d a n i . qgg . hud . ac . uk /0+enode21 .

e r i d a n i . qgg . hud . ac . uk /3+enode21 . e r i d a n i . qgg . hud . ac . uk /2+enode21 . e r i d a n i . qgg . hud . ac

. uk /1+enode21 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t

. ncpus=1 Resource L is t . neednodes =3:ppn=4 Resource L is t . nodect=3 Resource L is t .

nodes =3:ppn=4 session=14219 end=1365071399 E x i t s t a t u s =0 resources used . cput

=00:00:01 resources used . wa l l t ime =00:02:36 app name= f l u e n t i t e r a t i o n s =12 elements

=8100000

04/04/2013 11:43 :40 ;E;79251. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365072064 qtime=1365072064 etime=1365072064 s t a r t

=1365072064 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode30 . e r i d a n i . qgg . hud

. ac . uk /3+enode30 . e r i d a n i . qgg . hud . ac . uk /2+enode30 . e r i d a n i . qgg . hud . ac . uk /1+enode30 .

e r i d a n i . qgg . hud . ac . uk /0+enode23 . e r i d a n i . qgg . hud . ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac

. uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 . e r i d a n i . qgg . hud . ac . uk /0+enode22 .

e r i d a n i . qgg . hud . ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac . uk /2+enode22 . e r i d a n i . qgg . hud . ac

. uk /1+enode22 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t

. ncpus=1 Resource L is t . neednodes =3:ppn=4 Resource L is t . nodect=3 Resource L is t .

nodes =3:ppn=4 session=8494 end=1365072220 E x i t s t a t u s =0 resources used . cput

=00:00:06 resources used . wa l l t ime =00:02:36 app name= f l u e n t i t e r a t i o n s =12 elements

=8100000

04/04/2013 12:20 :48 ;E;79348. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365074292 qtime=1365074292 etime=1365074292 s t a r t

=1365074292 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode30 . e r i d a n i . qgg . hud

. ac . uk /3+enode30 . e r i d a n i . qgg . hud . ac . uk /2+enode30 . e r i d a n i . qgg . hud . ac . uk /1+enode30 .

e r i d a n i . qgg . hud . ac . uk /0+enode23 . e r i d a n i . qgg . hud . ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac

. uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 . e r i d a n i . qgg . hud . ac . uk /0+enode22 .

e r i d a n i . qgg . hud . ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac . uk /2+enode22 . e r i d a n i . qgg . hud . ac

. uk /1+enode22 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t

. ncpus=1 Resource L is t . neednodes =3:ppn=4 Resource L is t . nodect=3 Resource L is t .

nodes =3:ppn=4 session=9544 end=1365074448 E x i t s t a t u s =0 resources used . cput

=00:00:00 resources used . wa l l t ime =00:02:36 app name= f l u e n t i t e r a t i o n s =12 elements

=8100000

Appendix A. Dataset 183

04/04/2013 12:27 :22 ;E;79365. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365074685 qtime=1365074685 etime=1365074685 s t a r t

=1365074686 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode30 . e r i d a n i . qgg . hud

. ac . uk /3+enode30 . e r i d a n i . qgg . hud . ac . uk /2+enode30 . e r i d a n i . qgg . hud . ac . uk /1+enode30 .

e r i d a n i . qgg . hud . ac . uk /0+enode23 . e r i d a n i . qgg . hud . ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac

. uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 . e r i d a n i . qgg . hud . ac . uk /0+enode22 .

e r i d a n i . qgg . hud . ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac . uk /2+enode22 . e r i d a n i . qgg . hud . ac

. uk /1+enode22 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t

. ncpus=1 Resource L is t . neednodes =3:ppn=4 Resource L is t . nodect=3 Resource L is t .

nodes =3:ppn=4 session=10584 end=1365074842 E x i t s t a t u s =0 resources used . cput

=00:00:00 resources used . wa l l t ime =00:02:36 app name= f l u e n t i t e r a t i o n s =12 elements

=8100000

04/04/2013 12:40 :08 ;E;79397. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365075452 qtime=1365075452 etime=1365075452 s t a r t

=1365075452 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode23 . e r i d a n i . qgg . hud

. ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac . uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 .

e r i d a n i . qgg . hud . ac . uk /0+enode22 . e r i d a n i . qgg . hud . ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac

. uk /2+enode22 . e r i d a n i . qgg . hud . ac . uk /1+enode22 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 session=15483 end=1365075608

E x i t s t a t u s =0 resources used . cput =00:00:01 resources used . wa l l t ime =00:02:36

app name= f l u e n t i t e r a t i o n s =12 elements=8100000

04/04/2013 12:44 :52 ;E;79409. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365075736 qtime=1365075736 etime=1365075736 s t a r t

=1365075736 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode23 . e r i d a n i . qgg . hud

. ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac . uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 .

e r i d a n i . qgg . hud . ac . uk /0+enode22 . e r i d a n i . qgg . hud . ac . uk /3+enode22 . e r i d a n i . qgg . hud . ac

. uk /2+enode22 . e r i d a n i . qgg . hud . ac . uk /1+enode22 . e r i d a n i . qgg . hud . ac . uk /0+enode21 .

e r i d a n i . qgg . hud . ac . uk /3+enode21 . e r i d a n i . qgg . hud . ac . uk /2+enode21 . e r i d a n i . qgg . hud . ac

. uk /1+enode21 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t

. ncpus=1 Resource L is t . neednodes =3:ppn=4 Resource L is t . nodect=3 Resource L is t .

nodes =3:ppn=4 session=16452 end=1365075892 E x i t s t a t u s =0 resources used . cput

=00:06:08 resources used . wa l l t ime =00:02:36 app name= f l u e n t i t e r a t i o n s =12 elements

=8100000

Appendix A. Dataset 184

04/04/2013 12:55 :31 ;E;79432. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365076375 qtime=1365076375 etime=1365076375 s t a r t

=1365076375 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode37 . e r i d a n i . qgg . hud

. ac . uk /3+enode37 . e r i d a n i . qgg . hud . ac . uk /2+enode37 . e r i d a n i . qgg . hud . ac . uk /1+enode37 .

e r i d a n i . qgg . hud . ac . uk /0+enode35 . e r i d a n i . qgg . hud . ac . uk /3+enode35 . e r i d a n i . qgg . hud . ac

. uk /2+enode35 . e r i d a n i . qgg . hud . ac . uk /1+enode35 . e r i d a n i . qgg . hud . ac . uk /0+enode34 .

e r i d a n i . qgg . hud . ac . uk /3+enode34 . e r i d a n i . qgg . hud . ac . uk /2+enode34 . e r i d a n i . qgg . hud . ac

. uk /1+enode34 . e r i d a n i . qgg . hud . ac . uk /0 Resource L is t . cput =10000:00:00 Resource L is t

. ncpus=1 Resource L is t . neednodes =3:ppn=4 Resource L is t . nodect=3 Resource L is t .

nodes =3:ppn=4 session=7069 end=1365076531 E x i t s t a t u s =0 resources used . cput

=00:00:00 resources used . wa l l t ime =00:02:36 app name= f l u e n t i t e r a t i o n s =12 elements

=8100000

04/04/2013 13:03 :52 ;E;79462. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365076875 qtime=1365076876 etime=1365076876 s t a r t

=1365076876 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode34 . e r i d a n i . qgg . hud

. ac . uk /3+enode34 . e r i d a n i . qgg . hud . ac . uk /2+enode34 . e r i d a n i . qgg . hud . ac . uk /1+enode34 .

e r i d a n i . qgg . hud . ac . uk /0+enode23 . e r i d a n i . qgg . hud . ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac

. uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 session=8921 end=1365077032

E x i t s t a t u s =0 resources used . cput =00:04:16 resources used . wa l l t ime =00:02:36

app name= f l u e n t i t e r a t i o n s =12 elements=8100000

04/04/2013 13:34 :19 ;E;79537. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 group=pgr jobname

=60000−0.262 queue=parau l ct ime=1365078333 qtime=1365078333 etime=1365078333 s t a r t

=1365078703 owner=cfduser2@eridani . qgg . hud . ac . uk exec host=enode37 . e r i d a n i . qgg . hud

. ac . uk /3+enode37 . e r i d a n i . qgg . hud . ac . uk /2+enode37 . e r i d a n i . qgg . hud . ac . uk /1+enode37 .

e r i d a n i . qgg . hud . ac . uk /0+enode23 . e r i d a n i . qgg . hud . ac . uk /3+enode23 . e r i d a n i . qgg . hud . ac

. uk /2+enode23 . e r i d a n i . qgg . hud . ac . uk /1+enode23 . e r i d a n i . qgg . hud . ac . uk /0

Resource L is t . cput =10000:00:00 Resource L is t . ncpus=1 Resource L is t . neednodes =2:ppn

=4 Resource L is t . nodect=2 Resource L is t . nodes =2:ppn=4 session=8693 end=1365078859

E x i t s t a t u s =0 resources used . cput =00:10:39 resources used . wa l l t ime =00:02:36

app name= f l u e n t i t e r a t i o n s =12 elements=8100000

A.3 Normalised Data with Moulding Information

02/04/2013 00:37 :43 ;E;77181. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case237 queue=

parau l ct ime =1364858011 qtime=1364859462 etime=1364858011 s t a r t =1364859462 end

=1364859463 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

Appendix A. Dataset 185

02/04/2013 00:37 :44 ;E;77182. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case1 queue=

parau l ct ime =1364858024 qtime=1364859463 etime=1364858024 s t a r t =1364859463 end

=1364859464 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

02/04/2013 00:37 :45 ;E;77183. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case238 queue=

parau l ct ime =1364858154 qtime=1364859464 etime=1364858154 s t a r t =1364859464 end

=1364859465 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

02/04/2013 00:37 :46 ;E;77184. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case239 queue=

parau l ct ime =1364858161 qtime=1364859465 etime=1364858161 s t a r t =1364859465 end

=1364859466 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

02/04/2013 00:37 :47 ;E;77185. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case240 queue=

parau l ct ime =1364858167 qtime=1364859466 etime=1364858167 s t a r t =1364859466 end

=1364859467 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

02/04/2013 00:37 :48 ;E;77186. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case241 queue=

parau l ct ime =1364858172 qtime=1364859467 etime=1364858172 s t a r t =1364859467 end

=1364859468 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

02/04/2013 00:37 :49 ;E;77187. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case242 queue=

parau l ct ime =1364858182 qtime=1364859468 etime=1364858182 s t a r t =1364859468 end

=1364859469 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

02/04/2013 13:57 :34 ;E;77192. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case239 queue=

parau l ct ime =1364907453 qtime=1364907453 etime=1364907453 s t a r t =1364907453 end

=1364907454 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

02/04/2013 13:57 :50 ;E;77193. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case240 queue=

parau l ct ime =1364907469 qtime=1364907469 etime=1364907469 s t a r t =1364907469 end

=1364907470 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

02/04/2013 13:58 :02 ;E;77194. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case241 queue=

parau l ct ime =1364907481 qtime=1364907481 etime=1364907481 s t a r t =1364907481 end

=1364907482 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

04/04/2013 14:28 :11 ;E;77733. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

s e r i a l s t d ct ime=1364999241 qtime=1364999241 etime=1364999241 s t a r t =1364999241 end

=1365082091 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50 app name=

d l p o l y i t e r a t i o n s =5000000 da tase t s i ze =500

Appendix A. Dataset 186

04/04/2013 14:29 :30 ;E;77738. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

s e r i a l s t d ct ime=1364999320 qtime=1364999320 etime=1364999320 s t a r t =1364999320 end

=1365082170 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50 app name=

d l p o l y i t e r a t i o n s =5000000 da tase t s i ze =500

04/04/2013 14:30 :30 ;E;78715. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365027644 qtime=1365082132 etime=1365027644 s t a r t =1365082132

end=1365082230 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

04/04/2013 14:31 :08 ;E;77747. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

s e r i a l s t d ct ime=1364999418 qtime=1364999418 etime=1364999418 s t a r t =1364999418 end

=1365082268 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50 app name=

d l p o l y i t e r a t i o n s =5000000 da tase t s i ze =500

04/04/2013 14:32 :09 ;E;79221. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365071243 qtime=1365082231 etime=1365071243 s t a r t =1365082231

end=1365082329 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

04/04/2013 14:32 :46 ;E;79251. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365072064 qtime=1365082268 etime=1365072064 s t a r t =1365082268

end=1365082366 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

04/04/2013 14:33 :23 ;E;79348. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365074292 qtime=1365082305 etime=1365074292 s t a r t =1365082305

end=1365082403 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

04/04/2013 14:33 :47 ;E;79365. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365074685 qtime=1365082329 etime=1365074685 s t a r t =1365082329

end=1365082427 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

04/04/2013 14:34 :24 ;E;79397. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365075452 qtime=1365082366 etime=1365075452 s t a r t =1365082366

end=1365082464 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

04/04/2013 14:34 :59 ;E;77761. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

s e r i a l s t d ct ime=1364999649 qtime=1364999649 etime=1364999649 s t a r t =1364999649 end

=1365082499 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50 app name=

d l p o l y i t e r a t i o n s =5000000 da tase t s i ze =500

04/04/2013 14:35 :21 ;E;79409. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365075736 qtime=1365082423 etime=1365075736 s t a r t =1365082423

end=1365082521 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

Appendix A. Dataset 187

04/04/2013 14:36 :39 ;E;77768. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

s e r i a l s t d ct ime=1364999749 qtime=1364999749 etime=1364999749 s t a r t =1364999749 end

=1365082599 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50 app name=

d l p o l y i t e r a t i o n s =5000000 da tase t s i ze =500

04/04/2013 14:37 :12 ;E;79432. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365076375 qtime=1365082534 etime=1365076375 s t a r t =1365082534

end=1365082632 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

04/04/2013 14:39 :31 ;E;77775. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

s e r i a l s t d ct ime=1364999921 qtime=1364999921 etime=1364999921 s t a r t =1364999921 end

=1365082771 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50 app name=

d l p o l y i t e r a t i o n s =5000000 da tase t s i ze =500

04/04/2013 14:40 :16 ;E;77776. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

s e r i a l s t d ct ime=1364999966 qtime=1364999966 etime=1364999966 s t a r t =1364999966 end

=1365082816 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50 app name=

d l p o l y i t e r a t i o n s =5000000 da tase t s i ze =500

04/04/2013 14:41 :02 ;E;77778. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

s e r i a l s t d ct ime=1365000012 qtime=1365000012 etime=1365000012 s t a r t =1365000012 end

=1365082862 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50 app name=

d l p o l y i t e r a t i o n s =5000000 da tase t s i ze =500

04/04/2013 14:41 :09 ;E;79462. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365076875 qtime=1365082771 etime=1365076876 s t a r t =1365082771

end=1365082869 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

04/04/2013 14:42 :47 ;E;79537. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365078333 qtime=1365082869 etime=1365078333 s t a r t =1365082869

end=1365082967 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

24/04/2013 12:24 :51 ;E;101864. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

parau l ct ime =1366706619 qtime=1366802674 etime=1366706619 s t a r t =1366802674 end

=1366802691 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =00:00:17 app name=

d l p o l y i t e r a t i o n s =100 da tase t s i ze =8000

26/04/2013 09:12 :10 ;E;101863. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

parau l ct ime =1366640324 qtime=1366802674 etime=1366640324 s t a r t =1366802674 end

=1366963930 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =44:47:36 app name=

d l p o l y i t e r a t i o n s =1000000 da tase t s i ze =8000

27/04/2013 06:39 :18 ;E;73002. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366889417 qtime=1366968592 etime=1366889417 s t a r t =1366968592 end

=1367041158 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =20:09:26 app name=

d l p o l y i t e r a t i o n s =900000 da tase t s i ze =4000

Appendix A. Dataset 188

27/04/2013 08:01 :01 ;E;75246. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366982454 qtime=1367046036 etime=1366982454 s t a r t =1367046036 end

=1367046061 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =00:00:25 app name=

d l p o l y i t e r a t i o n s =300 da tase t s i ze =4000

27/04/2013 08:01 :26 ;E;75247. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366982456 qtime=1367046061 etime=1366982456 s t a r t =1367046061 end

=1367046086 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =00:00:25 app name=

d l p o l y i t e r a t i o n s =300 da tase t s i ze =4000

27/04/2013 08:01 :37 ;E;75250. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366982457 qtime=1367046072 etime=1366982457 s t a r t =1367046072 end

=1367046097 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =00:00:25 app name=

d l p o l y i t e r a t i o n s =300 da tase t s i ze =4000

27/04/2013 08:01 :51 ;E;75249. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366982457 qtime=1367046086 etime=1366982457 s t a r t =1367046086 end

=1367046111 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =00:00:25 app name=

d l p o l y i t e r a t i o n s =300 da tase t s i ze =4000

27/04/2013 08:02 :02 ;E;75248. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366982457 qtime=1367046097 etime=1366982457 s t a r t =1367046097 end

=1367046122 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =00:00:25 app name=

d l p o l y i t e r a t i o n s =300 da tase t s i ze =4000

27/04/2013 08:02 :16 ;E;75251. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366982458 qtime=1367046111 etime=1366982458 s t a r t =1367046111 end

=1367046136 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =00:00:25 app name=

d l p o l y i t e r a t i o n s =300 da tase t s i ze =4000

27/04/2013 08:02 :27 ;E;75252. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366982459 qtime=1367046122 etime=1366982459 s t a r t =1367046122 end

=1367046147 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =00:00:25 app name=

d l p o l y i t e r a t i o n s =300 da tase t s i ze =4000

27/04/2013 21:06 :03 ;E;73207. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366897046 qtime=1367020597 etime=1366897046 s t a r t =1367020597 end

=1367093163 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =20:09:26 app name=

d l p o l y i t e r a t i o n s =900000 da tase t s i ze =4000

27/04/2013 21:18 :13 ;E;73269. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366898750 qtime=1367021327 etime=1366898750 s t a r t =1367021327 end

=1367093893 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =20:09:26 app name=

d l p o l y i t e r a t i o n s =900000 da tase t s i ze =4000

Appendix B

Appendix B: Simulator

B.1 Code

! / usr / b in / python

import sys , t ime

from s t r i n g import l j u s t as t a b f

Setup Logging

import l ogg ing

logger = logg ing . getLogger (’ resource parser ’)

h d l r = logg ing . F i leHand le r (’ resource parser . log ’)

f o r m a t t e r = logg ing . Formatter (’%(asct ime) s %(name) s %(levelname) s %(message) s ’ ,

datefmt= ’%b %d %Y %H:%M:%S ’)

h d l r . se tFormat ter (f o r m a t t e r)

logger . addHandler (h d l r)

DEBUG2=0

DEBUG3=1

i f DEBUG3:

DEBUG2=1

i f DEBUG2:

logger . se tLeve l (logg ing .DEBUG)

else :

logger . se tLeve l (logg ing .ERROR)

logger . propagate = False

###

189

Appendix B. Simulator Code 190

Def ine the j o b S t r u c t c lass . This creates a s t r u c t u r e to be used by the queues and

the i n i t t a b l e .

Popula t ing i t w i th Headings

class j o b S t r u c t :

def i n i t (s e l f , jobno) :

s e l f . jobnos = jobno

ct ime = 0

nodes = 0

f jobno = ” ”

ppn = 0

queue = ” ”

username = ” ”

qt ime = 0

etime = 0

s t a r t = 0

end = 0

dura t i on = 0

resources = []

###

Def ine the s o r t S t r u c t c lass . This creates a s t r u c t u r e to be used w i t h i n the s o r t i n g

queue .

Just minimal i n f o rma t i on to t r ack a jobs p o s i t i o n i n the system

class s o r t S t r u c t :

def i n i t (s e l f , t r i g g e r t i m e) :

s e l f . t r i g g e r t i m e s = t r i g g e r t i m e

jobnos = ” ”

run OR sort = ” ”

###

Funct ion to read the resources f i l e and populate the resou rce tab le [] based on the

number o f cores a v a l i a b l e .

The resources . t x t f i l e cons i s t s o f space seperated values node number (s t a r t i n g

from 0) and number o f no cpus

def resource parse () :

global resou rce tab le

resou rce tab le = []

t ry :

r e s o u r c e f i l e = f i l e (’ resources . t x t ’ , ’ r ’)

except IOError as (errno , s t r e r r o r) :

logger . c r i t i c a l (” IOError ({0}) : {1} ” . format (errno , s t r e r r o r))

logger . c r i t i c a l (” resources . t x t can not be found . E x i t i n g ”)

Appendix B. Simulator Code 191

sys . s t d e r r . w r i t e (” ! ! ! ERROR ! ! ! \ nPlease Check Logs\n ”)

sys . e x i t (1)

for l i n e in r e s o u r c e f i l e :

Ensure l i n e s t a r t s w i th a numer ica l d i g i t before processing

i f l i n e [0] . i s d i g i t () :

temp = l i n e . s p l i t (’ ’)

r esou rce tab le . append ([])

now t h a t the node i s created see how many cores i t has and b u i l d up the s l o t s

for i in range (0 , i n t (temp [1])) :

r esou rce tab le [i n t (temp [0])] . append (1)

else :

pass

return resou rce tab le #FIXME(needs e r r o r handl ing f o r misformated node d e f i n i t i o n s)

###

Funct ion to read the RAW torque logs (f i l e names or paths to be sent by the

f u n c t i o n c a l l i n g i t) . I t added a l l the jobs as user

generated inpu t t r i g g e r s f o r the system . This f u n c t i o n a lso a c t i v a t e s the queues as

g loba l ar rays and counters to t r ac k leng ths

def l og parse (to rque log) :

The runn ing tab le dep ic t s the h a l f o f the queue t h a t has running jobs

Each ar ray element w i l l be o f type j o b S t r u c t

global r unn i ng tab l e

runn i ng tab le = []

The queue ing tab le dep ic t s the h a l f o f the queue t h a t has queued up jobs

(due to lack o f space on the system) . Array element w i l l be o f type j o b S t r u c t

global queue ing tab le

queue ing tab le = []

The s o r t i n g tab le i s an over a l l queue t h a t i s kept sor ted to showq

the p o s i t i o n o f jobs i n the system . Element type : s o r t S t r u c t

global s o r t i n g t a b l e

s o r t i n g t a b l e = []

The i n i t t a b l e holds the jobs parsed from the logs and t h i s t ab l e forms the

” user t r i g g e r e d ” events . Array element w i l l be o f type j o b S t r u c t

global i n i t t a b l e

i n i t t a b l e = []

Appendix B. Simulator Code 192

Track leng th o f i npu t t r i g g e r s

global i n i t t a b l e n g t h

i n i t t a b l e n g t h = 0

global p r e v i o u s t r i g g e r

t ry :

l o g f i l e = f i l e (to rque log , ’ r ’)

except IOError as (errno , s t r e r r o r) :

logger . c r i t i c a l (” IOError ({0}) : {1} ” . format (errno , s t r e r r o r))

logger . c r i t i c a l (” account ing log can not be found . E x i t i n g ”)

sys . s t d e r r . w r i t e (” ! ! ! ERROR ! ! ! \ nPlease Check Logs\n ”)

sys . e x i t (1)

logger . debug (” Log Parse : Popula t ing the i n i t t a b l e ”)

for l i n e in l o g f i l e :

temp0 = l i n e . s p l i t (” ; ”)

Only process E records from account ing log

i f temp0 [1] == ”E” :

keep the f u l l y formed job number

f j obno = st r (temp0 [2])

s p l i t job number f o r numeric pa r t s on ly and check f o r ar ray jobs .

Array jobs handled as decimaled s t r i n g s

temp1 = f jobno . s p l i t (” . ”)

i f ” [” not in temp1 [0] :

jobno = temp1 [0] + ” .0 ”

else :

k=temp1 [0] . s p l i t (” [”)

j =k [1] . s p l i t (”] ”)

jobno=k [0] + ” . ” + j [0]

s p l i t the remaining aspects o f the l i n e to get the job request p r o p e r t i e s

temp1 = temp0 [3] . s p l i t (” ”)

for i in range (0 , len (temp1)) :

i f temp1 [i] . s t a r t s w i t h (” user ”) :

username = st r (temp1 [i] . s p l i t (” = ”) [1])

e l i f temp1 [i] . s t a r t s w i t h (” queue ”) :

queue = st r (temp1 [i] . s p l i t (” = ”) [1])

e l i f temp1 [i] . s t a r t s w i t h (” ct ime ”) :

ct ime = st r (temp1 [i] . s p l i t (” = ”) [1])

e l i f temp1 [i] . s t a r t s w i t h (” qt ime ”) :

qt ime = st r (temp1 [i] . s p l i t (” = ”) [1])

Appendix B. Simulator Code 193

e l i f temp1 [i] . s t a r t s w i t h (” et ime ”) :

et ime = st r (temp1 [i] . s p l i t (” = ”) [1])

e l i f temp1 [i] . s t a r t s w i t h (” s t a r t ”) :

s t a r t = st r (temp1 [i] . s p l i t (” = ”) [1])

e l i f temp1 [i] . s t a r t s w i t h (” end ”) :

end = st r (temp1 [i] . s p l i t (” = ”) [1])

e l i f temp1 [i] . s t a r t s w i t h (” Resource L is t . nodes ”) :

temp2 = temp1 [i] . s p l i t (” : ”)

nodes = temp2 [0] . s p l i t (” = ”) [1]

i f len (temp2) == 2:

ppn = i n t (temp2 [1] . s p l i t (” = ”) [1])

else :

ppn = 1

check f o r ”NULL” nodes or ppn values . I f present set d e f a u l t values o f 1 ,1

i f nodes == ”NULL” or ppn == ”NULL” :

nodes = 1

ppn = 1

dura t i on = i n t (end) − i n t (s t a r t)

assign s t r i p e d job nos , and job p r o p e r t i e s to a new ” Job ” and place i n t o the

i n i t t a b l e

i f f i nd space (i n t (nodes) , i n t (ppn) , jobno) :

i n i t t a b l e . append (j o b S t r u c t (jobno))

i n i t t a b l e [i n i t t a b l e n g t h] . f j obno = f jobno

i n i t t a b l e [i n i t t a b l e n g t h] . queue = queue

i n i t t a b l e [i n i t t a b l e n g t h] . ct ime = i n t (ct ime)

i n i t t a b l e [i n i t t a b l e n g t h] . qt ime = i n t (qt ime)

i n i t t a b l e [i n i t t a b l e n g t h] . et ime = i n t (et ime)

i n i t t a b l e [i n i t t a b l e n g t h] . s t a r t = i n t (s t a r t)

i n i t t a b l e [i n i t t a b l e n g t h] . end = i n t (end)

i n i t t a b l e [i n i t t a b l e n g t h] . nodes = i n t (nodes)

i n i t t a b l e [i n i t t a b l e n g t h] . ppn = i n t (ppn)

i n i t t a b l e [i n i t t a b l e n g t h] . username = username

i n i t t a b l e [i n i t t a b l e n g t h] . du ra t i on = i n t (du ra t i on)

i n i t t a b l e n g t h = i n i t t a b l e n g t h + 1

else :

logger . debug (” Log Parse : System Con f igu ra t i on i s not compat ib le f o r job : ” +st r (

jobno))

” Resource L is t . nodes ” i s not always present . Set values to ”NULL” to a l low

checking

nodes = ”NULL”

Appendix B. Simulator Code 194

ppn = ”NULL”

logger . debug (” Log Parse : Completed the i n i t t a b l e ”)

i f DEBUG3:

d i s p l a y t a b l e (” i n i t t a b l e ”)

###

O r i g i n a l l y based on −− 9−12−13 roset tacode . org / w i k i / S o r t i n g a l g o r i t h m s / Bubb le sor t

Python

Funct ion to s o r t a r ray ’ seq ’ . For i n i t t a b l e , s o r t on jobno . For so r tng tab le , s o r t

on t r i g g e r t i m e s .

def bubb le so r t (seq , index) :

i f index == ’ i n i t ’ :

changed = True

while changed :

changed = False

for i in range (len (seq) − 1) :

i f f l o a t (seq [i] . jobnos) > f l o a t (seq [i + 1] . jobnos) :

seq [i] , seq [i +1] = seq [i +1] , seq [i]

changed = True

e l i f index == ’ s o r t ’ :

changed = True

while changed :

changed = False

for i in range (len (seq) − 1) :

i f seq [i] . t r i g g e r t i m e s > seq [i + 1] . t r i g g e r t i m e s :

seq [i] , seq [i +1] = seq [i +1] , seq [i]

changed = True

return None

###

Funct ion to assign the resources requ i red f o r a job to the resou rce tab le

I f sucess fu l r e tu rns an ar ray (made busy) o f resources assigned , otherwise re tuns 0

def make busy (nodes , ppn , jobnos) :

Count o f cpus a l l o c a te d

no cpus = 0

Count o f nodes a l l o c a te d

no nodes = 0

Cont inua t ion f l a g to break f i r s t loop i f on ly p a r t i a l cpu requirements have been

met .

cont = True

Appendix B. Simulator Code 195

Array to hold values o f which cores have been set to busy

global made busy

made busy = []

logger . debug (” Making Busy f o r ” +st r (jobnos))

Traverse resou rce tab le f i n d i n g nodes where a l l cores are f ree and number o f cores

exac t l y matches

the number o f cores (per node) requ i red .

for i in range (0 , len (resou rce tab le)) :

i f no nodes != i n t (nodes) :

i f len (resou rce tab le [i]) == ppn and cont == True :

for j in range (0 , len (resou rce tab le [i])) :

i f resou rce tab le [i] [j] == 1 :

no cpus = no cpus + 1

i f no cpus == ppn :

for k in range (0 , no cpus) :

resou rce tab le [i] [k] = 0

made busy . extend ((i , k))

no nodes = no nodes + 1

no cpus = 0

else :

logger . debug (” Busy−Pass 1: the number o f cpus has a l ready been a l l o c a te d ”)

pass

else :

logger . debug (” Busy−Pass 1: the core i s busy ”)

Exact match cannot be made, Do not cont inue w i t h i n t h i s loop

cont = False

else :

logger . debug (” Busy−Pass 1: nodes s ize does not match ppn exac t l y ”)

pass

else :

logger . debug (” Busy−Pass 1: node a l l o c a t i o n s are now complete ”)

pass

I f a l l a l l o c a t i o n s have been made end f u n c t i o n here

i f no nodes == i n t (nodes) :

pr in t ” Making A l l o c a t i o n : ” , nodes , ppn , ” a t : ” , made busy

i f DEBUG2:

d i s p l a y t a b l e (” resou rce tab le ”)

return made busy

Where exact resource matches cannot be found . Traverse the resource tab l e f i n d i n g

any nodes which

Appendix B. Simulator Code 196

can accomodate the resources requ i red f o r the job .

for i in range (0 , len (resou rce tab le)) :

i f no nodes != i n t (nodes) :

i f len (resou rce tab le [i]) >= ppn :

core sum=0

for j in range (0 , len (resou rce tab le [i])) :

core sum=core sum + resou rce tab le [i] [j]

i f core sum >= ppn :

no nodes=no nodes+1

no cpus=0

for j in range (0 , len (resou rce tab le [i])) :

i f resou rce tab le [i] [j] == 1 and no cpus<ppn :

no cpus = no cpus + 1

resou rce tab le [i] [j] = 0

made busy . extend ((i , j))

else :

logger . debug (” Busy−Pass 2: core i s e i t h e r busy or a l l a l l o c a t i o n s complete ”)

pass

else :

logger . debug (” Busy−Pass 2: node does not have enough f ree cores ”)

pass

else :

logger . debug (” Busy−Pass 2: node does not have enough cores to match ppn ”)

pass

else :

logger . debug (” Busy−Pass 2: node a l l o c a t i o n s are now complete ”)

pass

Check i f a l l a l l o c a t i o n s have been made . I f not r e t u r n 0 , e lse r e t u r n ar ray o f

made busy

i f no nodes != i n t (nodes) :

return 0

else :

pr in t ” Making A l l o c a t i o n : ” , nodes , ppn , ” a t : ” , made busy

i f DEBUG2:

d i s p l a y t a b l e (” resou rce tab le ”)

return made busy

###

Funct ion to re lease resources p rev ious l y marked as used i n the resou rce tab le

Takes an ar ray arguement (busy cores) o f co rd ina tes prev iousy re turned from

make busy

def make free (busy cores) :

Appendix B. Simulator Code 197

for i in range (0 , len (busy cores) ,2) :

resou rce tab le [busy cores [i]] [busy cores [i + 1]] = 1

###

Funct ion to check i f the resources requ i red f o r a job are a v a l i a b l e i n the

resou rce tab le

I f sucess fu l r e tu rns 1 , otherwise re tuns 0

def f i nd space (nodes , ppn , jobnos) :

Count o f cpus a l l o c a te d

no cpus = 0

Count o f node a l l o c a te d

no nodes = 0

Cont inua t ion f l a g to break f i r s t loop i f on ly p a r t i a l cpu requirements have been

met .

cont = True

Number o f nodes which meet job requirements

node sum=0

Number o f cores / per node which meet the job requirements

core sum=0

logger . debug (” Find Space f o r ” +st r (jobnos))

Traverse resou rce tab le f i n d i n g nodes where a l l cores are f ree and number o f cores

exac t l y matches

the number o f cores (per node) requ i red .

for i in range (0 , len (resou rce tab le)) :

i f len (resou rce tab le [i]) >= ppn :

node sum=node sum+1

i f node sum>=nodes :

Find those nodes t h a t match exac t l y

for i in range (0 , len (resou rce tab le)) :

cont=True

i f no nodes != i n t (nodes) :

i f len (resou rce tab le [i]) == ppn :

for j in range (0 , len (resou rce tab le [i])) :

i f resou rce tab le [i] [j] == 1 and cont == True :

no cpus = no cpus + 1

i f no cpus == ppn :

no nodes = no nodes + 1

no cpus = 0

Appendix B. Simulator Code 198

else :

logger . debug (” Space−Pass 1: not enough space on the node ”)

pass

else :

logger . debug (” Space−Pass 1: the core i s busy ”)

Exact match cannot be made, Do not cont inue w i t h i n t h i s loop and rese t the

cpu count

cont = False

no cpus=0

else :

logger . debug (” Space−Pass 1: nodes s ize does not match ppn exac t l y ”)

pass

else :

logger . debug (” Space−Pass 1: node a l l o c a t i o n s are now complete ”)

pass

I f s u f f i c i e n t resources have been found e x i t f u n c t i o n here

i f no nodes == i n t (nodes) :

return 1

Where exact resource matches cannot be found . Traverse the resource tab l e f i n d i n g

any nodes which

can accomodate the resources requ i red f o r the job .

for i in range (0 , len (resou rce tab le)) :

i f no nodes != i n t (nodes) :

i f len (resou rce tab le [i]) > ppn :

core sum=0

for j in range (0 , len (resou rce tab le [i])) :

core sum=core sum + resou rce tab le [i] [j]

i f core sum >= ppn :

no nodes=no nodes+1

no cpus=0

for j in range (0 , len (resou rce tab le [i])) :

i f resou rce tab le [i] [j] == 1 and no cpus<ppn :

no cpus = no cpus + 1

else :

logger . debug (” Space−Pass 2: core i s e i t h e r busy or a l l a l l o c a t i o n s complete ”)

pass

else :

logger . debug (” Space−Pass 2: node does not have enough f ree cores ”)

pass

else :

logger . debug (” Space−Pass 2: node does not have enough cores to match ppn ”)

Appendix B. Simulator Code 199

pass

else :

logger . debug (” Space−Pass 2: node a l l o c a t i o n s are now complete ”)

pass

Check i f a l l a l l o c a t i o n s have been made . I f not r e t u r n 0 , e lse r e t u r n 1

i f no nodes != i n t (nodes) :

return 0

else :

return 1

###

Funct ion to conver t values i n seconds to Hours : Minutes : Seconds

def format seconds to hhmmss (seconds) :

hours = seconds / / (60∗60)

seconds %= (60∗60)

minutes = seconds / / 60

seconds %= 60

return ”%02 i :%02 i :%02 i ” % (hours , minutes , seconds)

###

Funct ion to p r i n t f i n a l job d e s c r i p t i o n to a torque s t y l e log f i l e .

