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Abstract

A mass of cells that grow without normal bounds is termed a benign tumour if

it does not invade locally into the tissue and malignant when it invades into its

surrounding tissue. Benign tumours are often harmless unless the pressure they

exhibit onto the tissue surrounding it causes trouble to the functioning of the

human body as is often the case in brain tumours (gliomas) or other vital organs

of the body. It is malignant tumours that are deemed to be made up of cancer

cells and it is this process of invasion that defines them and will be studied in

this thesis.

We do this by considering two scales of interest in cancer cell invasion. In Chap-

ters 4 and 5, we focus on tissue scale dynamics of a cancerous mass and the

processes by which the cancerous mass is able to invade the surrounding tissue.

Correspondingly, we focus on a continuum, deterministic approach to protease-

dependent invasion where matrix degrading enzymes cleave collagen fibrils and

other ECM components. Specifically, in Chapter 4 we formulate a PDE model

of cancer cell invasion primarily through haptotaxis as the result of degradation

of tissue from the proteolytic activity of the membrane bound MT1-MMP pro-

tein and the soluble MMP-2 protein in addition to the complexes formed, and

consequences thereof, from interactions they have with one another and their en-

dogenous inhibitor TIMP-2. In Chapter 5 we develop the PDE model of cancer
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cell invasion to incorporate additional dynamics of the tissue and how these may

hamper cancer cell invasion and tissue degradation. Further, we investigate how

the tissue may be reconditioned by MT1-MMP proteins to allow for additional

cancer cell movement and tissue degradation.In Chapter 6, we consider how small

protrusions from the cell termed invadopodia can affect the production of MMP-2

proteins and the focussing of ECM degradation, which has the consequence of

allowing cancer cells to overcome barriers in the extracellular matrix.
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Chapter 1

Introduction

Cancer cell invasion is of particular significance when considering the development

of the disease as it is intrinsically linked with metastasis, which is responsible for

approximately 90% of cancer deaths. Matrix degrading proteins are of critical

importance when it comes to the degradation of healthy tissue that allows for

the growth and spread of cancer cells and these proteins and their inhibitors can

have non-linear dynamics (cf. the activation system for matrix metalloproteinase

2; MMP-2). This motivates the use of mathematical models to fully understand

the complex process of invasion.

In Chapter 2, we outline some of the biological dynamics that are important in

cancer cell invasion in order to provide evidence for the incorporation of these

biological motivations in the proposed mathematical models. In Chapter 3, we

provide a summary of the historical and current mathematical models of cancer

invasion which form the foundations on which the current work stands.

We have developed a continuum (PDE) model of cancer cell invasion incorpo-

rating the activation system for matrix metalloproteinase 2 in Chapter 4 and
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provided details on how it is formulated and parameterised. We explore the

significance of the level of tissue inhibitor of metalloproteinases 2 (TIMP2) on

cancer cell invasion and identify the individual roles that MMP-2 and the mem-

brane bound-1 matrix metalloproteinases (MT1-MMP) play.

The surrounding environment of the cancer cells plays a significant role in cancer

cell invasion and so while we have considered a relatively simple formulation of

the environment in Chapter 4, in Chapter 5 we proceed to expand upon the

proposed model with the incorporation of additional roles of the environment,

including pore size, etc., on cancer cell invasion. Additionally we explore how the

significance of MT1-MMP changes when the additional dynamics that are solely

the domain of MT1-MMP are considered.

In Chapter 6, we investigate how small protrusions of a single cell (invadopodia)

into the surrounding tissue may cause additional and significant changes as to

how cancer cell invasion proceeds. The inclusion of shuttling of MT1-MMP to

invadopodia is investigated with relation to the activations system of MMP-2 as

well as how this may affect the lifespan of invadopodia. This is modelled through

a stochastic approach where only a small spatial scale, and therefore small number

of proteins are considered.

A discussion of the proposed works focusing on results obtained from the mod-

elling efforts is included in Chapter 7 before a discussion of the proposed works

including both their usefulness as prognostic tools and the exploration of as-of-yet

not fully defined biological systems The presented work is then brought to an end

with the offering of potential avenues of continued research.
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Chapter 2

The Biology of Cancer Invasion

Cancer is a classification of over 200 diseases which all arise progressively from

an alteration in a single cell’s genetic structure. A cancer cell is defined as one

which proliferates beyond the bounds a normal cell experiences and one which

invades and replaces cells of neighbouring areas. Alberts et al. (2008) describes

the body as a “society or ecosystem where dynamics such as self-preservation are

put below that of self-sacrifice”, a statement which we will support by describing

the functions of healthy cells, before continuing on to show how cancerous cells

demonstrate behaviour that violates this description.

Cancers gain their classification from either the location from which they arise

(brain cancer, breast cancer, cervical cancer, etc.) or from their tissue type

(blastomas-embryonic tissues, carcinomas-epithelial tissue, leukemias-blood pro-

duction site, lymphomas-lymphatic tissue, myeloma-bone marrow, sarcomas-connective

tissue etc.). Carcinomas are the most common classification accounting for ap-

proximately 90% of all cancers.

Cancer grading measures the abnormality of the cancer cells from biopsies and
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generally follows the three grades (some cancers and countries have varying grad-

ing systems) of: (i) the cancer cells appear normal (differentiated) and grow

slowly, (ii) the cancer cells are abnormal (poorly differentiated) and grow quickly

and (iii) the cancer cells are very abnormal (undifferentiated) and grow very

quickly.

Cancer staging measures the extent of the disease’s spread. There are a number

of systems to measure this. However we present only one numerical system here:

stage 0 (cancer limited to surface cells), stage 1 (cancer exhibiting growth but

remains at original site), stage 2 (local invasion of cancer cells), stage 3 (further

reaching invasion of cancer cells) and stage 4 (metastasis).

2.1 Biology of Healthy Cells and Tissue

In order to understand the processes that cancerous cells perform, a basic un-

derstanding of the processes a healthy cell may undergo is required. This also

applies when we look at how a mass of cancer cells interact with their surrounding

healthy stroma and so here we provide a minimal overview of both.

A cell (discovered by Hooke in 1665 (Hooke, 1665)) is the biological entity which

all living organisms are made up of, whether single cell organisms or multicellular

(humans contain approximately 3.72× 1013 cells (Bianconi et al., 2013)). A cell

is the fundamental building block of life as nothing smaller than it can perform

all of the following: contain hereditary data (DNA), obtain resources/nutrients

from its environment, convert these resources/nutrients to energy, use this energy

to multiply by creating a duplicate of itself.
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Figure 2.1: The four stages of G1, S, G2 and M that a cell cycles through are illus-

trated where G0 represents a removal, however temporary, from this cycle. ©Alberts

et al. (2008), reproduced by permission of Garland Science/Taylor & Francis LLC.

The communication between cells is extensive and is done by a myriad of extra-

cellular signals. A cell needs to receive multiple signals in order to survive. De-

priving a cell of one or more of these signals can initiate cell death. If a cell

receives the required signals to survive, it can then either divide or differentiate

if appropriate additional signals are received. Despite receiving the same signals,

different cells may react in different ways to the same signals depending on their

ability to interpret these signals through receptor proteins.

The cell-cycle, as outlined in Figure 2.1, describes the functional stages a cell

goes through in order to continually divide and is defined by four stages. The

interphase is the period that contains the first three of these stages: G1 phase

(cell grows), S phase (DNA synthesis resulting in a doubling of each chromosome),

G2 phase (the cell continues to grow). The interphase is followed by the M phase

(mitosis-nuclear division and cytokinesis-cell division). G0 phase is the state a

cell goes into when it is no longer taking part in this cell-cycle where the cell is

considered to be resting.
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Healthy tissue constructs made up of the extracellular matrix (ECM) are rigid

structures of cellular components that are constantly undergoing remodelling.

The rate at which this remodelling takes place is boosted during development and

wound repair. What determines the remodelling of ECM can be one of the follow-

ing factors: cell-surface receptors, matrix degrading proteins and stress/tension.

Comprehensive overviews for the structure of the ECM are provided in Vakonakis

and Campbell (2007), Daley et al. (2008) and Hynes (2009).

In order for cellular structures to be formed, there must a way of linking cells

together. This is done either directly with cell-cell bonds of either homophilic or

heterophilic type, or by the use of a medium such as the rigid ECM structure,

which multiple cells can connect to. Integrins are transmembrane/cell-surface

receptors that allow for cell-cell or cell-ECM bonds to form. This gives rise to

the two forms of animal tissue. Epithelial tissues are formed of closely packed

epithelial cells while connective tissues, which the ECM is, has a much sparser

distribution of cells. Epithelial cells are themselves architectures of cells that

form sheets that line cavities and structures throughout the body. Typically, a

layer of epithelial cells will create the surface of a structure encasing the basement

membrane, beyond which lies the connective tissue made up of collagen and a

variety of other ECM material. This is outlined in the diagrams of Figure 2.2.

Collagens are a family of triple helical proteins that are responsible for tissue

assembly and maintenance. This definition leaves some blurring in the distinc-

tion between collagens and collagen-like proteins (Kadler et al., 2007). Of the

collagens, collagen type-I is the most abundant and can be found in connective

tissue throughout the body. The three chains that form the collagen protein are

α chains while the majority of collagen proteins are homotrimers. Collagen type-I

in its standard form is heterotrimeric and consists of two identical α − 1 chains

while the third is an α− 2 chain.
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Figure 2.2: Schematic of epithelium leading into connective tissue. ©Alberts et al.

(2008), reproduced with permission from Garland Science/Taylor & Francis LLC.

The family of collagens in the ECM are triple-helical proteins (cf. Figure 2.3)

proteins that are extremely strong and flexible and provide the ECM with its

tensile strength. The triple helix form of collagen is resistant to many forms of

degradation. The end segments of collagen fibres are not in the triple-helical form

and feature N- and C-termini. The crosslinking of collagen fibres to form fibrils

occurs at these termini where the C-terminus of one collagen molecule is linked

to the N-terminus of another collagen molecule. A collection of three stranded

collagen type-I molecules can form collagen fibrils of diameter 50-200nm which

have the structure outlined in Figure 2.3. Collagen fibrils are then organised into

fibrous structures by fibroblasts (Ehrlich and Krummel, 1996; Alberts, Johnson,

Lewis, Raff, Roberts and Walter, 2008).

The three-dimensional aspect of the ECM plays a pivotal role in regulating cel-

lular adhesion, migration, morphogenesis, growth and apoptosis (see Klein et al.,

2003, and references therein) by affecting cells at the level of signal transduction

(Daley et al., 2008).

Matrix Turnover, or matrix degradation, occurs in normal tissue and is in fact

an essential process in healthy tissue. There are biological processes in a healthy



8

Figure 2.3: The triple-helical nature of the rope-like collagen strands and their for-

mation within the larger constructs of fibrils and fibres. ©Nature Publishing Group,

reproduced with permission from Mouw et al. (2014).

body that require the degradation of extracellular matrix to either provide the

space required by a cell to replicate or to allow the cell to travel through the

matrix. These processes occur in bones adapting to stresses (Chiquet et al.,

1996), the branching growth of mammary glands during embryonic development

(Vu and Werb, 2000) and other epithelial structures and in immune response

where white blood cells migrate across the basal lamina of blood vessels. An

essential part of investigating ECM turnover, whether in a positive case such as

wound healing or a negative case such as cancer, is the the consideration of MMPs

and TIMPs (Kerrigan et al., 2000).

As natural turnover of ECM is required within a healthy body, MT1-MMP and

MMP-2 are produced at certain times outside of cancer invasion. MT1-MMPs

can be seen as a method for fibroblast (these lay down the foundation of the

ECM) invasion of tissue (happens on a single based scale that causes only small

degradation of tissue far below what we would see in cancer) to allow the fibrob-

lasts to reach areas of tissue that have been damaged and need to be repaired.

This process involves MT1-MMP (and therefore MMP-2) being expressed con-

tinuously until the wound has been healed. When we consider this process in the
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context of cancer invasion we can see that this feedback loop (technical details

involve collagen activating ERK which upregulates MT1-MMP which causes a

feedback loop by encouraging the ERK again) causes the wholesale destruction

of tissue (Lu et al., 2011).

2.2 Biology of Cancerous Cells and Their Envi-

ronment

The most common form of cancer is the grouping of solid carcinoma accounting

for ∼ 80− 90% of all cancers. Carcinomas are formed from epithelial cells.

If we recall the body as a “society of cells” then it is clear that cancer cells subvert

this society towards their own ends.

Meyskens et al. (1984) estimated the number of cells per cancerous cell mass

(from order 100 − 102 number of cancer cells of cell diameter 12.0 − 44.5µm

in oblate spheroid masses of diameter up to 150µm in a semisolid medium) as

2.40× (diameter of mass of cells)2.378

(diameter of cell)2.804
.

Here, we will use the framework provided by Hanahan and Weinberg (2000)

in Figure 2.4 where they characterise cancer as having 6 “hallmarks”, with an

additional 3 hallmarks proposed in their follow-up paper (Hanahan and Wein-

berg, 2011): enabling replicative immortality, inducing angiogenesis, resisting cell

death, sustaining proliferative signalling, evading growth suppressors, activating

invasion and metastasis, deregulating cellular energetics. These are the basic

characteristics that they believe have emerged that can define most, if not all,

human cancers. We note that there exists some criticism in the literature of these

“hallmarks”, for example, in the paper of Sonnenschein and Soto (2013) where
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Figure 2.4: The six originally identified “hallmarks of cancer”. ©Elsevier, reproduced

with permission from Hanahan and Weinberg (2000).
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they instead extol the tissue organisation field theory where cancer is viewed as

a tissue-based disease.

Replicative immortality of cancer cells allows them to be able to undergo mitosis

limitlessly. This is in contrast with normal healthy cells which can only do so a

limited number of times. Human cells can perform mitosis approximately 40-60

times under the Hayflick limit (Hayflick and Moorhead, 1961).

Resisting cell death permits the growth rate of a mass of cancer cells, defined

by the balance between the production and death rates of the cell, to increase

beyond levels that would be considered normal in healthy tissues. Apoptosis

(cell-death) can be triggered by environmental stimuli and was proposed by Kerr

et al. (1972).

Inducing angiogenesis provides cancer cells with the required nutrients necessary

for them to grow. This can be supplied in the form of oxygen diffusing from

blood vessels. As such, it is profitable for masses of cancer cells to stimulate the

growth of blood vessels in the same vicinity as the cancer cells and is indeed a

requirement for solid tumours to grow past ∼2-3mm in diameter. This is done by

the release of tumour angiogenic factors (TAF) that provide signals to the blood

vessels to grow toward the cancerous mass.

Sustaining proliferative signalling of cancer cells, where these cells gain the ca-

pability of continued generation of their own growth signals through oncogenes

(characterised as growth factors, growth factor receptors, signal transduction pro-

teins, nuclear regulatory proteins and cell cycle regulators), independent of the

surrounding tissue, allowing for the overcoming of homeostasis.

Evading growth suppressors that would promote homeostasis. Homeostasis oc-

curs where there is a balance of both promoting growth and suppressing growth,
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where appropriate. Malignant tumours are clear violators of homeostasis and as

such it is not surprising that they feature both sustained growth, as discussed in

the previous sub-topic, as well as insensitivity to anti-growth signals. The part

of homeostasis that is violated in this context is the ability of signals to force

cells into the quiescient state (G0 of the cell cycle) or postmitotic state. These

antigrowth signals are picked up by integrins on the cell-surface, which in turn in-

ternalise the signal. As such, one manner of cancerous cells evading these growth

signals in the manipulation of the expression of cell surface receptors away from

those that pick up antigrowth signals.

Tissue invasion and metastasis where tissue invasion depends on cell motility

through neighbouring regions of healthy tissue. This may be achieved by either

enzyme dependent means through the degradation of the surrounding extracellu-

lar matrix or enzyme independent means through collective cell migration (Khalil

and Friedl, 2010; Vargas and Zaman, 2011; Schlüter, 2013). Metastasis is the

seeding of new environs, which occurs when certain barriers within the body are

overcome, such as allowing cancer cells to enter into the blood vessels or lymph

system, allowing for the creation of secondary tumours to form.

Deregulating cellular energetics causes glycolysis to be upregulated, resulting in

additional cellular respiration.

Tumour-promoting inflammation occurs where the co-opting of the immune sys-

tem causes it to promote cancer cell invasion.

Genome instability and mutation, where most types of cancer cells have chromo-

somes that deviate form the norm (aneuploidy state instead of euploid karyotypic

state) to the extent that they may have an extra copy of chromosome(s), missing

chromosome(s) or the fusion of two or more chromosomes.
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2.3 Cancer Cell Invasion

Different types of collagen act as a physical barrier to cancer cell invasion or as a

surface to move along depending on the structure. For invasion and metastasis to

occur, cancer cells are required to overcome several collagen-endowed tissue barri-

ers. One such obstacle is the basement membrane that lines vascular endothelial

cells and is made up of largely collagen type IV. Another obstacle is the structural

ECM in the tissue (stroma), which can be largely made up of collagen type I.

The ECM is a fairly rigid and stable structure which has displayed decades long

half-life in vivo. Protease-dependent invasion (as opposed to force based models

of movement along fibres) rely on enzymes (such as MMPs) to cleave the collagen

fibrils that would otherwise impede movement through the region.

One form of cancers, gliomas (brain cancers), can have an identifiable tumour

centre, boundary and invasive region ahead of the boundary with MT1-MMP be-

ing overexpressed in cells at the border of the tumour and in invasive cells ahead

of the tumour (Guo et al., 2005). Guo et al. (2005) perform a statistical analysis

of their results and find that for all grades of tumour (I-IV), there exists a signif-

icant association between the upregulation of MT1-MMP and MMP-2 with the

invasiveness of the glioma. However, glioblastomas, the most highly malignant of

gliomas, are characterised by rapid invasion into the surrounding parenchyma and

blur tumour margins with single cell invasion occurring at the invasive front and

the formation of small colonies of cancer cells in advance of the tumour. This ren-

ders the potentially curative treatments of surgery, immunotherapy, radiotherapy

and chemotherapy to be palliative care only (Nakada et al., 2007).