This can be passed the r e s u l t o f a pop an any tab l e using j o b S t r u c t .

def p r i n t l o g s (completed job) :

Convert job epoch end t ime to a human redable s t r i n g

tstamp = t ime . s t r f t i m e (’%d/%m/%Y %H:%M:%S ’ , t ime . l o c a l t i m e (completed job . end))

new log = open (st r (sys . argv [1] + ” . new”) , ’ a ’)

new log . w r i t e (”%s ;E;%s ; user=%s queue=%s ct ime=%s qtime=%s etime=%s s t a r t=%s end=%s

Resource L is t . nodes=%s : ppn=%s resources used . wa l l t ime=%s\n ” % (tstamp ,

completed job . f jobno , completed job . username , completed job . queue , completed job .

ct ime , completed job . qtime , completed job . etime , completed job . s t a r t ,

completed job . end , completed job . nodes , completed job . ppn ,

format seconds to hhmmss (completed job . du ra t i on)))

new log . c lose ()

###

Funct ion to move (COPY ! !) job i n fo rma t i on between tab les . Takes arguements source

tab le , source tab l e index , des tna t ion tab le ,

resources (re tu rned from make busy) and a s o r t f l a g . s o r t f l a g i s used to determine

i f the d e t i n a t i o n tab l e i s populated wi th

Appendix B. Simulator Code 200

the s o r t S t r u c t and i f the job should be marked as running ”R” or queued ”Q” .

Returns the index of the source tab l e to which

the job data was moved (COPIED ! !)

def move job (s rc tab , s rc index , dest tab , resources , s o r t f l a g) :

des t rec index = ” ”

i f s o r t f l a g == ’R ’ :

des t tab . append (s o r t S t r u c t (s r c t ab [s rc index] . s t a r t + s r c t ab [s rc index] . du ra t i on))

des t tab [len (des t tab) −1]. jobnos = s r c t ab [s rc index] . jobnos

des t tab [len (des t tab) −1]. run OR sort = s o r t f l a g

des t rec index = len (des t tab)−1

e l i f s o r t f l a g == ’Q ’ :

des t tab . append (s o r t S t r u c t (s r c t ab [s rc index] . ct ime))

des t tab [len (des t tab) −1]. jobnos = s r c t ab [s rc index] . jobnos

des t tab [len (des t tab) −1]. run OR sort = s o r t f l a g

des t rec index = len (des t tab)−1

else :

des t tab . append (j o b S t r u c t (s r c t ab [s rc index] . jobnos))

des t tab [len (des t tab) −1].nodes = s r c t ab [s rc index] . nodes

des t tab [len (des t tab) −1].ppn = s r c t ab [s rc index] . ppn

des t tab [len (des t tab) −1].queue = s r c t ab [s rc index] . queue

des t tab [len (des t tab) −1].username = s r c t ab [s rc index] . username

des t tab [len (des t tab) −1]. ct ime = s r c t ab [s rc index] . ct ime

des t tab [len (des t tab) −1]. qt ime = s r c t ab [s rc index] . qt ime

des t tab [len (des t tab) −1]. et ime = s r c t ab [s rc index] . et ime

des t tab [len (des t tab) −1]. s t a r t = s r c t ab [s rc index] . s t a r t

des t tab [len (des t tab) −1].end = s r c t ab [s rc index] . end

des t tab [len (des t tab) −1]. du ra t i on = s r c t ab [s rc index] . du ra t i on

des t tab [len (des t tab) −1]. f j obno = s r c t ab [s rc index] . f j obno

I f p laceho lder value f o r resources i s passed set to 0

i f resources == −999:

des t tab [len (des t tab) −1]. resources = 0

else :

des t tab [len (des t tab) −1]. resources = resources

des t rec index = len (des t tab)−1

return des t rec index

###

Funct ion to f i n d which i n d i c i e s are populated by a p a r t i c u l r jobno . Takes

arguements o f job number and tab l e to check .

Returns index which matches job number

Appendix B. Simulator Code 201

def f i n d i n d e x (jobno , t ab l e) :

for i in range (0 , len (t ab l e)) :

i f t ab l e [i] . jobnos == jobno :

return i

###

Funct ion which copies job i n fo rma t i on i n t o the runn i ng tab le . While a lso c a l l i n g

make busy to take resources .

Takes arguements o f index o f source tab l e (as re turned by f i n d i n d e x) , source tab l e

and value o f p r e v i o u s t r i g g e r (taken from

p rev ious l y popped job t r i g g e r t i m e) . Uses p r e v i o u s t r i g g e r to determine i f s t a r t

and end t ime of c u r r e n t l y considered job needs

to be modi f ied . Returns index value f o r runn i ng tab le f o r job which has been set to

” running ” .

def make running (i , tab le , p r e v i o u s t r i g g e r) :

pr in t ” A l l o c a t i n g job : ” , t ab l e [i] . jobnos , t ab l e [i] . nodes , t ab l e [i] . ppn

i f 0:

d i s p l a y t a b l e (” resou rce tab le ”)

runn ing job index =move job (tab le , i , runn ing tab le , make busy (t ab l e [i] . nodes , t ab l e [i] .

ppn , t ab l e [i] . jobnos) ,−999)

I f prev ious t r i g g e r had a value other than 0 eveluate c o r r e c t s t a r t and end t imes

based on t h i s value .

i f p r e v i o u s t r i g g e r != 0 :

i f p r e v i o u s t r i g g e r<r unn i ng tab le [runn ing job index] . ct ime :

i f r unn i ng tab le [runn ing job index] . et ime <= runn i ng tab le [runn ing job index] . ct ime

:

runn i ng tab le [runn ing job index] . s t a r t = runn i ng tab le [runn ing job index] . ct ime

else :

r unn i ng tab le [runn ing job index] . s t a r t = runn i ng tab le [runn ing job index] . et ime

else :

r unn i ng tab le [runn ing job index] . s t a r t = p r e v i o u s t r i g g e r

Else use c rea t i on and e l e g i b l e t ime to c a l c u l a t e s t a r t and end

else :

i f r unn i ng tab le [runn ing job index] . et ime <= runn i ng tab le [runn ing job index] . ct ime :

runn i ng tab le [runn ing job index] . s t a r t = runn i ng tab le [runn ing job index] . ct ime

else :

r unn i ng tab le [runn ing job index] . s t a r t = runn i ng tab le [runn ing job index] . et ime

Udpate values

r unn i ng tab le [runn ing job index] . qt ime= runn i ng tab le [runn ing job index] . s t a r t

Appendix B. Simulator Code 202

r unn i ng tab le [runn ing job index] . end= runn i ng tab le [runn ing job index] . s t a r t +

runn i ng tab le [runn ing job index] . du ra t i on

i f DEBUG2:

d i s p l a y t a b l e (” r unn i ng tab le ”)

d i s p l a y t a b l e (” queue ing tab le ”)

d i s p l a y t a b l e (” s o r t i n g t a b l e ”)

return r unn ing job index

###

Funct ion which copies job i n fo rma t i on i n t o the queue ing tab le . While a lso c a l l i n g

make busy to take resources .

Takes argument o f i n i t t a b l e index f o r job being considered .

def make queued (i) :

pr in t ”Can not make a l l o c a t i o n f o r : ” , i n i t t a b l e [i] . jobnos , i n i t t a b l e [i] . nodes ,

i n i t t a b l e [i] . ppn

pr in t ” Job being queued : ” , i n i t t a b l e [i] . jobnos

queued job index=move job (i n i t t a b l e , i , queueing table ,−999,−999)

i f DEBUG2:

d i s p l a y t a b l e (” r unn i ng tab le ”)

d i s p l a y t a b l e (” queue ing tab le ”)

d i s p l a y t a b l e (” s o r t i n g t a b l e ”)

return queued job index

###

Funct ion to process i tems i n the queue . Takes an arguement o f i n i t t r i g g e r , which

can be any v a l i d epoch time , to

determine at which po i n t jobs can be popped from the runn i ng tab le or moved from

queued to running .

def process queue i tems (i n i t t r i g g e r) :

global p r e v i o u s t r i g g e r

j =0

while j < len (s o r t i n g t a b l e) :

i f i n i t t r i g g e r > s o r t i n g t a b l e [j] . t r i g g e r t i m e s :

i f s o r t i n g t a b l e [j] . run OR sort == ’R ’ :

make free (runn ing tab le [f i n d i n d e x (s o r t i n g t a b l e [j] . jobnos , runn ing tab le)] .

resources)

completed job= runn ing tab le . pop (f i n d i n d e x (s o r t i n g t a b l e [j] . jobnos , runn ing tab le))

p r i n t l o g s (completed job)

p r e v i o u s t r i g g e r = s o r t i n g t a b l e [j] . t r i g g e r t i m e s

pr in t ” Popping : ” , s o r t i n g t a b l e [j] . jobnos , ” from ” , completed job . resources

Appendix B. Simulator Code 203

pr in t ”

−−”

s o r t i n g t a b l e . pop (j)

i f DEBUG3:

pr in t ” C a l l i n g i n s i d e wh i le (poped jobs) ”

d i s p l a y t a b l e (” s o r t i n g t a b l e ”)

j =0

else :

queue index= f i n d i n d e x (s o r t i n g t a b l e [j] . jobnos , queue ing tab le)

i f f i nd space (queue ing tab le [queue index] . nodes , queue ing tab le [queue index] . ppn ,

queue ing tab le [queue index] . jobnos) :

pr in t ” Se t t i ng a Queued job wi th index : ” , queue index , ” and j o b i d : ” ,

s o r t i n g t a b l e [j] . jobnos , ” to running\n ”

runn ing job index =make running (queue index , queueing table , p r e v i o u s t r i g g e r)

s o r t i n g t a b l e [j] . t r i g g e r t i m e s =queue ing tab le [queue index] . du ra t i on +

p r e v i o u s t r i g g e r

s o r t i n g t a b l e [j] . run OR sort = ’R ’

bubb le so r t (s o r t i n g t a b l e , ’ s o r t ’)

queue ing tab le . pop (queue index)

j =0

else :

j += 1

A l l jobs removed from s o r t i n g tab l e . End processing

i f len (s o r t i n g t a b l e) == 0:

break

else :

j += 1

return 0

###

The d i s p l a y t a b l e f u n c t i o n takes as argument a s t r i n g from ” s o r t i n g t a b l e |

queue ing tab le | r unn i ng tab le | i n i t t a b l e | resources ” and

outputs a somewhat formated tab l e to the screen . I f there are no records i n the

tab les (except resources) i t j u s t says so

def d i s p l a y t a b l e (t ab l e) :

i f t ab l e == ” s o r t i n g t a b l e ” :

i f len (s o r t i n g t a b l e) == 0:

pr in t ” Sor t i ng tab l e i s empty ”

else :

Appendix B. Simulator Code 204

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−so r t i ng

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

pr in t t a b f (” T r igge r ” ,12) , t a b f (” Job No” ,12) , t a b f (”Queue” ,12)

for k in range (0 , len (s o r t i n g t a b l e)) :

pr in t t a b f (st r (s o r t i n g t a b l e [k] . t r i g g e r t i m e s) ,12) , t a b f (s o r t i n g t a b l e [k] . jobnos

,12) , t a b f (s o r t i n g t a b l e [k] . run OR sort , 12)

pr in t ”

−−”

e l i f t ab l e == ” queue ing tab le ” :

i f len (queue ing tab le) == 0:

pr in t ” Queued tab l e i s empty ”

else :

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−queueing

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

pr in t t a b f (” Job No” ,12) , t a b f (” ct ime ” ,12) , t a b f (” nodes ” ,12) , t a b f (” ppn ” ,12) , t a b f (”

Durat ion ” ,12)

for k in range (0 , len (queue ing tab le)) :

pr in t t a b f (queue ing tab le [k] . jobnos ,12) , t a b f (st r (queue ing tab le [k] . ct ime) ,12) , t a b f

(st r (queue ing tab le [k] . nodes) ,12) , t a b f (st r (queue ing tab le [k] . ppn) ,12) , t a b f (st r (

queue ing tab le [k] . du ra t i on) ,12)

pr in t ”

−−”

e l i f t ab l e == ” resou rce tab le ” :

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−system

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

for k in range (0 , len (resou rce tab le)) :

pr in t resou rce tab le [k]

pr in t ”

−−”

e l i f t ab l e == ” i n i t t a b l e ” :

i f len (i n i t t a b l e) == 0:

pr in t ” I n i t i a l t ab l e i s empty ”

else :

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−i n i t t a b

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

pr in t t a b f (” Job No” ,8) , t a b f (” ct ime ” ,11) , t a b f (” nodes ” ,5) , t a b f (” ppn ” ,3) , t a b f (”

Durat ion ” ,8) , t a b f (” S t a r t ” ,11) , t a b f (”End ” ,11)

for k in range (0 , len (i n i t t a b l e)) :

pr in t t a b f (i n i t t a b l e [k] . jobnos , 8) , t a b f (st r (i n i t t a b l e [k] . ct ime) ,11) , t a b f (st r (

i n i t t a b l e [k] . nodes) ,5) , t a b f (st r (i n i t t a b l e [k] . ppn) ,3) , t a b f (st r (i n i t t a b l e [k] .

du ra t i on) ,8) , t a b f (st r (i n i t t a b l e [k] . s t a r t) ,11) , t a b f (st r (i n i t t a b l e [k] . end) ,11)

pr in t ”

−−”

Appendix B. Simulator Code 205

else :

i f len (r unn i ng tab le) == 0:

pr in t ” Running tab l e i s empty ”

else :

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−running

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

pr in t t a b f (” Job No” ,8) , t a b f (” ct ime ” ,11) , t a b f (” nodes ” ,5) , t a b f (” ppn ” ,3) , t a b f (”

Durat ion ” ,8) , t a b f (” S t a r t ” ,11) , t a b f (”End ” ,11) , t a b f (” A l l o c ” ,11)

for k in range (0 , len (r unn i ng tab le)) :

pr in t t a b f (r unn i ng tab le [k] . jobnos , 8) , t a b f (st r (r unn i ng tab l e [k] . ct ime) ,11) , t a b f (

st r (r unn i ng tab le [k] . nodes) ,5) , t a b f (st r (r unn i ng tab l e [k] . ppn) ,3) , t a b f (st r (

r unn i ng tab le [k] . du ra t i on) ,8) , t a b f (st r (r unn i ng tab le [k] . s t a r t) ,11) , t a b f (st r (

r unn i ng tab le [k] . end) ,11) , t a b f (st r (r unn i ng tab le [k] . resources) ,11)

pr in t ”

−−”

###

i f name == ” ma in ” :

resource parse ()

log parse (sys . argv [1])

p r e v i o u s t r i g g e r = 0

bubb le so r t (i n i t t a b l e , ’ i n i t ’)

for i in range (0 , i n i t t a b l e n g t h) :

pr in t ” \n

−−”

pr in t ”New Job i s : ” , i n i t t a b l e [i] . jobnos , ” a t t ime ” , i n i t t a b l e [i] . et ime

pr in t ”

−−”

i f len (s o r t i n g t a b l e) == 0:

runn ing job index =make running (i , i n i t t a b l e , 0)

move job (runn ing tab le , runn ing job index , s o r t i n g t a b l e ,−999, ’R ’)

bubb le so r t (s o r t i n g t a b l e , ’ s o r t ’)

else :

i f i n i t t a b l e [i] . c t ime < s o r t i n g t a b l e [0] . t r i g g e r t i m e s :

i f f i nd space (i n i t t a b l e [i] . nodes , i n i t t a b l e [i] . ppn , i n i t t a b l e [i] . jobnos) :

runn ing job index =make running (i , i n i t t a b l e , 0)

Appendix B. Simulator Code 206

move job (runn ing tab le , runn ing job index , s o r t i n g t a b l e ,−999, ’R ’)

bubb le so r t (s o r t i n g t a b l e , ’ s o r t ’)

else :

queued job index=make queued (i)

move job (queueing table , queued job index , s o r t i n g t a b l e ,−999, ’Q ’)

bubb le so r t (s o r t i n g t a b l e , ’ s o r t ’)

else :

i f DEBUG3:

pr in t ” C a l l i n g before the whi le ”

d i s p l a y t a b l e (” s o r t i n g t a b l e ”)

done sor t ing =1

while (s o r t i n g t a b l e [0] . t r i g g e r t i m e s < i n i t t a b l e [i] . c t ime) and (done sor t ing ==

1) :

done sor t ing=process queue i tems (i n i t t a b l e [i] . c t ime)

i f len (s o r t i n g t a b l e) == 0:

break

i f f i nd space (i n i t t a b l e [i] . nodes , i n i t t a b l e [i] . ppn , i n i t t a b l e [i] . jobnos) :

runn ing job index =make running (i , i n i t t a b l e , p r e v i o u s t r i g g e r)

move job (runn ing tab le , runn ing job index , s o r t i n g t a b l e ,−999, ’R ’)

bubb le so r t (s o r t i n g t a b l e , ’ s o r t ’)

else :

queued job index=make queued (i)

move job (queueing table , queued job index , s o r t i n g t a b l e ,−999, ’Q ’)

bubb le so r t (s o r t i n g t a b l e , ’ s o r t ’)

i f DEBUG3:

pr in t ” Sor t i ng tab l e a f t e r the f i n a l user t r i g g e r e d qsub ”

d i s p l a y t a b l e (” s o r t i n g t a b l e ”)

while len (s o r t i n g t a b l e) > 0:

process queue i tems (9999999999)

i f len (s o r t i n g t a b l e) == 0:

break

pr in t ” \n\n ”

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−c los ing statement

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

pr in t ” Jobs processed : ” , st r (len (i n i t t a b l e))

Appendix B. Simulator Code 207

pr in t ”

−−”

d i s p l a y t a b l e (” r unn i ng tab le ”)

d i s p l a y t a b l e (” queue ing tab le ”)

d i s p l a y t a b l e (” s o r t i n g t a b l e ”)

d i s p l a y t a b l e (” resou rce tab le ”)

Appendix B. Simulator Code 208

B.2 Verficiation Sheet

FIGURE B.1: Manual Verification of Simulated logs - truncated

Appendix C

Appendix C: Mouldable Scheduler

C.1 Code

! / usr / b in / python

import sys , t ime# , sched common as schcom

import MySQLdb as mdb

from s t r i n g import l j u s t as t a b f

from sched common import d i s p l a y t a b l e , s o r t S t r u c t

import l ogg ing

logger = logg ing . getLogger (’ mould job ’)

h d l r = logg ing . F i leHand le r (’ mould job . log ’)

f o r m a t t e r = logg ing . Formatter (’%(asct ime) s %(name) s %(levelname) s %(message) s ’ ,

datefmt= ’%b %d %Y %H:%M:%S ’)

h d l r . se tFormat ter (f o r m a t t e r)

logger . addHandler (h d l r)

logger . se tLeve l (logg ing .ERROR)

DEBUG2=0

class mouldStruct :

def i n i t (s e l f , jobno) :

s e l f . jobnos = jobno

f jobno = ” ”

user = ” ”

jobname = ” ”

209

Appendix C. Mouldable Scheduler - Code & Verfication 210

ct ime = 0

app name = ” ”

work load s ize = 0

da tase t s i ze = 0

s t a r t = 0

end = 0

nodes = 0

ppn = 0

dura t i on = 0

requested nodes = 0

requested ppn = 0

o r i g d u r a t i o n = 0

queue = ” ”

qt ime = 0

etime = 0

resources = []

bmData = []

###

Def ine the j o b S t r u c t c lass . This creates a s t r u c t u r e to be used by the queues and

the i n i t t a b l e .

Popula t ing i t w i th Headings

class j o b S t r u c t :

def i n i t (s e l f , jobno) :

s e l f . jobnos = jobno

f jobno = ” ”

user = ” ”

jobname = ” ”

ct ime = 0

app name = ” ”

work load s ize = 0

da tase t s i ze = 0

s t a r t = 0

end = 0

nodes = 0

ppn = 0

dura t i on = 0

requested nodes = 0

requested ppn = 0

o r i g d u r a t i o n = 0

queue = ” ”

qt ime = 0

etime = 0

Appendix C. Mouldable Scheduler - Code & Verfication 211

resources = []

bmData = []

def g e t j o b i n f o (to rque log) :

The runn ing tab le dep ic t s the h a l f o f the queue t h a t has running jobs

Each ar ray element w i l l be o f type j o b S t r u c t

global r unn i ng tab l e

runn i ng tab le = []

The queue ing tab le dep ic t s the h a l f o f the queue t h a t has queued up jobs

(due to lack o f space on the system) . Array element w i l l be o f type j o b S t r u c t

global queue ing tab le

queue ing tab le = []

The s o r t i n g tab le i s an over a l l queue t h a t i s kept sor ted to showq

the p o s i t i o n o f jobs i n the system . Element type : s o r t S t r u c t

global s o r t i n g t a b l e

s o r t i n g t a b l e = []

global mould tab le

mould tab le = []

global mould tab length

mou ld tab length = 0

global con

#app name = ” f l u e n t ”

t ry :

l o g f i l e = f i l e (to rque log , ’ r ’)

except IOError as (errno , s t r e r r o r) :

logger . c r i t i c a l (” IOError ({0}) : {1} ” . format (errno , s t r e r r o r))

logger . c r i t i c a l (” account ing log can not be found . E x i t i n g ”)

sys . s t d e r r . w r i t e (” ! ! ! ERROR ! ! ! \ nPlease Check Logs\n ”)

sys . e x i t (1)

logger . debug (” g e t j o b i n f o : Popula t ing the mould tab le ”)

con = mdb. connect (’ 192.168.1.78 ’ , ’ schede ’ , ’HUD2010eng ’ , ’ aspp ’)

w i th con :

cur = con . cursor ()

for l i n e in l o g f i l e :

requested nodes = 0

Appendix C. Mouldable Scheduler - Code & Verfication 212

requested ppn = 0

s t a r t = 0

end = 0

app name = ”NULL”

temp0 = l i n e . s p l i t (” ; ”)

Only process E records from account ing log

i f temp0 [1] == ”E” :

keep the f u l l y formed job number

f j obno = st r (temp0 [2])

s p l i t job number f o r numeric pa r t s on ly and check f o r ar ray jobs .

Array jobs handled as decimaled s t r i n g s

temp1 = f jobno . s p l i t (” . ”)

i f ” [” not in temp1 [0] :

jobno = temp1 [0] + ” .0 ”

else :

k=temp1 [0] . s p l i t (” [”)

j =k [1] . s p l i t (”] ”)

jobno=k [0] + ” . ” + j [0]

s p l i t the remaining aspects o f the l i n e to get the job request p r o p e r t i e s

temp1 = temp0 [3] . s p l i t (” ”)

for i in range (0 , len (temp1)) :

i f temp1 [i] . s t a r t s w i t h (” user ”) :

username = st r (temp1 [i] . s p l i t (” = ”) [1])

e l i f temp1 [i] . s t a r t s w i t h (” queue ”) :

queue = st r (temp1 [i] . s p l i t (” = ”) [1])

e l i f temp1 [i] . s t a r t s w i t h (” jobname ”) :

jobname = st r (temp1 [i] . s p l i t (” = ”) [1])

e l i f temp1 [i] . s t a r t s w i t h (” ct ime ”) :

ct ime = st r (temp1 [i] . s p l i t (” = ”) [1])

e l i f temp1 [i] . s t a r t s w i t h (” qt ime ”) :

qt ime = st r (temp1 [i] . s p l i t (” = ”) [1])

e l i f temp1 [i] . s t a r t s w i t h (” et ime ”) :

et ime = st r (temp1 [i] . s p l i t (” = ”) [1])

e l i f temp1 [i] . s t a r t s w i t h (” app name ”) :

app name = st r (temp1 [i] . s p l i t (” = ”) [1])

Get o r i g n a l request data

e l i f temp1 [i] . s t a r t s w i t h (” s t a r t ”) :

s t a r t = st r (temp1 [i] . s p l i t (” = ”) [1])

e l i f temp1 [i] . s t a r t s w i t h (” end ”) :

end = st r (temp1 [i] . s p l i t (” = ”) [1])

e l i f temp1 [i] . s t a r t s w i t h (” Resource L is t . nodes ”) :

Appendix C. Mouldable Scheduler - Code & Verfication 213

temp2 = temp1 [i] . s p l i t (” : ”)

requested nodes = i n t (temp2 [0] . s p l i t (” = ”) [1])

i f len (temp2) == 2:

requested ppn = i n t (temp2 [1] . s p l i t (” = ”) [1])

else :

requested ppn = i n t (1)

else :

temp = temp1 [i] . s p l i t (” = ”)

sqlcmd = ”SELECT ∗ FROM a p p l i c a t i o n s WHERE appName=’%s ’ and workMeta=’%s ’ ” % (

app name , temp [0])

i f cur . execute (sqlcmd) :

work load s ize=temp [1] . r s t r i p (’ \n ’)

sqlcmd = ”SELECT ∗ FROM a p p l i c a t i o n s WHERE appName=’%s ’ and dataMeta=’%s ’ ” % (

app name , temp [0])

i f cur . execute (sqlcmd) :

da tase t s i ze =temp [1] . r s t r i p (’ \n ’)

check f o r ”NULL” o r i g n a l nodes or ppn values . I f present set d e f a u l t values o f

1 ,1

i f s t a r t == 0 or end == 0:

o r i g d u r a t i o n =0

else :

o r i g d u r a t i o n = i n t (end) − i n t (s t a r t)

mould tab le . append (mouldStruct (jobno))

mould tab le [mou ld tab length] . f j obno = f jobno

mould tab le [mou ld tab length] . user = username

mould tab le [mou ld tab length] . jobname = jobname

mould tab le [mou ld tab length] . queue = queue

mould tab le [mou ld tab length] . ct ime = i n t (ct ime)

mould tab le [mou ld tab length] . qt ime = i n t (qt ime)

mould tab le [mou ld tab length] . et ime = i n t (et ime)

mould tab le [mou ld tab length] . app name = app name

mould tab le [mou ld tab length] . s t a r t = 0

mould tab le [mou ld tab length] . end = 0

##

i f app name == ”NULL” :

mould tab le [mou ld tab length] . requested nodes = i n t (requested nodes)

mould tab le [mou ld tab length] . requested ppn = i n t (requested ppn)

mould tab le [mou ld tab length] . o r i g d u r a t i o n = i n t (o r i g d u r a t i o n)

else :

requested nodes= i n t (0)

requested ppn= i n t (0)

Appendix C. Mouldable Scheduler - Code & Verfication 214

o r i g d u r a t i o n = i n t (0)

mould tab le [mou ld tab length] . requested nodes = i n t (requested nodes)

mould tab le [mou ld tab length] . requested ppn = i n t (requested ppn)

mould tab le [mou ld tab length] . o r i g d u r a t i o n = i n t (o r i g d u r a t i o n)

i f i n t (requested nodes) < 1:

t ry :

mould tab le [mou ld tab length] . work load s ize = work load s ize

except UnboundLocalError :

pr in t ”Bad workload Value ”

sys . e x i t (1)

t ry :

mould tab le [mou ld tab length] . da tase t s i ze = da tase t s i ze

except UnboundLocalError :

pr in t ”Bad dataset Value ”

sys . e x i t (1)

get node con f i g and dura t i on from the MySQL DB

nodes , ppn , dura t ion , bmData = i n i t i a l M o u l d (app name , work load s ize , da tase t s i ze)

else :

nodes=requested nodes

ppn=requested ppn

dura t i on = o r i g d u r a t i o n

mould tab le [mou ld tab length] . work load s ize=0

mould tab le [mou ld tab length] . da tase t s i ze =0

bmData = []

mould tab le [mou ld tab length] . nodes = nodes

mould tab le [mou ld tab length] . ppn = ppn

mould tab le [mou ld tab length] . du ra t i on = dura t i on

mould tab le [mou ld tab length] . bmData = bmData

mou ld tab length = mould tab length + 1

i f i n t (requested nodes) < 1:

del work load s ize , da tase t s i ze

logger . debug (” g e t j o b i n f o : Completed the mould tab le ”)

i f len (mould tab le) == 0:

pr in t ” Moulding tab l e i s empty ”

#else :

Appendix C. Mouldable Scheduler - Code & Verfication 215

p r i n t ”\n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−moulding

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

p r i n t t a b f (” Job No” , 8) , t a b f (” User ” , 8) , t a b f (” ct ime ” ,11) , t a b f (” App ” ,10) , t a b f (”

Workload ” ,10) , t a b f (” Dataset ” , 10) , t a b f (” Nodes ” , 5) , t a b f (” Ppn ” , 5) , t a b f (” Durat ion ” ,10)

, t a b f (” Benchmark Data ” ,15)

f o r k i n range (0 , len (mould tab le)) :

p r i n t t a b f (mould tab le [k] . jobnos , 8) , t a b f (mould tab le [k] . user , 8) , t a b f (s t r (

mould tab le [k] . ct ime) ,11) , t a b f (mould tab le [k] . app name ,10) , t a b f (s t r (mould tab le [k

] . work load s ize) ,10) , t a b f (s t r (mould tab le [k] . da tase t s i ze) ,10) , t a b f (s t r (

mould tab le [k] . nodes) ,5) , t a b f (s t r (mould tab le [k] . ppn) ,5) , t a b f (s t r (mould tab le [k] .

du ra t i on) ,10) , t a b f (s t r (mould tab le [k] . bmData) ,15)

def bubb le so r t (seq , index) :

i f index == ’ mould ’ :

changed = True

while changed :

changed = False

for i in range (len (seq) − 1) :

i f f l o a t (seq [i] . c t ime) > f l o a t (seq [i + 1] . ct ime) :

i f f l o a t (seq [i] . jobnos) > f l o a t (seq [i + 1] . jobnos) :

seq [i] , seq [i +1] = seq [i +1] , seq [i]

changed = True

e l i f index == ’ s o r t ’ :

changed = True

while changed :

changed = False

for i in range (len (seq) − 1) :

i f seq [i] . t r i g g e r t i m e s > seq [i + 1] . t r i g g e r t i m e s :

seq [i] , seq [i +1] = seq [i +1] , seq [i]

changed = True

e l i f index == ’ end ’ :

changed = True

while changed :

changed = False

for i in range (len (seq) − 1) :

i f seq [i] . end > seq [i + 1] . end :

seq [i] , seq [i +1] = seq [i +1] , seq [i]

changed = True

else :

changed = True

while changed :

changed = False

for i in range (len (seq) − 1) :

Appendix C. Mouldable Scheduler - Code & Verfication 216

i f seq [i] . du ra t i on > seq [i + 1] . du ra t i on :

seq [i] , seq [i +1] = seq [i +1] , seq [i]

changed = True

return seq

class bmStruct :

def i n i t (s e l f , core) :

s e l f . cores = core

du ra t i on = 0

def i n i t i a l M o u l d (app name , work load s ize , da tase t s i ze) :

bm table = []

cur=con . cursor ()

sqlcmd = ”SELECT cores , t ime FROM benchmarks WHERE appName=’%s ’ and workload=’%s ’ and

dataset=’%s ’ ” % (app name , work load s ize , da tase t s i ze)

cur . execute (sqlcmd)

rows = cur . f e t c h a l l ()

i f rows :

#the requested workload and dataset matched .

#make a tab le o f benchmark i n f o t h a t can be sor ted to i d e n t i f y the optimum

a l l o c a t i o n f o r the p e r f e c t dS and wL match

for i in range (0 , len (rows)) :

bm table . append (bmStruct (rows [i] [0]))

bm table [i] . du ra t i on = rows [i] [1]

else :

i d e n t i f y c l oses t datasets f o r the app and workload s p e c i f i e d .

sqlcmd = ”SELECT MIN(CASE WHEN dataset > ’%s ’ AND appName=’%s ’ AND workload=’%s ’

THEN dataset ELSE NULL END) AS hgValue , MAX(CASE WHEN dataset < ’%s ’ AND appName

=’%s ’ AND workload=’%s ’ THEN dataset ELSE NULL END) AS lowValue FROM benchmarks ”

% (da tase t s i ze , app name , work load s ize , da tase t s i ze , app name , work load s ize)

cur . execute (sqlcmd)

rows = cur . f e t c h a l l ()

i f (rows [0] [0] != None) or (rows [0] [1] != None) :

workload matches but dataset doesnot (#FIXME)

dr = []

Appendix C. Mouldable Scheduler - Code & Verfication 217

D1 i s the l a r g e r dataset , D0 i s the smal le r dataset i n comparison to the

requested dataset DR

D1 = rows [0] [0]

D0 = rows [0] [1]

i f (rows [0] [0] != None) and (rows [0] [1] != None) :

f i n d the d is tance f a c t o r between the dataset s izes

d i s t f a c t o r = ((f l o a t (da tase t s i ze) − f l o a t (D0)) / (f l o a t (D1) − f l o a t (D0)))

else :

i f (D1 == None) :

d i s t f a c t o r = f l o a t (da tase t s i ze) / f l o a t (D0)

else :

d i s t f a c t o r = f l o a t (da tase t s i ze) / f l o a t (D1)

get the cores and corresponding runt imes f o r the datasets D0 and D1

i f (D0 != None) :

sqlcmd = ”SELECT cores , t ime FROM benchmarks WHERE appName=’%s ’ and workload=’%s ’

and dataset=’%s ’ ” % (app name , work load s ize ,D0)

cur . execute (sqlcmd)

rowsD0 = cur . f e t c h a l l ()

else :

rowsD0 = ()

i f (D1 != None) :

sqlcmd = ”SELECT cores , t ime FROM benchmarks WHERE appName=’%s ’ and workload=’%s ’

and dataset=’%s ’ ” % (app name , work load s ize ,D1)

cur . execute (sqlcmd)

rowsD1 = cur . f e t c h a l l ()

else :

rowsD1 = ()

f o r DR assign a l l cores and corresponding est imated runt imes .

for i in rowsD0 :

for j in rowsD1 :

i f i [0] == j [0] :

dtemp = (i [0]) , i n t (round (0.4999+ i [1] + (d i s t f a c t o r ∗ (j [1]− i [1]))))

dr . append (dtemp)

f i n d those core values i n the smal le r dataset t h a t have no corresponding values

i n the l a r g e r dataset

for i in rowsD0 :

found=0

for j in rowsD1 :

i f i [0] == j [0] :

Appendix C. Mouldable Scheduler - Code & Verfication 218

found=1

i f found ==0:

i f (D1 != None) :

dtemp = (i [0]) , i n t (round (0.4999+ i [1] + (d i s t f a c t o r ∗ (i [1]))))

else :

dtemp = (i [0]) , i n t (round (0 .4999+(d i s t f a c t o r ∗ (i [1]))))

dr . append (dtemp)

f i n d those core values i n the l a r g e r dataset t h a t have no corresponding values i n

the smal le r dataset

for j in rowsD1 :

found=0

for i in rowsD0 :

i f i [0] == j [0] :

found=1

i f found ==0:

i f (D0 == None) :

dtemp = (j [0]) , i n t (round (0 .4999+(d i s t f a c t o r ∗ (j [1]))))

else :

dtemp = (j [0]) , i n t (round (0.4999+((1− d i s t f a c t o r) ∗ (j [1]))))

dr . append (dtemp)

wi th the bm data f o r non matching DS ca lcu la ted , update the t ab l e o f benchmarking

data

rows=dr

#make a tab le o f benchmark i n f o t h a t can be sor ted to i d e n t i f y the optimum

a l l o c a t i o n f o r the non matching DS values

for i in range (0 , len (dr)) :

bm table . append (bmStruct (dr [i] [0]))

bm table [i] . du ra t i on = dr [i] [1]

else :

i d e n t i f y c l oses t datasets f o r the app and workload s p e c i f i e d .

sqlcmd = ”SELECT MIN(CASE WHEN workload > ’%s ’ AND appName=’%s ’ AND dataset=’%s ’

THEN workload ELSE NULL END) AS hgValue , MAX(CASE WHEN workload < ’%s ’ AND appName

=’%s ’ AND dataset=’%s ’ THEN workload ELSE NULL END) AS lowValue FROM benchmarks ”

% (work load s ize , app name , da tase t s i ze , work load s ize , app name , da tase t s i ze)

cur . execute (sqlcmd)

rows = cur . f e t c h a l l ()

i f (rows [0] [0] != None) or (rows [0] [1] != None) :

Appendix C. Mouldable Scheduler - Code & Verfication 219

workload matches but dataset doesnot (#FIXME)

wr = []

W1 i s the l a r g e r dataset , W0 i s the smal le r dataset i n comparison to the

requested dataset wr

W1 = rows [0] [0]

W0 = rows [0] [1]

f i n d the d is tance f a c t o r between the dataset s izes

i f (rows [0] [0] != None) and (rows [0] [1] != None) :

d i s t f a c t o r = ((f l o a t (work load s ize) − f l o a t (W0)) / (f l o a t (W1) − f l o a t (W0)))

else :

i f (W1 == None) :

d i s t f a c t o r = f l o a t (work load s ize) / f l o a t (W0)

else :

d i s t f a c t o r = f l o a t (work load s ize) / f l o a t (W1)

get the cores and corresponding runt imes f o r the datasets W0 and W1

i f (W0 != None) :

sqlcmd = ”SELECT cores , t ime FROM benchmarks WHERE appName=’%s ’ and workload=’%s ’

and dataset=’%s ’ ” % (app name , W0, da tase t s i ze)

cur . execute (sqlcmd)

rowsW0 = cur . f e t c h a l l ()

else :

rowsW0 = ()

i f (W1 != None) :

sqlcmd = ”SELECT cores , t ime FROM benchmarks WHERE appName=’%s ’ and workload=’%s ’

and dataset=’%s ’ ” % (app name , W1, da tase t s i ze)

cur . execute (sqlcmd)

rowsW1 = cur . f e t c h a l l ()

else :

rowsW1 = ()

f o r WR assign a l l cores and corresponding est imated runt imes .

for i in rowsW0 :

for j in rowsW1 :

i f i [0] == j [0] :

dtemp = (i [0]) , i n t (round (0.4999+ i [1] + (d i s t f a c t o r ∗ (j [1]− i [1]))))

wr . append (dtemp)

Appendix C. Mouldable Scheduler - Code & Verfication 220

f i n d those core values i n the smal le r dataset t h a t have no corresponding values

i n the l a r g e r dataset

for i in rowsW0 :

found=0

for j in rowsW1 :

i f i [0] == j [0] :

found=1

i f found ==0:

dtemp = (i [0]) , i n t (round (0 .4999+(d i s t f a c t o r ∗ (i [1])))) # i [1] +

wr . append (dtemp)

f i n d those core values i n the l a r g e r dataset t h a t have no corresponding values

i n the smal le r dataset

for j in rowsW1 :

found=0

for i in rowsW0 :

i f i [0] == j [0] :

found=1

i f found ==0:

dtemp = (j [0]) , i n t (round (0 .4999+(d i s t f a c t o r ∗ (j [1]))))

wr . append (dtemp)

wi th the bm data f o r non matching DS ca lcu la ted , update the t ab l e o f

benchmarking data

rows=wr

#make a tab le o f benchmark i n f o t h a t can be sor ted to i d e n t i f y the optimum

a l l o c a t i o n f o r the non matching DS values

for i in range (0 , len (wr)) :

bm table . append (bmStruct (wr [i] [0]))

bm table [i] . du ra t i on = wr [i] [1]

else :

drw0 = []

drw1 = []

drwr = []

my2dnone = [None , None]

sqlcmd = ”SELECT MIN(CASE WHEN workload > ’%s ’ AND appName=’%s ’ AND dataset > ’%s ’

THEN workload ELSE NULL END) AS hgValue , MAX(CASE WHEN workload < ’%s ’ AND

appName=’%s ’ AND dataset < ’%s ’ THEN workload ELSE NULL END) AS lowValue FROM

benchmarks ” % (work load s ize , app name , da tase t s i ze , work load s ize , app name ,

da tase t s i ze)

cur . execute (sqlcmd)

rows W4D = cur . f e t c h a l l ()

Appendix C. Mouldable Scheduler - Code & Verfication 221

i f (rows W4D [0] [0] == None) and (rows W4D [0] [1] == None) :

sqlcmd = ”SELECT MIN(CASE WHEN workload > ’%s ’ AND appName=’%s ’ AND dataset < ’%s

’ THEN workload ELSE NULL END) AS hgValue , MAX(CASE WHEN workload < ’%s ’ AND

appName=’%s ’ AND dataset > ’%s ’ THEN workload ELSE NULL END) AS lowValue FROM

benchmarks ” % (work load s ize , app name , da tase t s i ze , work load s ize , app name ,

da tase t s i ze)

cur . execute (sqlcmd)

rows W4D = cur . f e t c h a l l ()

p r i n t rows W4D

i f (rows W4D [0] [0] != None) :

sqlcmd = ”SELECT MIN(CASE WHEN dataset > ’%s ’ AND appName=’%s ’ AND workload=’%s ’

THEN dataset ELSE NULL END) AS hgValue , MAX(CASE WHEN dataset < ’%s ’ AND appName

=’%s ’ AND workload=’%s ’ THEN dataset ELSE NULL END) AS lowValue FROM benchmarks ”

% (da tase t s i ze , app name , rows W4D [0] [0] , da tase t s i ze , app name , rows W4D [0] [0])

cur . execute (sqlcmd)

rows D4W1 = cur . f e t c h a l l ()

else :

rows D4W1 = []

rows D4W1 . append (my2dnone)

i f (rows W4D [0] [1] != None) :

sqlcmd = ”SELECT MIN(CASE WHEN dataset > ’%s ’ AND appName=’%s ’ AND workload=’%s ’

THEN dataset ELSE NULL END) AS hgValue , MAX(CASE WHEN dataset < ’%s ’ AND appName

=’%s ’ AND workload=’%s ’ THEN dataset ELSE NULL END) AS lowValue FROM benchmarks ”

% (da tase t s i ze , app name , rows W4D [0] [1] , da tase t s i ze , app name , rows W4D [0] [1])

cur . execute (sqlcmd)

rows D4W0 = cur . f e t c h a l l ()

else :

rows D4W0 = []

rows D4W0 . append (my2dnone)

i f (rows W4D [0] [0] != None) :

W1 = rows W4D [0] [0]

else :

W1 = 0

i f (rows W4D [0] [1] != None) :

W0 = rows W4D [0] [1]

else :

W0 = 0

Appendix C. Mouldable Scheduler - Code & Verfication 222

i f (rows D4W1 [0] [0] != None) :

D1W1 = rows D4W1 [0] [0]

else :

D1W1 = 0

i f (rows D4W1 [0] [1] != None) :

D0W1 = rows D4W1 [0] [1]

else :

D0W1 = 0

i f (rows D4W0 [0] [0] != None) :

D1W0 = rows D4W0 [0] [0]

else :

D1W0 = 0

i f (rows D4W0 [0] [1] != None) :

D0W0 = rows D4W0 [0] [1]

else :

D0W0 = 0

f i n d the d is tance f a c t o r between the dataset s izes

p r i n t D0W0,D1W0,D0W1,D1W1

i f (W1 != 0) :

dS df W1=abs ((f l o a t (da tase t s i ze) − f l o a t (D0W1)) / (f l o a t (D1W1) − f l o a t (D0W1)))

i f (W0 != 0) :

dS df W0=abs ((f l o a t (da tase t s i ze) − f l o a t (D0W0)) / (f l o a t (D1W0) − f l o a t (D0W0)))

d i s t f a c t o r =abs ((f l o a t (work load s ize) − f l o a t (W0)) / (f l o a t (W1) − f l o a t (W0)))

#

get the 2 l i n e s t h a t correspond to W1 and reduce i n a s i n g l e l i n e drw1

#

get the cores and corresponding runt imes f o r the datasets D0W1 and D1W1

sqlcmd = ”SELECT cores , t ime FROM benchmarks WHERE appName=’%s ’ and workload=’%s ’

and dataset=’%s ’ ” % (app name , W1,D0W1)

cur . execute (sqlcmd)

rowsD0W1 = cur . f e t c h a l l ()

sqlcmd = ”SELECT cores , t ime FROM benchmarks WHERE appName=’%s ’ and workload=’%s ’

and dataset=’%s ’ ” % (app name , W1,D1W1)

cur . execute (sqlcmd)

rowsD1W1 = cur . f e t c h a l l ()

Appendix C. Mouldable Scheduler - Code & Verfication 223

f o r DR assign a l l cores and corresponding est imated runt imes IN W1.

for i in rowsD0W1 :

for j in rowsD1W1 :

i f i [0] == j [0] :

dtemp = (i [0]) , i [1] + (dS df W1 ∗ (j [1]− i [1]))

drw1 . append (dtemp)

f i n d those core values i n the smal le r dataset t h a t have no corresponding values

i n the l a r g e r dataset

for i in rowsD0W1 :

found=0

for j in rowsD1W1 :

i f i [0] == j [0] :

found=1

i f found ==0:

dtemp = (i [0]) , i [1] + (dS df W1 ∗ (i [1]))

drw1 . append (dtemp)

f i n d those core values i n the l a r g e r dataset t h a t have no corresponding values

i n the smal le r dataset

for j in rowsD1W1 :

found=0

for i in rowsD0W1 :

i f i [0] == j [0] :

found=1

i f found ==0:

i f (D0W1 == 0) :

dtemp = (j [0]) , (dS df W1 ∗ (j [1]))

else :

dtemp = (j [0]) ,((1−dS df W1) ∗ (j [1]))

drw1 . append (dtemp)

#

get the 2 l i n e s t h a t correspond to W0 and reduce i n a s i n g l e l i n e drw0

#

get the cores and corresponding runt imes f o r the datasets D0W0 and D1W0

sqlcmd = ”SELECT cores , t ime FROM benchmarks WHERE appName=’%s ’ and workload=’%s ’

and dataset=’%s ’ ” % (app name , W0,D0W0)

cur . execute (sqlcmd)

rowsD0W0 = cur . f e t c h a l l ()

Appendix C. Mouldable Scheduler - Code & Verfication 224

sqlcmd = ”SELECT cores , t ime FROM benchmarks WHERE appName=’%s ’ and workload=’%s ’

and dataset=’%s ’ ” % (app name , W0,D1W0)

cur . execute (sqlcmd)

rowsD1W0 = cur . f e t c h a l l ()

f o r DR assign a l l cores and corresponding est imated runt imes IN W0.

for i in rowsD0W0 :

for j in rowsD1W0 :

i f i [0] == j [0] :

dtemp = (i [0]) , i [1] + (dS df W0 ∗ (j [1]− i [1]))

drw0 . append (dtemp)

f i n d those core values i n the smal le r dataset t h a t have no corresponding values

i n the l a r g e r dataset

for i in rowsD0W0 :

found=0

for j in rowsD1W0 :

i f i [0] == j [0] :

found=1

i f found ==0:

dtemp = (i [0]) , i [1] + (dS df W0 ∗ (i [1]))

drw0 . append (dtemp)

f i n d those core values i n the l a r g e r dataset t h a t have no corresponding values

i n the smal le r dataset

for j in rowsD1W0 :

found=0

for i in rowsD0W0 :

i f i [0] == j [0] :

found=1

i f found ==0:

i f (D0W0 == 0) :

dtemp = (j [0]) , (dS df W0 ∗ (j [1]))

else :

dtemp = (j [0]) ,((1−dS df W0) ∗ (j [1]))

drw0 . append (dtemp)

#

reduce the 2 l i n e s drw0 and drw1 to a s i n g l e l i n e c a l l e d drwr

#

f o r DR assign a l l cores and corresponding est imated runt imes IN W1.

for i in drw0 :

Appendix C. Mouldable Scheduler - Code & Verfication 225

for j in drw1 :

i f i [0] == j [0] :

dtemp = (i [0]) , i n t (round (0.4999+ i [1] + (d i s t f a c t o r ∗ (j [1]− i [1]))))

drwr . append (dtemp)

f i n d those core values i n the smal le r dataset t h a t have no corresponding values

i n the l a r g e r dataset

for i in drw0 :

found=0

for j in drw1 :

i f i [0] == j [0] :

found=1

i f found ==0:

dtemp = (i [0]) , i n t (round (0.4999+ i [1] + (d i s t f a c t o r ∗ (i [1]))))

drwr . append (dtemp)

f i n d those core values i n the l a r g e r dataset t h a t have no corresponding values

i n the smal le r dataset

for j in drw1 :

found=0

for i in drw0 :

i f i [0] == j [0] :

found=1

i f found ==0:

dtemp = (j [0]) , i n t (round (0 .4999+(d i s t f a c t o r ∗ (j [1]))))

drwr . append (dtemp)

wi th the bm data f o r non matching DS ca lcu la ted , update the t ab l e o f

benchmarking data

rows=drwr

#make a tab le o f benchmark i n f o t h a t can be sor ted to i d e n t i f y the optimum

a l l o c a t i o n f o r the non matching DS values

for i in range (0 , len (drwr)) :

bm table . append (bmStruct (drwr [i] [0]))

bm table [i] . du ra t i on = drwr [i] [1]

s o r t the benchmark tab le on t ime so t h a t we known which combinat ion o f cores gives

the l e a s t amount o f runt ime

bm table=bubb le so r t (bm table , ’ b lah ’)

use the f i r s t value i n the sor ted tab l e as the ” optimum ” a l l o c a t i o n

cores=bm table [0] . cores

Appendix C. Mouldable Scheduler - Code & Verfication 226

t ime=bm table [0] . du ra t i on

depending on cores re turned from the benchmark assign nodes : ppn

nodes=cores / / 4

i f nodes == 0:

nodes=1

ppn=cores

else :

ppn = 4

return nodes , ppn , t ime , rows

###

Funct ion to read the resources f i l e and populate the resou rce tab le [] based on the

number o f cores a v a l i a b l e .

The resources . t x t f i l e cons i s t s o f space seperated values node number (s t a r t i n g

from 0) and number o f no cpus

def resource parse () :

global resou rce tab le

resou rce tab le = []

t ry :

r e s o u r c e f i l e = f i l e (’ resources . t x t ’ , ’ r ’)

except IOError as (errno , s t r e r r o r) :

logger . c r i t i c a l (” IOError ({0}) : {1} ” . format (errno , s t r e r r o r))

logger . c r i t i c a l (” resources . t x t can not be found . E x i t i n g ”)

sys . s t d e r r . w r i t e (” ! ! ! ERROR ! ! ! \ nPlease Check Logs\n ”)

sys . e x i t (1)

for l i n e in r e s o u r c e f i l e :

Ensure l i n e s t a r t s w i th a numer ica l d i g i t before processing

i f l i n e [0] . i s d i g i t () :

temp = l i n e . s p l i t (’ ’)

r esou rce tab le . append ([])

now t h a t the node i s created see how many cores i t has and b u i l d up the s l o t s

for i in range (0 , i n t (temp [1])) :

r esou rce tab le [i n t (temp [0])] . append (1)

else :

pass

return resou rce tab le #FIXME(needs e r r o r handl ing f o r misformated node defmouldions)

Appendix C. Mouldable Scheduler - Code & Verfication 227

#

###

Funct ion to check i f the resources requ i red f o r a job are a v a l i a b l e i n the

resou rce tab le

I f sucess fu l r e tu rns 1 , otherwise re tuns 0

def f i nd space (nodes , ppn , jobnos) :

Count o f cpus a l l o c a te d

no cpus = 0

Count o f node a l l o c a te d

no nodes = 0

Cont inua t ion f l a g to break f i r s t loop i f on ly p a r t i a l cpu requirements have been

met .

cont = True

Number o f nodes which meet job requirements

node sum=0

Number o f cores / per node which meet the job requirements

core sum=0

logger . debug (” Find Space f o r ” +st r (jobnos))

Traverse resou rce tab le f i n d i n g nodes where a l l cores are f ree and number o f cores

exac t l y matches

the number o f cores (per node) requ i red .

for i in range (0 , len (resou rce tab le)) :

i f len (resou rce tab le [i]) >= ppn :

node sum=node sum+1

i f node sum>=nodes :

Find those nodes t h a t match exac t l y

for i in range (0 , len (resou rce tab le)) :

cont=True

i f no nodes != i n t (nodes) :

i f len (resou rce tab le [i]) == ppn :

for j in range (0 , len (resou rce tab le [i])) :

i f resou rce tab le [i] [j] == 1 and cont == True :

no cpus = no cpus + 1

i f no cpus == ppn :

no nodes = no nodes + 1

no cpus = 0

else :

Appendix C. Mouldable Scheduler - Code & Verfication 228

l ogger . debug (” Space−Pass 1: not enough space on the node ”)

pass

else :

logger . debug (” Space−Pass 1: the core i s busy ”)

Exact match cannot be made, Do not cont inue w i t h i n t h i s loop and rese t the

cpu count

cont = False

no cpus=0

else :

logger . debug (” Space−Pass 1: nodes s ize does not match ppn exac t l y ”)

pass

else :

logger . debug (” Space−Pass 1: node a l l o c a t i o n s are now complete ”)

pass

I f s u f f i c i e n t resources have been found e x i t f u n c t i o n here

i f no nodes == i n t (nodes) :

return 1

Where exact resource matches cannot be found . Traverse the resource tab l e f i n d i n g

any nodes which

can accomodate the resources requ i red f o r the job .

for i in range (0 , len (resou rce tab le)) :

i f no nodes != i n t (nodes) :

i f len (resou rce tab le [i]) > ppn :

core sum=0

for j in range (0 , len (resou rce tab le [i])) :

core sum=core sum + resou rce tab le [i] [j]

i f core sum >= ppn :

no nodes=no nodes+1

no cpus=0

for j in range (0 , len (resou rce tab le [i])) :

i f resou rce tab le [i] [j] == 1 and no cpus<ppn :

no cpus = no cpus + 1

else :

logger . debug (” Space−Pass 2: core i s e i t h e r busy or a l l a l l o c a t i o n s complete ”)

pass

else :

logger . debug (” Space−Pass 2: node does not have enough f ree cores ”)

pass

else :

logger . debug (” Space−Pass 2: node does not have enough cores to match ppn ”)

pass

Appendix C. Mouldable Scheduler - Code & Verfication 229

else :

logger . debug (” Space−Pass 2: node a l l o c a t i o n s are now complete ”)

pass

Check i f a l l a l l o c a t i o n s have been made . I f not r e t u r n 0 , e lse r e t u r n 1

i f no nodes != i n t (nodes) :

return 0

else :

return 1

###

Funct ion to assign the resources requ i red f o r a job to the resou rce tab le

I f sucess fu l r e tu rns an ar ray (made busy) o f resources assigned , otherwise re tuns 0

def make busy (nodes , ppn , jobnos) :

Count o f cpus a l l o c a te d

no cpus = 0

Count o f nodes a l l o c a te d

no nodes = 0

Cont inua t ion f l a g to break f i r s t loop i f on ly p a r t i a l cpu requirements have been

met .

cont = True

Array to hold values o f which cores have been set to busy

global made busy

made busy = []

logger . debug (” Making Busy f o r ” +st r (jobnos))

Traverse resou rce tab le f i n d i n g nodes where a l l cores are f ree and number o f cores

exac t l y matches

the number o f cores (per node) requ i red .

for i in range (0 , len (resou rce tab le)) :

i f no nodes != i n t (nodes) :

i f len (resou rce tab le [i]) == ppn and cont == True :

for j in range (0 , len (resou rce tab le [i])) :

i f resou rce tab le [i] [j] == 1 :

no cpus = no cpus + 1

i f no cpus == ppn :

for k in range (0 , no cpus) :

resou rce tab le [i] [k] = 0

made busy . extend ((i , k))

no nodes = no nodes + 1

no cpus = 0

else :

logger . debug (” Busy−Pass 1: the number o f cpus has a l ready been a l l o c a te d ”)

Appendix C. Mouldable Scheduler - Code & Verfication 230

pass

else :

logger . debug (” Busy−Pass 1: the core i s busy ”)

Exact match cannot be made, Do not cont inue w i t h i n t h i s loop

cont = False

else :

logger . debug (” Busy−Pass 1: nodes s ize does not match ppn exac t l y ”)

pass

else :

logger . debug (” Busy−Pass 1: node a l l o c a t i o n s are now complete ”)

pass

I f a l l a l l o c a t i o n s have been made end f u n c t i o n here

i f no nodes == i n t (nodes) :

pr in t ” Making A l l o c a t i o n : ” , nodes , ppn , ” a t : ” , made busy

i f DEBUG2:

d i s p l a y t a b l e (” resou rce tab le ”)

return made busy

Where exact resource matches cannot be found . Traverse the resource tab l e f i n d i n g

any nodes which

can accomodate the resources requ i red f o r the job .

for i in range (0 , len (resou rce tab le)) :

i f no nodes != i n t (nodes) :

i f len (resou rce tab le [i]) >= ppn :

core sum=0

for j in range (0 , len (resou rce tab le [i])) :

core sum=core sum + resou rce tab le [i] [j]

i f core sum >= ppn :

no nodes=no nodes+1

no cpus=0

for j in range (0 , len (resou rce tab le [i])) :

i f resou rce tab le [i] [j] == 1 and no cpus<ppn :

no cpus = no cpus + 1

resou rce tab le [i] [j] = 0

made busy . extend ((i , j))

else :

logger . debug (” Busy−Pass 2: core i s e i t h e r busy or a l l a l l o c a t i o n s complete ”)

pass

else :

logger . debug (” Busy−Pass 2: node does not have enough f ree cores ”)

pass

else :

Appendix C. Mouldable Scheduler - Code & Verfication 231

l ogger . debug (” Busy−Pass 2: node does not have enough cores to match ppn ”)

pass

else :

logger . debug (” Busy−Pass 2: node a l l o c a t i o n s are now complete ”)

pass

Check i f a l l a l l o c a t i o n s have been made . I f not r e t u r n 0 , e lse r e t u r n ar ray o f

made busy

i f no nodes != i n t (nodes) :

return 0

else :

pr in t ” Making A l l o c a t i o n : ” , nodes , ppn , ” a t : ” , made busy

i f DEBUG2:

d i s p l a y t a b l e (” resou rce tab le ”)

return made busy

###

Funct ion to re lease resources p rev ious l y marked as used i n the resou rce tab le

Takes an ar ray arguement (busy cores) o f co rd ina tes prev iousy re turned from

make busy

def make free (busy cores) :

for i in range (0 , len (busy cores) ,2) :

resou rce tab le [busy cores [i]] [busy cores [i + 1]] = 1

###

The d i s p l a y t a b l e f u n c t i o n takes as argument a s t r i n g from ” s o r t i n g t a b l e |

queue ing tab le | r unn i ng tab le | mould tab le | resources ” and

outputs a somewhat formated tab l e to the screen . I f there are no records i n the

tab les (except resources) i t j u s t says so

def d i s p l a y t a b l e (t ab l e) :

i f t ab l e == ” s o r t i n g t a b l e ” :

i f len (s o r t i n g t a b l e) == 0:

pr in t ” Sor t i ng tab l e i s empty ”

else :

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−so r t i ng

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

pr in t t a b f (” T r igge r ” ,12) , t a b f (” Job No” ,12) , t a b f (”Queue” ,12)

for k in range (0 , len (s o r t i n g t a b l e)) :

pr in t t a b f (st r (s o r t i n g t a b l e [k] . t r i g g e r t i m e s) ,12) , t a b f (s o r t i n g t a b l e [k] . jobnos

,12) , t a b f (s o r t i n g t a b l e [k] . run OR sort , 12)

Appendix C. Mouldable Scheduler - Code & Verfication 232

pr in t ”

−−”

e l i f t ab l e == ” queue ing tab le ” :

i f len (queue ing tab le) == 0:

pr in t ” Queued tab l e i s empty ”

else :

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−queueing

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

pr in t t a b f (” Job No” ,12) , t a b f (” ct ime ” ,12) , t a b f (” nodes ” ,12) , t a b f (” ppn ” ,12) , t a b f (”

Durat ion ” ,12)

for k in range (0 , len (queue ing tab le)) :

pr in t t a b f (queue ing tab le [k] . jobnos ,12) , t a b f (st r (queue ing tab le [k] . ct ime) ,12) , t a b f

(st r (queue ing tab le [k] . nodes) ,12) , t a b f (st r (queue ing tab le [k] . ppn) ,12) , t a b f (st r (

queue ing tab le [k] . du ra t i on) ,12)

pr in t ”

−−”

e l i f t ab l e == ” resou rce tab le ” :

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−system

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

for k in range (0 , len (resou rce tab le)) :

pr in t resou rce tab le [k]

pr in t ”

−−”

e l i f t ab l e == ” mould tab le ” :

i f len (mould tab le) == 0:

pr in t ” Mouldable tab l e i s empty ”

else :

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−mouldtab

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

pr in t t a b f (” Job No” ,8) , t a b f (” ct ime ” ,11) , t a b f (” nodes ” ,5) , t a b f (” ppn ” ,3) , t a b f (”

Durat ion ” ,8) , t a b f (” S t a r t ” ,11) , t a b f (”End ” ,11)

for k in range (0 , len (mould tab le)) :

pr in t t a b f (mould tab le [k] . jobnos , 8) , t a b f (st r (mould tab le [k] . ct ime) ,11) , t a b f (st r (

mould tab le [k] . nodes) ,5) , t a b f (st r (mould tab le [k] . ppn) ,3) , t a b f (st r (mould tab le [k] .

du ra t i on) ,8) , t a b f (st r (mould tab le [k] . s t a r t) ,11) , t a b f (st r (mould tab le [k] . end) ,11)

pr in t ”

−−”

else :

i f len (r unn i ng tab le) == 0:

pr in t ” Running tab l e i s empty ”

else :

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−running

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

Appendix C. Mouldable Scheduler - Code & Verfication 233

pr in t t a b f (” Job No” ,8) , t a b f (” ct ime ” ,11) , t a b f (” nodes ” ,5) , t a b f (” ppn ” ,3) , t a b f (”

Durat ion ” ,8) , t a b f (” S t a r t ” ,11) , t a b f (”End ” ,11) , t a b f (” A l l o c ” ,11)

for k in range (0 , len (r unn i ng tab le)) :

pr in t t a b f (r unn i ng tab le [k] . jobnos , 8) , t a b f (st r (r unn i ng tab l e [k] . ct ime) ,11) , t a b f (

st r (r unn i ng tab le [k] . nodes) ,5) , t a b f (st r (r unn i ng tab l e [k] . ppn) ,3) , t a b f (st r (

r unn i ng tab le [k] . du ra t i on) ,8) , t a b f (st r (r unn i ng tab le [k] . s t a r t) ,11) , t a b f (st r (

r unn i ng tab le [k] . end) ,11) , t a b f (st r (r unn i ng tab le [k] . resources) ,11)

pr in t ”

−−”

###

Funct ion to move (COPY ! !) job i n fo rma t i on between tab les . Takes arguements source

tab le , source tab l e index , des tna t ion tab le ,

resources (re tu rned from make busy) and a s o r t f l a g . s o r t f l a g i s used to determine

i f the d e t i n a t i o n tab l e i s populated wi th

the s o r t S t r u c t and i f the job should be marked as running ”R” or queued ”Q” .