Metastates (secondary tumours/cancers) account for more than 90% of cancer

deaths (Steeg, 2006). For metastasis to occur, cancer cells must exhibit invasion
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through a variety of structured media such as the highly dense collagen consti-

tution of some peritumoral stroma (Hanahan and Weinberg, 2000, 2011). This

can occur by the secretion of enzymes that are capable of degrading components

of the ECM or by the adoption of an amoeboid phenotype that allows cancer

cells to travel through the medium in a protease-independent manner (Friedl

and Wolf, 2003a; Sahai, 2005). Cancer cells from a primary tumour break away

from the central mass and are disseminated throughout the body where they re-

grow to form secondary tumours. The main steps of metastasis are intravasation,

survival/travelling of the blood stream, extravasation. A tumour may release

millions of cells in a day to only have a few survive these final two processes.

2.3.1 Matrix Degrading Enzymes

Matrix degradation is accomplished by proteins such as the urokinase plasmino-

gen activator (uPA) and the family of matrix metalloproteinases (MMPs). There

are 24 MMPs in humans (named MMP-,1-3,7-17,19-21,23A,23B,24-28, Quesada

et al., 2009), 18 of which are freely-diffusive with the remaining 6 being bound

to the membrane of the cell. Collectively they can degrade all components of

healthy tissue (Kleiner and Stetler-Stevenson, 1999; Egeblad and Werb, 2002).

This in turn facilitates cancer growth and spread by virtue of the available space

left in the absence of the degraded ECM as well as by VGEF proteins that are

released by the degraded tissue encouraging the cancer growth (López-Ot́ın and

Overall, 2002), (Werb, 1997). MMPs are zinc-dependent endopeptidases whose

main function is the homeostatic regulation of the ECM, that is to say the regular

turnover of the ECM (Nagase and Woessner, 1999). This process is exploited in

cancer growth and invasion where various MMPs are over expressed. The ex-

pression of MMPs faces control at the level of transcription but can also face
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inhibition when moving from the proMMP precursor state to an active MMP as

well as inhibition when it exists in its active state (Overall and López-Ot́ın, 2002;

Clark et al., 2008).

The first member of the matrix metalloproteinase family discovered was MMP-1

(originally named tadpole interstitial collagenase) from evidence of collagenolytic

activity in tadpole tail metamorphosis (Gross and Lapiere, 1962). While MMPs

have gone through several name changes, the generally accepted naming conven-

tion for them is now MMPs. Even once we have settled upon the notation of

MMP, we still find that numerous expansions of this abbreviation exist: namely,

metalloendopeptidase, metallopeptidase, metalloproteinase, or metalloprotease.

MMPs feature a lack of upregulation by gene amplification/activation in cancer

cells but instead transcriptional changes result in the over-expression of MMPs in

cancer invasion Shapiro and Senior (1999). This distinguishes them from typical

oncogenes. It is important to note that MMPs play a part in many diseases as

well as in healthy tissue, for example, cancer, arthritis, skeletal development and

growth plate disorders, heart disease, central nervous system (CNS), meningitis,

multiplesclerosis, Alzheimers disease, inflammatory myopathies (Malemud, 2005).

The family of MMPs can exhibit both pro- and anti-invasive characteristics (Nöel

et al., 2012) but in this work we focus on the pro-invasive MMPs of MMP-2

and MT1-MMP. MMP-2 is secreted in the inactive zymogen form of proMMP-2

whereas the fully active MT1-MMP is expressed on the cell surface after being

activated internally. This interplay between the enzymes is emphasised by the

coexpression of proMMP-2, MT1-MMP, MMP-2 and TIMP2 in a variety of tissues

(Kinoh et al., 1996). While MT1-MMP was initially thought to have activity

limited to activating MMP-2, it has since been found to also have a direct role in

tissue degradation (d’Ortho et al., 1997).
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MMPs that play a crucial role in cancer invasion are MMP-2, MMP-9 and the

various MT-MMPs (mainly MT1-MMP). Some MMPs even have the opposite ef-

fect with MMP-8 in particular exhibiting anti-invasive properties. Even amongst

the pro-cancer MMPs there seems to be some location specific properties with

MMP-2 and-9 being more important in liver cancer with a minimal (at best) role

of MT1-MMP whereas other locations (breast in particular) has a high depen-

dence on the specific properties offered by the MT1-MMPs due to the make-up

of the 3D collagen type-I structure.

MMP-2 was one of the earliest discovered MMPs, it has known many names:

matrix metallopeptidase 2, gelatinase A, 72kDa gelatinase, 72kDa type IV colla-

genase, Mr72, 000 MMP.

ECM substrates of MMP-2 are: elastin, fibronectin, various collagens, laminin,

aggrecon, vitronectin. MMP-2 has a non-ECM substrate of TGF-beta (conse-

quence uncertain but it is a growth factor), IGFBP3 (causes increased cell prolif-

eration and survival) and CCL7 (a chemokine that allows the transformation of

a chemotactic agonist into a chemotactic antagonist).

MMP-2 and MMP-9 are seen to strongly correlate with glioma progression and

malignancy. MMP-2 and MT1-MMP are overexpressed in invading cells of gliomas

in humans (Guo et al., 2005).

Integrin αvβ3 is found to be implicated in the activation process of MMP-2 by

MT1-MMP and TIMP2 in glioma cells (Deryugina et al., 2001). However Sakai

et al. (2011) confirm the findings of Gilles et al. (1997) and Nguyen et al. (2000)

that the MMP-2 activation from 3D collagen induced MT1-MMP is independent

of integrins and matrix stiffness.

MT1-MMP is activated from proMT1-MMP by furin-like proprotein convertases
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into active MT1-MMP (a process that can be inhibited by the convertase in-

hibitors of α 1-PDX and HIV aspartyl protease inhibitor). This means that by

the time it reaches the surface of the cell, it is in its active form.

MT1-MMP localises to the front of migrating cells. This allows degradation

of ECM components that are in front of the invading cancer cells that would

otherwise be a physical barrier to invasion. ECM substrates of MT1-MMP are:

fibronectin, vitronectin, laminin-1,-5, fibrin, collagen type I, II, III, gelatin, casein

and elastin. MT1-MMP has a non-ECM substrate of pro-αv integrin (offers an

increase motility). As well as degrading and remodelling components of the ECM,

MT1-MMP can cause the detachment of cell-cell and cell-substrate adhesion links

by cleaving cell adhesion molecules such as CD44 and integrin αv chain.

MT1-MMP confers cancer cells with the ability to proteolytically degrade the

basement membrane scaffolding, initiate invasive pseudopodia (where a single

cell changes its geometry to reach out in a specific direction) and facilitate trans-

migration through the endothelial monolayer and the basement membrane (∼100

nm thick and consisting of largely collagen type-IV).

MT1-MMPs are responsible for the invasive potential of fibroblasts and other

single cell invasion capabilities. Hotary et al. (2000) find that MT1-MMP invasion

is independent of the activation of MMP-2. While MT1-MMP is essential for

cancer cell invasion in 3D (Sabeh, Shimizu-Hirota and Weiss, 2009; Li et al.,

2008), Lund et al. (2014) find that it is not sufficient in itself for invasion of 3D

collagen by human muscle satellite cells.

Of MMP-mutant gene knockout mice, only the mmp14 gene-knockout is lethal

in mice. They are born without abnormalities but develop these and die aged

3-12 weeks (Holmbeck et al., 1999; Zhou et al., 2000). Key findings of their work

includes that MT1-MMP and MMP-2 knock-out mice die fastest followed by
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MT1-MMP knockout mice followed by MMP-2 knockout mice (who may not even

die from the internal failures that they suffer). MT1-MMP deficient mice produce

only a faint level of MMP-2. Angiogenesis and tumour growth are severely limited

in MMP-2-null and MT1-MMP-null mice.

TIMP2 is one of four members of the gene family of “tissue inhibitor of metallo-

proteinases” consisting of: TIMP1, 2, 3, 4. These genes encode the proteins that

act as protease inhibitors and can collectively inhibit all members of the MMP

family. proMMP-2 and proMMP-9 (the latent forms of MMP-2 and MMP-9) are

the only pro-enzymes of the MMP family that are capable of forming complexes

with TIMPs. proMMP-2 can bind to TIMP2 and this complex plays a role in

its activation mediated by MT1-MMP to MMP-2. TIMP2 has an N-terminal

domain and a C-terminal domain. When TIMP2 inhibits MT1-MMP, the N-

terminal domain of the TIMP2 binds to the catalytic domain of the MT1-MMP.

When TIMP2 is involved in the activation of MMP-2, the proMMP-2 uses its

hemopexin-like domain to bind to the remaining free C-terminal domain. As

TIMP2 has a multifaceted function, any potential inhibitor that selectively tar-

gets only MT1-MMP has been described as the “Holy Grail in MMP inhibitor

drug development” (Zucker and Cao, 2009).

2.3.2 The Extracellular Matrix in Relation to Matrix Met-

alloproteinases

The microenvironment of the tumour plays a significant role in cancer progression

(Hu and Polyak, 2008; Bissell et al., 2002) with matrix metalloproteinases, among

other matrix degrading enzymes, acting as regulators, allowing obstacles to be

overcome (Rowe and Weiss, 2009; Kessenbrock et al., 2010).
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While collagen type-I will normally exist as a heterotrimer, it can also exist in a

homotrimeric form in the cases of fetal tissues, fibrosis and human cancers (see

Chang et al., 2012, and references therein). This difference in possible struc-

ture may play a significant but not yet fully understood role in cancer invasion.

McBride et al. (1997) propose that the structure formed by collagen type-I is

proposed to be due to the α − 2 chain and Kuznetsova et al. (2003) find that

homotrimeric collagen denaturates 100 times slower than heterotrimeric colla-

gen when performed at the same temperature. Denatured collagen is gelatin, a

substrate of MMP-2.

The main constituent of the stroma (dense connective tissue) is the insoluble,

structural, cross-linked type I collagen. MT1-MMP exhibits strong type I col-

lagenolytic capabilities and weak gelatinolytic capabilities. Conversely, MMP-2

exhibits weak type I collagenolytic capabilities and strong gelatinolytic capabil-

ities (Tam et al., 2004) where it is unable to degrade cross-linked collagen type

I and type IV but is able to degrade the uncross-linked variants (Zhang et al.,

2013). MMP-2 can, however, critically degrade type IV collagen, the main com-

ponent of the basement membrane and an extracellular barrier. As MT1-MMP

is bound to cancer cells, its region of proteolytic activity is more restricted than

that of the freely-diffusive proteolytic enzyme MMP-2.

While MT1-MMP activity is restricted in range, it has an advantage in its capa-

bility of overcoming environments of higher collagen density such as exists in some

peritumoral stroma. Sabeh, Shimizu-Hirota and Weiss (2009) have shown that

when cancer cells are faced with structural barriers created in reconstituted gels

by covalently cross-linked fibrils of type I collagen, or that exist in the stromal en-

vironment of the mammary gland, invasion is dependent on MT1-MMP-mediated

proteolysis.
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2.3.3 Invadopodia

Cells move across a substrate by forming protrusions which attach to the ECM

before retracting, dragging the cell along. While all the protrusions are capable

of forming adhesion sites with the ECM and receiving signals, only podosomes

and invadopodia are capable of non-negligible ECM degradation when compared

to the scale of cellular invasion. These membrane protrusions are dependent

on intracellular actin structures and are classified as: filopodia, lamellopodia,

invadopodia, podosomes.

While there are many shared roles between these cell protrusions, we highlight

the main form and function of each protrusion:

Lamellipodia: sheet-like, 10–15 µm wide but only 0.1–0.3µm thick. Lifespan:

minutes. The broadest structure on the cell membrane.

Filopodia: finger-like, Lifespan: minutes. sensors that are responsible for explo-

ration of the cell surroundings and provide feedback to the cell. Located near

lamellipodia and probe the region ahead of lamellipodia. More significant in 3D

than 2D substrates. - Three-dimensional reconstruction and motion analysis of

living, crawling cells.

Podosomes: conical, Lifespan: minutes. Responsible for cellular motility through

both the degradation of matrix and the formation of adhesion sites.

Invadopodia: conical, Lifespan: hours. The overcoming of cellular barriers for

cancer cells by the degradation of ECM as well as an increased cancer cell motility.

Focal adhesions: 2–6µm. Lifespan: hours. A bridge between the cell and ECM

through which signals are received.
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Localisation of proteins to cellular protrusions has a large impact on the func-

tion of the protrusion. One example is proMMP-2 and MT1-MMP localising at

invadopodia while proMMP-2, MT1-MMP and TIMP2 localise at lamellipodia.

This higher level of TIMP2 at lamellipodia in comparison to invadopodia leads to

invadopodia being more responsible for cellular invasion and locomotion instead

of lamellipodia in cancer (Chen and Wand, 1999).

The maturation of invadopodia formation can be divided into distinct stages as

outlined in the work of Artym et al. (2006). These are: (i) aggregation of cor-

tactin, which is responsible for the shape of the actin cytoskeleton, (ii) shuttling

of MT1-MMP to invadopodia, (iii) matrix degradation and (iv) MT1-MMP me-

diated dissociation of cortactin.
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Chapter 3

Mathematical Modelling of

Cancer Cell Invasion

3.1 Continuum Modelling

Mathematical modelling of cancer growth and invasion has expanded from the

seminal, though not necessarily the first, work of Greenspan (1976) as it has

attempted to fill the ever-expanding areas that cancer biology research has ex-

amined/unearthed/discovered. The burgeoning levels of mathematical models in

the field owes, in part, its existence to the surge in computational power that has

facilitated ever-complex numerical simulations that could not have been under-

taken in decades past. However, simulations of any organ in full is still not possi-

ble despite the particular advances towards such models of the liver (Holzhütter

et al., 2012; Drasdo et al., 2014).

While we highlight the most relevant of mathematical works on cancer cell inva-

sion, for a more expansive overview of the following topics, we refer the reader
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to the review papers and the references therein: Araujo and McElwain (2004),

Roose et al. (2007), Quaranta et al. (2008) Bellomo et al. (2008), Bellomo and

Delitala (2008), Tracqui (2009), Preziosi and Tosin (2009), Lowengrub et al.

(2010), Byrne (2010), Rejniak and McCawley (2010), Deisboeck et al. (2011),

Rejniak and Anderson (2011) and Scianna and Preziosi (2012).

The general mathematical form for how a species (variable c) moves in response

to a gradient in either its own concentration/density or that of another species is

modelled by the equation:

∂c

∂t
+∇ · J =

m∑
i=1

fi, (3.1)

where J is the sum of the flux terms and m is the number of source terms, fi.

One such movement that can be modelled by this type of formulation is that of

chemotaxis where chemotaxis describes the process by which an object, e.g. a cell,

moves in response to a chemical concentration gradient. For example, Escherichia

coli moves in response to gradients in its nutrient’s concentration (Adler, 1973)

as can be mathematically modelled in continuum form by the Patlak-Keller-Segel

(P-K-S) equations (Patlak, 1953; Keller and Segel, 1970, 1971a,b).

The P-K-S equations were introduced to study the movement of the diffusible Es-

cherichia coli (variable c) in response to gradients in a diffusible nutrient (variable

v) that the Escherichia coli, themselves, produce. They considered this to take

place in a multi-dimensional space with zero-flux boundary conditions. Therefore

c ≡ c(x, t) = c(x, y, z, t), v ≡ v(x, y, z, t) and n ·∇c = n ·∇v = 0 on the boundary

∂Ω, where n is the outward unit normal. The P-K-S equations can therefore be

of the form:

∂c

∂t
= ∇ · (Dc∇c− χc∇v), (3.2)

∂v

∂t
= Dv∆v − βvv + µvc, (3.3)
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where Dc is the diffusion rate of the Escherichia coli, χ is the chemotaxis sensi-

tivity function (in this case a parameter), Dv is the diffusion rate of the nutrient,

βv is the death rate of the nutrient and µv is the production rate of the nutrient.

The generalised form of considering the chemotactic flux is:

J = χ(·)∇v, (3.4)

where various functional forms of chemotactic sensitivity function, χ(·), are pre-

sented in Hillen and Painter (2001), Painter and Hillen (2002) and Hillen and

Painter (2009) where they discuss appropriate forms to avoid overcrowding (fi-

nite time blow-up solutions).

From the initial mathematical models of chemotaxis (Keller and Segel, 1971a,b),

there has developed a wide variety of problems that can be modelled by variations

on these equations as seen in the reference paper of Horstmann (2003), as well

as the expansive work of Hillen and Painter (2009) and the references therein.

While chemotaxictic flux is defined as being in response to a chemical gradient,

haptotactic flux is defined as being in response to a density gradient. In the pre-

sented work, we will consider cancer cells to react haptoactically towards density

gradients in the non-diffusible tissue.

This movement in response to gradients may not only act as an attractant for a

species but instead as a chemo-repellent (Adler and Tso, 1974; Tso and Adler,

1974) as is the case in the work of Perumpanani et al. (1998), where they consider

degradation of tissue to release solubilised fibronectin that then impedes invasion

by acting as a chemo-attractant in the opposite direction of overall travel.

Invasion mediated by oxygen distribution where cancer cells use oxygen as a nutri-

ent has been one of the first methods of studying cancer growth mathematically.

We present a brief journey through the developments to mathematical models of
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cancer growth over a twenty year period from Thomlinson and Gray (1955) to

Deakin (1975) before considering the works of Orme and Chaplain (1996) and

referring the reader to the review works of Araujo and McElwain (2004) and

Roose et al. (2007). We note that the mathematical models of cancer invasion

considering oxygen distribution after this period tend to consider cancer cells as

discrete entities, e.g., Powathil et al. (2012) and so will be considered in more

depth later in this chapter.