Returns the index of the source tab l e to which

the job data was moved (COPIED ! !)

def move job (s rc tab , s rc index , dest tab , resources , s o r t f l a g) :

des t rec index = ” ”

i f s o r t f l a g == ’R ’ :

des t tab . append (s o r t S t r u c t (s r c t ab [s rc index] . s t a r t + s r c t ab [s rc index] . du ra t i on))

des t tab [len (des t tab) −1]. jobnos = s r c t ab [s rc index] . jobnos

des t tab [len (des t tab) −1]. run OR sort = s o r t f l a g

des t rec index = len (des t tab)−1

e l i f s o r t f l a g == ’Q ’ :

des t tab . append (s o r t S t r u c t (s r c t ab [s rc index] . ct ime))

des t tab [len (des t tab) −1]. jobnos = s r c t ab [s rc index] . jobnos

des t tab [len (des t tab) −1]. run OR sort = s o r t f l a g

des t rec index = len (des t tab)−1

else :

des t tab . append (j o b S t r u c t (s r c t ab [s rc index] . jobnos))

des t tab [len (des t tab) −1].nodes = s r c t ab [s rc index] . nodes

des t tab [len (des t tab) −1].ppn = s r c t ab [s rc index] . ppn

des t tab [len (des t tab) −1]. user = s r c t ab [s rc index] . user

des t tab [len (des t tab) −1].app name = s rc t ab [s rc index] . app name

des t tab [len (des t tab) −1]. work load s ize = s r c t ab [s rc index] . work load s ize

des t tab [len (des t tab) −1]. da tase t s i ze = s r c t ab [s rc index] . da tase t s i ze

des t tab [len (des t tab) −1].queue = s r c t ab [s rc index] . queue

des t tab [len (des t tab) −1]. jobname = s r c t ab [s rc index] . jobname

Appendix C. Mouldable Scheduler - Code & Verfication 234

des t tab [len (des t tab) −1]. ct ime = s r c t ab [s rc index] . ct ime

des t tab [len (des t tab) −1]. qt ime = s r c t ab [s rc index] . qt ime

des t tab [len (des t tab) −1]. et ime = s r c t ab [s rc index] . et ime

des t tab [len (des t tab) −1]. s t a r t = s r c t ab [s rc index] . s t a r t

des t tab [len (des t tab) −1].end = s r c t ab [s rc index] . end

des t tab [len (des t tab) −1]. du ra t i on = s r c t ab [s rc index] . du ra t i on

des t tab [len (des t tab) −1]. f j obno = s r c t ab [s rc index] . f j obno

des t tab [len (des t tab) −1].bmData = s r c t ab [s rc index] . bmData

des t tab [len (des t tab) −1]. requested nodes = s r c t ab [s rc index] . requested nodes

des t tab [len (des t tab) −1]. requested ppn = s r c t ab [s rc index] . requested ppn

des t tab [len (des t tab) −1]. o r i g d u r a t i o n = s r c t ab [s rc index] . o r i g d u r a t i o n

I f p laceho lder value f o r resources i s passed set to 0

i f resources == −999:

des t tab [len (des t tab) −1]. resources = 0

else :

des t tab [len (des t tab) −1]. resources = resources

des t rec index = len (des t tab)−1

return des t rec index

###

Funct ion to f i n d which i n d i c i e s are populated by a p a r t i c u l r jobno . Takes

arguements o f job number and tab l e to check .

Returns index which matches job number

def f i n d i n d e x (jobno , t ab l e) :

for i in range (0 , len (t ab l e)) :

i f t ab l e [i] . jobnos == jobno :

return i

###

Funct ion which copies job i n fo rma t i on i n t o the runn i ng tab le . While a lso c a l l i n g

make busy to take resources .

Takes arguements o f index o f source tab l e (as re turned by f i n d i n d e x) , source tab l e

and value o f p r e v i o u s t r i g g e r (taken from

p rev ious l y popped job t r i g g e r t i m e) . Uses p r e v i o u s t r i g g e r to determine i f s t a r t

and end t ime of c u r r e n t l y considered job needs

to be modi f ied . Returns index value f o r runn i ng tab le f o r job which has been set to

” running ” .

def make running (i , tab le , p r e v i o u s t r i g g e r) :

pr in t ” A l l o c a t i n g job : ” , t ab l e [i] . jobnos , t ab l e [i] . nodes , t ab l e [i] . ppn

i f 0:

Appendix C. Mouldable Scheduler - Code & Verfication 235

d i s p l a y t a b l e (” resou rce tab le ”)

runn ing job index =move job (tab le , i , runn ing tab le , make busy (t ab l e [i] . nodes , t ab l e [i] .

ppn , t ab l e [i] . jobnos) ,−999)

I f prev ious t r i g g e r had a value other than 0 eveluate c o r r e c t s t a r t and end t imes

based on t h i s value .

i f p r e v i o u s t r i g g e r != 0 :

i f p r e v i o u s t r i g g e r<r unn i ng tab le [runn ing job index] . ct ime :

runn i ng tab le [runn ing job index] . s t a r t = runn i ng tab le [runn ing job index] . ct ime

else :

r unn i ng tab le [runn ing job index] . s t a r t = p r e v i o u s t r i g g e r

Else use c rea t i on and e l e g i b l e t ime to c a l c u l a t e s t a r t and end

else :

r unn i ng tab le [runn ing job index] . s t a r t = runn i ng tab le [runn ing job index] . ct ime

Udpate values

r unn i ng tab le [runn ing job index] . qt ime= runn i ng tab le [runn ing job index] . s t a r t

r unn i ng tab le [runn ing job index] . end= runn i ng tab le [runn ing job index] . s t a r t +

runn i ng tab le [runn ing job index] . du ra t i on

i f DEBUG2:

d i s p l a y t a b l e (” r unn i ng tab le ”)

d i s p l a y t a b l e (” queue ing tab le ”)

d i s p l a y t a b l e (” s o r t i n g t a b l e ”)

return r unn ing job index

###

Funct ion which copies job i n fo rma t i on i n t o the queue ing tab le . While a lso c a l l i n g

make busy to take resources .

Takes argument o f mould tab le index f o r job being considered .

def make queued (i) :

pr in t ”Can not make a l l o c a t i o n f o r : ” , mould tab le [i] . jobnos , mould tab le [i] . nodes ,

mould tab le [i] . ppn

pr in t ” Job being queued : ” , mould tab le [i] . jobnos

queued job index=move job (mould table , i , queueing table ,−999,−999)

i f DEBUG2:

d i s p l a y t a b l e (” r unn i ng tab le ”)

d i s p l a y t a b l e (” queue ing tab le ”)

d i s p l a y t a b l e (” s o r t i n g t a b l e ”)

return queued job index

Appendix C. Mouldable Scheduler - Code & Verfication 236

###

class SubOptStruct :

def i n i t (s e l f , op t ion) :

s e l f . op t ions = op t ion

jobs to pop = []

a l l o c a t i o n = ” ”

end = 0

def get sub opt (bmData , ctime , oa l loc , opt end) :

global sub opt tab

sub opt tab = []

opt = 0

for m in range (0 , len (bmData)) :

p r i n t ” f i r s t f o r i s ” ,m

for n in range (0 , len (r unn i ng tab le)) :

p r i n t ” second f o r i s ” , n

i f bmData [m] [0] <= o a l l o c :

p r i n t ” i n s i d e f i r s t i f ”

p r i n t ” r unn ing tab le [n] . end + bmData [m] [1] ” , r unn ing tab le [n] . end + bmData [m] [1]

p r i n t ” opt end ” , opt end

p r i n t (r unn ing tab le [n] . end + bmData [m] [1]) < opt end

i f (r unn i ng tab l e [n] . end + bmData [m] [1]) < opt end :

p r i n t ” i n s i d e second i f ”

sub opt tab . append (SubOptStruct (opt))

sub op t tab [opt] . j obs to pop = runn ing tab le [n] . jobnos

sub opt tab [opt] . a l l o c a t i o n = bmData [m] [0]

sub op t tab [opt] . end = runn ing tab le [n] . end + bmData [m] [1]

opt += 1

i f (ct ime + bmData [m] [1]) < opt end :

p r i n t ” i n s i d e t h i r d i f ”

sub opt tab . append (SubOptStruct (opt))

sub op t tab [opt] . j obs to pop = ” 0 ”

sub opt tab [opt] . a l l o c a t i o n = bmData [m] [0]

sub op t tab [opt] . end = ct ime + bmData [m] [1]

Appendix C. Mouldable Scheduler - Code & Verfication 237

opt += 1

depending on cores re turned from the benchmark assign nodes : ppn

popped = 1

while popped :

popped = 0

for p in range (0 , len (sub op t tab)) :

cores = sub opt tab [p] . a l l o c a t i o n

nodes = cores / / 4

i f nodes == 0:

nodes=1

ppn = cores

else :

ppn = 4

i f not f i nd space (nodes , ppn , ” h e l l o ”) and sub opt tab [p] . j obs to pop == ” 0 ” :

p r i n t ”No space . Popping ”

sub opt tab . pop (p)

popped = 1

break

#else :

p r i n t ” There i s space f o r t h i s ”

bubb le so r t (sub opt tab , ” end ”)

i f len (sub op t tab) != 0 :

cores = sub opt tab [0] . a l l o c a t i o n

nodes = cores / / 4

i f nodes == 0:

nodes=1

ppn = cores

else :

ppn = 4

return f i nd space (nodes , ppn , ”me ! ! ”)

else :

return 0

i f len (sub opt tab) == 0:

p r i n t ”Sub Optimal t ab l e i s empty ”

Appendix C. Mouldable Scheduler - Code & Verfication 238

#else :

p r i n t ”\n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Sub Opt

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

p r i n t t a b f (” Option ” ,12) , t a b f (” Pop ” ,12) , t a b f (” A l l o c a t i o n ” ,12) , t a b f (” End t ime ” ,12)

f o r o i n range (0 , len (sub opt tab)) :

p r i n t t a b f (s t r (sub op t tab [o] . op t ions) ,12) , t a b f (sub op t tab [o] . jobs to pop ,12) ,

t a b f (s t r (sub op t tab [o] . a l l o c a t i o n) ,12) , t a b f (s t r (sub op t tab [o] . end) ,12)

p r i n t

”−−”

###

def run t ime (req cores) :

av cores = 0

Find those nodes t h a t match exac t l y

for i in range (0 , len (resou rce tab le)) :

for j in range (0 , len (resou rce tab le [i])) :

i f resou rce tab le [i] [j] == 1 :

av cores = av cores + 1

p r i n t ” Ava l i ab le cores i n ar ray ” , av cores

p r i n t ” Requested cores from system ” , req cores

for k in range (0 , len (r unn i ng tab le)) :

av cores = (runn ing tab le [k] . nodes∗ r unn i ng tab le [k] . ppn) + av cores

i f av cores >= req cores :

p r i n t ” S t a r t t ime woud be ” , r unn ing tab le [k] . end

return r unn i ng tab le [k] . end

p r i n t ” Ava l i ab le cores inc running ” , av cores

###

Funct ion to conver t values i n seconds to Hours : Minutes : Seconds

def format seconds to hhmmss (seconds) :

hours = seconds / / (60∗60)

seconds %= (60∗60)

minutes = seconds / / 60

seconds %= 60

return ”%02 i :%02 i :%02 i ” % (hours , minutes , seconds)

###

Funct ion to p r i n t f i n a l job d e s c r i p t i o n to a torque s t y l e log f i l e .

This can be passed the r e s u l t o f a pop an any tab l e using j o b S t r u c t .

Appendix C. Mouldable Scheduler - Code & Verfication 239

def p r i n t l o g s (completed job) :

Convert job epoch end t ime to a human redable s t r i n g

tstamp = t ime . s t r f t i m e (’%d/%m/%Y %H:%M:%S ’ , t ime . l o c a l t i m e (completed job . end))

new log = open (st r (sys . argv [1] + ” . new”) , ’ a ’)

new log . w r i t e (”%s ;E;%s ; user=%s jobname=%s queue=%s ct ime=%s qtime=%s etime=%s s t a r t=%

s end=%s Resource L is t . nodes=%s : ppn=%s resources used . wa l l t ime=%s app name=%s

i t e r a t i o n s=%s da tase t s i ze=%s\n ” % (tstamp , completed job . f jobno , completed job .

user , completed job . jobname , completed job . queue , completed job . ctime ,

completed job . qtime , completed job . etime , completed job . s t a r t , completed job . end ,

completed job . nodes , completed job . ppn , format seconds to hhmmss (completed job .

du ra t i on) , completed job . app name , completed job . work load s ize , completed job .

da tase t s i ze))

new log . c lose ()

###

i f name == ” ma in ” :

g e t j o b i n f o (sys . argv [1])

bubb le so r t (mould table , ’ mould ’)

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−moulding

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

pr in t t a b f (” Job No” ,8) , t a b f (” User ” ,8) , t a b f (” ct ime ” ,11) , t a b f (”App ” ,10) , t a b f (” Workload ”

,10) , t a b f (” Dataset ” ,10) , t a b f (” Nodes ” ,5) , t a b f (”Ppn ” ,5) , t a b f (”RNode” ,5) , t a b f (” R Ppn ”

,5) , t a b f (” Durat ion ” ,10) , t a b f (” Benchmark Data ” ,15)

for k in range (0 , len (mould tab le)) :

pr in t t a b f (mould tab le [k] . jobnos , 8) , t a b f (mould tab le [k] . user , 8) , t a b f (st r (mould tab le

[k] . ct ime) ,11) , t a b f (mould tab le [k] . app name ,10) , t a b f (st r (mould tab le [k] .

work load s ize) ,10) , t a b f (st r (mould tab le [k] . da tase t s i ze) ,10) , t a b f (st r (mould tab le [

k] . nodes) ,5) , t a b f (st r (mould tab le [k] . ppn) ,5) , t a b f (st r (mould tab le [k] .

requested nodes) ,5) , t a b f (st r (mould tab le [k] . requested ppn) ,5) , t a b f (st r (mould tab le

[k] . du ra t i on) ,10) , t a b f (st r (mould tab le [k] . bmData) ,15)

resource parse ()

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−system

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

for k in range (0 , len (resou rce tab le)) :

pr in t resou rce tab le [k]

pr in t ”

−−”

Appendix C. Mouldable Scheduler - Code & Verfication 240

for i in range (0 , mou ld tab length) :

pr in t ”New Job : %s ” % (mould tab le [i] . jobnos)

i f len (r unn i ng tab le) == 0 and len (queue ing tab le) == 0:

pr in t ” System i s t o t a l l y empty − P0”

make running (i , mould table , 0)

bubb le so r t (runn ing tab le , ” end ”)

else :

while (len (r unn i ng tab le) != 0 and mould tab le [i] . c t ime > r unn i ng tab le [0] . end) :

i f mould tab le [i] . c t ime > r unn i ng tab le [0] . end :

make free (runn ing tab le [0] . resources)

completed job= runn ing tab le . pop (0)

p r i n t l o g s (completed job)

pr in t ” Popped : %s − P1” % (completed job . jobnos)

since we have popped l e t s see i f we can make something run

i f len (queue ing tab le) != 0 :

i f f i nd space (queue ing tab le [0] . nodes , queue ing tab le [0] . ppn , queue ing tab le [0] .

jobnos) :

pr in t ” Making a queued job run − P1a ”

make running (0 , queueing table , completed job . end)

bubb le so r t (runn ing tab le , ” end ”)

queue ing tab le . pop (0)

else :

pr in t ”No space to run queued job − P1”

else :

pr in t ” Nothing i n the queued tab l e − P1”

else :

pr in t ” Nothing to pop from running − P1”

cantrun=1

while cantrun and len (queue ing tab le) != 0 :

i f f i nd space (queue ing tab le [0] . nodes , queue ing tab le [0] . ppn , queue ing tab le [0] .

jobnos) :

subopt imals may come i n p lay here FIXME

pr in t ” Making a queued job run − P1b ”

make running (0 , queueing table , completed job . end)

bubb le so r t (runn ing tab le , ” end ”)

queue ing tab le . pop (0)

else :

Appendix C. Mouldable Scheduler - Code & Verfication 241

pr in t ” Queued job ” + queue ing tab le [0] . jobnos + ” can not run − P1b − maybe a

subopt imal? ”

i f queue ing tab le [0] . requested nodes == 0:

subTrue=get sub opt (queue ing tab le [0] . bmData , queue ing tab le [0] . ct ime ,

queue ing tab le [0] . nodes∗queue ing tab le [0] . ppn , (run t ime (queue ing tab le [0] . nodes∗

queue ing tab le [0] . ppn)) +queue ing tab le [0] . du ra t i on)

i f subTrue :

pr in t ” I can run t h i s subop t ima l l y − P1b ”

cores = sub opt tab [0] . a l l o c a t i o n

nodes = cores / / 4

i f nodes == 0:

nodes=1

ppn = cores

else :

ppn = 4

queue ing tab le [0] . nodes=nodes

queue ing tab le [0] . ppn=ppn

make running (0 , queueing table , completed job . end)

bubb le so r t (runn ing tab le , ” end ”)

queue ing tab le . pop (0)

else :

pr in t ”No Suboptimal So lu t i on f o r t h i s queued job −P1b ”

cantrun=0

else :

pr in t ” This job i s u n f o r t u n a t e l y s e r i a l . − P1b ”

cantrun=0

i f len (queue ing tab le) != 0 :

pr in t ” S t u f f i n the queue , go t ta queue t h i s %s − P1 − no subopt imals ” % (

queue ing tab le [0] . jobnos)

make queued (i)

else :

i f f i nd space (mould tab le [i] . nodes , mould tab le [i] . ppn , mould tab le [i] . jobnos) :

pr in t ” There i s space run i t − P1”

make running (i , mould table , 0)

bubb le so r t (runn ing tab le , ” end ”)

else :

pr in t ”No space go t ta queue − P1 − showing subopt imals maybe they can run ”

i f mould tab le [i] . requested nodes == 0:

subTrue=get sub opt (mould tab le [i] . bmData , mould tab le [i] . ct ime , mould tab le [i] .

nodes∗mould tab le [i] . ppn , (run t ime (mould tab le [i] . nodes∗mould tab le [i] . ppn)) +

mould tab le [i] . du ra t i on)

i f subTrue :

Appendix C. Mouldable Scheduler - Code & Verfication 242

pr in t ” I can run t h i s subop t ima l l y − P1”

cores = sub opt tab [0] . a l l o c a t i o n

nodes = cores / / 4

i f nodes == 0:

nodes=1

ppn = cores

else :

ppn = 4

mould tab le [i] . nodes=nodes

mould tab le [i] . ppn=ppn

make running (i , mould table , 0)

bubb le so r t (runn ing tab le , ” end ”)

else :

pr in t ” Cant run t h i s job subopt imal ly , l e t s queue f o r now P1”

make queued (i)

else :

pr in t ” This Job i s u n f o r t u n a t e l y s e r i a l − P1”

make queued (i)

pr in t ” \nBegining Cleanup !\n ”

while len (r unn i ng tab le) != 0 or len (queue ing tab le) != 0 :

while (len (r unn i ng tab le) != 0) :

make free (runn ing tab le [0] . resources)

completed job= runn ing tab le . pop (0)

p r i n t l o g s (completed job)

pr in t ” Popped : %s − P2” % (completed job . jobnos)

since we have popped l e t s see i f we can make something run

cantrun=1

while cantrun :

i f len (queue ing tab le) != 0 :

i f f i nd space (queue ing tab le [0] . nodes , queue ing tab le [0] . ppn , queue ing tab le [0] .

jobnos) :

pr in t ” Making a queued job run − P2a ”

make running (0 , queueing table , completed job . end)

bubb le so r t (runn ing tab le , ” end ”)

queue ing tab le . pop (0)

else :

pr in t ”No space to run queued job − P2a − checking subopt imal ”

i f queue ing tab le [0] . requested nodes == 0:

Appendix C. Mouldable Scheduler - Code & Verfication 243

subTrue=get sub opt (queue ing tab le [0] . bmData , queue ing tab le [0] . ct ime ,

queue ing tab le [0] . nodes∗queue ing tab le [0] . ppn , (run t ime (queue ing tab le [0] . nodes∗

queue ing tab le [0] . ppn)) +queue ing tab le [0] . du ra t i on)

i f subTrue :

pr in t ” I can run t h i s subop t ima l l y −P2a ”

cores = sub opt tab [0] . a l l o c a t i o n

nodes = cores / / 4

i f nodes == 0:

nodes=1

ppn = cores

else :

ppn = 4

queue ing tab le [0] . nodes=nodes

queue ing tab le [0] . ppn=ppn

make running (0 , queueing table , completed job . end)

bubb le so r t (runn ing tab le , ” end ”)

queue ing tab le . pop (0)

else :

pr in t ”No Suboptimal So lu t i on f o r t h i s queued job ”

cantrun=0

else :

pr in t ” This Job i s u n f o r t u n a t e l y s e r i a l − P2a ”

cantrun=0

else :

pr in t ” Nothing i n the queued tab l e − P2a ”

cantrun=0

Fix me : i s t h i s even requ i red ?

cantrun=1

while cantrun and len (queue ing tab le) != 0 :

i f f i nd space (queue ing tab le [0] . nodes , queue ing tab le [0] . ppn , queue ing tab le [0] .

jobnos) :

pr in t ” Making a queued job run − P2b ”

make running (0 , queueing table , completed job . end)

bubb le so r t (runn ing tab le , ” end ”)

queue ing tab le . pop (0)

else :

pr in t ” Queued jobs can not run −P2e− checking subopt imal ”

i f queue ing tab le [0] . requested nodes == 0:

subTrue=get sub opt (queue ing tab le [0] . bmData , queue ing tab le [0] . ct ime ,

queue ing tab le [0] . nodes∗queue ing tab le [0] . ppn , (run t ime (queue ing tab le [0] . nodes∗

queue ing tab le [0] . ppn)) +queue ing tab le [0] . du ra t i on)

i f subTrue :

Appendix C. Mouldable Scheduler - Code & Verfication 244

pr in t ” I can run t h i s subop t ima l l y ”

cores = sub opt tab [0] . a l l o c a t i o n

nodes = cores / / 4

i f nodes == 0:

nodes=1

ppn = cores

else :

ppn = 4

queue ing tab le [0] . nodes=nodes

queue ing tab le [0] . ppn=ppn

make running (0 , queueing table , completed job . end)

bubb le so r t (runn ing tab le , ” end ”)

queue ing tab le . pop (0)

else :

pr in t ”No Suboptimal So lu t i on f o r t h i s queued job ”

cantrun=0

else :

pr in t ” This job i s u n f o r t u n a t e l y s e r i a l −P2b ”

cantrun=0

pr in t ” \n\n ”

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−c los ing statement

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

pr in t ” Jobs processed : ” , st r (len (mould tab le))

pr in t ”

−−”

d i s p l a y t a b l e (” r unn i ng tab le ”)

d i s p l a y t a b l e (” queue ing tab le ”)

d i s p l a y t a b l e (” s o r t i n g t a b l e ”)

d i s p l a y t a b l e (” resou rce tab le ”)

pr in t ” \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−system

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

for k in range (0 , len (resou rce tab le)) :

pr in t resou rce tab le [k]

pr in t ”

−−”

Appendix D

Appendix D: Application and

System Performance Profiler Code

Below is a truncated version of the ASPP code.

D.1 Code

! / usr / b in / python

−∗− coding : u t f −8 −∗−

#

A p p l i c a t i o n and System Performance P r o f i l e r T o o l k i t

A l l R ight Reserved : (c) Ibad Kureshi 2012

#

f i lename : aspp . py

#

This i s the main s t a r t i n g s c r i p t to launch the benchmarking s u i t e . I t i s c a l l e d

from the base i n s t a l l a t i o n o f the ASPP t o o l k i t . This program s t a r t s and ensures

a l l requ i red env v a r i a b l e s and con f i g f i l e s are c o r r e c t l y conf igured and present .

The program s t a r t s w i th an argument which r e f e r s to the f a m i l y o f benchmarks i t

must run . A f t e r the e r r o r checking aspp . py checks to see i f has a l ready run t h i s

f a m i l y o f benchmarks . I f not i t launches the pre−processor f u n c t i o n . I f i t has

a l ready run i t f i n d s a benchmarks/<bm−fami ly−name>.0 f i l e and so s t a r t s the post

processor .

245

Appendix D. ASPP Code 246

#

#

Headers

#

import sys

import os

sys . path . append (’ i nc ludes / ’)

import ofbm

import postofbm

#

f un c t i on s

#

def welcoMat () :

#

This f u n c t i o n j u s t pub l ishes program in fo rma t i on and i s c a l l e d my the main

f u n c t i o n .

#

pr in t ’ \ nApp l i ca t i on and System Performance P r o f i l e r v0.1−1 ’

pr in t ’ A l l R ight Reserved : (c) Ibad Kureshi 2012\n ’

#

welcoMat f u n c t i o n ends

#

def corrUsage () :

#

This f u n c t i o n pub l ishes the c o r r e c t methods to invoke the aspp t o o l k i t . I t

i s c a l l e d by the main f u n c t i o n i f the main f u n c t i o n f e e l s t h a t the way i t

has been invoked i s i n c o r r e c t or the benchmark con f i g f i l e i s missing

#

pr in t ’You are seeing t h i s message as ASPC was not i n s t a n t i a t e d c o r r e c t l y . The

c o r r e c t syntax i s : ’

pr in t ’ \n$ aspc <benchmark−name> \n ’

pr in t ’You must ensure t h a t a con f i g f i l e f o r the above benchmark i s present i n the

benchmarks \ n f o l d e r . Re la t i ve to the excut ion f o l d e r t h i s c o n f i g u r a t i o n f i l e

should be of the form \n . / benchmarks/<benchmark−name>. conf\n ’

#

corrUsage f u n c t i o n ends

#

def ex i tMat (myFLG) :

#

Appendix D. ASPP Code 247

This f u n c t i o n c loses o f f the program and outputs a d i f f e r e n t message depending

on whether i t was on a pre or post opera t ion cyc le . I t takes as argument a

s t r i n g t h a t dec lares e i t h e r pre or post .

#

i f myFLG == ’ post ’ :

pr in t ’ \nCompleted the post processing ’

pr in t ’ \nASPP has terminated wi th no e r r o r s ! ’

e l i f myFLG == ’ pre ’ :

pr in t ’ \nCompleted the pre−processing . Please ensure t h a t a l l jobs run through wi th

no ’

pr in t ’ e r r o r s . Then run aspp again to s t a r t the post−processor . ’

pr in t ’ \nASPP has terminated wi th no e r r o r s ! ’

pr in t ’ . . . Goodbye !\n ’

#

ex i tMat f u n c t i o n ends

#

#

main f u c t i o n

#

os . system (” c l ea r ”)

#

Er ro r handl ing to ensure there i s always an argument and t h a t the

c a l l to benchmark an a p p l i c a t i o n always has a l o c a l con f i g

#

i f len (sys . argv) < 2:

welcoMat ()

corrUsage ()

e x i t (1)

else :

welcoMat ()

pr in t ’ Benchmarking A p p l i c a t i o n : ’ + sys . argv [1] + ’ \n ’

c o n f F i l e = ’ benchmarks / ’ + sys . argv [1] + ’ . conf ’

t ry :

w i th open (c o n f F i l e) as f : pass

except IOError as e :

pr in t ’ F i l e ’ + c o n f F i l e + ’ not found\n ’

corrUsage ()

e x i t (1)

#

Appendix D. ASPP Code 248

Create a work fo lde r f o r the benchmarks

#

i f not os . path . e x i s t s (’ benchmarks / ’ +sys . argv [1]) :

os . makedirs (’ benchmarks / ’ +sys . argv [1])

#

Check i f t h i s i s a pre or post cyc le and c a l l approp r ia te f u n c t i o n s

#

s imF i le= ’ benchmarks / ’ + sys . argv [1] + ’ .0 ’

i f (os . path . i s f i l e (s imF i le)) :

pr in t ’ Found ’ + s imF i le + ’ . . . ’

postofbm . postBM (sys . argv [1] , con fF i l e , s imF i le)

ex i tMat (’ post ’)

else :

pr in t ’ Found only ’ + c o n f F i l e + ’ . . . ’

ofbm . parseBM (con fF i l e , sys . argv [1])

ex i tMat (’ pre ’)

e x i t (0)

! / usr / b in / python

−∗− coding : u t f −8 −∗−

#

A p p l i c a t i o n and System Performance P r o f i l e r T o o l k i t

A l l R ight Reserved : (c) Ibad Kureshi 2012

#

f i lename : ofbm . py

#

This f i l e i s loca ted i n the inc ludes / f o l d e r f o r aspp and i f c a l l e d on my the

main f u n c t i o n . I t i s used by the preprocessing f u n c t i o n s . A l i s t o f f u n c t i o n s

i n t h i s f i l e f o l l o w below along wi th VERY shor t d e s c r i p t i o n s o f what they do .

Deta i led d e s c r i p t i o n s can be found i n the comments a f t e r each f u n c t i o n

d e c l a r a t i o n .

#

Funct ions :

(1) parseBM − s t a r t the preprocessor , load a l l conf igs , generate a l l benchmarks ,

submit to the system , prep f o r post processor

(2) createAPPDB − create a record f o r the benchmark i n the a p p l i c a t i o n s tab le

i n the aspp database .

(3) submitSc − generate a job s c r i p t f o r each benchmark and create an app rp r i a te

work fo lde r f o r the p a r t i c u l a r benchmark job . submit the job

s c r i p t and r e t u r n the job number

Appendix D. ASPP Code 249

#

#

Headers

#

import ConfigParser , os , subprocess as sub , math , s h u t i l , t ime

import MySQLdb as mdb

#

a c lass s t r u c t u r e which w i l l hold an ar ray o f system c l a s s i f i c a t i o n s

#

class S t r u c t :

def i n i t (s e l f , name) :

s e l f . names = name

values = None

def parseBM (fi leName ,BMNAME) :

#

This i s the main pre−processor f u n c t i o n i n aspp and i s c a l l e d on by the main

program

The main program passes the l o c a t i o n f o r the benchmark c o n f i g u r a t i o n f i l e and the

base name f o r the f a m i l y o f benchmarks being run . This s c r i p t reads i n the system

and a p p l i c a t i o n c o n f i g u r a t i o n . Decides how many workloads and dataset combinat ions

t h a t need to be run and then assigns them cores according to the system

c l a s s i f i c a t i o n s .

Then i t c a l l s on the submitSc f u nc t i o ns to a c t u a l l y s t a r t the benchmarks . The main

f u n c t i o n keeps a record o f a l l the benchmarks run and t h e i r respec t i ve job numbers

i n

a f l a g f i l e which i s loca ted i n benchmarks/<bm−fami ly−name> .0. This f u n c t i o n then

c a l l s on createAPPDB which uploads the a p p l i c a t i o n i n fo rma t i on to mysql .

#

#

Read i n the con f i g f i l e s f o r the benchmark and system con f i g

#

configBm = Conf igParser . RawConfigParser ()

c o n f i g C l a s s i f = Conf igParser . RawConfigParser ()

configBm . read (f i leName)

#

Declare v a r i ab l e s

#

Appendix D. ASPP Code 250

#

v a r i a b l e s f o r the Benchmark Con f i gu ra t i on f i l e s

#

numWL = configBm . g e t i n t (’WORKLOADS ’ , ’ number−of−workloads ’)

metaWL = configBm . get (’WORKLOADS ’ , ’ workload−meta ’)

numMOD = configBm . g e t i n t (’MODELS ’ , ’ number−of−models ’)

metaMOD = configBm . get (’MODELS ’ , ’ model−meta ’)

wLoads = []

models = []

mClass = []

bmJob = []

#

Var iab les requ i red to parse the system c o n f i g u r a t i o n f i l e

#

counter = 0

systems = []

#

v a r i a b l e s to prepare data f o r the post processing phase

#

ofbmInput = open (’ benchmarks / ’ + BMNAME + ’ .0 ’ , ’w ’)

#

i d e n t i f y a l l the workloads and s t r i p them of meta

#

pr in t ’ \nFound ’ + st r (numWL) + ’ workloads to be run . ’

for x in range (0 ,numWL) :

wl = ’ workload− ’ + st r (x+1)

wLoads . append (configBm . get (’WORKLOADS ’ , wl))

pr in t ’ Workload number = ’ + st r (x+1) + ’ i s ’ + wLoads [x] + ’ ’ + metaWL

#

i d e n t i f y a l l datasets and s t r i p them of meta

#

pr in t ’ \nFound ’ + st r (numMOD) + ’ models to be run . ’

for x in range (0 ,numMOD) :

myClass = []

mo = ’ model− ’ + st r (x+1)

Appendix D. ASPP Code 251

c l = ’ c lass− ’ + st r (x+1)

models . append (configBm . get (’MODELS ’ , mo))

myClass . append (configBm . get (’MODELS ’ , c l))

bm = myClass [0] + ’−f i leName ’

myClass . append (configBm . get (’BENCHMARK−INPUTS ’ , bm))

mClass . append (myClass)

pr in t ’ Model number ’ + st r (x+1) + ’ i s ’ + models [x] + ’ ’ + metaMOD + ’ and i s

classed as ’ + mClass [x] [0] + ’ and has inpu t f i l e ’ + mClass [x] [1]

#

Read i n the a p p l i c a t i o n s p e c i f i c c o n f i g u r a t i o n to run the app .

#

launchCmd = configBm . get (’LAUNCHLINE ’ , ’ applaunch ’)

#

Read i n the system c l a s s i f i c a t i o n c o n f i g u r a t i o n

#

c o n f i g C l a s s i f . read (’ con f i g / sys in fo . conf ’)

numClass = c o n f i g C l a s s i f . g e t i n t (’CLASSIFICATIONS ’ , ’ number−of−c l a s s i f i c a t i o n s ’)

for counter in range (0 , numClass) :

serSt r ingN = ’ c l a s s i f i c a t i o n − ’ + st r (counter +1) + ’−name ’

serSt r ingV = ’ c l a s s i f i c a t i o n − ’ + st r (counter +1) + ’−values ’

temp0 = c o n f i g C l a s s i f . get (’CLASSIFICATIONS ’ , serSt r ingN)

systems . append (S t r u c t (temp0))

myValues = c o n f i g C l a s s i f . get (’CLASSIFICATIONS ’ , serSt r ingV)

temp = myValues . s p l i t (’ , ’)

systems [counter] . values = []

for i in range (len (temp)) :

systems [counter] . values . append (temp [i])

#

Begin loops to determine each benchmark job to run . This w i l l be #workload∗# dataset

∗ c l a s s i f i c a t i o n [] . C l a s s i f i c a t i o n always r e l a t e s to a t l e a s t 3 values

#

for x in range (0 ,numWL) :

for y in range (0 ,numMOD) :

for z in range (0 , len (systems)) :

i f systems [z] . names == mClass [y] [0] :

for numCores in systems [z] . values :

pr in t ’ Generat ing ’ + mClass [y] [0] + ’ benchmark job o f ’ + wLoads [x] + ’ ’ +

metaWL + ’ and ’ + models [y] + ’ ’ + metaMOD + ’ on ’ + numCores + ’ cores ’

Appendix D. ASPP Code 252

j o b i d = submitSc (numCores , mClass [y] [0] , mClass [y] [1] , wLoads [x] , models [y] ,

launchCmd ,BMNAME)

dump = st r (mClass [y] [0] + ’ ’ + wLoads [x] + ’ ’ + models [y] + ’ ’ + numCores + ’ ’ +

j o b i d + ’ \n ’)

ofbmInput . w r i t e (dump)

#

Upload the a p p l i c a t i o n d e t a i l s and meta i n fo rma t i on to backend database .

#

createAPPDB (BMNAME,metaMOD, metaWL)

#

Close a l l t e x t f i l e s

#

ofbmInput . c lose

#

parseBM f u n c t i o n ends

#

def createAPPDB (BMNAME,metaMOD, metaWL) :

#

This f u n c t i o n i s c a l l e d on by the parseBM f u n c t i o n from the preprocessor . I t i s

on ly

c a l l e d per run o f the pre−processor . I t takes as argument the base benchmark f a m i l y

name the meta name f o r the workload and the metaname f o r the model s izes . This

f u n c t i o n

reads the system c o n f i g u r a t i o n i n f o to get a l l the mysql r e l a t e d in fo rma t i on and

makes

a connect ion to mysql . Then i n the a p p l i c a t i o n s tab l e t h i s f u n c t i o n added the

benchmark

record which inc ludes the f a m i l y name and the two meta keywords .

#

conf igSys = Conf igParser . RawConfigParser ()

conf igSys . read (’ con f i g / sys in fo . conf ’)

mysqlHost = conf igSys . get (’MYSQL ’ , ’ mysql−host ’)

mysqlDB = conf igSys . get (’MYSQL ’ , ’ mysql−db ’)

mysqlUser = conf igSys . get (’MYSQL ’ , ’ mysql−user ’)

mysqlPass = conf igSys . get (’MYSQL ’ , ’ mysql−password ’)

con = mdb. connect (mysqlHost , mysqlUser , mysqlPass , mysqlDB) ;

w i th con :

cur = con . cursor ()

Appendix D. ASPP Code 253

st r = ” INSERT INTO a p p l i c a t i o n s (appName, workMeta , datameta) VALUES (’%s ’ , ’%s ’ , ’%s

’) ” % (BMNAME, metaWL,metaMOD)

cur . execute (st r)

pr in t ’ \nCreat ing database en t ry f o r Benchmarks : %s ’ % (BMNAME)

#

createAPPDB f u n c t i o n ends

#

def submitSc (nCores , mClass , i n p u t F i l e , wLoads , models , launchCmd ,BMNAME) :

#

This f u n c t i o n i s c a l l e d on by the parseBM f u n c t i o n from the preprocessor . I t i s

c a l l e d

f o r every benchmarking job t h a t needs to be created . This i s ca l cu la ted and

c o n t r o l l e d

i n a f o r loop i n the parent f u n c t i o n . This f u n c t i o n rec ieves as arguments the ’

number

o f cores requ i red ’ , ’ the c l a s s i f i c a t i o n o f t h i s job ’ , ’ the i npu t f i l e (f o r s td i n

purposes) ’ , ’ the workload s ize ’ , ’ the model s ize ’ , ’ the a p p l i c a t i o n invok ing

command ’ ,

’ the benchmark f a m i l y name ’ f o r the cu r ren t benchmark job i t e r a t i o n .

This f u n c t i o n then reads the system con f i g f i l e to populate env v a r i a b l e s r e l a t e d

to the

under l y ing batch system . # I t c reates a work fo lde r f o r the cu r ren t benchmark

i t e r a t i o n

and naviagates to i t . Depending on the type of batch i t goes i n t o an i f c o n d i t i o n .

Here

i t c reates a j o b f i l e f o r submission which i s batch s p e c i f i c and submits the job .

The

f u n c t i o n wai ts to capture the job number and then re tu rns t h i s to the main f u n c t i o n

.

#

#

Read i n system con f i g f i l e

#

con f i gSys in fo = Conf igParser . RawConfigParser ()

con f i gSys in fo . read (’ con f i g / sys in fo . conf ’)

#

get system c o n f i g u r a t i o n i n fo rma t i on

#

ppn = con f i gSys in fo . g e t i n t (’SYSTEM ’ , ’ proc−per−node ’)

jobManager = con f i gSys in fo . get (’WMS’ , ’ workload−manager ’)

Appendix D. ASPP Code 254

jobQueue = con f i gSys in fo . get (’WMS’ , ’ de fau l t−queue ’)

#

I d e n t i f y cu r ren t f o l de r , parent work f o l d e r and f i n a l work fo l de r , nav igate to

parent

#

bmId f i e r = BMNAME + ” ” + mClass + ” ” + st r (wLoads) + ” ” + st r (models) + ” ” + st r (

nCores)

oldDIR = os . getcwd ()

s rcFo l = (’ . . / ’ + BMNAME + ’− ’ + st r (wLoads) + ’− ’ + mClass)

os . c hd i r (’ benchmarks / ’ +BMNAME)

#

Copy A p p l i c a t i o n Inpu t F i l e s Generat ing F i na l Work f o l d e r s

#

s h u t i l . copytree (srcFol , bmId f i e r)

#

Ca lcu la te Number o f Nodes requ i red

#

numNodes = i n t (math . c e i l (f l o a t (nCores) / f l o a t (ppn)))

#

Begin Submission Run based on Job Scheduler . nav igate to f i n a l work f o l d e r

#

os . c hd i r (bmId f i e r)

i f jobManager == ’TORQUE ’ :

j o b F i l e = open (’ j o b s c r i p t . job ’ , ’w ’)

#

generate l i n e s f o r the j o b s c r i p t s t r i p p i n g place holders f o r dynamic elements l i k e

i npu t f i l e name and number o f cores

#

torque preamble = ” # ! / b in / bash\n#PBS − l nodes= ” + st r (numNodes) + ” : ppn= ” + st r (ppn)

+ ” \n#PBS − j oe\n#PBS −q ” + jobQueue + ” \n#PBS −N ” + bmId f i e r + ” \n ”

to rque env i ron = ” \ncd $PBS O WORKDIR\n\n ”

temp = launchCmd . rep lace (”%CORES%” , nCores)

f ina lLaunch = temp . rep lace (”%INPUTFILE%” , i n p u t F i l e)

j o b F i l e . w r i t e (torque preamble)

j o b F i l e . w r i t e (to rque env i ron)

j o b F i l e . w r i t e (f ina lLaunch)

Appendix D. ASPP Code 255

j o b F i l e . w r i t e (’ \n ’)

j o b F i l e . c lose

#

j o b f i l e does not seem to be w r i t t e n to d isk even though i t s closed above . the next

two l i n e s j u s t open the f i l e i n read mode and then closes i t . t h i s seems to ensure

t h a t the content i s w r i t t e n to d isk #FIXME(00001)

#

j o b F i l e = open (’ j o b s c r i p t . job ’ , ’ r ’)

j o b F i l e . c lose

#

submit job and capture job number

#

jobDIR = os . getcwd ()

jobTEMP = jobDIR + ’ / j o b s c r i p t . job ’

qsubPIPE = ” qsub ” + jobTEMP

p = sub . Popen ([qsubPIPE] , s tdou t=sub . PIPE , s h e l l =True)

output = p . communicate () [0] . r s t r i p (’ \n ’)

#

r e t u r n to program roo t and r e t u r n the job number back to the preprocessor

#

os . c hd i r (oldDIR)

return output

#

submitSc f u n c t i o n ends

#

! / usr / b in / python

−∗− coding : u t f −8 −∗−

#

A p p l i c a t i o n and System Performance P r o f i l e r T o o l k i t

A l l R ight Reserved : (c) Ibad Kureshi 2012

#

f i lename : ofbm . py

#

This f i l e i s loca ted i n the inc ludes / f o l d e r f o r aspp and i f c a l l e d on my the

main f u n c t i o n . I t i s used f o r the postprocess ing f u n c t i o n s . A l i s t o f f u n c t i o n s

i n t h i s f i l e f o l l o w below along wi th VERY shor t d e s c r i p t i o n s o f what they do .

Deta i led d e s c r i p t i o n s can be found i n the comments a f t e r each f u n c t i o n

d e c l a r a t i o n .

Appendix D. ASPP Code 256

#

Funct ions :

(1) postBM − s t a r t the postprocessor , load a l l conf igs , read a l l the executed

benchmarks in fo , get runt imes f o r each benchmark and upload

to mysql

(2) dispOut − a debug f u n c t i o n to dump to screen each benchmark job i n f o i n c l u d i n g

f i n a l run t imes .

(3) f indTime − go through the workload manager account ing logs to get ac tua l and

f i n a l run t ime f o r each benchmark job .

(4) bmDBPush − upload the benchmarking in fo rma t i on to mysql database

#

#

Headers

#

import ConfigParser , os , sys , subprocess as sub

import MySQLdb as mdb

def postBM (baseName , con fF i l e , f i leName) :

#

This i s the main postprocessor f u n c t i o n i n aspp and i s c a l l e d on by the main

program

The main program passes the l o c a t i o n f o r the benchmark c o n f i g u r a t i o n f i l e and the

base name f o r the f a m i l y o f benchmarks being run along wi th the f l a g f i l e set by

the

pre processor . This system reads i n the system con f i g f i l e and the f l a g f i l e and

creates an ar ray o f benchmark i n fo rma t i on and r e s u l t s . For each en t ry i n the ar ray

i t

c a l l s a f u n c t i o n to f i n d the f i n a l runt ime f o r t h a t job . With a l l the i n fo rma t i on

gathered i t s c a l l s on another f u n c t i o n to upload the in fo rma t i on to mysql .

#

#

Var iab les

#

conf igSys = Conf igParser . RawConfigParser ()

conf igSys . read (’ con f i g / sys in fo . conf ’)

mysqlHost = conf igSys . get (’MYSQL ’ , ’ mysql−host ’)

mysqlDB = conf igSys . get (’MYSQL ’ , ’ mysql−db ’)

mysqlUser = conf igSys . get (’MYSQL ’ , ’ mysql−user ’)

mysqlPass = conf igSys . get (’MYSQL ’ , ’ mysql−password ’)

WLM = conf igSys . get (’WMS’ , ’ workload−manager ’)

wmsHOME = conf igSys . get (’WMS’ , ’wms−home ’)

Appendix D. ASPP Code 257

counter = 0

bMarks = []

#

In fo rma t i on Mat

#

pr in t ’ \ n I t would appear t h a t the benchmark f o r ’ + baseName + ’ i n ’ + c o n f F i l e + ’

has been run a l ready ’

pr in t ’ S t a r t i n g Post Processing f o r ’ + baseName + ’ benchmarks\n ’

#

Read i n the meta i n fo rma t i on o f the execute benchmarks

#

s i m f i l e = f i l e (f i leName , ’ r ’)

for l i n e in s i m f i l e :

i f l i n e . s t a r t s w i t h (’ [’) :

pass

else :

record = l i n e . s p l i t ()

bMarks . append (record)

counter = counter + 1

s i m f i l e . c lose

pr in t ’ Found ’ + st r (counter) + ’ benchmarks to process .\n ’

for i in range (0 , counter) :

timetemp=f indTime (wmsHOME, WLM, bMarks [i] [4])

bMarks [i] . append (timetemp)

bmDBPush(mysqlHost , mysqlPass , mysqlUser , mysqlDB , bMarks , counter , baseName)

#

Parsed Output Screen Disp lay f u c t i o n . − Use only f o r debug purposes

#

#dispOut (bMarks , counter)

#

postBM f u n c t i o n ends

#

def dispOut (input , counter) :

#

Appendix D. ASPP Code 258

This i s a debugging f u n c t i o n and i s usua l l y c a l l e d on by postBM of the post

processor . I t takes as argument the 2D ar ray o f benchmarking r e s u l t s and the

s ize o f the ar ray . Then outputs the r e s u l t s to screen .

#

for i in range (0 , counter) :

pr in t ’ \n==== Benchmark Number ’ + st r (i +1) + ’ ==== ’

for j in range (0 ,6) :

i f j == 0 :

pr in t ’ Benchmark C l a s s i f i c a t i o n : ’ + input [i] [j]

e l i f j == 1 :

pr in t ’ Benchmark Workload : ’ + input [i] [j]

e l i f j == 2 :

pr in t ’ Benchmark Dataset : ’ + input [i] [j]

e l i f j == 3 :

pr in t ’ Benchmark Resource (cores) : ’ + input [i] [j]

e l i f j == 4 :

pr in t ’ Benchmark Job ID : ’ + input [i] [j]

e l i f j == 5 :

pr in t ’ Benchmark Time : ’ + st r (input [i] [j])

#

dispOut f u n c t i o n ends

#

def f indTime (wmsHOME,WLM, jobID) :

#

This f u n c t i o n i s c a l l e d on by the postBM f u n c t i o n from the postprocessor . I t i s

c a l l e d

f o r every benchmarking job t h a t was run by the preprocessor . I t takes as argument

the

Workload manager i n fo rma t i on and the jobID f o r the benchmark job t h a t i s being post

processed . Using t h a t job ID i t t rave rses the account ing i n fo rma t i on f o r the

workload

manager and f i n d s the f i n a l running t ime of t h a t job . This i s then re tu rns the

f i n a l

t ime a f t e r conver t ing i t to seconds . I f i t can not f i n d the t ime i t r e tu rns a 0.

#

bmTime = 0

#

s t a r t t r a v e r s a l o f account ing logs based on the workload manager

#

i f WLM == ’TORQUE ’ :

Appendix D. ASPP Code 259

#

e s s e n t i a l l y the f o l l o w bash statement needs to be run to get the account ing

i n fo rma t i on

(see below) . Cu r ren t l y the i n fo rma t i on i s gathered using a system c a l l to bash (#

FIXME(00002))

Since there are th ree pipes these are passed sepe ra t l y through pythons popen

mechanisms

#

cat ‘ grep − r l ” JOBID ” / var / spool / torque / s e r v e r p r i v / account ing / ‘ | grep ”E ; JOBID ”

| t a i l −c 9

#

f i n d F i l e = ’ ca t ‘ grep − r l ” ’ + jobID + ’ ” ’ + wmsHOME + ’ / s e r v e r p r i v / account ing / ‘ ’

g repSt r ing = ” grep ’E ; ” + jobID + ” ’ ”

t a i l S t r i n g = ” t a i l −c 9 ”

p i p e F i l e = sub . Popen ([f i n d F i l e] , s tdou t=sub . PIPE , s h e l l =True)

pipeGrep = sub . Popen ([g repSt r ing] , s t d i n = p i p e F i l e . s tdout , s tdou t=sub . PIPE , s h e l l =True)

p = sub . Popen ([t a i l S t r i n g] , s t d i n =pipeGrep . stdout , s tdou t=sub . PIPE , s t d e r r =sub . PIPE ,

s h e l l =True)

#

run the s t r i n g s and c o l l e c t the output . S t r i p p i n g i t o f new l i n e s and ’ : ’ to get

hours minutes

and seconds . Every th i ng i s reduced to seconds and then re turned to the mains or

i f no records

found then 0 i s re tu rned

#

output = p . communicate () [0] . r s t r i p (’ \n ’)

f t ime = output . s p l i t (’ : ’)

i f output :

bmTime = (i n t (f t i me [0]) ∗3600) +(i n t (f t i me [1]) ∗60)+ i n t (f t i me [2])

else :

bmTime=0

return bmTime

#

f indTime f u n c t i o n ends

#

def bmDBPush(mysqlHost , mysqlPass , mysqlUser , mysqlDB , bMarks , counter , baseName) :

#

This f u n c t i o n i s c a l l e d on by the postBM f u n c t i o n from the postprocessor . I t i s

c a l l e d

once by the postprocessor . I t takes as arguments the mysql con f i g i n f o . a 2d ar ray

o f

Appendix D. ASPP Code 260

benchmark r es u l t s , the s ize o f the ar ray and the f a m i l y name of the benchmark . This

f u n c t i o n makes a connect ion to the database and then t rave rses the 2d array ,

uploading

each row i n t o the ar ray to a new record i n the database tab l e .

#

con = mdb. connect (mysqlHost , mysqlUser , mysqlPass , mysqlDB) ;

w i th con :

cur = con . cursor ()

for i in range (0 , counter) :

st r = ” INSERT INTO benchmarks (appName, workload , dataset , cores , t ime) VALUES (’%s

’ , ’%s ’ , ’%s ’ , ’%s ’ , ’%s ’) ” % (baseName , bMarks [i] [1] , bMarks [i] [2] , bMarks [i] [3] ,

bMarks [i] [5])

cur . execute (st r)

pr in t ’ Uploading Record %d of %d . ’ % (i +1 , counter)

#

bmDBPush f u n c t i o n ends

#

Appendix E

Appendix E: Simulated Outputs

This appendix contains the on-screen output generated by the simulator against

the three datasets from A. Due to the size of the dataset, verbose output settings

and high debug levels (for verification) the output currently stands at 998976

lines for each of the three runs. In the interest of space these output screens

have been truncated to 200 lines each (including white space). Each section of

truncated data is depicted with a ’[...]’. Full outputs may be downloaded from:

http://www.ibadkureshi.com/thesis/appendix-e.zip.

E.1 Real data First Come First Served (FCFS)

Cluster Discrete Event Simulator!

Launching...

Reading algorithm ... fcfs-bf-algo

Reading system definition ... resources.txt

Reading job trace/../logs/original.log

--------------------------inittab-----------------------------

261

Appendix E. Simulated Outputs 262

Job No ctime nodes ppn Duration Start End

[...]

77747.0 1364999418 1 4 54 1364999418 1364999472

77761.0 1364999649 1 4 23758 1364999649 1365023407

77778.0 1365000012 1 4 15619 1365018811 1365034430

77776.0 1364999966 1 4 19777 1365018810 1365038587

77775.0 1364999921 1 4 22490 1365017691 1365040181

77738.0 1364999320 1 4 63540 1364999320 1365062860

77768.0 1364999749 1 4 71385 1365002242 1365073627

77733.0 1364999241 1 4 75661 1364999241 1365074902

101863.0 1366640324 8 4 64808 1366640325 1366705133

101864.0 1366706619 8 4 18 1366706619 1366706637

[...]

77182.0 1364858024 2 4 10 1364858024 1364858034

77181.0 1364858011 2 4 32 1364858011 1364858043

77183.0 1364858154 2 4 28 1364858154 1364858182

77184.0 1364858161 2 4 30 1364858161 1364858191

77185.0 1364858167 2 4 27 1364858167 1364858194

77186.0 1364858172 2 4 24 1364858172 1364858196

77187.0 1364858182 2 4 33 1364858182 1364858215

77192.0 1364907453 2 4 29 1364907453 1364907482

77193.0 1364907469 2 4 26 1364907469 1364907495

77194.0 1364907481 2 4 23 1364907481 1364907504

[...]

78715.0 1365027644 3 4 31 1365036667 1365036698

79221.0 1365071243 3 4 27 1365071243 1365071270

79251.0 1365072064 3 4 31 1365072064 1365072095

79348.0 1365074292 3 4 31 1365074292 1365074323

79365.0 1365074685 3 4 27 1365074686 1365074713

Appendix E. Simulated Outputs 263

79397.0 1365075452 2 4 23 1365075452 1365075475

79409.0 1365075736 3 4 128 1365075736 1365075864

79432.0 1365076375 3 4 38 1365076375 1365076413

79462.0 1365076875 2 4 97 1365076876 1365076973

79537.0 1365078333 2 4 189 1365078703 1365078892

[...]

73207.0 1366897046 2 4 169930 1366970945 1367140875

73269.0 1366898750 2 4 94531 1366970967 1367065498

73002.0 1366889417 2 4 169911 1366889417 1367059328

75252.0 1366982459 2 4 35 1367034615 1367034650

75251.0 1366982458 2 4 51 1367034545 1367034596

75250.0 1366982457 2 4 24 1367034514 1367034538

75249.0 1366982457 2 4 28 1367034457 1367034485

75248.0 1366982457 2 4 18 1367034428 1367034446

75247.0 1366982456 2 4 14 1367034403 1367034417

75246.0 1366982454 2 4 17 1367034373 1367034390

[...]

--

--

New Job is: 77174.0 at time 1364857972

--

Allocating job : 77174.0 2 4

Making Allocation: 2 4 at: [0, 0, 0, 1, 0, 2, 0, 3, 1, 0, 1, 1, 1, 2, 1, 3]

---------------------------system-----------------------------

[0, 0, 0, 0]

[0, 0, 0, 0]

[1, 1, 1, 1]

Appendix E. Simulated Outputs 264

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

-------------------------running-------------------------------

Job No ctime nodes ppn Duration Start End Alloc

77174.0 1364857972 2 4 114053 1364857972 1364972025

[0, 0, 0, 1, 0, 2, 0, 3, 1, 0, 1, 1, 1, 2, 1, 3]

Queued table is empty

Sorting table is empty

New Job is: 77175.0 at time 1364857977

Allocating job : 77175.0 2 4

Making Allocation: 2 4 at: [2, 0, 2, 1, 2, 2, 2, 3, 3, 0, 3, 1, 3, 2, 3, 3]

Appendix E. Simulated Outputs 265

--------------------------system-------------------------------

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

--

-------------------------------running--------------------------

Job No ctime nodes ppn Duration Start End Alloc

77174.0 1364857972 2 4 114053 1364857972 1364972025

[0, 0, 0, 1, 0, 2, 0, 3, 1, 0, 1, 1, 1, 2, 1, 3]

77175.0 1364857977 2 4 117187 1364857977 1364975164

[2, 0, 2, 1, 2, 2, 2, 3, 3, 0, 3, 1, 3, 2, 3, 3]

--

Queued table is empty

Appendix E. Simulated Outputs 266

------------------------------sorting---------------------------

Trigger Job No Queue

1364972025 77174.0 R

--

--

New Job is: 77176.0 at time 1364857985

--

Allocating job : 77176.0 2 4

Making Allocation: 2 4 at: [4, 0, 4, 1, 4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3]

-------------------------------system---------------------------

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

Appendix E. Simulated Outputs 267

[1, 1, 1, 1]

---------------------------running-------------------------------

Job No ctime nodes ppn Duration Start End Alloc

77174.0 1364857972 2 4 114053 1364857972 1364972025

[0, 0, 0, 1, 0, 2, 0, 3, 1, 0, 1, 1, 1, 2, 1, 3]

77175.0 1364857977 2 4 117187 1364857977 1364975164

[2, 0, 2, 1, 2, 2, 2, 3, 3, 0, 3, 1, 3, 2, 3, 3]

77176.0 1364857984 2 4 115260 1364857985 1364973245

[4, 0, 4, 1, 4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3]

Queued table is empty

-----------------------------sorting-----------------------------

Trigger Job No Queue

1364972025 77174.0 R

1364975164 77175.0 R

New Job is: 77177.0 at time 1364857991

Allocating job : 77177.0 2 4

Making Allocation: 2 4 at: [6, 0, 6, 1, 6, 2, 6, 3, 7, 0, 7, 1, 7, 2, 7, 3]

-----------------------------system------------------------------

[0, 0, 0, 0]

[0, 0, 0, 0]

Appendix E. Simulated Outputs 268

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

----------------------------running------------------------------

Job No ctime nodes ppn Duration Start End Alloc

77174.0 1364857972 2 4 114053 1364857972 1364972025

[0, 0, 0, 1, 0, 2, 0, 3, 1, 0, 1, 1, 1, 2, 1, 3]

77175.0 1364857977 2 4 117187 1364857977 1364975164

[2, 0, 2, 1, 2, 2, 2, 3, 3, 0, 3, 1, 3, 2, 3, 3]

77176.0 1364857984 2 4 115260 1364857985 1364973245

[4, 0, 4, 1, 4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3]

77177.0 1364857991 2 4 112162 1364857991 1364970153

[6, 0, 6, 1, 6, 2, 6, 3, 7, 0, 7, 1, 7, 2, 7, 3]

Queued table is empty

Appendix E. Simulated Outputs 269

----------------------------sorting------------------------------

Trigger Job No Queue

1364972025 77174.0 R

1364973245 77176.0 R

1364975164 77175.0 R

New Job is: 77178.0 at time 1364857996

Allocating job : 77178.0 2 4

Making Allocation: 2 4 at: [8, 0, 8, 1, 8, 2, 8, 3, 9, 0, 9, 1, 9, 2, 9, 3]

[...]

Calling inside while (poped jobs)

---------------------------sorting-------------------------------

Trigger Job No Queue

1366707149 101867.0 Q

1367855347 101863.0 R

Setting a Queued job with index: 0 and jobid: 101867.0 to running

Allocating job : 101867.0 8 4

Making Allocation: 8 4 at: [2, 0, 2, 1, 2, 2, 2, 3, 3, 0, 3, 1, 3, 2, 3, 3, 6,

----------------------------system-------------------------------

[0, 0, 0, 0]

[0, 0, 0, 0]

Appendix E. Simulated Outputs 270

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[1, 1, 1, 1]

-----------------------------running-----------------------------

Job No ctime nodes ppn Duration Start End Alloc

101863.0 1366640324 8 4 64808 1367790539 1367855347

[0, 0, 0, 1, 0, 2, 0, 3, 1, 0, 1, 1, 1, 2, 1, 3, 4, 0, 4,

1, 4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3, 12, 0, 12, 1, 12,

2, 12, 3, 13, 0, 13, 1, 13, 2, 13, 3, 14, 0, 14, 1, 14, 2

, 14, 3, 15, 0, 15, 1, 15, 2, 15, 3]

101867.0 1366707149 8 4 72166 1367824858 1367897024

[2, 0, 2, 1, 2, 2, 2, 3, 3, 0, 3, 1, 3, 2, 3, 3, 6, 0, 6,

1, 6, 2, 6, 3, 7, 0, 7, 1, 7, 2, 7, 3, 8, 0, 8, 1, 8, 2,

8, 3, 9, 0, 9, 1, 9, 2, 9, 3, 10, 0, 10, 1, 10, 2, 10, 3,

11, 0, 11, 1, 11, 2, 11, 3]

Appendix E. Simulated Outputs 271

------------------------------queueing---------------------------

Job No ctime nodes ppn Duration

101867.0 1366707149 8 4 72166

----------------------------sorting------------------------------

Trigger Job No Queue

1366707149 101867.0 Q

1367855347 101863.0 R

Popping: 101863.0 from [0, 0, 0, 1, 0, 2, 0, 3, 1, 0, 1, 1, 1, 2, 1, 3, 4,

0, 4, 1, 4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3, 12, 0, 12, 1, 12, 2, 12, 3, 13, 0,

13, 1, 13, 2, 13, 3, 14, 0, 14, 1, 14, 2, 14, 3, 15, 0, 15, 1, 15, 2, 15, 3]

Calling inside while (poped jobs)

---------------------------sorting-------------------------------

Trigger Job No Queue

1367897024 101867.0 R

Popping: 101867.0 from [2, 0, 2, 1, 2, 2, 2, 3, 3, 0, 3, 1, 3, 2, 3, 3, 6,

0, 6, 1, 6, 2, 6, 3, 7, 0, 7, 1, 7, 2, 7, 3, 8, 0, 8, 1, 8, 2, 8, 3, 9, 0, 9,

1, 9, 2, 9, 3, 10, 0, 10, 1, 10, 2, 10, 3, 11, 0, 11, 1, 11, 2, 11, 3]

Calling inside while (poped jobs)

Sorting table is empty

Appendix E. Simulated Outputs 272

--------------------closing statement----------------------------

Jobs processed: 1150

Running table is empty

Queued table is empty

Sorting table is empty

-------------------------------system----------------------------

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

Appendix E. Simulated Outputs 273

E.2 Normalised data with FCFS

Cluster Discrete Event Simulator!

Launching...