Thomlinson and Gray (1955) and Burton (1966) established mathematical models

where oxygen was modelled as a nutrient diffusing from the outer edge (boundary)

of a tumour inwards to investigate its role in necrosis. Burton (1966) obtained

approximations for how wide this viable ring of cancer cells was in relation to

the entirety of the tumour. These works were expanded in Greenspan (1972) and

Greenspan (1974) where the addition of surface tension resulted in the removal

of cells due to necrosis in the centre of the tumour being countered by the surface

tensions of the tumour causing a compact tumour to form. Deakin (1975) used

a varying consumption rate of oxygen by cells to expand these works to include

the result of the viable rim reducing in size slowly in response to necrosis at the

centre of the tumour.

More recent works that have continued this work on multicellular spheroids and

avascular tumour development with a necrotic core include the works of Byrne

and Chaplain (1995), Byrne and Chaplain (1996), Orme and Chaplain (1996).

For mathematical models of tumour-induced angiogenesis, we refer the reader to

the review papers of Mantzaris et al. (2004), Chaplain et al. (2006) as well as

Scianna et al. (2013) and the references therein.

Invasion mediated by the acidity of the environment was championed by Gatenby
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and Gawlinski (1996) where they formulated a system of partial differential equa-

tions (P.D.Es) to model cancer cell (variable c) invasion of the extracellular ma-

trix (ECM) where the ECM (v) is degraded by H+ ions (Λ). They consider

cancer cells to experience flux in the form of non-linear diffusion, modelled by

J = Dc(1− v)∇c, which has a maximum diffusive rate at v = 0, which decreases

for increasing density of v where there is no diffusion for v = 1. The non-linear

diffusion term models the limiting/prevention of cancer cells diffusing into a re-

gion of highly dense ECM where diffusion at a higher rate occurs once the ECM

has begun to be degraded by H+ ions.

Their model can be presented in the form:

∂c

∂t
= ∇ · (Dc(1− v)∇c) + µcc(1− c), (3.5)

∂v

∂t
= −δvΛv + µvv(1− v), (3.6)

∂Λ

∂t
= ∇ · (DΛ∇Λ) + µΛ(c− Λ), (3.7)

where cancer cells self reproduce at a rate of µc, limited by the amount of cancer

cells already at that location. The ECM is degraded at rate δv by the amount of

H+ ions and self reproduces in a manner that is limited by the amount of ECM

at that location. The H+ ions can diffuse at rate DΛ and are produced by the

cancer cells until a value defined by the amount of H+ ions.

We present the two key results of their model where, firstly, they identify an

interstitial gap as a result of a pH gradient extending into the ECM surrounding

the cancer cells (caused by the diffusion of excess H+ ions produced by the cancer

cells) where there is a region between the cancer cells and ECM where neither

are present. This is backed up by in vitro experiments and clinical observations.

Secondly, they identify the value of the degradation rate of ECM by excess H+
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ions (δv = 1) at which there is a transformation of the cancer cells from non-

invasive tumours (δv < 1) into invasive tumours (δv > 1).

We make the observation that in the case where an interstitial gap is found to

exist, haptotaxis cannot, by definition, be a force that causes cancer cells to

migrate.

Gatenby and Gawlinski (2003) and Gatenby et al. (2006) then further developed

the above model in three ways. First, they changed the volume filling terms of

(1−v) and (1−c) to (1−c−v) in the diffusion of cancer cells, production of cancer

cells and productions of ECM to incorporate competition for space between the

two populations. Secondly, they modified the H+ ion concentration removal by

considering it to be proportional to the difference between H+ ion concentration

in the considered domain and that in serum. Finally, they changed the way in

which the excess H+ ions degrade the ECM to be the function:

δv(1− exp(−(
H −Hopt

v

2Hwidth
v

)2)), (3.8)

and introduced a term to model the death of cancer cells from acidity of:

δc(1− exp(−(
H −Hopt

c

2Hwidth
c

)2)), (3.9)

where δc, δv are the death and degradation rates, Hopt
c , Hopt

v are defined to be

the H+ concentration at an optimal level of pH and Hwidth
c , Hwidth

v represent the

half-widths of the inverted Gaussian functions (the distance from the centre of

the distribution to the inflection point).

Further mathematical models of acid-mediated invasion have been investigated

by Webb et al. (1999) and Smallbone et al. (2005).

Invasion mediated by matrix degrading proteins whereby the matrix degrading

proteins degrade the ECM resulting in cancer cells moving in response to the
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resultant ECM gradients has given rise to many mathematical works, with the

framework for these models initially laid out in Perumpanani et al. (1996). Hap-

totaxis is the process by which a cell moves as a result of a physical gradient

through adhesion. It was stated in the form that is considered today by Carter

(1967) who found that cellulose acetate did not offer adhesion sites for cells to

adhere to and as such cells would not move across the surface unless the cellulose

acetate was first coated with a layer of the adhesion site-offering palladium upon

which cells would move in response to the gradient of the palladium.

Hilltopping is another form of haptotaxis and is the act of the male of a species

locating to the highest area while demonstrating territorial behaviour to attract a

mate which results in there being a high proportion of males at the hill top. This

behaviour is common in low density species of insects and lepidoptera (Scott,

1968). Individual cancerous cells migrate along stromal collagen fibres (Wang

et al., 2002) which when examined at the tissue scale would show cancer cells

moving from regions of lower collagen fibre density to that of higher collagen

density.

Haptotaxis of cancer cells in response to ECM gradients during cancer invasion

was first modelled mathematically by Perumpanani et al. (1996) and can be seen

to compare with the P-K-S equations outlined above. Their model considered...
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and can be presented in the following form:

∂c(X,t)
∂t

= ∇ · (θ(v)(Γc(c, n1, n2)∇c− cχ(v)∇v − cΨ(s)∇s))

+cf2(c, n1, n2), (3.10)

∂v(X,t)
∂t

= ∇ ·K(vθ(v)(Γn1(∇c+∇n2) + Γc∇c− cχ(v)∇v − cΨ(s)∇s))

−δ(v,m), (3.11)

∂n1(X,t)
∂t

= ∇ · (θ(v)(Γn1(c, n1, n2)∇c)) + n1f1(c, n1, n2), (3.12)

∂n2(X,t)
∂t

= ∇ · (θ(v)(Γn1(c, n1, n2)∇n2)) + n2f2(c, n1, n2), (3.13)

∂m(X,t)
∂t

= ∇ · (Dm∇m) + αm(c, v)− βmc, v,m, (3.14)

∂s(X,t)
∂t

= ∇ · (Ds∇s) + αs(v,m), (3.15)

where, to consider the effects of the ECM density either blocking or retarding

cellular motion,

θ(v) =


k26, if 0 < v < k27,

k28 − v
k28 − k27

, if k27 < v < k28,

0, if k28 < v.

(3.16)

Cells exhibit logistic growth, i.e.,

f1 = k1(k2 − n1 − n2 − c), (3.17)

f2 = k4(k5 − n1 − n2 − c). (3.18)

To represent adhesion in the cellular diffusion terms,

Γn = k3
k18

k19 + k25(k25n1 + k25n2 + k20c)
, (3.19)

Γc = k6
k18

k19 + k20(k25n1 + k25n2 + k20c)
. (3.20)

While the haptotaxis and chemotaxis terms were considered to be constants of
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χ(v) = k17 and ψ(s) = k16 and the forced movement of ECM components is

considered proportional to the flux of the cellular motions.

The production of proteolysed ECM is considered as proportional to the degra-

dation of ECM, αs(v,m) ∝ δ(v,m). Matrix degrading proteins are considered to

only be produced at the cancer-ECM interface with the function αm(c, v) = k1cv

while the inhibition and natural decay of these proteins is represented by the

function βm(c, v,m) = −k12m− k13mc− k14mv.

The number of mathematical models that have similar frameworks to Perumpanani

et al. (1996), where the underlying solutions can have travelling wave or travelling

wave-like solutions, is expansive where a partial listing of these models includes

the study of vasculature-mediated taxis movement of cancer cells in Orme and

Chaplain (1996), cancer cell flux as a form of taxis towards degraded ECM compo-

nents, which opposes cancer cell invasion in Perumpanani et al. (1998), cancer cell

flux as taxis up an ECM gradient supporting cancer cell invasion in Perumpanani

et al. (1999) and Anderson et al. (2000), where the latter is additionally dis-

cretised to form a discrete model of cancer cell invasion, the investigation of

travelling waves of shock-like appearance in a model with minimal cellular dif-

fusion and dominated by haptotaxis in Marchant et al. (2001), the introduction

of the uPa system with tactic-driven instabilities giving rise to highly dynamic,

spatially heterogeneous solutions in Chaplain and Lolas (2005) and Chaplain and

Lolas (2006), non-local adhesion in the haptotactic flux of cancer cells used to

represent cell-cell and cell-ECM adhesion in Gerisch and Chaplain (2008) and

Painter et al. (2010), further expansion of the uPA system in Andasari et al.

(2011), the role of MT1-MMP and its impact on MMP-2 activation and both

restructuring and degradation of the ECM in Deakin and Chaplain (2013), the

coupling of MMP reactions at the invasive front with tissue-scale dynamics of

cancer cell and ECM densities in a multi-scale, moving boundary model in Trucu
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Figure 3.1: The urokinase plasminogen activation system. ©Springer, reproduced

with permission from Andasari et al. (2011).

et al. (2013).

While the presented form of taxis is frequently used to model cancer cell inva-

sion, Mallet and Pettet (2006) examine an integrin-mediated haptotaxis where

they consider the matrix-mediated haptotaxis to be a subset of their model.

Additionally, non-local models of cellular adhesion exist and use a system of

integro-PDE equations, as will be discussed later.

Invasion mediated by the uPA system can be considered as one possible subset

of the above model where the matrix degrading protein is plasmin and its asso-

ciated activation system, which is presented in Figure 3.1. Chaplain and Lolas

(2005) pioneered the following mathematical model of cancer cell invasion when

mediated by the urokinase plasminogen activator system by explicitly modelling

the proteins uPA (variable u), PAI-1 (T ) and plasmin (m), which can be written

in the following form:
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∂c

∂t
= ∇ · (Dc∇c− ξc∇u− ζc∇T − χc∇v) + µcc(1− c) + φ13cu, (3.21)

∂v

∂t
= −δvm+ µv(1− v) + φ21uT − φ22Tv, (3.22)

∂u

∂t
= ∇ · (Du∇u)− φ31uT − φ33cu+ αuc, (3.23)

∂T

∂t
= ∇ · (DT∇T ) + αTm− φ41uT − φ42Tv, (3.24)

∂m

∂t
= ∇ · (Dm∇m)− φ51uT + φ52Tv + φ53cu, (3.25)

The proposed model was then modified by the inclusion of φ14Tv − ω1m in the

cancer cell source terms to consider an indirect proliferation of cancer cells in

response to an eventual activation of cancer cell-bound uPA by ECM-bound PAI-

1 as well as apoptosis in response to the overproduction of plasmin.

Models where chemotaxis influences the invasive profile of cancer by destabilising

the steady state solution are presented in Chaplain and Lolas (2005), Chaplain

and Lolas (2006) and Andasari et al. (2011), where cancer cells produce uPA

and can be bound to these molecules and causes a taxis-driven instability while

the haptotaxis reacting towards ECM gradients as a pro-invasive factor and it

is the balance of pro- and anti- invasive haptotaxis and chemotaxis that causes

the distinctive dynamics in these works of highly heterogeneous spatial-temporal

dynamics as evidenced by the dispersion relation plots presented therein.

Invasion mediated by non-local effects is studied in multiple models that result

from the novel method developed in Armstrong et al. (2006) where cellular ad-

hesion is considered in a continuum model of two interacting populations in 2

spatial dimensions where the adhesion is considered to be non-local.



33

∂c

∂t
= ∇ · (Dc∇c− cKc(c, v)), (3.26)

∂v

∂t
= ∇ · (Dv∇c− vKv(c, v)), (3.27)

where the non-local advection terms, Kc, Kv, named adhesion velocity, are (in 2D

space):

Kc(c, v) =

∫ 1

0

∫ 2π

0

rη[Scgcc(c(x+ rη), v(x))Ωcc(r)

+Cgcv(c(x+ rη), v(x+ rη))Ωcv(r)]dθdr, (3.28)

Kc(c, v) =

∫ 1

0

∫ 2π

0

rη[Svgvv(c(x+ rη), v(x))Ωvv(r)

+Cgcv(c(x+ rη), v(x+ rη))Ωcv(r)]dθdr, (3.29)

which allows for the consideration of the dependence on the strength of the adhe-

sive binding, Ω, with consideration to the radial distance (sensing radius), S, of

both self adhesion and cross species adhesion. η represents the unit outer normal,

which depends on the angle θ, where η(θ) = (cosθ, sinθ)T while g represents the

adhesive strength functions, outlined as follows:

gcc(c, v) = gcv(c, v) =


c(1− c− v), if c+ v < 1,

0, otherwise.

(3.30)

Armstrong et al. (2006) consider Ωcc = Ωcv = Ωvv = 1 for simplicity, whereas

Gerisch and Chaplain (2008) develop upon this formulation when considering

different formulations for this strength of the adhesive binding in a continuum

based cancer cell invasion of form similar to Anderson et al. (2000). Additionally,

they modify the adhesive velocity equation so that the integration is to R instead

of 1 with the result being divided by R, i.e., previously, Armstrong et al. (2006)
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had Kc(c, v) =
∫ 1

0
f(c, v)dr whereas Gerisch and Chaplain (2008) have Kc(c, v) =

1
R

∫ R
0
f(c, v)dr.

∂c

∂t
= ∇ · (Dc∇c− cKc) + µcc(1− c− v), (3.31)

∂v

∂t
= δvm+ µv(1− c− v), (3.32)

∂m

∂t
= ∇ · (Dm∇m) + αc− βm, (3.33)

where the function f in the non-local adhesion term Kc remains as defined above.

Gerisch and Chaplain (2008) note that the integral over the sensing radius should

have a value of 1 in order to not alter the magnitude of the velocity due to

adhesion. They propose two forms of the radial dependency function in 2D:

Ω1(r) =
1

πR2
, (3.34)

Ω2(r) =
3

πR2
(1− r

R
), (3.35)

where the first proposed form results in an integrand independent of r while

the second form results in linear decay to the point R where Ω2(R) = 0. By

incorporating a linear decay into the strength of adhesive binding, it allows for

the consideration of adhesion sites further away from the initial location to have

less of an effect than adhesion sites closer to the initial location. Armstrong et al.

(2006) show that for R = 0 there remains the possibility of finite time blow-up

solutions whereas for small R, R > 0, there is an avoidance of finite time blow-up

solutions while there is still the allowance of aggregation dynamics.

Further results of biological interest are obtained in Gerisch and Chaplain (2008)

where they find that local overcrowding (c + v ≥ 1) is permitted in cases where

the total amount of c and v within a region of radius R from the location X is

bound such that

∫ X+R

X−R
c+ v ≤ R. They identify the value of cell-cell adhesion of

Scc = 0.5 when considered with their parameter set blocks all cancer cell invasion
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to the point of creating a spatially heterogeneous steady state solution as the cells

are bound strongly together in a small region near the origin. However, when

they increase the cell-ECM adhesion, Scv, they find that invasion is permissible

and that more cancer cells break off from the original mass of cells with increasing

cell-ECM adhesion. Andasari (2011) incorporates the non-local advection terms

presented in Gerisch and Chaplain (2008) into the model developed in Chaplain

and Lolas (2005).

Mathematical models of MMP-2 activation exist in the literature where we here

remind the reader that we will develop upon these directly in the presented work

within the context of cancer cell invasion. Karagiannis and Popel (2004) were

the first to propose a mathematical model of the activation system of MMP-2

in a model of collagen type-I degradation with a system of ODEs to represent

bulk collagenolysis in a well-mixed state. We note that while they provide a

“sample equation” in the supplementary material of their work, they do not

provide the equations for all proteins or protein complexes. However, the ODEs

can be reconstructed from the reactions listed where we present these in Figure

3.2.