Reading algorithm ... fcfs-bf-algo

Reading system definition ... resources.txt

Reading job trace/../logs/normalised_moulded.log

-------------------------inittab------------------------------

Job No ctime nodes ppn Duration Start End

73207.0 1366897046 2 4 128698 1366970945 1367099643

73269.0 1366898750 2 4 128698 1366970967 1367099665

73002.0 1366889417 2 4 128698 1366889417 1367018115

75252.0 1366982459 2 4 43 1367034615 1367034658

75251.0 1366982458 2 4 43 1367034545 1367034588

75250.0 1366982457 2 4 43 1367034514 1367034557

75249.0 1366982457 2 4 43 1367034457 1367034500

75248.0 1366982457 2 4 43 1367034428 1367034471

75247.0 1366982456 2 4 43 1367034403 1367034446

75246.0 1366982454 2 4 43 1367034373 1367034416

[...]

77747.0 1364999418 1 4 82850 1364999418 1365082268

77761.0 1364999649 1 4 82850 1364999649 1365082499

77778.0 1365000012 1 4 82850 1365018811 1365101661

77776.0 1364999966 1 4 82850 1365018810 1365101660

77775.0 1364999921 1 4 82850 1365017691 1365100541

77738.0 1364999320 1 4 63540 1364999320 1365062860

77768.0 1364999749 1 4 71385 1365002242 1365073627

77733.0 1364999241 1 4 75661 1364999241 1365074902

Appendix E. Simulated Outputs 274

101863.0 1366640324 8 4 161256 1366640325 1366801581

101864.0 1366706619 8 4 17 1366706619 1366706636

[...]

77182.0 1364858024 2 4 26 1364858024 1364858050

77181.0 1364858011 2 4 26 1364858011 1364858037

77183.0 1364858154 2 4 26 1364858154 1364858180

77184.0 1364858161 2 4 26 1364858161 1364858187

77185.0 1364858167 2 4 26 1364858167 1364858193

77186.0 1364858172 2 4 26 1364858172 1364858198

77187.0 1364858182 2 4 26 1364858182 1364858208

77192.0 1364907453 2 4 26 1364907453 1364907479

77193.0 1364907469 2 4 26 1364907469 1364907495

77194.0 1364907481 2 4 26 1364907481 1364907507

[...]

78715.0 1365027644 3 4 156 1365036667 1365036823

79221.0 1365071243 3 4 156 1365071243 1365071399

79251.0 1365072064 3 4 156 1365072064 1365072220

79348.0 1365074292 3 4 156 1365074292 1365074448

79365.0 1365074685 3 4 156 1365074686 1365074842

79397.0 1365075452 2 4 156 1365075452 1365075608

79409.0 1365075736 3 4 156 1365075736 1365075892

79432.0 1365076375 3 4 156 1365076375 1365076531

79462.0 1365076875 2 4 156 1365076876 1365077032

79537.0 1365078333 2 4 156 1365078703 1365078859

[...]

--

--

New Job is: 77174.0 at time 1364857972

Appendix E. Simulated Outputs 275

--

Allocating job : 77174.0 2 4

Making Allocation: 2 4 at: [0, 0, 0, 1, 0, 2, 0, 3, 1, 0, 1, 1, 1, 2, 1, 3]

---------------------------system-----------------------------

[0, 0, 0, 0]

[0, 0, 0, 0]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

--

------------------------------running---------------------------

Job No ctime nodes ppn Duration Start End Alloc

77174.0 1364857972 2 4 116864 1364857972 1364974836

[0, 0, 0, 1, 0, 2, 0, 3, 1, 0, 1, 1, 1, 2, 1, 3]

--

Appendix E. Simulated Outputs 276

Queued table is empty

Sorting table is empty

--

New Job is: 77175.0 at time 1364857977

--

Allocating job : 77175.0 2 4

Making Allocation: 2 4 at: [2, 0, 2, 1, 2, 2, 2, 3, 3, 0, 3, 1, 3, 2, 3, 3]

---------------------------system-------------------------------

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

Appendix E. Simulated Outputs 277

---------------------------running-------------------------------

Job No ctime nodes ppn Duration Start End Alloc

77174.0 1364857972 2 4 116864 1364857972 1364974836

[0, 0, 0, 1, 0, 2, 0, 3, 1, 0, 1, 1, 1, 2, 1, 3]

77175.0 1364857977 2 4 116864 1364857977 1364974841

[2, 0, 2, 1, 2, 2, 2, 3, 3, 0, 3, 1, 3, 2, 3, 3]

Queued table is empty

-------------------------sorting---------------------------------

Trigger Job No Queue

1364974836 77174.0 R

New Job is: 77176.0 at time 1364857985

Allocating job : 77176.0 2 4

Making Allocation: 2 4 at: [4, 0, 4, 1, 4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3]

----------------------------system-------------------------------

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[1, 1, 1, 1]

[1, 1, 1, 1]

Appendix E. Simulated Outputs 278

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

--

----------------------------running-------------------------------

Job No ctime nodes ppn Duration Start End Alloc

77174.0 1364857972 2 4 116864 1364857972 1364974836

[0, 0, 0, 1, 0, 2, 0, 3, 1, 0, 1, 1, 1, 2, 1, 3]

77175.0 1364857977 2 4 116864 1364857977 1364974841

[2, 0, 2, 1, 2, 2, 2, 3, 3, 0, 3, 1, 3, 2, 3, 3]

77176.0 1364857984 2 4 116864 1364857985 1364974849

[4, 0, 4, 1, 4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3]

--

Queued table is empty

------------------------sorting-----------------------------------

Trigger Job No Queue

1364974836 77174.0 R

1364974841 77175.0 R

--

--

Appendix E. Simulated Outputs 279

New Job is: 77177.0 at time 1364857991

--

Allocating job : 77177.0 2 4

Making Allocation: 2 4 at: [6, 0, 6, 1, 6, 2, 6, 3, 7, 0, 7, 1, 7, 2, 7, 3]

-------------------------------system-----------------------------

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

--

--------------------------------running---------------------------

Job No ctime nodes ppn Duration Start End Alloc

77174.0 1364857972 2 4 116864 1364857972 1364974836

[0, 0, 0, 1, 0, 2, 0, 3, 1, 0, 1, 1, 1, 2, 1, 3]

Appendix E. Simulated Outputs 280

77175.0 1364857977 2 4 116864 1364857977 1364974841

[2, 0, 2, 1, 2, 2, 2, 3, 3, 0, 3, 1, 3, 2, 3, 3]

77176.0 1364857984 2 4 116864 1364857985 1364974849

[4, 0, 4, 1, 4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3]

77177.0 1364857991 2 4 116864 1364857991 1364974855

[6, 0, 6, 1, 6, 2, 6, 3, 7, 0, 7, 1, 7, 2, 7, 3]

--

Queued table is empty

-------------------------------sorting----------------------------

Trigger Job No Queue

1364974836 77174.0 R

1364974841 77175.0 R

1364974849 77176.0 R

--

--

New Job is: 77178.0 at time 1364857996

--

Allocating job : 77178.0 2 4

Making Allocation: 2 4 at: [8, 0, 8, 1, 8, 2, 8, 3, 9, 0, 9, 1, 9, 2, 9, 3]

[...]

--------------------------------system----------------------------

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

Appendix E. Simulated Outputs 281

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[0, 0, 0, 0]

[1, 1, 1, 1]

--

----------------------------running-------------------------------

Job No ctime nodes ppn Duration Start End Alloc

101863.0 1366640324 8 4 161256 1367793937 1367955193

[7, 0, 7, 1, 7, 2, 7, 3, 8, 0, 8, 1, 8, 2, 8, 3

, 9, 0, 9, 1, 9, 2, 9, 3, 10, 0, 10, 1, 10, 2,

10, 3, 11, 0, 11, 1, 11, 2, 11, 3, 12, 0, 12, 1

, 12, 2, 12, 3, 13, 0, 13, 1, 13, 2, 13, 3, 15,

0, 15, 1, 15, 2, 15, 3]

101867.0 1366707149 8 4 161256 1367826862 1367988118

[0, 0, 0, 1, 0, 2, 0, 3, 1, 0, 1, 1, 1, 2, 1, 3

, 2, 0, 2, 1, 2, 2, 2, 3, 3, 0, 3, 1, 3, 2, 3,

3, 4, 0, 4, 1, 4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5

, 3, 6, 0, 6, 1, 6, 2, 6, 3, 14, 0, 14, 1, 14,

2, 14, 3]

Appendix E. Simulated Outputs 282

-----------------------------queueing------------------------------

Job No ctime nodes ppn Duration

101867.0 1366707149 8 4 161256

----------------------------sorting--------------------------------

Trigger Job No Queue

1366707149 101867.0 Q

1367955193 101863.0 R

Popping: 101863.0 from [7, 0, 7, 1, 7, 2, 7, 3, 8, 0, 8, 1, 8, 2, 8, 3, 9,

0, 9, 1, 9, 2, 9, 3, 10, 0, 10, 1, 10, 2, 10, 3, 11, 0, 11, 1, 11, 2, 11, 3,

12, 0, 12, 1, 12, 2, 12, 3, 13, 0, 13, 1, 13, 2, 13, 3, 15, 0, 15, 1, 15, 2,

15, 3]

Calling inside while (poped jobs)

---------------------------sorting---------------------------------

Trigger Job No Queue

1367988118 101867.0 R

Popping: 101867.0 from [0, 0, 0, 1, 0, 2, 0, 3, 1, 0, 1, 1, 1, 2, 1, 3, 2,

0, 2, 1, 2, 2, 2, 3, 3, 0, 3, 1, 3, 2, 3, 3, 4, 0, 4, 1, 4, 2, 4, 3, 5, 0, 5,

1, 5, 2, 5, 3, 6, 0, 6, 1, 6, 2, 6, 3, 14, 0, 14, 1, 14, 2, 14, 3]

Calling inside while (poped jobs)

Sorting table is empty

-------------------------closing statement-------------------------

Appendix E. Simulated Outputs 283

Jobs processed: 1150

Running table is empty

Queued table is empty

Sorting table is empty

--------------------------------system----------------------------

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

--

Appendix E. Simulated Outputs 284

E.3 Normalised data with Moulding

Cluster Discrete Event Simulator!

Launching...

Reading algorithm ... mould-algo

Reading system definition ... resources.txt

Reading job trace/../logs/normalised_moulded.log

---------------------------moulding-------------------------------------

Job No User ctime App Workload Dataset Nodes Ppn

RNode R_Ppn Duration Benchmark Data

73207.0 mduser1 1366897046 dlpoly 900000 4000 4 4

0 0 72566 [(12L, 90018), (8L, 128698), (4L, 592012), (16L, 72566)]

73269.0 mduser1 1366898750 dlpoly 900000 4000 4 4

0 0 72566 [(12L, 90018), (8L, 128698), (4L, 592012), (16L, 72566)]

73002.0 mduser1 1366889417 dlpoly 900000 4000 4 4

0 0 72566 [(12L, 90018), (8L, 128698), (4L, 592012), (16L, 72566)]

75252.0 mduser1 1366982459 dlpoly 300 4000 4 4

0 0 25 [(12L, 31), (8L, 43), (4L, 198), (16L, 25)]

75251.0 mduser1 1366982458 dlpoly 300 4000 4 4

0 0 25 [(12L, 31), (8L, 43), (4L, 198), (16L, 25)]

75250.0 mduser1 1366982457 dlpoly 300 4000 4 4

0 0 25 [(12L, 31), (8L, 43), (4L, 198), (16L, 25)]

75249.0 mduser1 1366982457 dlpoly 300 4000 4 4

0 0 25 [(12L, 31), (8L, 43), (4L, 198), (16L, 25)]

75248.0 mduser1 1366982457 dlpoly 300 4000 4 4

0 0 25 [(12L, 31), (8L, 43), (4L, 198), (16L, 25)]

75247.0 mduser1 1366982456 dlpoly 300 4000 4 4

0 0 25 [(12L, 31), (8L, 43), (4L, 198), (16L, 25)]

Appendix E. Simulated Outputs 285

75246.0 mduser1 1366982454 dlpoly 300 4000 4 4

0 0 25 [(12L, 31), (8L, 43), (4L, 198), (16L, 25)]

[...]

77747.0 mduser2 1364999418 dlpoly 5000000 500 1 4

0 0 82850 [(6L, 229075), (4L, 82850), (2L, 145510)]

77761.0 mduser2 1364999649 dlpoly 5000000 500 1 4

0 0 82850 [(6L, 229075), (4L, 82850), (2L, 145510)]

77775.0 mduser2 1364999921 dlpoly 5000000 500 1 4

0 0 82850 [(6L, 229075), (4L, 82850), (2L, 145510)]

77776.0 mduser2 1364999966 dlpoly 5000000 500 1 4

0 0 82850 [(6L, 229075), (4L, 82850), (2L, 145510)]

77778.0 mduser2 1365000012 dlpoly 5000000 500 1 4

0 0 82850 [(6L, 229075), (4L, 82850), (2L, 145510)]

77738.0 mduser2 1364999320 dlpoly 5000000 500 1 4

0 0 82850 [(6L, 229075), (4L, 82850), (2L, 145510)]

77768.0 mduser2 1364999749 dlpoly 5000000 500 1 4

0 0 82850 [(6L, 229075), (4L, 82850), (2L, 145510)]

77733.0 mduser2 1364999241 dlpoly 5000000 500 1 4

0 0 82850 [(6L, 229075), (4L, 82850), (2L, 145510)]

101863.0 mduser2 1366640324 dlpoly 1000000 8000 4 4

0 0 161256 [(12L, 200038), (8L, 285994), (4L, 1315582), (16L, 161256)]

101864.0 mduser2 1366706619 dlpoly 100 8000 4 4

0 0 17 [(12L, 21), (8L, 29), (4L, 132), (16L, 17)]

[...]

77181.0 cfduser1 1364858011 fluent 1 16000000 3 4

0 0 1 [(12L, 17), (8L, 26), (16L, 23), (14L, 1)]

77182.0 cfduser1 1364858024 fluent 1 16000000 3 4

0 0 1 [(12L, 17), (8L, 26), (16L, 23), (14L, 1)]

77183.0 cfduser1 1364858154 fluent 1 16000000 3 4

Appendix E. Simulated Outputs 286

0 0 1 [(12L, 17), (8L, 26), (16L, 23), (14L, 1)]

77184.0 cfduser1 1364858161 fluent 1 16000000 3 4

0 0 1 [(12L, 17), (8L, 26), (16L, 23), (14L, 1)]

77185.0 cfduser1 1364858167 fluent 1 16000000 3 4

0 0 1 [(12L, 17), (8L, 26), (16L, 23), (14L, 1)]

77186.0 cfduser1 1364858172 fluent 1 16000000 3 4

0 0 1 [(12L, 17), (8L, 26), (16L, 23), (14L, 1)]

77187.0 cfduser1 1364858182 fluent 1 16000000 3 4

0 0 1 [(12L, 17), (8L, 26), (16L, 23), (14L, 1)]

77192.0 cfduser1 1364907453 fluent 1 16000000 3 4

0 0 1 [(12L, 17), (8L, 26), (16L, 23), (14L, 1)]

77193.0 cfduser1 1364907469 fluent 1 16000000 3 4

0 0 1 [(12L, 17), (8L, 26), (16L, 23), (14L, 1)]

77194.0 cfduser1 1364907481 fluent 1 16000000 3 4

0 0 1 [(12L, 17), (8L, 26), (16L, 23), (14L, 1)]

[...]

78715.0 cfduser2 1365027644 fluent 12 8100000 3 4

0 0 98 [(8L, 156), (12L, 98), (16L, 136), (4L, 302)]

79221.0 cfduser2 1365071243 fluent 12 8100000 3 4

0 0 98 [(8L, 156), (12L, 98), (16L, 136), (4L, 302)]

79251.0 cfduser2 1365072064 fluent 12 8100000 3 4

0 0 98 [(8L, 156), (12L, 98), (16L, 136), (4L, 302)]

79348.0 cfduser2 1365074292 fluent 12 8100000 3 4

0 0 98 [(8L, 156), (12L, 98), (16L, 136), (4L, 302)]

79365.0 cfduser2 1365074685 fluent 12 8100000 3 4

0 0 98 [(8L, 156), (12L, 98), (16L, 136), (4L, 302)]

79397.0 cfduser2 1365075452 fluent 12 8100000 3 4

0 0 98 [(8L, 156), (12L, 98), (16L, 136), (4L, 302)]

79409.0 cfduser2 1365075736 fluent 12 8100000 3 4

Appendix E. Simulated Outputs 287

0 0 98 [(8L, 156), (12L, 98), (16L, 136), (4L, 302)]

79432.0 cfduser2 1365076375 fluent 12 8100000 3 4

0 0 98 [(8L, 156), (12L, 98), (16L, 136), (4L, 302)]

79462.0 cfduser2 1365076875 fluent 12 8100000 3 4

0 0 98 [(8L, 156), (12L, 98), (16L, 136), (4L, 302)]

79537.0 cfduser2 1365078333 fluent 12 8100000 3 4

0 0 98 [(8L, 156), (12L, 98), (16L, 136), (4L, 302)]

----------------------------system--------------------------------------

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

New Job: 77174.0

System is totally empty - P0

Allocating job : 77174.0 3 4

Appendix E. Simulated Outputs 288

Making Allocation: 3 4 at: [0, 0, 0, 1, 0, 2, 0, 3, 1, 0, 1, 1, 1,

2, 1, 3, 2, 0, 2, 1, 2, 2, 2, 3]

New Job: 77175.0

There is space run it - P1

Allocating job : 77175.0 3 4

Making Allocation: 3 4 at: [3, 0, 3, 1, 3, 2, 3, 3, 4, 0, 4, 1, 4,

2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3]

New Job: 77176.0

There is space run it - P1

Allocating job : 77176.0 3 4

Making Allocation: 3 4 at: [6, 0, 6, 1, 6, 2, 6, 3, 7, 0, 7, 1, 7,

2, 7, 3, 8, 0, 8, 1, 8, 2, 8, 3]

New Job: 77177.0

There is space run it - P1

Allocating job : 77177.0 3 4

Making Allocation: 3 4 at: [9, 0, 9, 1, 9, 2, 9, 3, 10, 0, 10, 1,

10, 2, 10, 3, 11, 0, 11, 1, 11, 2, 11, 3]

New Job: 77178.0

There is space run it - P1

Allocating job : 77178.0 3 4

Making Allocation: 3 4 at: [12, 0, 12, 1, 12, 2, 12, 3, 13, 0, 13,

1, 13, 2, 13, 3, 14, 0, 14, 1, 14, 2, 14, 3]

New Job: 77179.0

No space gotta queue - P1 - showing suboptimals maybe they can run

Cant run this job suboptimally, lets queue for now P1

Can not make allocation for : 77179.0 3 4

Job being queued: 77179.0

New Job: 77180.0

Queued job 77179.0 can not run - P1b - maybe a suboptimal?

Appendix E. Simulated Outputs 289

No Suboptimal Solution for this queued job -P1b

Stuff in the queue, gotta queue this 77179.0 - P1 - no suboptimals

Can not make allocation for : 77180.0 3 4

Job being queued: 77180.0

New Job: 77181.0

Queued job 77179.0 can not run - P1b - maybe a suboptimal?

No Suboptimal Solution for this queued job -P1b

Stuff in the queue, gotta queue this 77179.0 - P1 - no suboptimals

Can not make allocation for : 77181.0 3 4

Job being queued: 77181.0

New Job: 77182.0

Queued job 77179.0 can not run - P1b - maybe a suboptimal?

No Suboptimal Solution for this queued job -P1b

Stuff in the queue, gotta queue this 77179.0 - P1 - no suboptimals

Can not make allocation for : 77182.0 3 4

Job being queued: 77182.0

New Job: 77183.0

Queued job 77179.0 can not run - P1b - maybe a suboptimal?

No Suboptimal Solution for this queued job -P1b

Stuff in the queue, gotta queue this 77179.0 - P1 - no suboptimals

Can not make allocation for : 77183.0 3 4

Job being queued: 77183.0

New Job: 77184.0

Queued job 77179.0 can not run - P1b - maybe a suboptimal?

No Suboptimal Solution for this queued job -P1b

Stuff in the queue, gotta queue this 77179.0 - P1 - no suboptimals

Can not make allocation for : 77184.0 3 4

Job being queued: 77184.0

[...]

Appendix E. Simulated Outputs 290

Queued job 79348.0 can not run - P1b - maybe a suboptimal?

I can run this suboptimally - P1b

Allocating job : 79348.0 1 4

Making Allocation: 1 4 at: [6, 0, 6, 1, 6, 2, 6, 3]

Queued job 79365.0 can not run - P1b - maybe a suboptimal?

No Suboptimal Solution for this queued job -P1b

Stuff in the queue, gotta queue this 79365.0 - P1 - no suboptimals

Can not make allocation for : 79695.0 3 4

Job being queued: 79695.0

[...]

New Job: 102006.0

Popped: 102005.0 - P1

Nothing in the queued table - P1

There is space run it - P1

Allocating job : 102006.0 3 4

Making Allocation: 3 4 at: [3, 0, 3, 1, 3, 2, 3, 3, 4, 0, 4, 1,

4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3]

New Job: 102008.0

Popped: 102006.0 - P1

Nothing in the queued table - P1

There is space run it - P1

Allocating job : 102008.0 3 4

Making Allocation: 3 4 at: [3, 0, 3, 1, 3, 2, 3, 3, 4, 0, 4, 1,

4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3]

New Job: 102010.0

Popped: 102008.0 - P1

Nothing in the queued table - P1

There is space run it - P1

Allocating job : 102010.0 3 4

Appendix E. Simulated Outputs 291

Making Allocation: 3 4 at: [3, 0, 3, 1, 3, 2, 3, 3, 4, 0, 4, 1,

4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3]

New Job: 102012.0

Popped: 102010.0 - P1

Nothing in the queued table - P1

There is space run it - P1

Allocating job : 102012.0 3 4

Making Allocation: 3 4 at: [3, 0, 3, 1, 3, 2, 3, 3, 4, 0, 4, 1,

4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3]

New Job: 102013.0

Popped: 102012.0 - P1

Nothing in the queued table - P1

There is space run it - P1

Allocating job : 102013.0 3 4

Making Allocation: 3 4 at: [3, 0, 3, 1, 3, 2, 3, 3, 4, 0, 4, 1,

4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3]

New Job: 102015.0

Popped: 102013.0 - P1

Nothing in the queued table - P1

There is space run it - P1

Allocating job : 102015.0 3 4

Making Allocation: 3 4 at: [3, 0, 3, 1, 3, 2, 3, 3, 4, 0, 4, 1,

4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3]

New Job: 102017.0

Popped: 102015.0 - P1

Nothing in the queued table - P1

There is space run it - P1

Allocating job : 102017.0 3 4

Making Allocation: 3 4 at: [3, 0, 3, 1, 3, 2, 3, 3, 4, 0, 4, 1,

Appendix E. Simulated Outputs 292

4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3]

New Job: 102019.0

Popped: 102017.0 - P1

Nothing in the queued table - P1

There is space run it - P1

Allocating job : 102019.0 3 4

Making Allocation: 3 4 at: [3, 0, 3, 1, 3, 2, 3, 3, 4, 0, 4, 1,

4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3]

Begining Cleanup!

Popped: 102019.0 - P2

Nothing in the queued table - P2a

Popped: 102000.0 - P2

Nothing in the queued table - P2a

--------------------------closing statement-----------------------

Jobs processed: 1150

--

Running table is empty

Queued table is empty

Sorting table is empty

----------------------------system--------------------------------

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

Appendix E. Simulated Outputs 293

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

--

Appendix F

Appendix F: Simulated Logs

This appendix contains the logs generated by the simulator against the three

datasets from A. In the interest of space these logs have been truncated to only

include the 40 records found in A. Full outputs may be downloaded from:

http://www.ibadkureshi.com/thesis/appendix-f.zip.

F.1 Real data First Come First Served (FCFS)

26/02/2013 14:24 :13 ;E;75246. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1361888454 qtime=1361888636 etime=1361888454 s t a r t =1361888636 end=1361888653

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:17

26/02/2013 14:24 :19 ;E;75247. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1361888456 qtime=1361888645 etime=1361888456 s t a r t =1361888645 end=1361888659

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:14

26/02/2013 14:24 :26 ;E;75248. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1361888457 qtime=1361888648 etime=1361888457 s t a r t =1361888648 end=1361888666

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:18

26/02/2013 14:24 :37 ;E;75250. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1361888457 qtime=1361888653 etime=1361888457 s t a r t =1361888653 end=1361888677

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:24

26/02/2013 14:24 :39 ;E;75249. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1361888457 qtime=1361888651 etime=1361888457 s t a r t =1361888651 end=1361888679

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:28

294

Appendix F. Simulated Logs 295

26/02/2013 14:25 :01 ;E;75252. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1361888459 qtime=1361888666 etime=1361888459 s t a r t =1361888666 end=1361888701

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:35

26/02/2013 14:25 :10 ;E;75251. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1361888458 qtime=1361888659 etime=1361888458 s t a r t =1361888659 end=1361888710

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:51

26/02/2013 17:21 :21 ;E;73269. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1361804750 qtime=1361804750 etime=1361804750 s t a r t =1361804750 end=1361899281

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =26:15:31

27/02/2013 11:42 :08 ;E;73002. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1361795417 qtime=1361795417 etime=1361795417 s t a r t =1361795417 end=1361965328

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =47:11:51

27/02/2013 13:49 :36 ;E;73207. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1361803046 qtime=1361803046 etime=1361803046 s t a r t =1361803046 end=1361972976

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =47:12:10

02/04/2013 00:14 :03 ;E;77181. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858011 qtime=1364858011 etime=1364858011 s t a r t =1364858011 end=1364858043

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:32

02/04/2013 00:14 :13 ;E;77182. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858024 qtime=1364858043 etime=1364858024 s t a r t =1364858043 end=1364858053

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:10

02/04/2013 00:16 :22 ;E;77183. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858154 qtime=1364858154 etime=1364858154 s t a r t =1364858154 end=1364858182

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:28

02/04/2013 00:16 :52 ;E;77184. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858161 qtime=1364858182 etime=1364858161 s t a r t =1364858182 end=1364858212

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:30

02/04/2013 00:17 :19 ;E;77185. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858167 qtime=1364858212 etime=1364858167 s t a r t =1364858212 end=1364858239

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:27

02/04/2013 00:17 :43 ;E;77186. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858172 qtime=1364858239 etime=1364858172 s t a r t =1364858239 end=1364858263

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:24

02/04/2013 00:18 :16 ;E;77187. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858182 qtime=1364858263 etime=1364858182 s t a r t =1364858263 end=1364858296

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:33

03/04/2013 07:23 :02 ;E;77192. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364907453 qtime=1364970153 etime=1364907453 s t a r t =1364970153 end=1364970182

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:29

03/04/2013 07:23 :28 ;E;77193. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364907469 qtime=1364970182 etime=1364907469 s t a r t =1364970182 end=1364970208

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:26

Appendix F. Simulated Logs 296

03/04/2013 07:23 :51 ;E;77194. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364907481 qtime=1364970208 etime=1364907481 s t a r t =1364970208 end=1364970231

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:23

04/04/2013 17:25 :28 ;E;77747. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999418 qtime=1365092674 etime=1364999418 s t a r t =1365092674 end=1365092728

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =00:00:54

04/04/2013 23:10 :27 ;E;77778. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1365000012 qtime=1365097808 etime=1365000012 s t a r t =1365097808 end=1365113427

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =04:20:19

05/04/2013 00:19 :45 ;E;77776. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999966 qtime=1365097808 etime=1364999966 s t a r t =1365097808 end=1365117585

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =05:29:37

05/04/2013 00:50 :14 ;E;77761. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999649 qtime=1365095656 etime=1364999649 s t a r t =1365095656 end=1365119414

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =06:35:58

05/04/2013 00:53 :06 ;E;77775. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999921 qtime=1365097096 etime=1364999921 s t a r t =1365097096 end=1365119586

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =06:14:50

05/04/2013 02:03 :15 ;E;79397. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365075452 qtime=1365123772 etime=1365075452 s t a r t =1365123772 end=1365123795

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:23

05/04/2013 02:05 :22 ;E;79462. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365076875 qtime=1365123825 etime=1365076876 s t a r t =1365123825 end=1365123922

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:01:37

05/04/2013 02:08 :31 ;E;79537. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365078333 qtime=1365123922 etime=1365078333 s t a r t =1365123922 end=1365124111

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:03:09

05/04/2013 07:44 :28 ;E;77738. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999320 qtime=1365080728 etime=1364999320 s t a r t =1365080728 end=1365144268

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =17:39:00

05/04/2013 07:44 :59 ;E;78715. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365027644 qtime=1365144268 etime=1365027644 s t a r t =1365144268 end=1365144299

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:31

05/04/2013 07:45 :26 ;E;79221. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365071243 qtime=1365144299 etime=1365071243 s t a r t =1365144299 end=1365144326

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:27

05/04/2013 07:45 :57 ;E;79251. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365072064 qtime=1365144326 etime=1365072064 s t a r t =1365144326 end=1365144357

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:31

05/04/2013 07:46 :28 ;E;79348. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365074292 qtime=1365144357 etime=1365074292 s t a r t =1365144357 end=1365144388

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:31

Appendix F. Simulated Logs 297

05/04/2013 07:46 :55 ;E;79365. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365074685 qtime=1365144388 etime=1365074685 s t a r t =1365144388 end=1365144415

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:27

05/04/2013 07:49 :03 ;E;79409. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365075736 qtime=1365144415 etime=1365075736 s t a r t =1365144415 end=1365144543

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:02:08

05/04/2013 07:49 :41 ;E;79432. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365076375 qtime=1365144543 etime=1365076375 s t a r t =1365144543 end=1365144581

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:38

05/04/2013 10:49 :30 ;E;77733. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999241 qtime=1365079709 etime=1364999241 s t a r t =1365079709 end=1365155370

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =21:01:01

05/04/2013 14:05 :26 ;E;77768. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999749 qtime=1365095741 etime=1364999749 s t a r t =1365095741 end=1365167126

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =19:49:45

02/04/2013 00:14 :03 ;E;77181. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858011 qtime=1364858011 etime=1364858011 s t a r t =1364858011 end=1364858043

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:32

02/04/2013 00:14 :13 ;E;77182. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858024 qtime=1364858043 etime=1364858024 s t a r t =1364858043 end=1364858053

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:10

02/04/2013 00:16 :22 ;E;77183. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858154 qtime=1364858154 etime=1364858154 s t a r t =1364858154 end=1364858182

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:28

02/04/2013 00:16 :52 ;E;77184. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858161 qtime=1364858182 etime=1364858161 s t a r t =1364858182 end=1364858212

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:30

02/04/2013 00:17 :19 ;E;77185. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858167 qtime=1364858212 etime=1364858167 s t a r t =1364858212 end=1364858239

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:27

02/04/2013 00:17 :43 ;E;77186. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858172 qtime=1364858239 etime=1364858172 s t a r t =1364858239 end=1364858263

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:24

02/04/2013 00:18 :16 ;E;77187. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858182 qtime=1364858263 etime=1364858182 s t a r t =1364858263 end=1364858296

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:33

03/04/2013 07:23 :02 ;E;77192. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364907453 qtime=1364970153 etime=1364907453 s t a r t =1364970153 end=1364970182

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:29

03/04/2013 07:23 :28 ;E;77193. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364907469 qtime=1364970182 etime=1364907469 s t a r t =1364970182 end=1364970208

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:26

Appendix F. Simulated Logs 298

03/04/2013 07:23 :51 ;E;77194. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364907481 qtime=1364970208 etime=1364907481 s t a r t =1364970208 end=1364970231

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:23

04/04/2013 17:25 :28 ;E;77747. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999418 qtime=1365092674 etime=1364999418 s t a r t =1365092674 end=1365092728

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =00:00:54

04/04/2013 23:10 :27 ;E;77778. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1365000012 qtime=1365097808 etime=1365000012 s t a r t =1365097808 end=1365113427

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =04:20:19

05/04/2013 00:19 :45 ;E;77776. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999966 qtime=1365097808 etime=1364999966 s t a r t =1365097808 end=1365117585

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =05:29:37

05/04/2013 00:50 :14 ;E;77761. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999649 qtime=1365095656 etime=1364999649 s t a r t =1365095656 end=1365119414

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =06:35:58

05/04/2013 00:53 :06 ;E;77775. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999921 qtime=1365097096 etime=1364999921 s t a r t =1365097096 end=1365119586