Their model combines the ectodomain shedding of MT1-MMP, collagen degra-

dation by both MMP-2 and MT1-MMP, MMP-2 inhibition by TIMP2 as well

as the activation of MMP-2. Here, we present a reconstruction of the equa-

tions likely underpinning their results, broken down into the different processes

of ectodomain shedding, degradation of collagen, MMP-2 inhibition by TIMP2

and the activation of MMP-2.
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Figure 3.2: The MMP-2 activation system in combination with collagen type-I degra-

dation and ectodomain shedding of MT1-MMP (Karagiannis and Popel, 2004). MT1

represents MT1-MMP, MT1cat represents the catalytic domain of MT1-MMP when it

has been isolated from the rest of the molecule, MT!t represents the truncated part of the

MT1-MMP that is left when the catalytic domain has been severed from the molecule,

T2 represents TIMP2, pM2 represents proMMP-2, C1 represents collagen type-I and

C1D represents denatured collagen type-I.
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Ectodomain shedding is modelled by:

d[MT1]

dt
= 2koffMT1,MT1[MT1 ·MT1]− 2konMT1,MT1[MT1]2

+kshedMT1[MT1 ·MT1] = ESMT1, (3.36)

d[MT1 ·MT1]

dt
= −koffMT1,MT1[MT1 ·MT1] + konMT1,MT1[MT1]2

−kshedMT1[MT1 ·MT1] = ESMT1·MT1, (3.37)

d[MT1cat]

dt
= +kshedMT1[MT1 ·MT1] = ESMT1cat , (3.38)

d[MT1t]

dt
= +kshedMT1[MT1 ·MT1] = ESMT1t . (3.39)

Degradation of collagen type-I by both MMP-2 and MT1-MMP is modelled by:

d[MT1]

dt
= koffMT1,CI [MT1 · CI]− konMT1,CI [MT1][CI]

+kcatMT1,CI [MT1 · CI] = DCMT1, (3.40)

d[CI]

dt
= koffMT1,CI [MT1 · CI]− konMT1,CI [MT1][CI] = DCCI , (3.41)

d[MT1 · CI]

dt
= −koffMT1,CI [MT1 · CI] + konMT1,CI [MT1][CI]

−kcatMT1,CI [MT1 · CI] = DCMT1·CI , (3.42)

d[CID]

dt
= +kcatMT1,CI [MT1 · CI] + kcatM2,CI [M2 · CI] = DCCID , (3.43)

d[M2]

dt
= koffM2,CI [M2 · CI]− konM2,CI [M2][CI] + kcatM2,CI [M2 · CI]

= DCM2, (3.44)

d[M2 · CI]

dt
= −koffM2,CI [M2 · CI] + konM2,CI [M2][CI]− kcatM2,CI [M2 · CI]

= DCM2·CI . (3.45)
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MMP-2 inhibition by TIMP2 is modelled by:

d[M2]

dt
= +koffM2,T2[M2 · T2]− konM2,T2[M2 · T2] = MIM2 (3.46)

d[T2]

dt
= +koffM2,T2[M2 · T2]− konM2,T2[M2 · T2] = MIT2 (3.47)

d[M2 · T2]

dt
= konM2,T2[M2 · T2]− koffM2,T2[M2 · T2] + k−inhM2,T2[M2 · T2∗]

−kinhM2,T2[M2 · T2∗] = MIM2·T2 (3.48)

d[M2 · T2∗]

∂t
= +kinhM2,T2[M2 · T2∗]− k−inhM2,T2[M2 · T2∗] = MIM2·T2∗ (3.49)

Activation of MMP-2 is modelled by:

d[MT1]

dt
= koffMT1,T2[MT1 · T2]− konMT1,T2[MT1][T2]

−konMT1,T2,M2p,MT1[MT1 · T2 ·M2p][MT1]

kactM2[MT1 · T2 ·M2p ·MT1] = AMMT1, (3.50)

d[T2]

dt
= koffMT1,T2[MT1 · T2]− konMT1,T2[MT1][T2] = AMT2, (3.51)

d[MT1 · T2]

dt
= konMT1,T2[MT1][T2]− koffMT1,T2[MT1 · T2]

+koffMT1,T2,M2p[MT1 · T2 ·M2p]

−konMT1,T2,M2p[MT1 · T2][M2p]AMMT1·T2, (3.52)

d[M2p]

dt
= koffMT1,T2,M2p[MT1 · T2 ·M2p]

−konMT1,T2,M2p[MT1 · T2][M2p]AMM2p, (3.53)

d[MT1 · T2 ·M2p]

dt
= konMT1,T2,M2p[MT1 · T2][M2p]− koffMT1,T2,M2p[MT1 · T2 ·M2p]

+koffMT1,T2,M2p,MT1[MT1 · T2 ·M2p ·MT1]

−konMT1,T2,M2p,MT1[MT1 · T2 ·M2p][MT1]

= AMMT1·T2·M2p, (3.54)

d[MT1 · T2 ·M2p ·MT1]

dt
= konMT1,T2,M2p,MT1[MT1 · T2 ·M2p][MT1]

−koffMT1,T2,M2p,MT1[MT1 · T2 ·M2p ·MT1]

−kactM2[MT1 · T2 ·M2p ·MT1] = AMMT1·T2·M2p·MT1, (3.55)

d[MT1 · T2∗]

dt
= kactM2[MT1 · T2 ·M2p ·MT1] = AMMT1·T2∗ , (3.56)

d[M2]

dt
= kactM2[MT1 · T2 ·M2p ·MT1] = AMM2. (3.57)
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Which, when combined into one system of ODEs can be written as:

dYi
dt

= ESYi +DCYi +MIYi + AMYi (3.58)

for i =1 to 17 with Y = (MT1,MT1 ·MT1,MT1cat,MT1t, CI,MT1 ·CI,CID,

M2,M2 ·CI, T2,M2 · T2,M2 · T2∗,MT1 · T2,M2p,MT1 · T2 ·M2p,MT1 · T2 ·

M2p ·MT1,MT1 ·T2∗)T , where undefined values of ESj, DCj,MIj and AMj are

set to be equal to zero for j=1 to 17.

Key results of the model are providing characterisation of the MMP-2 activation

system while finding that TIMP2 levels which are either too high or too low

inhibit the activation process. By studying the ectodomain shedding of MT1-

MMP in conjunction with the activation process of MMP-2, they determine that

the more MT1-MMP molecules that have undergone ectodomain shedding, the

fewer free MT1-MMP molecules that are available to take part in the activation of

MMP-2. Additionally, they found that the level of TIMP2 modified the amount

of ectodomain shedding where the complex of TIMP2·MT1-MMP was protected

from the shedding process. As they are the first to mathematically model this

system, with the addition of collagen degradation by both MT1-MMP and MMP-

2, they provide a base for future development on quantitative approaches in

identifying the ranges at which collagen is degraded most extensively by the

combination of activated MMP-2 and MT1-MMP.

They later expanded upon the outlook of their ODE formulation of the processes

outlined above to consider the impacts on angiogenisis in Karagiannis and Popel

(2006) by examining collagen degradation at the tip endothelial cell of a sprouting

vessel. Specifically, they considered cell migration to be a function of proteolysis

in the vicinity of the cell and included production of MT1-MMP, proMMP-2 and

TIMP2 by the tip cell of the sprouting vessel and changed the system of ODEs

into one of PDEs where MMP-2, TIMP2·MMP-2 and proMMP-2 are all freely
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diffusible. By doing so they found estimates for cell velocities through a variety of

collagen compositions. Additionally, they found that at higher levels of collagen

density, proteolysis was largely performed by MT1-MMP and limited to the in-

vading edge of the cell whereas at lower collagen densities there was a concurrent

degradation of collagen by MT1-MMP and MMP-2 and this degradation was less

localised. Donzé et al. (2011) performed global robustness and sensitivity of the

model and explored the possibility of oscillatory dynamics in the system.

A second notable attempt to characterise the activation of MMP-2 along with

secondary issues is presented in Hoshino et al. (2012) where they considered an

extensive set of potential complexes that may eventually lead to forms that are

relevant to the activation of MMP-2 from proMMP-2 by the process involving

TIMP2 and MT1-MMP, outlined in Figure 3.3. They consider two “pools” to rep-

resent two regions that consider differing internalisation processes for MT1-MMP

of pool X and Y where internalisation is dependent on bafilomycin concentra-

tion and surface density, respectively. A-Cell (Ichikawa, 2001) is then used to

generate the equations which form the basis of their model, which are provided

in the supporting information of their paper, and consists of 39 ODEs. Experi-

mental validation alongside their computational model is used to investigate the

significance of turnover of MT1-MMP for proteolysis at an invadopodium.

They find that the rapid turnover of MT1-MMP is responsible for the increased

degradation of ECM at invadopodia and found that the blocking of vesicle trans-

port in their model, and in their experiment, blocked ECM degradation.
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Figure 3.3: The MMP-2 activation system and related complex formation. The bold

arrow indicates insertion of MT1-MMP while the dotted arrow indicates internalisation

of MT1-MMP. Reproduced from Hoshino et al. (2012).

3.2 Discrete Modelling

Discrete models of individual cancer cell invasion focus on the individual cancer

cells through the lattice-based cellular automata (CA) models (extensions include

the cellular Potts models (CPMs) and lattice-gas cellular automata (LGCA) mod-

els) or through lattice-free, force-based models.

In the context of cancer cell invasion, CAMs are discrete lattices in 2 or 3 spatial

dimensions where each lattice point can be considered to be in two states (“on”

or “off”) to represent there either being a subcellular element of a cancer cell/an

entire cancer cell in that location or an absence of cancer in that location. A 2D

spatial lattice where each point represents an area where an individual cancer cell

can exist allows for cancer cells to move with either 4 or 8 degrees of freedom.

The initial state of the model evolves trough predefined rules where each lattice

point considers several factors (the neighbouring lattice points on/off status, local

oxygen distribution, intracellular signalling, etc.) to determine if the cancer cell

at that location will move to a neighbouring lattice point, remain unchanged
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or die. By the inclusion of intracellular processes and/or the impact of oxygen

concentration, determined from a PDE covering the entire lattice, these models

are frequently multiscale in nature.

Examples of models where each grid point describes an individual cancer cell

can be found in the works of Anderson and collaborators (Anderson et al., 2000;

Anderson, 2005; Anderson et al., 2006) where they discretise a PDE governing

cancer cells to determine the rules that govern the movement, proliferation and

apoptosis of cancer cells in invasion. The individual cancer cells respond to a

system of PDEs governing the density of the extracellular matrix and some matrix

degrading proteins. Their framework is capable of considering cancer cells having

different phenotypes where each lattice point was considered to have more data

than the “on” and “off” states of a typical CAM. As such, it has been expanded to

look at evolutionary dynamics of the cancer cells and how the microenvironment

affects the evolutionary process in the works of Anderson and Gerlee (Gerlee and

Anderson, 2007, 2008, 2009a,b, 2010).

A CA model with a hexagonal lattice was proposed in Aubert et al. (2006) to

study the migration of glioma cells where the cells were defined to have an at-

traction to each other that preferentially biases movement.

In order to maintain the distinctness of each cancer cell, an approach is to use

a Potts model where each cell is assigned a unique index, Q, termed the spin

number. Potts models have cancer cell populations evolving in ways that min-

imise the effective energy. Cells move by an iterative process of the movement

of the boundary elements of the cell. Models that consider a large amount of

cancer cells are termed large-Q Potts models. The Potts model considers a single

surface energy across multiple cells whereas an extended large-Q Potts model,

known as a cellular Potts model (CPM), considers each cell to have an individual
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surface energy that allows for the growth and shrinking of cells in response to

its neighbouring cells and lattice points. This also allows for the consideration

of each cell going through different physical sizes and can be used to prescribe

maximum and minimum cell sizes. This allows for more complex morphologies of

the cancer cells to be considered along with their respective adhesion properties

and other cell-cell dynamics.

Models that focus specifically on cancer cell growth and invasion using a CPM

include the works of Stott et al. (1999); Turner and Sherratt (2002); Jiang et al.

(2005); Rubenstein and Kaufman (2008); Andasari et al. (2012). We refer the

reader to the review papers of Moreira and Deutsch (2002); Hatzikirou et al.

(2008); Szabó and Merks (2013) for a review of CPM in cancer cell growth,

invasion and evolution.

CPMs have seen a number of developments in the last decade (see the recent

review paper of Scianna and Preziosi, 2012), one of which is the introduction of a

lattice-gas cellular automaton (LGCA) model. How a LGCA model varies from

a CAM/CPM is through the inclusion of cellular velocity where cells are also

capable of colliding with one another. Of the LGCA models, Wurzel et al. (2005)

consider apoptosis, proliferation and movement of cancer cells in gliomas while

Hatzikirou and Deutsch (2008) model the effect of a more general hetereogeneous

ECM layout on cancer cell movement in the absence of apoptosis and prolifera-

tion. Further LGCA models of cancer invasion include the works of Hatzikirou

et al. (2010); Tektonidis et al. (2011); Böttger et al. (2012). Additionally, a hy-

brid LGCA-CPM has been proposed in Ghaemi and Shahrokhi (2006) to model

avascular cancer growth. Another notable modified CPM is that proposed in Li

and Lowengrub (2014) where they no longer consider cell size to depend on cell

velocity.
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Not all individual models of cancer cell invasion consider cancer cells to be fixed

to lattice points. These models are termed off-lattice and can be force-based, such

as cell-centred models (Drasdo and Höhme, 2003; Drasdo and Hoehme, 2005), in

which there is a proliferating rim and cancer cells either move there centre point or

reorientate to minimise the energies resulting from adhesion to local neighbouring

cells and the pressure caused by the mitosis of neighbouring cells. They used

their model to investigate the transition of exponential growth of cancer cells in a

multicellular spheroid to a sub-exponential growth as the result of the depletion

of a nutrient. Ramis-Conde et al. (2008) developed a lattice-free model of discrete

cancer cells to study cellular adhesion through the interaction of the intracellular

proteins of E-cadherin and β-catenin. It is the distance between the centre of

each cell that determines the size of the contact area between two cells. This

work was then developed in Ramis-Conde et al. (2009) to study the role of these

proteins in the intravasation of cancer cells in one of the few mathematical works

focussing on metastasis. Further, Kim et al. (2007) developed a hybrid model of a

tumour spheroid where the core of necrotic cells and quiescent cells are governed

by PDE dynamics whereas the rim of the tumour is modelled discretely to allow

for cellular adhesion to be incorporated at the cellular level.

An alternative approach to modelling off-lattice dynamics is to use the immersed

boundary method. Here, the ECM is considered as a viscous incompressible fluid

in which cancer cells are immersed, has been implemented by Rejniak, Dillon and

coauthors to study tumour growth and invasion (Rejniak, 2005, 2007; Rejniak and

Dillon, 2007; Dillon et al., 2008). Cancer cells are considered to be viscous fluids

with elastic links on the cell membrane. Fluid can be gained by the cell, initiating

cell growth, which causes the shape of the cell to change. The process of the

splitting of the cell into two daughter cells is determined by elastic forces where

each cell is defined as having elastic links, termed the contractile force link, linking
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each point of the cell membrane with a corresponding point on the opposite side of

the cell. The cell cycle is modelled independently in each cell. Cells are therefore

capable of having individually defined sizes as well as the biomechanical properties

relating to cell growth, division, senescence, adhesion and the receiving of signals

from the ECM. The ECM is modelled by the inclusion of elastic links between

cells, which model cellular adhesion. Further, Rejniak et al. (2010); Rejniak

(2012) have used the same technique to study the development of preinvasive,

intraductal tumours and their development into invasive tumours.

The level-set method has been used to incorporate complex morphologies in mov-

ing boundary models of cancer cell invasion (Macklin and Lowengrub, 2006, 2008).

These nonlinear works can be coupled with angiogenesis (Zheng et al., 2005), in-

cluding the blood flow in these networks (Macklin et al., 2009) and emphasise the

significance of the heterogeneity of the tissue in tumour morphologies (Macklin

and Lowengrub, 2007).

3.3 Multiphase Modelling

Multiphase models attempt to deal with the mechanical forces and stresses that

tissues and cancer cells are exposed to through the use of the theory of mixtures.

It is in invoking the theory of mixtures that these models differ most significantly

from the previous methods of modelling cancer cell growth and invasion as where

previously, a spatial domain is said to be made up of only one element, the theory

of mixtures defines each location to be made up of fractions of the considered

components. Multiphase models of cancer invasion therefore consider tumours to

be made up of a multiphase mixture of cancer cells, ECM and extracellular fluid.

Tumours are defined to be moving within a porous domain made up of the ECM,
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which is wetted by extracellular fluid. For a greater understanding of multiphase

models, see Preziosi and Tosin (2009) and the references therein.

3.4 Modelling Techniques of the Presented Work

Having acknowledged that there are a large number of papers of varying ap-

proaches/types on the topic of cancer invasion, we will present 3 research chap-

ters in this thesis where the first two will feature P.D.E. models that have been

formulated and analysed as far as possible (linear stability analysis Keener and

Sneyd, 1998; Murray, 2002; Britton, 2012) with appropriate computational simu-

lations. The third of the research chapters will focus on a non-spatial, stochastic

approach to modelling MMP-2 activation mediated by MT1-MMP and TIMP2

at invadopodia.
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Chapter 4

A PDE Model of Cancer Invasion

Focussing on the Role of MMPs

4.1 Introduction

One of the hallmarks of cancer growth and metastatic spread is the process of local

invasion of the surrounding tissue. Cancer cells achieve protease-dependent inva-

sion by the secretion of enzymes involved in proteolysis. These overly-expressed

proteolytic enzymes then proceed to degrade the host tissue allowing the cancer

cells to disseminate throughout the microenvironment by active migration and

interaction with components of the extracellular matrix (ECM) such as collagen.

In this chapter we develop a mathematical model of cancer invasion using a system

of partial differential equations to consider the role matrix metalloproteinases

(MMPs) play in local invasion as the result of an existing, minimally invasive

tumour. Specifically our model will focus on two distinct types of MMP i.e.
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soluble, diffusible MMPs (e.g. MMP-2) and membrane-bound MMPs (e.g. MT1-

MMP), and the roles each of these has when the cancer cells move into areas of

differing extracellular environments.

Mathematical modelling has been used to investigate a number of topics in cancer

progression and invasion, including models taking into account: oxygen/nutrient

driven dynamics, the immune response, the acidity of the environment, force-

based pressure, the microenvironment in general and protease-dependent inva-

sion. These effects can be modelled using a variety of techniques, including partial

differential equations for densities of cells, individual-based models including cel-

lular automaton models and multi-scale models as outlined in the review papers

of Araujo and McElwain (2004), Rejniak and McCawley (2010) and Lowengrub

et al. (2010) and the references therein. Alternatively, the variables involved in

these modelling works can be modelled through the theory of mixtures, as done in

the multiphase works outlined in the review paper of (Preziosi and Tosin, 2009)

and the references therein.

4.2 Model Development

MMPs fall into two broad categories: soluble and bound. Soluble MMPs, such

as, MMP-2, MMP-9, etc. have some comparable dynamics to the generic se-

cretory matrix degrading enzymes investigated in previous mathematical models

(Perumpanani et al., 1996; Anderson et al., 2000; Anderson, 2005; Gerisch and

Chaplain, 2008) such as the ability to freely diffuse and degrade the ECM it

comes in contact with. As such, these previous models may be suitable for the

consideration of these MMPs. We note, however, that there are both additional

processes in the activation of these enzymes that are critical to invasion that have
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Figure 4.1: The full schematic diagram of MMP-2 activation. Plot A indicates

whether a protein or complex is bound to the membrane of the cell or capable freely dif-

fusing throughout the domain. Plot B illustrates the first pathway by which proMMP-2

can become activated while plot C illustrates the alternative route by which proMMP-

2 can become activated. In all plots, ‘MT1’ represents MT1-MMP, ‘T2’ represents

TIMP2, pM2 represents proMMP-2 and M2 represents MMP-2, while in plots B and

C, a protein/complex is in a blue box if it is directly produced by a cancer cell and black

if it is formed from later reactions.

not been considered, along with the exemption of membrane-bound MMPs, and

thus there is still much to be investigated. In this chapter, we develop this style of

modelling with partial differential equations when considering how such a model

will be formulated for the soluble MMP, MMP-2, the membrane-bound MMP,

MT1-MMP, and the activation process of MMP-2 that requires MT1-MMP, as

outlined in Figure 4.1.

In our model we denote by c(x, t) the cancer cell density, v(x, t) the ECM den-

sity, ms(x, t) the MMP-2 concentration and by mt(x, t) the MT1-MMP concen-

tration. In addition, we let T (x, t) denote the TIMP2 concentration, f(x, t) the
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concentration of the complex of MT1-MMP:TIMP2 (with an assumed proMMP-2

attached). As we simulate our model in 2 spatial dimensions, we define a vector

u such that:

u ≡ (c(x, y, t), v(x, y, t),ms(x, y, t),mt(x, y, t), T (x, y, t), f(x, y, t))T . (4.1)

We develop our model according to the conservation of mass equations, i.e.:

∂u

∂t
+∇ · J = H, (4.2)

with flux and source terms as modelled by J = (J1, ..., J6)T and H = (H1, ..., H6)T ,

respectively.

Cancer cell density, c:

The cancer cell density flux, J1, considers the movement of cancer cells according

to cellular diffusion, modelled by Dc∇c, for some constant Dc, in addition to a

haptotactic flux of cχ(c, v)∇v, for some haptoptactic sensitivity function χ(c, v).

The cancer cell density source, H1, is formed from the production of cancer cells

in accordance to the availability of “free space” as determined by the densities of

the cancer cells and ECM, represented by F (c, v).

As the cancer cells and ECM are in a form of “competition for space”, we consider

their growth functions, as well as the haptotactic sensitivity function, to be linked.

Therefore, we will define the ECM reaction equations before providing the precise

forms of the growth functions F (c, v), for the production of cancer cells and

G(c, v), for the production of components of the ECM as well as the haptotactic

sensitivity function χ(c, v).

∂c

∂t
= ∇ · (Dc∇c− cχ(c, v)∇v) + F (c, v). (4.3)
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ECM density, v:

The ECM flux, J2 is zero as the ECM is considered to be normally static in

healthy tissues over the scale of cellular invasion where a healthy tissue will have

a half-life of decades.

The ECM source, H2, incorporates matrix degradation (proteolysis) by either

MMP-2, ms, or MT1-MMP, mt. This results in a loss of ECM density, as mod-

elled by −δmsmsv and −δmtmtv, respectively. Further, the ECM is remodelled

according to the available space, as determined by the densities of the cancer cell

population and the ECM. We identify this remodelling rate as the function G.

We can define a constant δ such that δδ1 = δms and δδ2 = δmt, for some constants

δ1 and δ2.

∂v

∂t
= −δv(δ1ms + δ2mt) +G(c, v). (4.4)

An overview of the forms that the growth functions for cancer cell and ECM

densities have taken in the modelling literature is presented in Table 4.1. To

justify our choice of functions F and G, we provide a summary of the biologi-

cal means by which cancer cells and ECM components are produced. A more

expansive description of these processes can be found in the biological review

presented in Chapter 2 of this work. In essence, cancer cells produce copies of

themselves through mitosis and therefore must have zero production rate where

c = 0 whereas ECM components are produced by fibroblasts and are therefore

capable of having a non-zero production rate where v = 0.

We incorporate these dynamics into a coupled volume filling, or “competition for

space”, approach, where we define constants Z, k, l to represent the maximum

amount, Z, of k cancer cells and l ECM constituent parts that are able to either

fill a region of space or be supported by the region. Further, we note that as we
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F(c,v) G(c,v) Source

0 0 Anderson et al. (2000),

Anderson (2005).

−c 0 Sherratt (1993).

fc(Z − kc) 0 Painter et al. (2010), Marchant et al. (2001),

Perumpanani et al. (1999).

Lc(Z − kc) 0 where L represents the intracellular acidity,

Webb et al. (1999).

c(Z − kc) v(Z − lv) Gatenby and Gawlinski (1996),

Chaplain and Lolas (2005),

Andasari et al. (2011).

c(Z − kc− lv) v(Z − kc− lv) Chaplain and Lolas (2006),

Gatenby et al. (2006).

c(Z − kc− lv) (Z − kc− lv) Gerisch and Chaplain (2008),

Andasari et al. (2011),

Deakin and Chaplain (2013).

Table 4.1: Existing forms of the functions representing cancer cell growth, F (c, v), and

ECM remodelling, G(c, v), are presented in a dimensionalised form where Z represents

the maximum amount of either k cancer cells or l ECM components, along with their

respective sources.
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consider the proteins and protein complexes to take up a negligible amount of

space, the populations of these do not influence the volume filling between the

cancer cell and ECM densities. We are therefore able to identify (Z − kc− lv) as

an appropriate multiplier to represent such a competition for space with forms of

the functions F (c, v) and G(c, v) of:

F = µcc(Z − kc− lv),

G = µv(Z − kc− lv),

for some constants µc and µv. Central in the use of volume filling terms is that

there is reduced production as the free space is filled by cancer cells and ECM

constituent parts to the point where there is no production where there is no free

space. Further, the volume filling terms can act as a correcting term when there

is a location with more cancer cells and/or ECM constituent parts than are able

to be stably supported.

As such, we can consider there to be volume filling criteria of:

kc+ lv < Z, for production,

kc+ lv = Z, for stasis,

kc+ lv > Z, for death/degradation,

with the strict conditions for production or stasis to exist of:

kc >= 0,

lv >= 0,

kc <= Z,

lv <= Z.

We note that by the definition of the volume filling maximum, a small breach of

the maximum amount of cancer cells and/or ECM constituent parts that are at
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a spatial location is still biologically relevant as the volume filling terms will act

to correct the over subscription of that spatial location beyond that which can be

supported. What is at odds with a biological interpretation of the model is when

such a correction is outstripped by further cancer cells or ECM constituent parts

being moved or produced at the spatial region, as is the case in finite-time blow up

solutions where an infinite number of cells would be said to exist within a defined

spatial region. Such finite-time blow up solutions can be avoided by considering

the above approach to volume filling in the haptotactic sensitivity function, χ(c, v)

(Stevens and Othmer, 1997; Painter and Hillen, 2002; Hillen and Painter, 2009).

As such, we choose a haptotactic sensitivity function of χ(c, v) = v(Z − kc− lv).

As the haptotactic flux happens at a rate of cχ(c, v)∇v, there is no haptotaxis

possible when either there are no cancer cells to move (c = 0), no ECM constructs

for cancer cells to move through (v = 0) or no free space for cancer cells to move

into (Z = kc+ lv).

As the volume filling terms in the production of cancer cells, ECM constituent

parts and cancer cell haptotaxis can be trivially seen to not cause an increase in

the populations above the critical values of kc=Z, lv=Z, kc+lv=Z in isolation,

we consider the cases of production or stasis to be normal, whereas the case of

death/degradation as a result of volume filling terms to be abnormal. Once we

have established the full model, an examination of what may cause such a breach

of the critical values along with the implications on the model will be discussed.

The remaining equations of the model describe the interplay between MMPs in

cancer invasion, specifically MT1-MMP activation of MMP-2, the balance be-

tween TIMP2 inhibition of both MT1-MMP and MMP-2, and the dual role of

TIMP2 as inhibitor of active MMP-2 and being necessary for the activation pro-

cess of MMP-2. The full process of MMP-2 activation is shown in Figure 4.1. The

proteins in a blue box are produced directly by a cancer cell while those in the
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black box are only formed through later interactions. Whether a species/complex

is free to move, without considering lateral diffusion on a cell and the relative

movement of a cell, is also indicated. Proteins of proMMP-2 have their “pro”

domain cleaved to form fully active MMP-2 through a process involving both

MT1-MMP and (paradoxically) TIMP2. This process is accomplished through

two methods, which while differing in their first two stages, share the same third

and fourth stage.

For the first method, the first two stages involve the binding of a protein of TIMP2

to the catalytic domain of an MT1-MMP protein. This inhibits the MT1-MMP

protein from degrading the surrounding ECM but leaves it otherwise intact on the

cell surface. A proMMP-2 protein then binds to this complex to form the trimer

MT1-MMP:TIMP2:proMMP-2. Alternatively, the first two stages of the second

method features a proMMP-2 protein binding to a TIMP2 protein, a reaction that

does not necessarily happen near the membrane of a cancer cell. This complex

then binds to a MT1-MMP protein on the surface of the cell to form the trimer

MT1-MMP:TIMP2:proMMP2.

The remaining two stages, which are shared between the two methods of MMP-

2 activation, are the binding of a free MT1-MMP to this trimer and then the

cleavage of the pro domain of the proMMP-2, which results in a complex of

MT1-MMP:TIMP2, MT1-MMP and a fully active MMP-2 protein.

As we feel that these dynamics can be sufficiently captured by only two stages,

we simplify the full schematic of reactions into the two stages, as laid out in Fig-

ure 4.2. This involves making the assumption that every protein of TIMP2 has

an attached proMMP-2 protein, reducing stage 1 and stage 2 of Figure 4.1 into one

stage. Further, as the dissociation rate of the complex MT1-MMP:TIMP2:proMMP-

2:MT1-MMP is much smaller than the rate of the pro domain of the proMMP-2



56

cell MT1

T2

M2

Stage 1

Stage 2

MT1

MT1

complex

complex

T2 M2

MT1

A B

Figure 4.2: Simplified schematic diagram of MMP-2 activation which will be imple-

mented in the PDE model presented herein. ‘MT1’ represents MT1-MMP, ‘T2’ rep-

resents a TIMP2 molecule with an assumed proMMP-2 molecule attached, ‘complex’

represents the intermediate complex f defined as the complex of MT1-MMP, TIMP2

and proMMP-2 and ‘M2’ represents MMP-2.

being shed, we assume that these processes can be adequately condensed into one

stage, reduced from stage 3 and stage 4 of Figure 4.1.

The use of the reduced schematic for MMP-2 activation outline in Figure 4.2

therefore relies on three conditions: (i) there is a sufficiently high concentration

of proMMP-2 (ii) the majority of proMMP-2 proteins in the body are already

bound to a protein of TIMP2 (Eroschenko and Di Fiore, 2013) and (iii) unbound

proMMP-2 proteins can quickly bind to any free TIMP2 protein (reaction rate of

3.26× 104M−1s−1 Olson et al., 1997).

MMP-2 concentration, ms:

The MMP-2 flux, J3, is determined from MMP-2 being a freely diffusible protein

and so we model the flux as Dms∇ms, for some constant Dms.

The MMP-2 source, H3, has several components where MMP-2 is inhibited by
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TIMP2 at a rate of φ31, produced from the cleavage of complex f by a free

MT1-MMP at a rate of φ32 and has a natural decay rate of βms.

∂ms

∂t
= ∇ · (Dms∇ms)− φ31Tms + φ32mtf − βmsms. (4.5)

MT1-MMP concentration, mt:

The MT1-MMP flux, J4, is determined by the movement of cancer cells as MT1-

MMP proteins are tethered to the membrane of cancer cells. While MT1-MMP

proteins can diffuse along the surface of the cell and internalise before appearing

on the membrane of the cell at a different location, we consider these processes to

be unimportant in regards to the overall movement of MT1-MMP in cancer cell

invasion. Movement of cancer cells will directly result in the movement of the all

tethered proteins and complexes and so the flux of the MT1-MMP proteins is in

proportion with both amount of MT1-MMP proteins and the flux of the cancer

cells, J1, i.e. ∇ · J4 = γmt∇ · J1.

As this is a non standard method for obtaining the flux of a variable, we provide

further description in order to justify our choice. If we consider the cancer cell

density equation, c, as the sum of discrete cancer cells within a unit region, i.e.

c =
p∑
1

1. Further, we can group these individual cancer cells into subpopulations

delineated by the amount of MT1-MMP proteins attached to the individual cells,

i.e. c =
q∑
i=1

αi, where alphai is the total amount of cancer cells with i MT1-MMP

proteins attached.

We note that as the amount of free MT1-MMP proteins on any individual cancer

cell can be changed through the reaction terms of mt, the individual cancer cells

can freely move from one defined subpopulation of cancer cells to another.

The movement of αi cancer cell will therefore result in the movement of αii

proteins of MT1-MMP in the same direction.
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As the total flux of cancer cells is expressed as ∇ · J1, which can also be written

as ∇γJγ = γ∇ · Jγ, the flux term for the MT1-MMP proteins is γmt∇ · Jγ.

The MT1-MMP source, H4, is found from the following reactions. MT1-MMP

proteins are inhibited reversibly by TIMP2 at a rate of φ41 with a dissociation rate

of φ42. MT1-MMP proteins are produced by the cancer cells at a rate of αmtZ.

Additionally, we include collagen-induced expression (Haas et al., 1998; Zigrino

et al., 2001; Guo et al., 2005) in our model at a rate of αmtn. This may take into

account observations showing that collagen-dense mouse mammary tissues result

in cancer cells with a more invasive phenotype (Provenzano et al., 2008). Auto-

degradation of MT1-MMP on the cancer cell surface means that there is never

too much MT1-MMP on the surface at one time. The MT1-MMP is internalised

(inside the cell) and is recycled before being put back on the cell surface. This is

how the lifespan of active MT1-MMP is increased. We incorporate this by having

a natural decay term of βmtmt.

∂mt

∂t
= γmt∇ · (Dc∇c− χcv(Z − kc− lv)∇v)

−φ41Tmt + φ42f − βmtmt + αmtc(Z + nv). (4.6)

TIMP2, T :

The flux of TIMP2, J5, is determined from TIMP2 proteins being freely diffusible

and so we model this flux as DT∇T , for some constant DT .

The source of TIMP2, H5, models the characteristics of TIMP2 proteins binding

to the catalytic domains of MMP-2 and MT1-MMP proteins at rates φ51 and

φ52, respectively. While the binding of TIMP2 to MMP-2 is considered to be

irreversible, we consider the dissociation of the complex MT1-MMP:TIMP2 to

occur at the rate φ53. In addition, we consider TIMP2 proteins to be produced
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at a rate of αT by cancer cells.

∂T

∂t
= ∇ · (DT∇T )− φ51Tms − φ52Tmt + φ53f + αT c. (4.7)

The intermediate complex, f :

The flux of the intermediate complex of MT1-MMP:TIMP2:proMMP2, J6, is

determined in a similar way to that of free MT1-MMP as they are both tethered

to cells’ membranes. As such, we have ∇ · J6 = γf∇ · J1.

The source of the intermediate complex, H6 is determined from the reversible

binding of a TIMP2 protein to an MT1-MMP protein at a formation rate of φ61

and a dissociation rate of φ63. The cleavage of the prodomain of a proMMP-2

protein by a free MT1-MMP protein, that is illustrated in stage 4 of Figure 4.2,

occurs at a rate of φ62. We note that auto-degradation of MT1-MMP on the

cancer cell surface is blocked when a MT1-MMP protein is bound to TIMP2 and

so it plays no role in the intermediate complex source term.

∂f

∂t
= γf∇ · (Dc∇c− χcv(Z − kc− lv)∇v)

+φ61Tmt − φ62fmt − φ63f. (4.8)

The system of equations are closed by applying zero-flux boundary conditions of:

Ji · n = 0,

for i = 1, ..., 6 at all spatial locations on the boundary where n is the outward

unit normal.

Non-dimensionalisation of equations (4.3)–(4.8) is achieved by using the refer-

ence variables τ = 104s and L = 0.1cm where numerical simulations will be

run over a non-dimensionalised spatial domain of length 0-4 (0-4mm) and non-

dimensionalised temporal range of either 0-40 (0-4.6 days) or 0-100 (0-11.5 days).
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This provides sufficient space and time allowances for the consideration of local

cancer invasion. As we have developed a model in a field that has a rich history of

PDE models (Anderson et al., 2000; Gerisch and Chaplain, 2008; Andasari et al.,

2011) we follow these models by obtaining the non-dimensionalisation reference

parameters of c0 and v0 by the same method, namely, c0 = 6.7 × 107cells cm−3

and v0 = 10−1nM (Terranova et al., 1985).

While the exact enzyme concentration ranges in ECM can be difficult to ob-

tain, we take the reference enzyme concentration to be 1nM with concentrations

throughout the considered timeframe to be within the range 0-25nM. This is

broadly in line with experimental data for concentrations obtained from serum

although precisely how the concentrations in serum relate to the concentrations

in ECM is not known. Tutton et al. (2003) find pre-operative MMP-2 levels

in plasma of colorectal cancer patients of 568.9ng/ml = 7.89nM, Song et al.

(2012) find preoperative serum levels of MMP-2 in breast cancer of ∼200ng/ml

= 2.81nM, Gohji et al. (1998) find serum levels of MMP-2 in men with prostrate

cancer of mean values 570.6ng/ml = 7.91nM to 723.0ng/ml = 10.03nM when us-

ing the Japanese system of T1-T4 for clinical stage. MT1-MMP concentrations

of 0.38nM were found in Baker et al. (1994), 3 ng/mL = 0.04nM in Petrella and

Brinckerhoff (2006) and TIMP2 concentrations of 2-9.19nM were found in Baker

et al. (1994) while Butler et al. (1998) and English et al. (2001) performed in

vitro experiments with enzyme concentrations of order 101 − 102nM.