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =06:14:50

05/04/2013 02:03 :15 ;E;79397. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365075452 qtime=1365123772 etime=1365075452 s t a r t =1365123772 end=1365123795

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:23

05/04/2013 02:05 :22 ;E;79462. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365076875 qtime=1365123825 etime=1365076876 s t a r t =1365123825 end=1365123922

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:01:37

05/04/2013 02:08 :31 ;E;79537. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365078333 qtime=1365123922 etime=1365078333 s t a r t =1365123922 end=1365124111

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:03:09

05/04/2013 07:44 :28 ;E;77738. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999320 qtime=1365080728 etime=1364999320 s t a r t =1365080728 end=1365144268

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =17:39:00

05/04/2013 07:44 :59 ;E;78715. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365027644 qtime=1365144268 etime=1365027644 s t a r t =1365144268 end=1365144299

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:31

05/04/2013 07:45 :26 ;E;79221. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365071243 qtime=1365144299 etime=1365071243 s t a r t =1365144299 end=1365144326

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:27

05/04/2013 07:45 :57 ;E;79251. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365072064 qtime=1365144326 etime=1365072064 s t a r t =1365144326 end=1365144357

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:31

05/04/2013 07:46 :28 ;E;79348. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365074292 qtime=1365144357 etime=1365074292 s t a r t =1365144357 end=1365144388

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:31

Appendix F. Simulated Logs 299

05/04/2013 07:46 :55 ;E;79365. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365074685 qtime=1365144388 etime=1365074685 s t a r t =1365144388 end=1365144415

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:27

05/04/2013 07:49 :03 ;E;79409. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365075736 qtime=1365144415 etime=1365075736 s t a r t =1365144415 end=1365144543

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:02:08

05/04/2013 07:49 :41 ;E;79432. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365076375 qtime=1365144543 etime=1365076375 s t a r t =1365144543 end=1365144581

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:38

05/04/2013 10:49 :30 ;E;77733. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999241 qtime=1365079709 etime=1364999241 s t a r t =1365079709 end=1365155370

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =21:01:01

05/04/2013 14:05 :26 ;E;77768. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999749 qtime=1365095741 etime=1364999749 s t a r t =1365095741 end=1365167126

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =19:49:45

01/05/2013 17:44 :39 ;E;75246. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982454 qtime=1367426662 etime=1366982454 s t a r t =1367426662 end=1367426679

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:17

01/05/2013 17:45 :10 ;E;75247. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982456 qtime=1367426696 etime=1366982456 s t a r t =1367426696 end=1367426710

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:14

01/05/2013 17:45 :34 ;E;75250. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982457 qtime=1367426710 etime=1366982457 s t a r t =1367426710 end=1367426734

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:24

01/05/2013 17:46 :02 ;E;75249. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982457 qtime=1367426734 etime=1366982457 s t a r t =1367426734 end=1367426762

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:28

01/05/2013 17:46 :20 ;E;75248. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982457 qtime=1367426762 etime=1366982457 s t a r t =1367426762 end=1367426780

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:18

01/05/2013 17:47 :11 ;E;75251. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982458 qtime=1367426780 etime=1366982458 s t a r t =1367426780 end=1367426831

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:51

01/05/2013 17:47 :46 ;E;75252. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982459 qtime=1367426831 etime=1366982459 s t a r t =1367426831 end=1367426866

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:35

02/05/2013 04:20 :45 ;E;73269. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366898750 qtime=1367370314 etime=1366898750 s t a r t =1367370314 end=1367464845

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =26:15:31

02/05/2013 08:24 :54 ;E;73002. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366889417 qtime=1367309583 etime=1366889417 s t a r t =1367309583 end=1367479494

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =47:11:51

Appendix F. Simulated Logs 300

03/05/2013 01:15 :56 ;E;73207. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366897046 qtime=1367370226 etime=1366897046 s t a r t =1367370226 end=1367540156

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =47:12:10

06/05/2013 08:20 :33 ;E;101864. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue=parau l ct ime

=1366706619 qtime=1367824815 etime=1366706619 s t a r t =1367824815 end=1367824833

Resource L is t . nodes =8:ppn=4 resources used . wa l l t ime =00:00:18

06/05/2013 16:49 :07 ;E;101863. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue=parau l ct ime

=1366640324 qtime=1367790539 etime=1366640324 s t a r t =1367790539 end=1367855347

Resource L is t . nodes =8:ppn=4 resources used . wa l l t ime =18:00:08

F.2 Normalised data FCFS

02/04/2013 00:13 :57 ;E;77181. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858011 qtime=1364858011 etime=1364858011 s t a r t =1364858011 end=1364858037

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:26

02/04/2013 00:14 :23 ;E;77182. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858024 qtime=1364858037 etime=1364858024 s t a r t =1364858037 end=1364858063

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:26

02/04/2013 00:16 :20 ;E;77183. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858154 qtime=1364858154 etime=1364858154 s t a r t =1364858154 end=1364858180

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:26

02/04/2013 00:16 :46 ;E;77184. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858161 qtime=1364858180 etime=1364858161 s t a r t =1364858180 end=1364858206

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:26

02/04/2013 00:17 :12 ;E;77185. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858167 qtime=1364858206 etime=1364858167 s t a r t =1364858206 end=1364858232

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:26

02/04/2013 00:17 :38 ;E;77186. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858172 qtime=1364858232 etime=1364858172 s t a r t =1364858232 end=1364858258

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:26

02/04/2013 00:18 :04 ;E;77187. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364858182 qtime=1364858258 etime=1364858182 s t a r t =1364858258 end=1364858284

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:26

03/04/2013 08:41 :07 ;E;77192. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364907453 qtime=1364974841 etime=1364907453 s t a r t =1364974841 end=1364974867

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:26

03/04/2013 08:41 :15 ;E;77193. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364907469 qtime=1364974849 etime=1364907469 s t a r t =1364974849 end=1364974875

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:26

Appendix F. Simulated Logs 301

03/04/2013 08:41 :21 ;E;77194. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 queue=parau l ct ime

=1364907481 qtime=1364974855 etime=1364907481 s t a r t =1364974855 end=1364974881

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:26

05/04/2013 10:47 :20 ;E;77738. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999320 qtime=1365091700 etime=1364999320 s t a r t =1365091700 end=1365155240

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =17:39:00

05/04/2013 10:49 :30 ;E;77733. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999241 qtime=1365079709 etime=1364999241 s t a r t =1365079709 end=1365155370

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =21:01:01

05/04/2013 16:01 :19 ;E;77768. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999749 qtime=1365102694 etime=1364999749 s t a r t =1365102694 end=1365174079

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =19:49:45

05/04/2013 18:21 :11 ;E;77747. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999418 qtime=1365099621 etime=1364999418 s t a r t =1365099621 end=1365182471

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50

05/04/2013 19:07 :52 ;E;77761. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999649 qtime=1365102422 etime=1364999649 s t a r t =1365102422 end=1365185272

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50

05/04/2013 19:13 :47 ;E;77776. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999966 qtime=1365102777 etime=1364999966 s t a r t =1365102777 end=1365185627

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50

05/04/2013 19:13 :47 ;E;77775. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1364999921 qtime=1365102777 etime=1364999921 s t a r t =1365102777 end=1365185627

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50

05/04/2013 19:16 :49 ;E;79397. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365075452 qtime=1365185653 etime=1365075452 s t a r t =1365185653 end=1365185809

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:02:36

05/04/2013 19:19 :25 ;E;79462. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365076875 qtime=1365185809 etime=1365076876 s t a r t =1365185809 end=1365185965

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:02:36

05/04/2013 19:22 :01 ;E;79537. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365078333 qtime=1365185965 etime=1365078333 s t a r t =1365185965 end=1365186121

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:02:36

06/04/2013 05:52 :14 ;E;77778. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue= s e r i a l s t d ct ime

=1365000012 qtime=1365141084 etime=1365000012 s t a r t =1365141084 end=1365223934

Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50

07/04/2013 04:10 :33 ;E;78715. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365027644 qtime=1365304077 etime=1365027644 s t a r t =1365304077 end=1365304233

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:02:36

07/04/2013 04:13 :09 ;E;79221. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365071243 qtime=1365304233 etime=1365071243 s t a r t =1365304233 end=1365304389

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:02:36

Appendix F. Simulated Logs 302

07/04/2013 04:15 :45 ;E;79251. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365072064 qtime=1365304389 etime=1365072064 s t a r t =1365304389 end=1365304545

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:02:36

07/04/2013 04:18 :21 ;E;79348. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365074292 qtime=1365304545 etime=1365074292 s t a r t =1365304545 end=1365304701

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:02:36

07/04/2013 04:20 :57 ;E;79365. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365074685 qtime=1365304701 etime=1365074685 s t a r t =1365304701 end=1365304857

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:02:36

07/04/2013 04:23 :33 ;E;79409. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365075736 qtime=1365304857 etime=1365075736 s t a r t =1365304857 end=1365305013

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:02:36

07/04/2013 04:26 :09 ;E;79432. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 queue=parau l ct ime

=1365076375 qtime=1365305013 etime=1365076375 s t a r t =1365305013 end=1365305169

Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:02:36

02/05/2013 17:48 :43 ;E;75246. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982454 qtime=1367513280 etime=1366982454 s t a r t =1367513280 end=1367513323

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:43

02/05/2013 17:50 :09 ;E;75247. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982456 qtime=1367513366 etime=1366982456 s t a r t =1367513366 end=1367513409

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:43

02/05/2013 17:50 :52 ;E;75250. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982457 qtime=1367513409 etime=1366982457 s t a r t =1367513409 end=1367513452

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:43

02/05/2013 17:51 :35 ;E;75249. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982457 qtime=1367513452 etime=1366982457 s t a r t =1367513452 end=1367513495

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:43

02/05/2013 17:52 :18 ;E;75248. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982457 qtime=1367513495 etime=1366982457 s t a r t =1367513495 end=1367513538

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:43

02/05/2013 17:53 :01 ;E;75251. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982458 qtime=1367513538 etime=1366982458 s t a r t =1367513538 end=1367513581

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:43

02/05/2013 17:53 :44 ;E;75252. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366982459 qtime=1367513581 etime=1366982459 s t a r t =1367513581 end=1367513624

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =00:00:43

02/05/2013 21:02 :56 ;E;73002. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366889417 qtime=1367396278 etime=1366889417 s t a r t =1367396278 end=1367524976

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =35:44:58

03/05/2013 06:59 :51 ;E;73207. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366897046 qtime=1367432093 etime=1366897046 s t a r t =1367432093 end=1367560791

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =35:44:58

Appendix F. Simulated Logs 303

03/05/2013 07:04 :02 ;E;73269. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 queue=parastd ct ime

=1366898750 qtime=1367432344 etime=1366898750 s t a r t =1367432344 end=1367561042

Resource L is t . nodes =2:ppn=4 resources used . wa l l t ime =35:44:58

06/05/2013 08:53 :48 ;E;101864. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue=parau l ct ime

=1366706619 qtime=1367826811 etime=1366706619 s t a r t =1367826811 end=1367826828

Resource L is t . nodes =8:ppn=4 resources used . wa l l t ime =00:00:17

07/05/2013 20:33 :13 ;E;101863. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 queue=parau l ct ime

=1366640324 qtime=1367793937 etime=1366640324 s t a r t =1367793937 end=1367955193

Resource L is t . nodes =8:ppn=4 resources used . wa l l t ime =44:47:36

F.3 Normalised data Moulded

02/04/2013 00:37 :43 ;E;77181. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case237 queue=

parau l ct ime =1364858011 qtime=1364859462 etime=1364858011 s t a r t =1364859462 end

=1364859463 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

02/04/2013 00:37 :44 ;E;77182. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case1 queue=

parau l ct ime =1364858024 qtime=1364859463 etime=1364858024 s t a r t =1364859463 end

=1364859464 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

02/04/2013 00:37 :45 ;E;77183. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case238 queue=

parau l ct ime =1364858154 qtime=1364859464 etime=1364858154 s t a r t =1364859464 end

=1364859465 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

02/04/2013 00:37 :46 ;E;77184. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case239 queue=

parau l ct ime =1364858161 qtime=1364859465 etime=1364858161 s t a r t =1364859465 end

=1364859466 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

02/04/2013 00:37 :47 ;E;77185. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case240 queue=

parau l ct ime =1364858167 qtime=1364859466 etime=1364858167 s t a r t =1364859466 end

=1364859467 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

02/04/2013 00:37 :48 ;E;77186. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case241 queue=

parau l ct ime =1364858172 qtime=1364859467 etime=1364858172 s t a r t =1364859467 end

=1364859468 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

Appendix F. Simulated Logs 304

02/04/2013 00:37 :49 ;E;77187. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case242 queue=

parau l ct ime =1364858182 qtime=1364859468 etime=1364858182 s t a r t =1364859468 end

=1364859469 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

02/04/2013 13:57 :34 ;E;77192. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case239 queue=

parau l ct ime =1364907453 qtime=1364907453 etime=1364907453 s t a r t =1364907453 end

=1364907454 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

02/04/2013 13:57 :50 ;E;77193. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case240 queue=

parau l ct ime =1364907469 qtime=1364907469 etime=1364907469 s t a r t =1364907469 end

=1364907470 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

02/04/2013 13:58 :02 ;E;77194. e r i d a n i . qgg . hud . ac . uk ; user=cfduser1 jobname=case241 queue=

parau l ct ime =1364907481 qtime=1364907481 etime=1364907481 s t a r t =1364907481 end

=1364907482 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:00:01 app name=

f l u e n t i t e r a t i o n s =1 da tase t s i ze =16000000

04/04/2013 14:28 :11 ;E;77733. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

s e r i a l s t d ct ime=1364999241 qtime=1364999241 etime=1364999241 s t a r t =1364999241 end

=1365082091 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50 app name=

d l p o l y i t e r a t i o n s =5000000 da tase t s i ze =500

04/04/2013 14:29 :30 ;E;77738. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

s e r i a l s t d ct ime=1364999320 qtime=1364999320 etime=1364999320 s t a r t =1364999320 end

=1365082170 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50 app name=

d l p o l y i t e r a t i o n s =5000000 da tase t s i ze =500

04/04/2013 14:30 :30 ;E;78715. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365027644 qtime=1365082132 etime=1365027644 s t a r t =1365082132

end=1365082230 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

04/04/2013 14:31 :08 ;E;77747. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

s e r i a l s t d ct ime=1364999418 qtime=1364999418 etime=1364999418 s t a r t =1364999418 end

=1365082268 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50 app name=

d l p o l y i t e r a t i o n s =5000000 da tase t s i ze =500

04/04/2013 14:32 :09 ;E;79221. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365071243 qtime=1365082231 etime=1365071243 s t a r t =1365082231

end=1365082329 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

04/04/2013 14:32 :46 ;E;79251. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365072064 qtime=1365082268 etime=1365072064 s t a r t =1365082268

end=1365082366 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

Appendix F. Simulated Logs 305

04/04/2013 14:33 :23 ;E;79348. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365074292 qtime=1365082305 etime=1365074292 s t a r t =1365082305

end=1365082403 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

04/04/2013 14:33 :47 ;E;79365. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365074685 qtime=1365082329 etime=1365074685 s t a r t =1365082329

end=1365082427 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

04/04/2013 14:34 :24 ;E;79397. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365075452 qtime=1365082366 etime=1365075452 s t a r t =1365082366

end=1365082464 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

04/04/2013 14:34 :59 ;E;77761. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

s e r i a l s t d ct ime=1364999649 qtime=1364999649 etime=1364999649 s t a r t =1364999649 end

=1365082499 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50 app name=

d l p o l y i t e r a t i o n s =5000000 da tase t s i ze =500

04/04/2013 14:35 :21 ;E;79409. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365075736 qtime=1365082423 etime=1365075736 s t a r t =1365082423

end=1365082521 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

04/04/2013 14:36 :39 ;E;77768. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

s e r i a l s t d ct ime=1364999749 qtime=1364999749 etime=1364999749 s t a r t =1364999749 end

=1365082599 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50 app name=

d l p o l y i t e r a t i o n s =5000000 da tase t s i ze =500

04/04/2013 14:37 :12 ;E;79432. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365076375 qtime=1365082534 etime=1365076375 s t a r t =1365082534

end=1365082632 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

04/04/2013 14:39 :31 ;E;77775. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

s e r i a l s t d ct ime=1364999921 qtime=1364999921 etime=1364999921 s t a r t =1364999921 end

=1365082771 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50 app name=

d l p o l y i t e r a t i o n s =5000000 da tase t s i ze =500

04/04/2013 14:40 :16 ;E;77776. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

s e r i a l s t d ct ime=1364999966 qtime=1364999966 etime=1364999966 s t a r t =1364999966 end

=1365082816 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50 app name=

d l p o l y i t e r a t i o n s =5000000 da tase t s i ze =500

04/04/2013 14:41 :02 ;E;77778. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

s e r i a l s t d ct ime=1365000012 qtime=1365000012 etime=1365000012 s t a r t =1365000012 end

=1365082862 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =23:00:50 app name=

d l p o l y i t e r a t i o n s =5000000 da tase t s i ze =500

Appendix F. Simulated Logs 306

04/04/2013 14:41 :09 ;E;79462. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365076875 qtime=1365082771 etime=1365076876 s t a r t =1365082771

end=1365082869 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

04/04/2013 14:42 :47 ;E;79537. e r i d a n i . qgg . hud . ac . uk ; user=cfduser2 jobname=60000−0.262

queue=parau l ct ime=1365078333 qtime=1365082869 etime=1365078333 s t a r t =1365082869

end=1365082967 Resource L is t . nodes =3:ppn=4 resources used . wa l l t ime =00:01:38

app name= f l u e n t i t e r a t i o n s =12 da tase t s i ze =8100000

24/04/2013 12:24 :51 ;E;101864. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

parau l ct ime =1366706619 qtime=1366802674 etime=1366706619 s t a r t =1366802674 end

=1366802691 Resource L is t . nodes =1:ppn=4 resources used . wa l l t ime =00:00:17 app name=

d l p o l y i t e r a t i o n s =100 da tase t s i ze =8000

26/04/2013 09:12 :10 ;E;101863. e r i d a n i . qgg . hud . ac . uk ; user=mduser2 jobname= j c l queue=

parau l ct ime =1366640324 qtime=1366802674 etime=1366640324 s t a r t =1366802674 end

=1366963930 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =44:47:36 app name=

d l p o l y i t e r a t i o n s =1000000 da tase t s i ze =8000

27/04/2013 06:39 :18 ;E;73002. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366889417 qtime=1366968592 etime=1366889417 s t a r t =1366968592 end

=1367041158 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =20:09:26 app name=

d l p o l y i t e r a t i o n s =900000 da tase t s i ze =4000

27/04/2013 08:01 :01 ;E;75246. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366982454 qtime=1367046036 etime=1366982454 s t a r t =1367046036 end

=1367046061 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =00:00:25 app name=

d l p o l y i t e r a t i o n s =300 da tase t s i ze =4000

27/04/2013 08:01 :26 ;E;75247. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366982456 qtime=1367046061 etime=1366982456 s t a r t =1367046061 end

=1367046086 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =00:00:25 app name=

d l p o l y i t e r a t i o n s =300 da tase t s i ze =4000

27/04/2013 08:01 :37 ;E;75250. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366982457 qtime=1367046072 etime=1366982457 s t a r t =1367046072 end

=1367046097 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =00:00:25 app name=

d l p o l y i t e r a t i o n s =300 da tase t s i ze =4000

27/04/2013 08:01 :51 ;E;75249. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366982457 qtime=1367046086 etime=1366982457 s t a r t =1367046086 end

=1367046111 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =00:00:25 app name=

d l p o l y i t e r a t i o n s =300 da tase t s i ze =4000

27/04/2013 08:02 :02 ;E;75248. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366982457 qtime=1367046097 etime=1366982457 s t a r t =1367046097 end

=1367046122 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =00:00:25 app name=

d l p o l y i t e r a t i o n s =300 da tase t s i ze =4000

Appendix F. Simulated Logs 307

27/04/2013 08:02 :16 ;E;75251. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366982458 qtime=1367046111 etime=1366982458 s t a r t =1367046111 end

=1367046136 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =00:00:25 app name=

d l p o l y i t e r a t i o n s =300 da tase t s i ze =4000

27/04/2013 08:02 :27 ;E;75252. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366982459 qtime=1367046122 etime=1366982459 s t a r t =1367046122 end

=1367046147 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =00:00:25 app name=

d l p o l y i t e r a t i o n s =300 da tase t s i ze =4000

27/04/2013 21:06 :03 ;E;73207. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366897046 qtime=1367020597 etime=1366897046 s t a r t =1367020597 end

=1367093163 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =20:09:26 app name=

d l p o l y i t e r a t i o n s =900000 da tase t s i ze =4000

27/04/2013 21:18 :13 ;E;73269. e r i d a n i . qgg . hud . ac . uk ; user=mduser1 jobname= d l p o l y queue=

parastd ct ime =1366898750 qtime=1367021327 etime=1366898750 s t a r t =1367021327 end

=1367093893 Resource L is t . nodes =4:ppn=4 resources used . wa l l t ime =20:09:26 app name=

d l p o l y i t e r a t i o n s =900000 da tase t s i ze =4000

References

Agarwala, S., Poellabauer, C., Kong, J., Schwan, K., & Wolf, M. (2003,

Sep). System-level resource monitoring in high-performance comput-

ing environments. Journal of Grid Computing, 1(3), 273 – 289. doi:

10.1023/B:GRID.0000035189.80518.5d

Alam, S. R., Barrett, R. F., Kuehn, J. A., Roth, P. C., & Vetter, J. S. (2006).

Characterization of scientific workloads on systems with multi-core pro-

cessors. In Workload characterization, 2006 IEEE international sym-

posium on (pp. 225–236). IEEE. Retrieved 2014-12-31, from http://

ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4086151

AlJahdali, H., Albatli, A., Garraghan, P., Townend, P., Lau, L., & Xu, J.

(2014). Multi-tenancy in cloud computing. In (pp. 344–351). IEEE. Re-

trieved 2015-01-31, from http://eprints.whiterose.ac.uk/80819/ doi:

10.1109/SOSE.2014.50

Aljahdali, H., Townend, P., & Xu, J. (2013). Enhancing multi-tenancy security

in the cloud IaaS model over public deployment. In 2013 IEEE 7th inter-

national symposium on service oriented system engineering (SOSE) (pp.

385–390). doi: 10.1109/SOSE.2013.50

Allen, B., Bresnahan, J., Childers, L., Foster, I., Kandaswamy, G., Kettimuthu,

R., . . . others (2012). Software as a service for data scientists. Commu-

nications of the ACM, 55(2), 81–88.

308

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4086151
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4086151
http://eprints.whiterose.ac.uk/80819/

Appendix F. Simulated Logs 309

Alvarruiz, F., de Alfonso, C., Caballer, M., & Hern’ndez, V. (2012). An energy

manager for high performance computer clusters. In Parallel and dis-

tributed processing with applications (ispa), 2012 ieee 10th international

symposium on (pp. 231–238).

Amit, G., Caspi, Y., Vitale, R., & Pinhas, A. T. (2006). Scalability of

multimedia applications on next-generation processors. In Multimedia

and expo, 2006 IEEE international conference on (pp. 17–20). IEEE.

Retrieved 2014-12-31, from http://ieeexplore.ieee.org/xpls/abs all

.jsp?arnumber=4036525

Anderson, D. P. (2004). Boinc: A system for public-resource computing and

storage. In Grid computing, 2004. proceedings. fifth ieee/acm interna-

tional workshop on (pp. 4–10).

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., . . .

others (2010). A view of cloud computing. Communications of the ACM,

53(4), 50–58. Retrieved 2014-12-31, from http://m.cacm.acm.org/

magazines/2010/4/81493-a-view-of-cloud-computing/fulltext

A Vouk, M. (2008). Cloud computing–issues, research and implementations.

CIT. Journal of Computing and Information Technology , 16(4), 235–246.

Retrieved 2014-12-31, from http://hrcak.srce.hr/file/69202

Bayucan, A., & Henderson, R. L. (2000). Portable batch system administrator

guide release: OpenPBS 2.3. 16.

Bernstein, J., & McMahon, K. (2012). Computing on demand—hpc as a service.

Penguin Computing.

Bientinesi, P., Iakymchuk, R., & Napper, J. (2010). Hpc on competitive cloud

resources. In Handbook of cloud computing (pp. 493–516). Springer.

Boneti, C., Gioiosa, R., Cazorla, F. J., & Valero, M. (2008). A dynamic scheduler

for balancing HPC applications. In Proceedings of the 2008 ACM/IEEE

conference on supercomputing (p. 41). IEEE Press. Retrieved 2014-12-

31, from http://dl.acm.org/citation.cfm?id=1413412

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4036525
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4036525
http://m.cacm.acm.org/magazines/2010/4/81493-a-view-of-cloud-computing/fulltext
http://m.cacm.acm.org/magazines/2010/4/81493-a-view-of-cloud-computing/fulltext
http://hrcak.srce.hr/file/69202
http://dl.acm.org/citation.cfm?id=1413412

Appendix F. Simulated Logs 310

Bonner, S., Antoniou, G., Kureshi, I., Moss, L., Corsar, D., & TachmazidisLysik,

I. (2014). Using hadoop to implement a semantic method of assessing

the quality of research medical datasets. In Big data science 2014, the

third ase international conference on. IEEE.

Bonner, S., Pulley, C., Kureshi, I., Holmes, V., Brennan, J., & James, Y. (2013).

Using OpenStack to improve student experience in an HE environment.

In Science and information conference (SAI), 2013 (pp. 888–893). IEEE.

Retrieved 2014-12-31, from http://ieeexplore.ieee.org/xpls/abs all

.jsp?arnumber=6661847

Brandt, J., Gentile, A., Mayo, J., Pebay, P., Roe, D., Thompson, D., & Wong, M.

(2009). Resource monitoring and management with OVIS to enable HPC

in cloud computing environments. In Parallel & distributed processing,

2009. IPDPS 2009. IEEE international symposium on (pp. 1–8). IEEE.

Retrieved 2014-12-31, from http://ieeexplore.ieee.org/xpls/abs all

.jsp?arnumber=5161234

Brennan, J., Holmes, V., Kureshi, I., Paprzycki, M., Drozdowicz, M., & Ganzha,

M. (2013). Scaling campus grids: Implementing a modified ontology

based EMI-WMS on campus grids. Retrieved 2014-12-31, from http://

eprints.hud.ac.uk/17337

Brennan, J., Kureshi, I., & Holmes, V. (2014). Cdes: An approach to hpc work-

load modelling. In Proceedings of the 2014 ieee/acm 18th international

symposium on distributed simulation and real time applications (pp. 47–

54).

Brennan, J. D. (2014). Developing a trusted computational grid (Master’s thesis,

University of Huddersfield). Retrieved from http://eprints.hud.ac.uk/

23308/

Brodkin, J. (2011). $1,279-per-hour, 30,000 core cluster built on amazon EC2

cloud. Ars Technica, 20.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6661847
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6661847
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5161234
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5161234
http://eprints.hud.ac.uk/17337
http://eprints.hud.ac.uk/17337
http://eprints.hud.ac.uk/23308/
http://eprints.hud.ac.uk/23308/

Appendix F. Simulated Logs 311

Buyya, R., & Murshed, M. (2002). Gridsim: A toolkit for the modeling and sim-

ulation of distributed resource management and scheduling for grid com-

puting. Concurrency and computation: practice and experience, 14(13-

15), 1175–1220. Retrieved 2014-12-31, from http://onlinelibrary

.wiley.com/doi/10.1002/cpe.710/abstract

Buyya, R., Yeo, C. S., & Venugopal, S. (2008). Market-oriented cloud

computing: Vision, hype, and reality for delivering it services as com-

puting utilities. In High performance computing and communications,

2008. HPCC’08. 10th IEEE international conference on (pp. 5–13). Ieee.

Retrieved 2014-12-31, from http://ieeexplore.ieee.org/xpls/abs all

.jsp?arnumber=4637675

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009).

Cloud computing and emerging IT platforms: Vision, hype, and real-

ity for delivering computing as the 5th utility. Future Generation com-

puter systems, 25(6), 599–616. Retrieved 2014-12-31, from http://

www.sciencedirect.com/science/article/pii/S0167739X08001957

Carroll, T. E., & Grosu, D. (2010). Incentive compatible online schedul-

ing of malleable parallel jobs with individual deadlines. In Parallel pro-

cessing (ICPP), 2010 39th international conference on (pp. 516–524).

IEEE. Retrieved 2014-12-31, from http://ieeexplore.ieee.org/xpls/

abs all.jsp?arnumber=5599194

Chen, X., Lu, C.-D., & Pattabiraman, K. (2014). Failure analysis of jobs in com-

pute clouds: A google cluster case study. In the international symposium

on software reliability engineering (issre). ieee.

Chieu, T. C., Mohindra, A., Karve, A. A., & Segal, A. (2009). Dynamic scaling

of web applications in a virtualized cloud computing environment. In e-

business engineering, 2009. icebe’09. ieee international conference on

(pp. 281–286).

Cirne, W., & Berman, F. (2001). A model for moldable supercomputer jobs.

http://onlinelibrary.wiley.com/doi/10.1002/cpe.710/abstract
http://onlinelibrary.wiley.com/doi/10.1002/cpe.710/abstract
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4637675
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4637675
http://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5599194
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5599194

Appendix F. Simulated Logs 312

In Parallel and distributed processing symposium., proceedings 15th in-

ternational (pp. 8–pp). IEEE. Retrieved 2014-12-31, from http://

ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=925004

Cirne, W., & Berman, F. (2002). Using moldability to improve the per-

formance of supercomputer jobs. Journal of Parallel and Distributed

Computing, 62(10), 1571–1601. Retrieved 2014-12-31, from http://

www.sciencedirect.com/science/article/pii/S0743731502918691

Computing, A., & Computing, G. (2012). Torque resource manager. online]

http://www. adaptivecomputing. com.

Cybenko, G., Kipp, L., Pointer, L., & Kuck, D. (1990). Supercomputer per-

formance evaluation and the perfect benchmarks (Vol. 18) (No. 3b).

ACM. Retrieved 2014-12-31, from http://dl.acm.org/citation.cfm

?id=255163

da Silva, F., & Senger, H. (2010). Scalability analysis of embarassingly parallel

applications on large clusters. In Parallel & distributed processing, work-

shops and phd forum (IPDPSW), 2010 IEEE international symposium on

(pp. 1–8). IEEE. Retrieved 2014-12-31, from http://ieeexplore.ieee

.org/xpls/abs all.jsp?arnumber=5470724

De Alfonso, C., Caballer, M., & Hernández, V. (2010). Efficient power manage-

ment in high performance computer clusters. In 1st international multi-

conference on innovative developments in ict (pp. 39–44).

de Gyves Avila, S., & Djemame, K. (2013). Fuzzy logic based QoS optimiza-

tion mechanism for service composition. In (pp. 182–191). IEEE. Re-

trieved 2015-01-31, from http://eprints.whiterose.ac.uk/79907/ doi:

10.1109/SOSE.2013.28

Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G., & Vakali, A. (2009). Cloud

computing: distributed internet computing for IT and scientific research.

Internet Computing, IEEE , 13(5), 10–13. Retrieved 2014-12-31, from

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5233607

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=925004
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=925004
http://www.sciencedirect.com/science/article/pii/S0743731502918691
http://www.sciencedirect.com/science/article/pii/S0743731502918691
http://dl.acm.org/citation.cfm?id=255163
http://dl.acm.org/citation.cfm?id=255163
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5470724
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5470724
http://eprints.whiterose.ac.uk/79907/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5233607

Appendix F. Simulated Logs 313

Dongarra, J. (2013). November 2013 | the green500. Retrieved 2014-12-31,

from http://www.green500.org/lists/green201311

Dongarra, J. (2014). June 2014 | TOP500 supercomputer sites. Retrieved

2014-12-31, from http://www.top500.org/list/2014/11/

Dongarra, J. J., Bunch, J. R., Moler, C. B., & Stewart, G. W. (1979). Linpack

users’ guide (Vol. 8). Siam.