We non-dimensionalise by using the substitutions of c = ĉc0, v = v̂v0, ms =

m̂sms0 , mt = m̂tmt0 , T = T̂ T0, f = f̂f0 and t = t̂τ and by setting the parameters:
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D̂c =
Dcτ

L2
, χ̂ =

χv0
2τZ

L2
, µ̂c = µcτZ,

kc0

Z
= 1,

lv0

Z
= 1, δ̂1 = δδ1τms0 , δ̂2 =

δ2mt0

δ1ms0

, µ̂v =
Zµvτ

v0

,

D̂ms =
Dmsτ

L2
, φ̂31 = φ31T0τ , ˆβms = βmsτ , γ =

1

c0

,

φ̂41 = φ41T0τ , φ̂42 =
φ42f0τ

mt0

, ˆβmt = βmtτ , ˆαmt =
αmtc0τZ

mt0

,

nv0

Z
= 1, φ̂61 =

φ61T0mt0τ

f0

, φ̂62 = φ62mt0τ φ̂63 = φ63τ .

Upon dropping the hats for notational simplicity, we obtain the non-dimensionalised

system of equations of:

∂c

∂t
= ∇ · (Dc∇c− χcv(1− c− v)∇v) + µcc(1− c− v), (4.9)

∂v

∂t
= −δ1v(ms + δ2mt) + µv(1− c− v), (4.10)

∂ms

∂t
= ∇ · (Dms∇ms)− φ31Tms + φ32mtf − βmsms, (4.11)

∂mt

∂t
= mt∇ · (Dc∇c− χcv(1− c− v)∇v)

−φ41Tmt + φ42f − βmtmt + αmtc(1 + v), (4.12)

∂T

∂t
= ∇ · (DT∇T )− φ51Tms − φ52Tmt + φ53f + αT c, (4.13)

∂f

∂t
= f∇ · (Dc∇c− χcv(1− c− v)∇v)

+φ61Tmt − φ62fmt − φ63f, (4.14)

where we present both the dimensionalised and dimensionless parameters in Table

4.4.

In order to close the system, we perform computational simulations with zero-

flux boundary conditions to equations (4.9), (4.11)–(4.14). The initial conditions

imposed depend on the precise invasion scenario we are considering. In our the

first set of simulation results (Invasion Scenario 0A, cf. Figures 4.8–4.10) we have

a cluster of cancer cells in the centre of a homogeneous ECM with a minimal

removed section in which the cancer cells exist with a small amount of activated

enzymes already released i.e. c(0) = e(
−(x2+y2)

0.02
), v(0) = 1− c(0), ms(0) = mt(0) =
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T (0) = f(0) = 5c(0).

4.2.1 Parameter Estimation

Parameters are largely obtained from either the biological literature or compa-

rable mathematical models and are presented here and in Table 4.4. As we will

have to perform some further simulations to obtain the parameters used in the

reduced schematic of Figure 4.2 that is used in the cancer invasion model, we will

also present how the parameters used in these further simulations represented by

equations (4.15)–(4.21) and equations (4.22)–(4.25) are obtained.

As previously discussed, there are a large number of PDE models in this field and

while we require new sources for parameters relating to the MMPs, we do not

need to begin de novo for the remaining parameters. These can be obtained from

the comparable models of Anderson et al. (2000), Anderson (2005), Chaplain

and Lolas (2006), Gerisch and Chaplain (2008), Andasari et al. (2011) and the

references therein. As such, we follow these models to obtain estimates for the

parameters of Dc, χ, µc, µv, δ1, δ2

Anderson et al. (2000) use the experimental data of Bray (1992) to find a range

of cancer cell diffusion of 10−10 − 10−9cm2s−1 and so we choose to use the di-

mensionalised parameter of Dc = 3.5× 10−10cm2s−1. A haptotaxis rate of cancer

cells towards ECM gradients of 2.6 × 10−6cm2s−1nM−1 is assumed in Ander-

son et al. (2000) and many of the models following on from their work while we

note that movement along collagen is found to be slower than movement along

fibronectin (Wojciak-Stothard et al., 1997) and as such we use the value of χ =

5×10−7cm2s−1M−1. Chaplain and Lolas (2006) provide extensive biological refer-

ences for the parameter defining cell division of 0.02h−1−0.72h−1 and as such we
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Figure 4.3: A comparison of the functions determining the production of the cancer

and ECM densities in order to determine which is larger for a range of cancer and

ECM densities. The functions of 0.3c(1 − c − v) and 0.2(1 − c − v) are compared for

the full range of values of 0 ≤ c ≤ 1 and 0 ≤ v ≤ 1. When the first function is larger,

we indicate this with the colour red and when the second function is larger, we indicate

this with the colour green. The two functions are equal to one another along the white

line.



64

choose a dimensionalised parameter value of µc = 0.108h−1. Gerisch and Chap-

lain (2008) use a value of ECM remodelling to be 3.6 × 10−3h−3nM−1 while we

choose an ECM remodelling term of double that where µv = 7.2×10−3h−3nM−1.

We have chosen a value for µc and µv in accordance with Figure 4.3 which iden-

tifies which is greater between µcc(1− c− v) and µv(1− c− v) when µc = 0.3 and

µv = 0.2. This shows which is reaching closer to the fully filled stage, however it

does not necessarily show which is producing cells more quickly.

As the rates taken for the degradation of ECM constituents vary with regard to

acidity, temperature and the exact make-up of the constituent parts, we choose

to consider matrix degradation by MMP-2 and MT1-MMP to be equal (δ2 = 1),

however this would not be true for each of the constituent parts of the ECM at

all acidity levels. What we are measuring is not then the exact amount of ECM

degraded but instead the amount of potential tissue that may be degraded. For

exact measurement of ECM degradation to be accurately predicted by our model,

precise imaging of both the position and identification of the constituents would

need to be analysed along with a consideration of the acidity of the environment.

By varying the parameters δ1, and δ2, it would be possible to gain an overview of

how the overall proportion of degradation performed by either MMP aids cancer

cell invasion. This is not necessary in the current work and would provide most

benefit when a patient specific assessment is carried out.

Collier et al. (2011) find the diffusion of MMP-2 on collagen type-1 to be 1.29×

108cm2s−1 and we consider the diffusion of proMMP-2, TIMP2 to be of the same

order. Therefore we have Dms = Dpms = DT = 1.29× 108cm2s−1.

The parameters βms , βmt , αmt and αT were chosen so that the concentrations of

active MT1-MMP and MMP-2 are in the range 0-25nM for the entire domain

and 0-10nM for the cancer-ECM interface. As the values of serum level of free
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MMP-2 and TIMP2 do not correlate with tumour staging Kolomecki et al. (2001);

Oberg et al. (1999) as well as the MMP-2/TIMP2 complex (Oberg et al., 1999)

and as we have previously discussed that serum levels of MMP-2 have been seen

in the range 2.81-10.03nM, we consider this to be an appropriate range for our

continuum based mathematical model.

However some parameters cannot be obtained from the literature directly (φ32, φ62)

as we are using the reduced schematic of Figure 4.2, thus here we show how they

are estimated.

We consider a model (submodel A) of the full MMP-2 activation system repre-

sented in Figure 4.1 to take place in the spatial domain represented in Figure 4.4

to estimate the rate at which MT1-MMP binds to TIMP2 which has an attached

proMMP-2. We then compare this rate to a model (submodel B) of the simplified

representation of the MMP-2 activation system represented in Figure 4.2 that is

consider in the full model of equations (4.9)–(4.14). We note that for both sub-

models that as the diffusive enzymes have such a high diffusion rate, there is little

difference between that of the spatial and ordinary differential equation model

despite having interactions that can only happen near the cell boundary.

Toth et al. (2000) find the binding rate of MT1-MMP to TIMP2 to be 2.74 ×

106M−1s−1 as well as the dissociation of this complex of 2× 10−4s−1. Therefore

we have the non-dimensionalised parameters of a1 = b1 = 2.74 × 10−3 and a2 =

b2 = 2× 10−4 with φ41 = φ52 = φ61 = 27.4 with φ51 = φ63 = 2.

Olson et al. (1997) find the binding rate of the complex of MT1-MMP and TIMP2

to that of proMMP-2 to be 1.4 × 105M−1s−1 as well as the dissociation of this

three enzyme complex of 4.7× 10−3s−1. Therefore we have a3 = 1.4× 10−4 with

a4 = 4.7× 10−3s−1.
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Figure 4.4: The domain and boundary conditions used in submodel A and B. The

domain is square and contains an entire cancer cell in addition to parts of four cells.

The cancer cells are of equal shape with a diameter of 40 µm. The red region is the

area that membrane-bound interactions can take place and the blue region is where

the freely-diffusive enzymes can move into. The boundary between the white and red

region is considered to be zero-flux and the boundary between red region and blue region,

presented in green, has conservation of flux across it.
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SubModel A :

We formulate submodel A, where all parameters have estimates or estimated

ranges in the literature, with the sole purpose of simulating a specific circumstance

to provide a resultant profile of MMP-2 that submodel B can be compared with.

This allows for the estimation of the unknown parameter of b3 in submodel B,

which is equivalent to φ32 = φ62 in the proposed model of cancer invasion of

equations (4.9)–(4.14).

We use the non-dimensionalisation parameters of τ = 1s, L = 0.001cm and a ref-

erence enzyme concentration of 1nM to determine the following non-dimensionalised

system of equations where we have chosen αpM2 = αMT1 = αT2 = 0 to close the

system to be able to compare the results obtained from the schematic used in

this submodel and the later submodel B.
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∂[pM2]

∂t
= ∇ · (DpM2∇[pM2]) + αpM2 − a3[MT1 : T2][pM2]

+a4[MT1 : T2 : pM2] (4.15)

∂[M2]

∂t
= ∇ · (DM2∇[M2]) + a7[MT1 : T2 : pM2 : MT1] (4.16)

∂[MT1]

∂t
= +αMT1 + a2[MT1 : T2]− a1[MT1][T2]

−a5[MT1 : T2 : pM2][MT1]

+a6[MT1 : T2 : pM2 : MT1]

+a7[MT1 : T2 : pM2 : MT1] (4.17)

∂[T2]

∂t
= ∇ · (DT2∇[T2]) + αT2 + a2[MT1 : T2]

−a1[MT1][T2] (4.18)

∂[MT1 : T2]

∂t
= +a4[MT1 : T2 : pM2]− a3[MT1 : T2][pM2]

+a7[MT1 : T2 : pM2 : MT1] + a1[MT1][T2]

−a2[MT1 : T2] (4.19)

∂[MT1 : T2 : pM2]

∂t
= a3[MT1 : T2][pM2]− a4[MT1 : T2 : pM2]

−a5[MT1 : T2 : pM2][MT1]

+a6[MT1 : T2 : pM2 : MT1] (4.20)

∂[MT1 : T2 : pM2 : MT1]

∂t
= a5[MT1 : T2 : pM2][MT1]

−a6[MT1 : T2 : pM2 : MT1]

−a7[MT1 : T2 : pM2 : MT1] (4.21)

We use initial conditions in the region near the cell of proMMP-2=100nM, MT1-

MMP=200nM and TIMP2=160nM with Figure 4.5 showing the subdomain in-

tegration of concentration levels for chosen species changing over the combined

region.

The one parameter which we have chosen to estimate is the rate at which free
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Dimensionless Original

value value Source

DpM2 1.29× 102 1.29× 108 cm2s−1 Collier et al. (2011)

DM2 1.29× 102 1.29× 108 cm2s−1 Collier et al. (2011)

DT2 1.29× 102 1.29× 108 cm2s−1 Collier et al. (2011)

a1 2.74× 10−3 2.74× 106 M−1s−1 Toth et al. (2000)

a2 2× 10−4 2× 10−4 s−1 Toth et al. (2000)

a3 1.4× 10−4 1.4× 105 M−1s−1 Olson et al. (1997)

a4 4.7× 10−3 4.7× 10−3 s−1 Olson et al. (1997)

a5 4.3× 10−5 4.3× 104 M−1s−1 estimated

a6 9× 10−7 9× 10−7 s−1 Karagiannis and Popel (2004)

a7 2× 10−2 2× 10−2 s−1 Karagiannis and Popel (2004)

αpM2 0

αMT1 0

αT2 0

Table 4.2: Parameter set A as used in submodel A, relating to the full activation

system of MMP-2 at the cellular scale.
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MT1-MMP proteins bind to the complex of MT1-MMP:TIMP2:proMMP-2, pa-

rameter a5. The reason for doing so is that the literature offers a wide range of

values for this rate. The mathematical model of Karagiannis and Popel (2004)

estimates the value to be 3×103M−1s−1 through comparisons with the biological

data of English et al. (2001). Indeed, when we use the biological data of English

et al. (2001) and Butler et al. (1998) (as shown in the later stochastic model in-

troduced in Chapter 6, Figure 6.5), we find a comparable value of 3×103M−1s−1.

However, the mathematical work of Hoshino et al. (2012), where they have also

performed original biological experiments, estimate the parameter to be a much

larger value of 2× 106M−1s−1.

This discrepancy in parameter value estimates may in part be explained where

experiments performed in Butler et al. (1998) and English et al. (2001) used the

severed catalytic region of MT1-MMP proteins and performed experiments in a

well-mixed bulk. This may result in a parameter estimate that is smaller than

the case in vivo. We have chosen to estimate the parameter a5 as a value between

these estimates and as such have used a5 = 4.3×104M−1s−1 for all computational

simulations of our presented model.

SubModel B :

We formulate submodel B using known parameters in conjunction with one un-

known parameter, b3. In comparing the results with that obtained from submodel

A, we are able to obtain an estimate for the unknown parameter b3, which can

then be used in the proposed model of cancer invasion of equations (4.9)–(4.14)

where b3 is equivalent to φ32 = φ62.
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Figure 4.5: Submodel A. Total protein levels as determined by domain integrations

of the variables of the models are presented where MMP-2 is black, MT1-MMP is yel-

low, TIMP2 is blue, proMMP-2 is red and the complex of MT1-MMP:TIMP2:MT1-

MMP:proMMP-2 is shown in green.
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Parameter Dimensionless Original

value value Source

DpM2 1.29× 102 1.29× 108 cm2s−1 Collier et al. (2011)

DM2 1.29× 102 1.29× 108 cm2s−1 Collier et al. (2011)

b1 2.74× 10−3 2.74× 106 M−1s−1 Toth et al. (2000)

b2 2× 10−4 2× 10−4 s−1 Toth et al. (2000)

b3 1.95× 10−5 1.95× 104 M−1s−1 fitted

αMT1 0

αT2 0

Table 4.3: Parameter set B as used in submodel B relating to the reduced activation

system of MMP-2 at the cellular scale.

∂[MT1]

∂t
= +αMT1 + b2[f ]− b1[MT1][T2] (4.22)

∂[T2]

∂t
= ∇ · (DT2∇[T2]) + αT2 + b2[f ]− b1[MT1][T2] (4.23)

∂[f ]

∂t
= +b1[MT1][T2]− b2[f ]− b3[f ][MT1] (4.24)

∂[M2]

∂t
= ∇ · (DM2∇[M2]) + b3[f ][MT1] (4.25)

We use initial conditions in the region near the cell of MT1-MMP=200nM and

TIMP2=160nM with Figure 4.6 showing the subdomain integration of concen-

tration levels for chosen species changing over the combined region. Comparisons

of Figure 4.5 with Figure 4.6 yield the non-dimensionalised b3 = 1.95× 10−5.

Steady states of the underlying, spatially homogeneous system of equations (4.26)–

(4.32) are obtained by solving simultaneous equations in Maple 13TM, using the

baseline parameters found in Table 4.4.
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Figure 4.6: Submodel B. Total protein levels as determined by domain integrations of

the variables of the models are presented where MMP-2 is black, MT1-MMP is yellow,

TIMP2 is blue, the intermediate complex, f , is shown in green.
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Dimensionless Original

value value Source

Dc 3.5× 10−4 3.5× 10−10cm2s−1 Anderson et al. (2000)

χ 5× 10−3 5× 10−7cm2s−1M−1 Anderson et al. (2000)

µc 0.3 0.108h−1 Chaplain and Lolas (2006)

δ1 1 1× 10−4nM−1s−1 Anderson et al. (2000)

δ2 1 scaling factor estimated

µv 0.2 7.2× 10−3h−1nM−1 Gerisch and Chaplain (2008)

Dms 1.29× 10−2 1.29× 108 cm2s−1 Collier et al. (2011)

φ31 5 5× 105 M−1s−1 estimated

φ32 0.195 1.95× 104 M−1s−1 estimated

βms 0.1 1× 10−5 s−1 estimated

αmt 5 5× 10−4 s−1 estimated

φ41 27.4 2.74× 106 M−1s−1 Toth et al. (2000)

φ42 2 2× 10−4 s−1 Toth et al. (2000)

βmt 0.1 1× 10−5 s−1 estimated

DT 1.29× 10−2 1.29× 108 cm2s−1 Collier et al. (2011)

αT 4 4× 10−4 s−1 estimated

φ51 5 5× 105 M−1s−1 estimated

φ52 27.4 2.74× 106 M−1s−1 Toth et al. (2000)

φ53 2 2× 10−4 s−1 Toth et al. (2000)

φ61 27.4 2.74× 106 M−1s−1 Toth et al. (2000)

φ62 0.195 1.95× 104 M−1s−1 estimated

φ63 2 2× 10−4 s−1 Toth et al. (2000)

Table 4.4: Baseline parameter set for the model
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0 = µcc(1− c− v), (4.26)

0 = −δ(s− 1 + v)(ms +mt) + µv(1− c− v), (4.27)

0 = −φ31Tms + φ32mtf − βmsms, (4.28)

0 = −φ41Tmt + φ42f − βmtmt + αmtc(1 + v), (4.29)

0 = −φ51Tms − φ52Tmt + φ53f + αT c, (4.30)

0 = φ61Tmt − φ62fmt − φ63f, (4.31)

0 = δsmt(1− s). (4.32)

The seven mathematical solutions of this system are:



c∗

v∗

m∗
s

m∗
t

T ∗

f ∗


=



1

0

21.25

19.37

0.01

0.81


,



0

1

0

0

T ∗

0


,



0

−0.04

−11.79

5.89

−0.01

−0.51


,



2

−1

−80

0

−0.02

0


,



1

0

94.48

−17.24

−0.01

−2


,



1

0

112.94

−26.47

−0.01

−1.48


,



0.01

0.99

−1.26

1.26

−0.01

−0.19


,



1.61

−0.61

1.65

−1.65

0.38

−10.25


,



2.16

−1.16

121.07

−121.07

0.00

−0.44


,

where only the first two solutions satisfy the non-negative requirement for being

biologically relevant. As such, further examination of only these first two solutions

is presented.
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Before finding the stability of these steady states, we note that the first steady

state represents a region where cancer has fully invaded the tissue and the ECM

is completely degraded while the second steady state represents the case where

all cancer cells have died out and only healthy tissue makes up the entirety of the

domain but doesn’t put any conditions on the values that T can take.

For the steady state of (c∗, v∗,m∗
s,m

∗
t , T

∗, f ∗)T = (1, 0, 21.25, 19.37, 0.01, 0.81)T ,

the associated eigenvalues are: λ1 = −0.10, λ2 = −0.22, λ3 = −0.30, λ4 =

−0.48, λ5 = −4.06, λ6 = −40.83, λ7 = −639.10. As all the eigenvalues λi

for i = 1, ..., 7 are negative, we have that the steady state is stable.

For the steady state of (c∗, v∗,m∗
s,m

∗
t , T

∗, f ∗)T = (0, 1, 0, 0, T ∗, 0)T , the associ-

ated eigenvalues are: λ1 = −0.2, λ2 = −0.1 − 5T ∗, λ3 = −13.7T ∗ − 1.05 +

0.05(75076T ∗2 + 11508T ∗ + 361)0.5, λ4 = −13.7T ∗ − 1.05 − 0.05(75076T ∗2 +

11508T ∗ + 361)0.5, λ5 = 0, λ6 = 0, λ7 = 0.

In order to determine the stability of the steady state associated with λ3, we plot

(not shown) 13.7T ∗− 1.05 and 0.05(75076T ∗2 + 11508T ∗ + 361)0.5. From this, we

determine that Re(0.05(75076T ∗2 + 11508T ∗ + 361)0.5) > Re(13.7T ∗ − 1.05) for

all T ∈ R(0,∞), therefore Re(λ3) > 0 and this steady state is unstable.

As discussed previously, using volume filling terms can result in “normal” or

“abnormal” states of the production functions for cancer cell density and ECM

density where normal conditions are defined as those allowing for growth or stasis

from the production function while abnormal conditions are defined as those

resulting in a loss. As these functions are primarily intended to provide growth

or stasis to the ECM and cancer cell densities, we term the switch in states to be

a “breach” in the volume filling function.

We note that while the conditions of c ≥ 0 and v ≥ 0 are inviolable in a biological
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understanding of the model. The remaining three conditions required for stasis

or production of c ≤ 1, v ≤ 1, c + v ≤ 1 can be violated to cause a breach

resulting in a switch in role of the production terms to that of encouraging loss in

the cancer cell and ECM densities. Biologically, this means that while we cannot

have a negative amount of either cancer cells or ECM components, only a certain

amount of cancer cells or ECM components can be supported. As such, a minimal

or temporary breach can be considered to be biologically relevant. However, an

unchecked breach can result in finite-time blow up solutions, which is at odds

with a biological interpretation of the model.

We separate the proposed model into two systems of equations considering either

only the reaction terms in equations (4.33)–(4.38) or only the flux of cancer cells,

ECM components and associated proteins in equations (4.39)–(4.44). This is done

to provide a clear indication of the role of each term in causing or recovering from

a breach.

∂c

∂t
= µccv(1− c− v), (4.33)

∂v

∂t
= −δv(ms +mt) + µv(1− c− v), (4.34)

∂ms

∂t
= −φ31Tms + φ32mtf − βmsms, (4.35)

∂mt

∂t
= −φ41Tmt + φ42f − βmtmt + αmtc(1 + v), (4.36)

∂T

∂t
= −φ51Tms − φ52Tmt + φ53f + αT c, (4.37)

∂f

∂t
= φ61Tmt − φ62fmt − φ63f, (4.38)
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∂c

∂t
= ∇ · (Dc∇c− χcv(1− c− v)∇v), (4.39)

∂v

∂t
= 0 (4.40)

∂ms

∂t
= ∇ · (Dms∇ms) (4.41)

∂mt

∂t
= mt∇ · (Dc∇c− χc(1− c− v)∇v) (4.42)

∂T

∂t
= ∇ · (DT∇T ) (4.43)

∂f

∂t
= f∇ · (Dc∇c− χc(1− c− v)∇v) (4.44)

It can trivially be seen that the reaction terms found in equations (4.33) and

(4.34), satisfy the three criteria for production or stasis for all t, provided it is

true for t = 0. As there are no flux terms for the ECM, v, we can declare that

v ≤ 1∀t where v(t = 0) ≤ 1 and c, v(t = 0) ≥ 0 thus any breach must be the

result of the flux terms of the cancer cell density found in equation (4.39).

When we examine the spatial terms in isolation from the kinetics, equations

(4.39)–(4.44), it becomes clear that there exists two ways in which the volume

filling criterion of 1 − c − v ≥ 0 can be breached. This can be caused by either

the diffusion or the haptotaxis term. We illustrate three cases where this breach

can either occur due to diffusion only in the plots of Figure 4.7 A&B, either

haptotaxis or diffusion in the plots of Figure 4.7 C&D or by haptotaxis only in

the plots of Figure 4.7 E&F. We will then proceed to consider the consequences

of this breached criterion, including any affect on the remaining volume filling

criteria. In all three cases outlined by Figure 4.7, we define the ECM, v to be

green and the cancer cells, c to be red and we consider only the two spatial

locations of X and Y at the two times of ti and ti + ε where we define ε to be

a sufficiently small value. We do not specify the proportion of ECM to cancer

and represent this graphically with the break conditions on the density axes.
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In all cases, we have conservation of mass for both the cancer cell population

and the ECM density such that c(X, ti) + c(Y, ti) = c(X, ti + ε) + c(Y, ti + ε)

and v(X, ti) + v(Y, ti) = v(X, ti + ε) + v(Y, ti + ε). Furthermore, as there is no

flux terms for the ECM components, we have that v(X, ti) = v(X, ti + ε) and

v(Y, ti) = v(Y, ti + ε). We remark that diffusion of cancer cells causes movement

from regions of higher c to regions of lower c and that haptotaxis of cancer cells

causes movement from regions of lower v to regions of higher v at a rate that is

limited by the haptotactic sensitivity function, which in our model is χv(1−c−v).

To construct the scenario outlined in the plots of Figure 4.7 A&B ,where it

is possible for diffusion but not haptotaxis to violate this criteria, we consider

c(X, t1) > c(Y, t1), c(X, t1) + v(X, t1) = 1, v(X, t1) < v(Y, t1) and c(Y, t1) +

v(Y, t1) = 1− δ, where 0 ≤ δ << 1. We now consider how such a setup would be

modified by the flux terms. We would have diffusion from locations X to Y by

t = t1 + ε which for some sufficiently small δ would cause an increase in cancer

cells at location Y such that c(Y, t1+ε)+v(Y, t1+ε) > 1. This violates the volume

filling criterion of 1 − c + v ≥ 0. Haptotaxis would move cells from location X

to Y as v(X, t1) < v(Y, t1), however no haptotaxis can take place as the volume

filling term in the haptotactic sensitivity function is zero when 1 − c − v = 0 as

is is the case at location X at t = t1.

We now discuss the third scenario outlined in Figure 4.7 E&F where it is pos-

sible for haptotaxis but not diffusion to violate the volume filling criteria be-

fore returning to the second scenario. We construct this scenario by considering

c(X, t3) = c(Y, t3), c(X, t3) + v(X, t3) = 1 − γ, c(Y, t3) + v(Y, t3) = 1 − δ and

v(X, t3) < v(Y, t3) where 0 < γ < 1 and 0 ≤ δ << 1. As we move from

t3 to t3 + ε for some sufficiently small ε, we note that no diffusion can take

place as c(X, t3) = c(Y, t3) and that haptotaxis would move cancer cells from

location X to Y as v(X, t3) < v(Y, t3). Unlike the first case, we do not have
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Figure 4.7: We illustrate three scenarios where the flux terms can cause a breach of

the volume filling criterion of 1−c−v ≥ 0. Plots A and B illustrates the case where this

breach is caused by diffusion. Plots C and D illustrate the case where either diffusion

or haptotaxis can cause the breach and the plots of E and F illustrate the case where the

breach can be caused by haptotaxis but not diffusion. We represent the ECM by green

and the cancer cells by red and consider two spatial locations of X and Y at two time

points of ti and ti + ε for i = 1, 2, 3.
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1− c(X, t1)− v(X, t1) = 0 and so the haptotactic event can take place. Provided

that δ is sufficiently small and γ sufficiently large, we will have a breach of the

volume filling criterion of 1− c− v ≥ 0 as c(Y, t3 + ε) + v(Y, t3 + ε) > 1.

If we construct the second scenario as outline in Figure 4.7 C&D in the same way

as the third scenario with the exception of c(X, t2) > c(Y, t2), it is now trivial to

show a breach of the volume filling criterion by either the diffusion or haptotaxis

as c(Y, t2 + ε) + v(Y, t2 + ε) > 1 provided δ is sufficiently small and γ sufficiently

large.

As we have found that the two conditions required for production or stasis of

c + v ≤ 1 and c ≤ 1 can be violated, we must consider the consequences of

such a breach. We do this by by considering both the effects on the flux terms

and the reaction terms. For the flux term of equation (4.39), we note that the

diffusion term is unaffected by any such breach and will continue to act in the

same manner, however the haptotaxis term will change sign resulting becoming

what is known as a chemorepellent in chemotaxis models, and as such we coin it

to be haptorepellent. This change causes cancer cells to instead move away from

regions of higher v towards regions of lower v.

We now consider what effect the breaking of the volume filling criterion of 1 −

c − v ≥ 0 has on the reaction terms (the examining of the after effects of this

change is the equivalent to examining the effect of having an initial condition

for the spatially homogeneous equations of (4.33)–(4.38) that doesn’t satisfy the

condition of 1 − c − v ≥ 0) but still satisfies 0 ≤ v ≤ 1 (i.e. 0 < c). As

such we consider the reactions that will affect location Y at t = ti + ε where

c(Y, ti + ε) + v(Y, ti + ε) > 1.
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From equations (4.33) and (4.34), we have that

∂c(Y, ti + ε)

∂t
= µcc(Y, ti + ε)(1− c(Y, ti + ε)− v(Y, ti + ε)) < 0, (4.45)

∂v(Y, ti + ε)

∂t
= −δv(ms(Y, ti + ε) +mt(Y, ti + ε))

+µv(1− c(Y, ti + ε)− v(Y, ti + ε)) < 0, (4.46)

which can be interpreted as there being a decrease in c and v at this location as

a direct consequence of the breach in the volume filling criterion of 1− c− v ≥ 0.

This cycle would remain active until 1− c−v ≥ 0. We have therefore shown that

neither the reaction or flux terms can cause an increase in v above the value of 1

despite the increase in c such that c+ v > 1 caused by the flux terms.

Provided there were no further increase from location X to Y from the flux terms,

we have shown that there will be a decrease in c at location Y from the haptotaxis

term acting as a haptorepellent and a decrease in both c and v from the reaction

terms. We have however, shown that a further increase in c at location Y is

possible from both the haptotaxis term and the diffusion. As such, it is possible

that a breach in the volume filling criterion of 1− c− v ≥ 0 will not immediately

fix itself.

As for the other criterion of volume filling, namely c ≥ 0 and v ≥ 0, we note that

these are inviolable in a biological sense as it is impossible for negative amount

of cancer cells or ECM components to be present at any location. We note that

neither the diffusion or haptotaxis terms can possibly cause a decrease to either

c or v when either are at zero and so have only the reaction terms to consider.

The reaction terms can trivially be shown to not decrease c or v past zero when

we have 1− c− v ≥ 0.

We therefore consider the cases where 1−c−v < 0 as caused by either haptotaxis

or diffusion and the effect this has on the reaction terms. In order for the violation
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to be the result of haptotaxis, we must have v(Y, ti + ε) > γ for some small γ

where the haptotactic sensitivity function produces a displacement proportional

to v(c − c2 − cv) and so is unlikely to provide a movement greater than γ for

reasonable choices of χ. In order for the violation to be the result of diffusion, we

have that 0 ≤ c ≤ 1 with 1− c− v < 0 therefore v > γ. As 1− c− v ≥ 0 when

v = 0, we have that there will no longer be a decrease in c and v as a result of a

breach in the volume filling. We have therefore shown that the remaining volume

filling criteria of c ≥ 0 and v ≥ 0 are satisfied for all t.

We then have that finite time blow-up solutions are only avoided provided that

haptorepellence, degradation of ECM, production of cancer cells and remodelling

of ECM are able to move cancer cells away from location Y at a rate quicker

than any additional cancer cells that are moved to location Y from the reaction-

boosted flux terms. We remark that finite time blow-up solutions do not appear

for all ranges of parameter values considered for this model and that any results

breaking the volume filling criterion of 1− c−v ≥ 0 appear to be quickly righted.

In addition, we note that the choice of volume filling in the chemotaxis sensitivity

function, cancer cell production and ECM remodelling all decrease the likelihood

of finite time blow-up solutions. Finally, we remark that as there appears to only

be a minor violation of 1− c− v ≥ 0, we can consider this to still make biological

sense as the definition for maximum amount of cancer cells at one location may

be slightly increased at times when there are additional pressures abusing the

plasticity of the cell.
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4.3 Results

We will present two invasion scenarios in this chapter: Invasion Scenario 0A and

0B. The former represents the growth and spread of cancer cells from an initial

central mass as may be representative of an in vivo evolution of a cancerous mass

while the latter represents cancer cell invasion from an initial strip along the LHS

of the domain as may be more representative of a style of in vitro experiments.

Here we present numerical simulations of the proposed model represented by

equations (4.9)–(4.14) under zero flux boundary conditions prescribed by the

homogenous Neumann boundary conditions in two spatial dimensions, although

we note that as the initial conditions and results are radially symmetric in Invasion

Scenario 0A and the multiplicity of results and the initial conditions along the

y-axis of Invasion Scenario 0B that interpretation of results obtained under a one

dimensional spatial region would be as full and as valid as those obtained from

the presented model.

In some of the plots of the figures presented in this chapter we have added an

overlay of the contour of c = 0.01 in either white or black where we have defined

this to be the extent of cancer invasion. This is done to add clarity when inter-

preting the data represented in the plots and is stated in the caption of each plot

where relevant.

In addition to the model variables of c, v,ms,mt, T and f , we employ two “dummy

variables” of ∆vms , where
∂∆vms

∂t
= δ1vms, and ∆vmt, where

∂∆vmt

∂t
= δ1δ2vmt,

to record how much ECM has been degraded by either MMP-2 or MT1-MMP

at each point within the considered domain. We will also present functions of

these variables where it is beneficial to the interpretation of the results, namely,

∅ = 1 − c − v to represent the unfilled space left by the cancer cells and ECM
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components and ∆vtotal = ∆vms + ∆vmt to represent the total degradation as

caused by both MMP-2 and MT1-MMP. We note that for 0 < ∅ ≤ 1 we have some

empty space where ∅ = 1 means there are no cancer cells or ECM components

present, ∅ = 0 no empty space and ∅ < 0 we have an overcrowding problem.

For ∆vtotal we note that there would be a initial value of zero at all coordinates

and there would be an upper bound of 1 in the case where there is no ECM

remodelling (µv = 0) but as we have presented a model with ECM remodelling

(µv > 0), we have no upper bound on this function.

We begin with the following remarks that all results obtained from the model

defined by the equations (4.9)–(4.14) will have: (i) the spatially homogeneous

condition of 1 − c − v ≥ 0, (ii) the solutions are tending to the only stable

spatially homogeneous steady state of (1, 0, 21.25, 19.37, 0.01, 0.81)T when using

the parameters found in Table 4.4 and that this is most clear in the plots of Figure

4.13 E&H, Figure 4.14 B&E and Figure 4.15 C&F, (iii) ∅ > 0 for all cases where

ECM is degraded beyond the cancer cell invasion boundary.

If we assume at some time t = ť1 there is an area of cancer cells of “P” and want

to compare this area to that found at a later time of t = ť2 where there has been

an increase in depth of invasion by “r” in a square domain of length “d”, we

find this difference in areas to be πr2 − P for Invasion Scenario 0A and dr − P

for Invasion Scenario 0B. In other words, we have a quadratic increase of region

where there exists at least some cancer cells in Invasion Scenario 0A compared to

the linear increase in Invasion Scenario 0B when we increase the invasion depth

of the cancer cell boundary into the ECM.