Downey, A. B. (1997). A model for speedup of parallel programs. University of

California, Berkeley, Computer Science Division. Retrieved 2014-12-31,

from http://www.eecs.berkeley.edu/Pubs/TechRpts/1997/CSD-97-933

.pdf

Eigenmann, R., & Hassanzadeh, S. (1996). Benchmarking with real industrial

applications: the SPEC high-performance group. Computing in Science

and Engineering, 3(1), 18–23. Retrieved 2014-12-31, from http://www

.computer.org/csdl/mags/cs/1996/01/c1018.pdf

Elton, B. H., Samsi, S., Smith, H. B., Humphrey, L., Guilfoos, B., Ahalt, S., . . .

others (2009). A scalability study (as a guide for HPC operations at a

remote test facility) on DSRC HPC systems of radio frequency tomogra-

phy code written for MATLAB R© and parallelized via star-p R©. In DoD high

performance computing modernization program users group conference

(HPCMP-UGC), 2009 (pp. 401–409). IEEE. Retrieved 2014-12-31, from

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5729498

Feitelson, D. G., Rudolph, L., Schwiegelshohn, U., Sevcik, K. C., & Wong, P.

(1997). Theory and practice in parallel job scheduling. In Job scheduling

strategies for parallel processing (pp. 1–34). Springer. Retrieved 2014-

12-31, from http://link.springer.com/chapter/10.1007/3-540-63574

-2 14

Foster, I. (2011). Accelerating and democratizing science through cloud-based

services. IEEE Internet Comput., 15(ANL/MCS/JA-69753).

Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008). Cloud computing and grid

http://www.green500.org/lists/green201311
http://www.top500.org/list/2014/11/
http://www.eecs.berkeley.edu/Pubs/TechRpts/1997/CSD-97-933.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/1997/CSD-97-933.pdf
http://www.computer.org/csdl/mags/cs/1996/01/c1018.pdf
http://www.computer.org/csdl/mags/cs/1996/01/c1018.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5729498
http://link.springer.com/chapter/10.1007/3-540-63574-2_14
http://link.springer.com/chapter/10.1007/3-540-63574-2_14

Appendix F. Simulated Logs 314

computing 360-degree compared. In Grid computing environments work-

shop, 2008. GCE’08 (pp. 1–10). Ieee. Retrieved 2014-12-31, from

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4738445

Goel, B., McKee, S. A., Gioiosa, R., Singh, K., Bhadauria, M., & Cesati,

M. (2010). Portable, scalable, per-core power estimation for intelli-

gent resource management. In Green computing conference, 2010 in-

ternational (pp. 135–146). IEEE. Retrieved 2014-12-31, from http://

ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5598313

Grossman, R. L. (2009). The case for cloud computing. IT professional , 11(2),

23–27. Retrieved 2014-12-31, from http://ieeexplore.ieee.org/xpls/

abs all.jsp?arnumber=4804045

Gubb, D., Holmes, V., Kureshi, I., Liang, S., & James, Y. (2012, Septem-

ber). Implementing a condor pool using a green-it policy.. Retrieved from

http://eprints.hud.ac.uk/15839/

Hamscher, V., Schwiegelshohn, U., Streit, A., & Yahyapour, R. (2000). Eval-

uation of job-scheduling strategies for grid computing. In Grid comput-

ing—GRID 2000 (pp. 191–202). Springer. Retrieved 2014-12-31, from

http://link.springer.com/chapter/10.1007/3-540-44444-0 18

Hayes, B. (2008, July). Cloud computing. Commun. ACM, 51(7), 9–

11. Retrieved 2014-12-31, from http://doi.acm.org/10.1145/1364782

.1364786 doi: 10.1145/1364782.1364786

He, Q., Zhou, S., Kobler, B., Duffy, D., & McGlynn, T. (2010). Case study for

running hpc applications in public clouds. In Proceedings of the 19th acm

international symposium on high performance distributed computing (pp.

395–401).

Holmes, V., & Kureshi, I. (2010). Huddersfield university campus grid: Qgg

of oscar clusters. In Journal of physics: conference series (Vol. 256,

p. 012022). IOP Publishing. Retrieved 2014-12-31, from http://

iopscience.iop.org/1742-6596/256/1/012022

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4738445
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5598313
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5598313
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4804045
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4804045
http://eprints.hud.ac.uk/15839/
http://link.springer.com/chapter/10.1007/3-540-44444-0_18
http://doi.acm.org/10.1145/1364782.1364786
http://doi.acm.org/10.1145/1364782.1364786
http://iopscience.iop.org/1742-6596/256/1/012022
http://iopscience.iop.org/1742-6596/256/1/012022

Appendix F. Simulated Logs 315

Huang, K.-C., Shih, P.-C., & Chung, Y.-C. (2009). Adaptive processor allocation

for moldable jobs in computational grid. International Journal of Grid and

High Performance Computing (IJGHPC), 1(1), 10–21. Retrieved 2014-12-

31, from http://www.igi-global.com/article/international-journal

-grid-high-performance/2165

Hungershofer, J. (2004). On the combined scheduling of malleable and

rigid jobs. In Computer architecture and high performance comput-

ing, 2004. SBAC-PAD 2004. 16th symposium on (pp. 206–213). IEEE.

Retrieved 2014-12-31, from http://ieeexplore.ieee.org/xpls/abs all

.jsp?arnumber=1364755

Iqbal, S., Gupta, R., & Fang, Y.-C. (2005). Planning considerations for job

scheduling in HPC clusters. Hgh-Performance Computing, reprinted from

Dell Power Solutions.

Jackson, D., Snell, Q., & Clement, M. (2001). Core algorithms of the maui

scheduler. In Job scheduling strategies for parallel processing (pp. 87–

102).

Jie, Y., Qiu, J., & Li, Y. (2009). A profile-based approach to just-in-time scala-

bility for cloud applications. In Cloud computing, 2009. CLOUD’09. IEEE

international conference on (pp. 9–16). IEEE. Retrieved 2014-12-31, from

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5284077

Kalé, L. V., Kumar, S., & DeSouza, J. (2002). A malleable-job system

for timeshared parallel machines. In Cluster computing and the grid,

2002. 2nd IEEE/ACM international symposium on (pp. 230–230). IEEE.

Retrieved 2014-12-31, from http://ieeexplore.ieee.org/xpls/abs all

.jsp?arnumber=1540460

Kelly, A. (2014). UNIVERSITIES RISE TO THE EFFICIENCY CHAL-

LENGE. Retrieved 2014-12-31, from http://www.ncl.ac.uk/

press.office/press.release/item/universities-rise-to-the

-efficiencychallenge

http://www.igi-global.com/article/international-journal-grid-high-performance/2165
http://www.igi-global.com/article/international-journal-grid-high-performance/2165
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1364755
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1364755
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5284077
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1540460
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1540460
http://www.ncl.ac.uk/press.office/press.release/item/universities-rise-to-the-efficiencychallenge
http://www.ncl.ac.uk/press.office/press.release/item/universities-rise-to-the-efficiencychallenge
http://www.ncl.ac.uk/press.office/press.release/item/universities-rise-to-the-efficiencychallenge

Appendix F. Simulated Logs 316

Kenway, C. P. M. S. P. O. . P. M., R. (2012). UK participation in high

performance computing (HPC) at the european level - publications -

GOV.UK. Retrieved 2014-12-31, from https://www.gov.uk/government/

publications/uk-participation-in-high-performance-computing

-hpc-at-the-european-level

Kerbyson, D. J., Alme, H. J., Hoisie, A., Petrini, F., Wasserman, H. J., & Git-

tings, M. (2001). Predictive performance and scalability modeling of a

large-scale application. In Proceedings of the 2001 ACM/IEEE conference

on supercomputing (CDROM) (pp. 37–37). ACM. Retrieved 2014-12-31,

from http://dl.acm.org/citation.cfm?id=582071

Khalid, O., Maljevic, I., Anthony, R., Petridis, M., Parrott, K., & Schulz, M. (2009).

Dynamic scheduling of virtual machines running hpc workloads in scien-

tific grids. In New technologies, mobility and security (NTMS), 2009 3rd

international conference on (pp. 1–5). IEEE. Retrieved 2014-12-31, from

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5384725

Krallmann, J., Schwiegelshohn, U., & Yahyapour, R. (1999). On the design and

evaluation of job scheduling algorithms. In Job scheduling strategies for

parallel processing (pp. 17–42).

Kureshi, I. (2010). Establishing a university grid for HPC applications (Doc-

toral dissertation, University of Huddersfield). Retrieved 2014-12-31, from

http://eprints.hud.ac.uk/10169

Kureshi, I., Holmes, V., & Cooke, D. J. (2012). Robust mouldable schedul-

ing using application benchmarking for elastic enviornments. In Local

proceedings of the fifth balkan conference in informatics (pp. 51–57).

University of Novi Sad, Serbia. Retrieved 2014-12-31, from http://

eprints.hud.ac.uk/15025

Kureshi, I., Pulley, C., Brennan, J., Holmes, V., Bonner, S., & James, Y. (2013).

Advancing research infrastructure using OpenStack. International Journal

of Advanced Computer Science and Applications, 3(4), 64–70. Retrieved

https://www.gov.uk/government/publications/uk-participation-in-high-performance-computing-hpc-at-the-european-level
https://www.gov.uk/government/publications/uk-participation-in-high-performance-computing-hpc-at-the-european-level
https://www.gov.uk/government/publications/uk-participation-in-high-performance-computing-hpc-at-the-european-level
http://dl.acm.org/citation.cfm?id=582071
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5384725
http://eprints.hud.ac.uk/10169
http://eprints.hud.ac.uk/15025
http://eprints.hud.ac.uk/15025

Appendix F. Simulated Logs 317

2014-12-31, from http://eprints.hud.ac.uk/19421

Laure, E., Edlund, A., Pacini, F., Buncic, P., Barroso, M., Di Meglio, A., . . . others

(2006). Programming the grid with glite (Tech. Rep.).

Legrand, A., Marchal, L., & Casanova, H. (2003). Scheduling distributed

applications: the simgrid simulation framework. In Cluster computing

and the grid, 2003. proceedings. CCGrid 2003. 3rd IEEE/ACM interna-

tional symposium on (pp. 138–145). IEEE. Retrieved 2014-12-31, from

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1199362

Mao, M., Li, J., & Humphrey, M. (2010). Cloud auto-scaling with deadline

and budget constraints. In Grid computing (grid), 2010 11th ieee/acm

international conference on (pp. 41–48).

Marshall, P., Keahey, K., & Freeman, T. (2010). Elastic site: Using clouds

to elastically extend site resources. In Proceedings of the 2010 10th

IEEE/ACM international conference on cluster, cloud and grid comput-

ing (pp. 43–52). IEEE Computer Society. Retrieved 2014-12-31, from

http://dl.acm.org/citation.cfm?id=1845214

Meredith, M., Carrigan, T., Brockman, J., Cloninger, T., Privoznik, J., & Williams,

J. (2003). Exploring beowulf clusters. Journal of Computing Sciences in

Colleges, 18(4), 268–284. Retrieved 2014-12-31, from http://dl.acm

.org/citation.cfm?id=767641

Mönch, L., Balasubramanian, H., Fowler, J. W., & Pfund, M. E. (2005). Heuristic

scheduling of jobs on parallel batch machines with incompatible job fami-

lies and unequal ready times. Computers & Operations Research, 32(11),

2731–2750.

Montero, R. S., Huedo, E., & Llorente, I. M. (2006). Benchmarking of high

throughput computing applications on grids. Parallel Computing, 32(4),

267–279. Retrieved 2014-12-31, from http://www.sciencedirect.com/

science/article/pii/S0167819105001651

Naik, V. K. (1992). Scalability issues for a class of CFD applications. In Scalable

http://eprints.hud.ac.uk/19421
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1199362
http://dl.acm.org/citation.cfm?id=1845214
http://dl.acm.org/citation.cfm?id=767641
http://dl.acm.org/citation.cfm?id=767641
http://www.sciencedirect.com/science/article/pii/S0167819105001651
http://www.sciencedirect.com/science/article/pii/S0167819105001651

Appendix F. Simulated Logs 318

high performance computing conference, 1992. SHPCC-92, proceedings.

(pp. 268–275). IEEE. Retrieved 2014-12-31, from http://ieeexplore

.ieee.org/xpls/abs all.jsp?arnumber=232632

Newall, M., Holmes, V., & Lunn, P. (2014). GPU cluster for accelerating process-

ing and visualisation of scientific and engineering data. In Proceedings of

the science and information conference. IEEE. Retrieved 2014-12-31,

from http://eprints.hud.ac.uk/21907/

Novotny, J., Tuecke, S., & Welch, V. (2001). An online credential repository

for the grid: Myproxy. In High performance distributed computing, 2001.

proceedings. 10th ieee international symposium on (pp. 104–111).

Nurmi, D., Mandal, A., Brevik, J., Koelbel, C., Wolski, R., & Kennedy, K. (2006).

Evaluation of a workflow scheduler using integrated performance mod-

elling and batch queue wait time prediction. In Proceedings of the 2006

ACM/IEEE conference on supercomputing (p. 119). ACM. Retrieved

2014-12-31, from http://dl.acm.org/citation.cfm?id=1188579

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,

& Zagorodnov, D. (2009). The eucalyptus open-source cloud-computing

system. In Cluster computing and the grid, 2009. ccgrid’09. 9th ieee/acm

international symposium on (pp. 124–131).

Oprescu, A., & Kielmann, T. (2010). Bag-of-tasks scheduling under bud-

get constraints. In Cloud computing technology and science (Cloud-

Com), 2010 IEEE second international conference on (pp. 351–359).

IEEE. Retrieved 2014-12-31, from http://ieeexplore.ieee.org/xpls/

abs all.jsp?arnumber=5708470

Padgett, J., Djemame, K., & Dew, P. (2005). Grid-based SLA management. In

Advances in grid computing-EGC 2005 (pp. 1076–1085). Springer. Re-

trieved 2014-12-31, from http://link.springer.com/chapter/10.1007/

11508380 110

Pandey, S., Wu, L., Guru, S. M., & Buyya, R. (2010). A particle swarm

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=232632
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=232632
http://eprints.hud.ac.uk/21907/
http://dl.acm.org/citation.cfm?id=1188579
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5708470
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5708470
http://link.springer.com/chapter/10.1007/11508380_110
http://link.springer.com/chapter/10.1007/11508380_110

Appendix F. Simulated Logs 319

optimization-based heuristic for scheduling workflow applications in cloud

computing environments. In Advanced information networking and ap-

plications (AINA), 2010 24th IEEE international conference on (pp. 400–

407). IEEE. Retrieved 2014-12-31, from http://ieeexplore.ieee.org/

xpls/abs all.jsp?arnumber=5474725

Parashar, M., & Hariri, S. (1997). Interpretive performance prediction for high

performance application development. In System sciences, 1997, pro-

ceedings of the thirtieth hawaii international conference on (Vol. 1, pp.

462–471). IEEE. Retrieved 2014-12-31, from http://ieeexplore.ieee

.org/xpls/abs all.jsp?arnumber=667300

Petitet, A. (2004). HPL-a portable implementation of the high-performance

linpack benchmark for distributed-memory computers. http://www. netlib-.

org/-benchmark/hpl/ . Retrieved 2014-12-31, from http://ci.nii.ac.jp/

naid/10011009158/

Ramakrishnan, L., Koelbel, C., Kee, Y.-S., Wolski, R., Nurmi, D., Gannon, D.,

. . . others (2009). VGrADS: enabling e-science workflows on grids and

clouds with fault tolerance. In High performance computing networking,

storage and analysis, proceedings of the conference on (pp. 1–12). IEEE.

Retrieved 2014-12-31, from http://ieeexplore.ieee.org/xpls/abs all

.jsp?arnumber=6375523

Rasheed, H., Gruber, R., Keller, V., Waldrich, O., Ziegler, W., Wieder, P., . . .

Kunszt, P. (2007). Ianos: An intelligent application oriented scheduling

middleware for a hpc grid. Institute on Resource Management and

Scheduling, CoreGRID-Network of Excellence, Tech. Rep. TR-0110. Re-

trieved 2014-12-31, from http://www.researchgate.net/publication/

228368181 Ianos An intelligent application oriented scheduling

middleware for a hpc grid/file/9fcfd50ed31eaab7ee.pdf

Said, M. F. M., Taib, M. N., & Yahya, S. (2008). Analysis of the CPU utilization

for point-to-point communication operations in a beowulf cluster system.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5474725
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5474725
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=667300
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=667300
http://ci.nii.ac.jp/naid/10011009158/
http://ci.nii.ac.jp/naid/10011009158/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6375523
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6375523
http://www.researchgate.net/publication/228368181_Ianos_An_intelligent_application_oriented_scheduling_middleware_for_a_hpc_grid/file/9fcfd50ed31eaab7ee.pdf
http://www.researchgate.net/publication/228368181_Ianos_An_intelligent_application_oriented_scheduling_middleware_for_a_hpc_grid/file/9fcfd50ed31eaab7ee.pdf
http://www.researchgate.net/publication/228368181_Ianos_An_intelligent_application_oriented_scheduling_middleware_for_a_hpc_grid/file/9fcfd50ed31eaab7ee.pdf

Appendix F. Simulated Logs 320

In Information technology, 2008. ITSim 2008. international symposium on

(Vol. 1, pp. 1–6). IEEE. Retrieved 2014-12-31, from http://ieeexplore

.ieee.org/xpls/abs all.jsp?arnumber=4631592

Saule, E., Bozdağ, D., & Catalyurek, U. V. (2010). A moldable online scheduling

algorithm and its application to parallel short sequence mapping. In Job

scheduling strategies for parallel processing (pp. 93–109). Springer. Re-

trieved 2014-12-31, from http://link.springer.com/chapter/10.1007/

978-3-642-16505-4 6

Sayeed, M., Bae, H., Zheng, Y., Armstrong, B., Eigenmann, R., & Saied, G.

(2008). Measuring high-performance computing with real applications.

Computing in Science & Engineering, 10(4), 60–70. Retrieved 2014-12-

31, from http://scitation.aip.org/content/aip/journal/cise/10/4/

10.1109/MCSE.2008.98

Schwan, K., Cooper, B. F., Eisenhauer, G. S., Gavrilovska, A., Wolf, M., Abbasi,

H., . . . others (2005). Autonomic information flows.

Simon, T. A., Cable, S. B., & Mahmoodi, M. (2007). Application scalability and

performance on multicore architectures. In DoD high performance com-

puting modernization program users group conference, 2007 (pp. 378–

381). IEEE. Retrieved 2014-12-31, from http://ieeexplore.ieee.org/

xpls/abs all.jsp?arnumber=4438014

Sloan, J. D. (2004). High performance linux clusters with oscar, rocks, open-

mosix, and mpi. ” O’Reilly Media, Inc.”.

Smith, W., & Todorov, I. T. (2006). A short description of dl poly. Molecular

Simulation, 32(12-13), 935–943.

Snavely, A., Carrington, L., Wolter, N., Labarta, J., Badia, R., & Purkayastha,

A. (2002). A framework for performance modeling and prediction.

In Supercomputing, ACM/IEEE 2002 conference (pp. 21–21). IEEE.

Retrieved 2014-12-31, from http://ieeexplore.ieee.org/xpls/abs all

.jsp?arnumber=1592857

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4631592
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4631592
http://link.springer.com/chapter/10.1007/978-3-642-16505-4_6
http://link.springer.com/chapter/10.1007/978-3-642-16505-4_6
http://scitation.aip.org/content/aip/journal/cise/10/4/10.1109/MCSE.2008.98
http://scitation.aip.org/content/aip/journal/cise/10/4/10.1109/MCSE.2008.98
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4438014
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4438014
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1592857
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1592857

Appendix F. Simulated Logs 321

Srinivasan, S., Krishnamoorthy, S., & Sadayappan, P. (2003). A robust schedul-

ing technology for moldable scheduling of parallel jobs. In Cluster comput-

ing, 2003. proceedings. 2003 IEEE international conference on (pp. 92–

99). IEEE. Retrieved 2014-12-31, from http://ieeexplore.ieee.org/

xpls/abs all.jsp?arnumber=1253304

Sterling, T. L. (2002). Beowulf cluster computing with linux. MIT press. Re-

trieved 2014-12-31, from http://books.google.co.uk/books?hl=en&lr=

&id=M73h9u9Q7sAC&oi=fnd&pg=PA1&dq=Beowulf+Cluster+Computing+

with+Linux&ots=utTBFKwyVQ&sig=1yoSPWQ1HGXZOVkWUpxG3dAXoro

Stoica, I., Abdel-Wahab, H., Jeffay, K., Baruah, S. K., Gehrke, J. E., & Plax-

ton, C. G. (1996). A proportional share resource allocation algorithm

for real-time, time-shared systems. In Real-time systems symposium,

1996., 17th IEEE (pp. 288–299). IEEE. Retrieved 2014-12-31, from

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=563725

Stumm, M. (1988). The design and implementation of a decentralized

scheduling facility for a workstation cluster. In Computer workstations,

1988., proceedings of the 2nd IEEE conference on (pp. 12–22). IEEE.

Retrieved 2014-12-31, from http://ieeexplore.ieee.org/xpls/abs all

.jsp?arnumber=4797

Tanenbaum, A. S., & Tannenbaum, A. (1992). Modern operating systems

(Vol. 2). Prentice hall Englewood Cliffs.

Trader, T. (2012). Cycle spins up 50,000-core cluster in amazon cloud (Tech.

Rep.).

Trystram, D. (2001). Scheduling parallel applications using malleable tasks on

clusters. In Parallel and distributed processing symposium, international

(Vol. 3, pp. 30199a–30199a). IEEE Computer Society. Retrieved 2014-

12-31, from http://www.computer.org/csdl/proceedings/ipdps/2001/

0990/03/099030199a.pdf

Van den Bossche, R., Vanmechelen, K., & Broeckhove, J. (2010). Cost-optimal

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1253304
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1253304
http://books.google.co.uk/books?hl=en&lr=&id=M73h9u9Q7sAC&oi=fnd&pg=PA1&dq=Beowulf+Cluster+Computing+with+Linux&ots=utTBFKwyVQ&sig=1yoSPWQ1HGXZOVkWUpxG3dAXoro
http://books.google.co.uk/books?hl=en&lr=&id=M73h9u9Q7sAC&oi=fnd&pg=PA1&dq=Beowulf+Cluster+Computing+with+Linux&ots=utTBFKwyVQ&sig=1yoSPWQ1HGXZOVkWUpxG3dAXoro
http://books.google.co.uk/books?hl=en&lr=&id=M73h9u9Q7sAC&oi=fnd&pg=PA1&dq=Beowulf+Cluster+Computing+with+Linux&ots=utTBFKwyVQ&sig=1yoSPWQ1HGXZOVkWUpxG3dAXoro
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=563725
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4797
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4797
http://www.computer.org/csdl/proceedings/ipdps/2001/0990/03/099030199a.pdf
http://www.computer.org/csdl/proceedings/ipdps/2001/0990/03/099030199a.pdf

Appendix F. Simulated Logs 322

scheduling in hybrid iaas clouds for deadline constrained workloads. In

Cloud computing (cloud), 2010 ieee 3rd international conference on (pp.

228–235).

Vaquero, L. M., Rodero-Merino, L., & Buyya, R. (2011). Dynamically scaling

applications in the cloud. ACM SIGCOMM Computer Communication Re-

view , 41(1), 45–52.

Vaquero, L. M., Rodero-Merino, L., Caceres, J., & Lindner, M. (2008). A

break in the clouds: towards a cloud definition. ACM SIGCOMM Com-

puter Communication Review , 39(1), 50–55. Retrieved 2014-12-31, from

http://dl.acm.org/citation.cfm?id=1496100

Wallom, D. (2010). The NGS cloud pilots, their structure, users and lessons

learned. Retrieved from http://web3-test.esc.rl.ac.uk/sites/

default/files/file/ngsif10%20presentations/Clouds%20IF10.pdf.

Wang, L., Tao, J., Kunze, M., Castellanos, A. C., Kramer, D., & Karl,

W. (2008). Scientific cloud computing: Early definition and ex-

perience. In HPCC (Vol. 8, pp. 825–830). Retrieved 2014-12-31,

from http://cyberaide.googlecode.com/svn/trunk/papers/08-cloud/

vonLaszewski-08-cloud.pdf

Wang, L.-X. (1999). A course in fuzzy systems. Prentice-Hall press, USA.

Weiss, A. (2007). Computing in the clouds. networker , 11(4). Retrieved

2014-12-31, from http://di.ufpe.br/~redis/intranet/bibliography/

middleware/weiss-computing08.pdf

Weng, C., & Lu, X. (2005). Heuristic scheduling for bag-of-tasks applications in

combination with qos in the computational grid. Future Generation Com-

puter Systems, 21(2), 271–280.

Wilson, S. (2010). Grid engine: The world’s first cloud-aware distributed re-

source manager (virtual steve). Retrieved 2014-12-31, from https://

blogs.oracle.com/stevewilson/entry/grid engine the world s

http://dl.acm.org/citation.cfm?id=1496100
http://web3-test.esc.rl.ac.uk/sites/default/files/file/ngsif10%20presentations/Clouds%20IF10.pdf.
http://web3-test.esc.rl.ac.uk/sites/default/files/file/ngsif10%20presentations/Clouds%20IF10.pdf.
http://cyberaide.googlecode.com/svn/trunk/papers/08-cloud/vonLaszewski-08-cloud.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/08-cloud/vonLaszewski-08-cloud.pdf
http://di.ufpe.br/~redis/intranet/bibliography/middleware/weiss-computing08.pdf
http://di.ufpe.br/~redis/intranet/bibliography/middleware/weiss-computing08.pdf
https://blogs.oracle.com/stevewilson/entry/grid_engine_the_world_s
https://blogs.oracle.com/stevewilson/entry/grid_engine_the_world_s

Appendix F. Simulated Logs 323

Woo, S.-H., Yang, S.-B., Kim, S.-D., & Han, T.-D. (1997). Task scheduling in dis-

tributed computing systems with a genetic algorithm. In High performance

computing on the information superhighway, 1997. HPC asia’97 (pp. 301–

305). IEEE. Retrieved 2014-12-31, from http://ieeexplore.ieee.org/

xpls/abs all.jsp?arnumber=592164

Yao, F., Demers, A., & Shenker, S. (1995). A scheduling model for reduced CPU

energy. In Foundations of computer science, 1995. proceedings., 36th

annual symposium on (pp. 374–382). IEEE. Retrieved 2014-12-31, from

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=492493

Zadeh, L. A. (1994). The role of fuzzy logic in modeling, identification and

control. Modeling, identification and control , 15(3), 191–203.

Zaman, S., & Grosu, D. (2011). Efficient bidding for virtual machine instances in

clouds. In Cloud computing (CLOUD), 2011 IEEE international conference

on (pp. 41–48). IEEE. Retrieved 2014-12-31, from http://ieeexplore

.ieee.org/xpls/abs all.jsp?arnumber=6008691

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=592164
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=592164
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=492493
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6008691
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6008691

Glossary

Batch Processing System / Batch System / Offline Processing: This cate-

gory of systems take all inputs for several jobs and once its buffer is full or an

operator instructs it to then the execution of commands begins. Jobs submitted

will never run at submit time.

Batch Queuing System: The evolution of the a Batch Processing System

bridging the gap to Online systems. If an online system does not have the

resources to begin full execution it uses a batch queueing system to streamline

pending jobs - the system is still defined as online because the job is considered

for execution but the results are delayed.

Fair share: A system of scheduling that prevents one user or group from con-

suming all resources. If the resources are uncontested then a single user or

group gets full access but once others start to request resources then the first

user or groups resources are taken away to create an equitable distribution.

Malleable Job: A job whose allocated resources can be changed while it is

running. e.g. during read-in or write-out (inherently serial operations) a single

node can be allocated, and during processing or MPI stages more resources

can be assigned.

324

6. Glossary 325

Mouldable Job: A job whole allocated resources can be changed and decided

before execution begins. e.g. allocating 2 CPUs rather that the 4 requested to

enable faster turn-around.

Online System/Processing: An online system is one that reacts immediate

to a stimulus however the time bound is not strictly enforced. e.g. a job when

submitted runs immediately but results and responses are not immediate.

Quality of Service (QoS): Quality of Service is a measure of how quickly a

user submitted job can be turned around. QoS is assessed based on the in-

crease/decrease of the time a job needs to wait for required resources before

it can begin. QoS and wait time are inversely related where an increased wait

time implies a reduction in quality of service.

Real Time System: A real-time system is one that must process information

and output results within a specified time and is usually considered responsive

or immediate. If the time limits are exceeded it is considered a failure. e.g.

an instruction given to a program must happen immediately else the system is

”stuck” (clicking the Start button in Windows).

Run Time: Used interchangeably as the time at which a queued job begins to

run (e.g. at run time) or the duration of the jobs execution cycle (not including

the wait time)(e.g. the job has a 3 hour run time).

Submit Time: The time at which a user submits their job to the HPC cluster.

Turn-around-Time: The total time from Submit time till the job is evicted from

the system on completion.

Wait Time: The length of time a job waits in the queue before execution can

begin. This is typically due to resources not being available but can also be

caused by dependancies to early executing jobs.

6. Glossary 326

Wall Time: A term from the Terascale Open-Source Resource and QUEue

Manager (TORQUE) and Portable Batch System (PBS) job management sys-

tem. It refers to the length of time the job has been running i.e. duration of run

time. Similar to Run Time

	Copyright
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Aim
	1.3 Objectives
	1.4 Outline of Work

	2 Research Computing Systems
	2.1 Introduction
	2.2 High Performance Computing (HPC) Systems
	2.3 High Throughput Computing (HTC) Systems
	2.4 Grid Computing Systems
	2.5 Elastic and Shared Systems
	2.6 Security
	2.7 Summary

	3 Requirements of a Job Scheduler
	3.1 Introduction
	3.2 Job Management Systems
	3.2.1 Batch Queuing Systems
	3.2.2 Job Schedulers

	3.3 Scheduling Decisions
	3.4 Available Schedulers
	3.5 Simulators
	3.6 Summary

	4 Literature Review
	4.1 Introduction
	4.2 Scheduling Techniques
	4.2.1 Traditional Scheduling Strategies
	4.2.2 Mouldable Scheduling
	4.2.3 Scheduling in Elastic Environments

	4.3 Review of AI in Scheduling
	4.3.1 Intelligent Schedulers
	4.3.2 Heuristics in HPC

	4.4 Benchmarking Schemes and Schemas
	4.5 Seminal Works
	4.6 Summary

	5 University of Huddersfield Research Computing Infrastructure
	5.1 Introduction
	5.2 Research Computing Infrastructure
	5.2.1 Systems
	5.2.2 Applications

	5.3 System Usage
	5.4 Workload Sample
	5.5 Summary

	6 Application and System Performance Profiling
	6.1 Introduction
	6.2 Development of the Toolkit
	6.2.1 Toolkit Architecture
	6.2.2 Generating Benchmarks
	6.2.3 Information Retrieval and Postprocessing

	6.3 Testing and Results
	6.3.1 Test Platform
	6.3.2 Profiling the CFD Application
	6.3.3 Profiling the MD Applications
	6.3.4 Discussion

	6.4 Summary

	7 Workload Manager Simulator
	7.1 Introduction
	7.2 Design
	7.3 Implementation
	7.4 Testing
	7.5 Validation
	7.6 Summary

	8 Rule Based Mouldable Workload Manager
	8.1 Introduction
	8.2 System Design
	8.2.1 Submission Protocols
	8.2.2 Performance Prediction
	8.2.2.1 Testing Performance Predictions

	8.3 Testing Mouldable Scheduler
	8.4 Summary

	9 Scheduling Paradigms
	9.1 Introduction
	9.2 Fuzzification of the Workload Manager
	9.2.1 Background
	9.2.2 Implementation
	9.2.3 Discussion

	9.3 Surge Computing: Elasticity in Scheduling
	9.3.1 Motivation
	9.3.2 Implementation
	9.3.2.1 Decision Metrics
	9.3.2.2 Surge Wrapper for TORQUE

	9.3.3 Discussion

	10 Conclusion
	11 Further Work
	A Appendix A: Dataset
	A.1 Real Tracelogs
	A.2 Real Data with Moulding Information
	A.3 Normalised Data with Moulding Information

	B Appendix B: Simulator
	B.1 Code
	B.2 Verficiation Sheet

	C Appendix C: Mouldable Scheduler
	C.1 Code

	D Appendix D: Application and System Performance Profiler Code
	D.1 Code

	E Appendix E: Simulated Outputs
	E.1 Real data FCFS
	E.2 Normalised data with FCFS
	E.3 Normalised data with Moulding

	F Appendix F: Simulated Logs
	F.1 Real data FCFS
	F.2 Normalised data FCFS
	F.3 Normalised data Moulded

	References
	References
	Glossary