Invasion Scenario 0A is the first Invasion Scenario that we consider, where a

cancer mass in the centre of a domain invades outwards in a radial fashion with the
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initial conditions representing the initial cancer mass distributed in a Gaussian

distribution of e−((x2+y2)/0.02) (Figure 4.8, plot A) in the centre of a square region

of tissue that satisfies the initial condition v(t = 0) = 1 − c(t = 0) (Figure 4.8,

plot D). This cancer mass is determined to have an initial concentration of the

enzymes and enzyme complexes of the same distribution of the cancer cell mass

but with the increased magnitude of 5×c(t = 0) and is therefore implicitly shown

as a scaled-by-5 version of Figure 4.8, plot A. We use the baseline parameters

of Table 4.4 to solve over a 2D spatial square domain of length 0.4cm and time

range 0-4.6 days with results plotted at 0, 2.3 and 4.6 days (t = 0, 20, 40).

As can be seen from the plots in Figure 4.8 A–C, we observe a radially sym-

metric growth of the cancer cell mass with an equivalent reduced state of ECM

shown in the plots of Figure 4.8 D-F and the degraded ECM of Figure 4.8 G&H.

We note that the spatially homogeneous, stable steady state calculated above of

(c∗, v∗,m∗
s,m

∗
t , T

∗, f ∗)T = (1, 0, 21.25, 19.37, 0.01, 0.81)T is beginning to emerge in

the centre of the region where c(x = (0, 0)) = 1, v(x = (0, 0)) = 0.

If we consider the region where c ≥ 0.01 and v ≥ 0.01 as the cancer-ECM interface

and provide approximations for the concentrations of MMP-2 (1-4nM) and MT1-

MMP (0.1-5nM) within this region, then we can provide further approximations

for these concentrations to the spatially homogeneous steady state and compare

favourably with biological data found in for MMP concentration in serum for

various forms of cancer, as previously outlined, of MMP-2 = 2.81-10.03nM and

MT1-MMP= 0.04-0.38nM.

From the plots of Figure 4.8 G&H we see the location and amount of ECM that

has been degraded in total. We note that this goes above the non-dimensionalised

value of 1 which was defined to be the maximum amount of ECM in any location.

The degradation of an amount above the value of 1 is due to the remodelling term
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in the ECM equation (µv(1− c− v)) creating new macromolecules of ECM when

there is sufficient space for fibroblasts to do so. In the centre of the domain,

where there is considered to be an initial mass of cancer cells reaching the maxi-

mum density (c(x = (0, 0), t = 0) = 1) and a complete lack of ECM components

(v(x = (0, 0), t = 0) = 0, there is a lack of ECM degradation throughout the con-

sidered timeframe. This fulfils the volume filling criterion at that location for the

remodelling term and so no ECM macromolecules are produced throughout the

considered timeframe and therefore no ECM is degraded at this location. Finally,

we observe that there has been degradation of the ECM beyond the cancer cell

invasion boundary.

We can see an increase in the distribution of enzymes to a more radially expansive

region as motivated by the spread of the cancer cells as well as an increase in

maximum concentration towards the stable, spatially homogeneous steady state

for ms and mt and a decrease in maximum concentration towards the stable,

spatially homogeneous steady state for T and f as seen in the distributions shown

in the plots of Figure 4.9 at t = 20 and Figure 4.10 at t = 40.

When we examine the variables ms and mt in particular we see the increase in

region and magnitude from 5×Figure 4.8 A to Figure 4.9 A&B to Figure 4.10

A&B but to focus on the characteristics of the MMPs at the interface between the

cancer cells and the ECM, we look at the plots of Figure 4.9 D&E and Figure 4.10

D&E. The plots of specific MMP-2 concentration ranges of 0.25 ≤ ms ≤ 1 (red

region) and ms > 1 (blue region) in Figure 4.9 D and Figure 4.10 D demonstrate

that MMP-2 is free to diffuse beyond what is defined to be the boundary of the

cancer cell mass to the point where almost all of the red region at t = 20 is

outside the cancer cell invasion boundary while at t = 40 all of the red region and

a minimal amount of the blue region is outside the cancer cell invasion boundary.

This is in stark contrast to the MT1-MMP profile shown in Figure4.9 E and
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Figure 4.10 E (where we define 0.25 ≤ mt ≤ 1 to be the red region and mt > 1

to be the blue region) where neither the red nor the blue regions have been able

to move past the boundary of the cancer cells as the only movement that MT1-

MMP proteins can make is while attached to a cancer cell. This shows that all

degradation of the ECM (δv(ms + mt)) beyond the cancer cell boundary must

be due to MMP-2 rather than MT1-MMP while the increased concentration of

MT1-MMP over MMP-2 in the region closest to the centre of the cancer mass

(defined as the region where mt > ms). We also note that the distance between

the red and blue regions is increased for MMP-2 from that of MT1-MMP.

We examine the variables of T and f and find that there is not an increase in the

magnitude of the variables as they tend towards the stable, spatially homogeneous

steady state values of 0.01 and 0.81 respectively however we do see the region

in which they exist expanding due to the spread of c (cf. Figure 4.9 C&F and

Figure 4.10 C&F). We note that there is a similarity between their relation and

the relation between ms and mt where T is freely diffusible and can therefore

travel beyond the extent of the cancer cell invasive boundary while f is limited

in movement to the transport by cancer cells. We consider that there is such low

concentration of T to mean that any free TIMP2 that is produced or released

from a complex is quickly bound to either free MT1-MMP or MMP-2. We note

that there is an increase in both the T and f variable at the leading edge of the

cancer cell invasion.

Expanding on the observations made from the plots of Figure 4.8 G&H, in Fig-

ure 4.11 we have that ECM degradation beyond the cancer invasive front is the

sole domain of the freely diffusible MMP-2, ms while the degradation of ECM

components within this cancer invasion front is shared by both the MMPs. The

precise amount of ECM that has been degraded by each MMP is elucidated in

the plot of Figure 4.12 B.
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In the final figure presented for this Invasion Scenario, Figure 4.12, we compare

the subdomain integrations of the variables and functions of v, c,∅,∆vtotal,∆vms

and ∆vmt to examine the contributions of the variables to the dynamics of the

model across the considered timeframe of t = 0 − 40, corresponding to a 4.6

days consideration. We note that the non-dimensionalisation where we defined

the maximum amount cancer cells or ECM components to exist as being equal

to 1 has the consequence of the maximum of the total amount of cancer cells

or ECM components (subdomain integration of c and v) over a square domain

of length 4 to be 16. This does not, however, provide a maximum value for the

summation of the total ECM degraded as the ECM is continually remodelled

(density increased) where there is the space for it to do so, i.e., where ∅ > 0.

In the plot of Figure 4.12 A, we focus on the summation of total density of the

ECM, cancer cells and the free space, ∅, that is left for either of these to be

produced or be moved into. We note that there appears to be a near linear

growth in free space, ∅, over the considered timeframe while the total ECM

density is reduced quadratically and the total amount of cancer cells increases

quadratically. We observe that while the total of cancer cells is strictly increasing,

after some small initial time it is always below the total free space. This means

that for this Invasion Scenario 0A we have an ECM that is reduced to a level

more than twice than would be needed to simply provide space for the cancer

cells to be produced/move into for the entirety of the considered timeframe (after

some small time has elapsed). In fact, for this specific scenario we have that the

ECM is reduced to a level over three times the required amount for the entirety

of the considered timeframe, again after some small elapsed time.

In the plot of Figure 4.12 B, it is abundantly clear that the bulk of degradation

of the ECM over the considered timeframe is due to the soluble MMP-2 where

degradation by either of the MMPs increases quadratically. This is due to the
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t c v ∅ ms mt T f ∆vtotal ∆vms ∆vmt

0 0.06 15.94 0 0.31 0.31 0.31 0.31 0 0 0

20 0.57 13.14 2.29 5.29 6.02 0.04 1.19 7.29 6.21 1.08

40 2.01 9.11 4.88 24.75 25.69 0.07 3.14 25.72 23.04 2.68

Table 4.5: Invasion Scenario 0A. Table showing the subdomain integration at t = 0, 20

and t = 40 (corresponding to 0 days, ∼2.3 days and ∼4.6 days) of the model variables

in addition to the inclusion of how much degradation has occurred due to each and both

of the MMPs considered.

ability of MMP-2 to diffuse beyond the cancer cell boundary into regions where

there is a higher amount of intact ECM components.

Data which is not be immediately clear from the figures in this subsection of

Section 4.3 is shown in Table 4.6 where ∅ represents the empty space of 1− c− v

and ∆vtotal,∆vms and ∆vmt represent the amounts of of ECM degraded in total,

by MMP-2 and by MT1-MMP, respectively. Additional interpretation of the data

presented in this table is offered up in Section 5.3.
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Figure 4.8: Invasion Scenario 0A. Plots A-C show the time evolution of the cancer

cell densities from t = 0 through t = 20 (corresponding to ∼2.3 days) to t = 40

(corresponding to ∼4.6 days) with plots D-F showing the corresponding ECM densities

and plots G&H showing how much ECM has been degraded across the domain where the

black contour line shows the cancer cell density at level 0.01, chosen to represent the

maximum extent of invasion. Simulations are performed using the baseline parameter

set of Table 4.4.
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Figure 4.9: Invasion Scenario 0A. The concentrations of MMP-2, MT1-MMP, the

intermediary complex f and TIMP2 at t = 20 (corresponding to ∼2.3 days) are shown

in plots A,B,C and F respectively. Plots D&E show the MMP-2 and MT1-MMP con-

centrations again at t = 20 but with appropriate thresholds to indicate the enzyme

distributions near the invasive front of the cancer cell invasion. The white contour line

in plot D and black contour line in Plot E show the cancer cell density at level 0.01

chosen to represent the maximum extent of invasion. Simulations are performed using

the baseline parameter set of Table 4.4.
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Figure 4.10: Invasion Scenario 0A. The concentrations of MMP-2, MT1-MMP, the

intermediary complex f and TIMP2 at t = 40 (corresponding to ∼4.6 days) are shown

in Plots A,B,C and F respectively. Plots D&E show the MMP-2 and MT1-MMP con-

centrations again at t = 40 but with appropriate thresholds to indicate the enzyme

distributions near the invasive front of the cancer cell invasion. The white contour line

in plot D and black contour line in plot E show the cancer cell density at level 0.01

chosen to represent the maximum extent of invasion. Simulations are performed using

the baseline parameter set of Table 4.4.
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Figure 4.11: Invasion Scenario 0A. Plots A & B show the profiles of the density

of ECM degraded solely by ms, while plots C & D show the profiles of the density of

ECM degraded solely by mt at t = 20 and 40 (corresponding to ∼2.3 and 4.6 days,

respectively). The white contour line in plots B-D and black contour line in plot A

shows the cancer cell density at level 0.01 chosen to represent the maximum extent of

invasion. Simulations are performed using the baseline parameter set of Table4.4.
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Figure 4.12: Invasion Scenario 0A. Plot A shows the subdomain integration of the

density of ECM (green), cancer (red) and empty space (blue) over the full time range

considered (t=0-40). Plot B shows the subdomain integration of the amount of ECM

degraded in total (black), solely by ms (blue) and solely by mt (red). Simulations are

performed using the baseline parameter set of Table4.4.

Invasion Scenario 0B is the second Invasion Scenario that we consider, where

a set of initial conditions to create a situation where the cancer cell mass forms

a strip along the LHS of the domain and invades an ECM construct defined

initially as v(t = 0) = 1− c(t = 0) from left to right as is illustrated in the plots

of Figure 4.13 A&B. While in the previous Invasion Scenario we considered the

enzymes to have an initial condition of a scaled 5× the distribution of c, in this

scenario we consider the enzyme concentrations to be of the same magnitude

as the initial cancer cell distribution, i.e. ms(t = 0) = mt(t = 0) = f(t = 0) =

T (t = 0) = c(t = 0). We solve the system of equations over a 2D spatial square

domain of length 0.4cm and time range 0-11.5 days and plot the data at 0, 1.15,

5.75 and 11.5 days (t = 0, 10, 50, 100). We use the same baseline parameter set

as in the previous Invasion Scenario of Table 4.4 and as such we have the same

stable, spatially homogeneous steady state that the solutions tend to over time

of (c∗, v∗,m∗
s,m

∗
t , T

∗, f ∗)T = (1, 0, 21.25, 19.37, 0.01, 0.81)T , however this dynamic
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is much clearer here as can be seen by the plots of Figures 4.13 E&H, 4.14 C&F

and 4.15 C&F.

As can be seen from the plots in Figure 4.13 A,C-E, we observe an invasion

through the domain from left to right where unlike the previous scenario, we

have linear rather than quadratic growth of the cancer invasion boundary with

corresponding ECM density profiles shown in the plots of Figure 4.13 F–H. The

plot of Figure 4.17 A offers further clarification where it can be seen that after

∼ t = 40 there appears to be a linear increase in cancer cell density of approx. 1

per 12.5t matched by an equal decrease in total ECM component density.

To focus on the characteristics of the MMPs at the interface between the cancer

cells and the ECM, as well as at other locations, we examine Figure 4.14 for

the time evolution of these enzymes and Figure 4.16 for the amount of ECM

that each MMP is able to degrade. The plots of specific MMP-2 concentration

ranges of 0.25 ≤ ms ≤ 1 (red region) and ms > 1 (blue region) in Figure 4.14 C

demonstrates the ability of MMP-2 to freely diffuse beyond what is defined to be

the boundary of the cancer cell mass to the point where it can become the sole

cause of ECM degradation (cf. Figure 4.16) while the limits of MT1-MMP being

present only on the cancer cells surface limits its range to the cancer invasion

boundary Figure 4.15 F and impacts upon its influence on ECM degradation (cf.

plots of Figure 4.16 D–F).

If we consider the region between c=0.01 and v=0.01 as the cancer-ECM inter-

face and provide approximations for the concentrations of MMP-2 (1-5.5nM) and

MT1-MMP (0.1-5nM) within this region, then we can provide further approxi-

mations for these concentrations to the spatially homogeneous steady state and

can compare favourably with biological data found in various forms of cancer

(outlined previously on Page 60) of MMP-2 = 2.81-10.03nM and MT1-MMP=
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0.04-0.38nM. We can see an increase in the growth and spread of enzymes to more

of the domain as motivated by the spread of the cancer cells and the diffusion of

ms with the stable, spatially homogeneous steady state solutions for ms and mt

of 21.25 and 19.37 respectively in Figure 4.14 C&F.

We examine the variables of T and f in Figure 4.15 can see that the intermediate

complex, f , while beginning near its own stable, spatially homogeneous steady

state of 0.81, increases to a value of almost double that in the plot of Figure 4.15

A while experiencing a steep descent to 0nM beyond the cancer cell boundary.

There is a rapid drop in concentration of TIMP2 from the initial condition where

there was a maximum value of 1 by time t = 10 towards the stable, spatially

homogeneous steady state, however it is free to diffuse beyond the cancer cell

boundary. We consider that there is such low concentration of T to mean that

any free TIMP2 that is produced or released from a complex is quickly bound to

either free MT1-MMP or MMP-2. We note that there is an increase in both the

concentrations of TIMP2 and the intermediate complex, f at the leading edge of

the cancer cell invasion while the concentrations of these variables have reached

their steady state values for a large region of the established cancer mass.

In Figure 4.16 we note that at the furthest LHS of the domain (x = (−2, y)),

where there is considered to be an initial mass of cancer cells reaching the max-

imum density (c = 1) and a complete lack of ECM components ( v = 0), there

is a lack of ECM degradation throughout the considered timeframe (Figure 4.16

A–F) as a result of the volume filling component of the “growth” term of the

ECM forbidding the production of ECM components and therefore their degra-

dation. Secondly, we have that ECM degradation beyond the cancer invasive

front is the sole domain of the freely soluble MMPs, ms while the degradation of

ECM components within this cancer invasion front is shared by both the soluble

and bound MMPs.
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Third and finally, in Figure 4.17, we compare the subdomain integrations of the

variables and functions of v, c,∅,∆vtotal,∆vms and ∆vmt to examine the con-

tributions of the variables to the dynamics of the model across the considered

timeframe of t = 0 − 100, corresponding to a 11.5 days consideration. We note

that the non-dimensionalisation where we defined the maximum amount cancer

cells or ECM components to exist as being equal to 1 has the consequence of the

maximum of the total amount of cancer cells or ECM components (subdomain

integration of c and v) over a square domain of length 4 to be 16. This doesn’t,

however, provide a maximum for the summation of the total ECM degraded as

the ECM is continually remodelled (density increased) where ∅ > 0.

In the plot of Figure 4.17 A, we focus on the summation of total density of the

ECM, cancer cells and the free space, ∅, that is left for either of these to be

produced/moved into. We note that the free space, ∅ appears to reach a steady

state of 3.7 after t = 40 although this would not be able to continue indefinitely

due to boundary effects. It is at the point where the free space reaches that

the total amount of cancer cells reaches a linear increase of approx. 1 per 12.5t

matched by an equal decrease in total ECM component density.

In the plot of Figure 4.17 B, it is abundantly clear that the bulk of degradation

of the ECM over the considered timeframe is due to the soluble MMP-2 where

degradation by either of the MMPs increases quadratically. This is due to the

ability of MMP-2 to diffuse beyond the cancer cell boundary into regions where

there is a higher amount of intact ECM components.

Data which is not be immediately clear from the figures in this subsection of

Section 4.3 is shown in Table 4.6 where ∅ represents the empty space of 1− c− v

and ∆vtotal,∆vms and ∆vmt represent the amounts of of ECM degraded in total,

by MMP-2 and by MT1-MMP, respectively.
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Figure 4.13: Invasion Scenario 0B. Plots A & B show the profiles of the initial

conditions for the cancer cell density and ECM density. Plots C-E show the time

evolution of the profile of cancer cell density at t = 10, 50 and 100 (corresponding to

∼1.15, 5.75 and 11.5 days, respectively). Plots F-H show the profiles of the ECM

density at t = 10, 50 and 100. Simulations are performed using the baseline parameter

set of Table4.4.
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Figure 4.14: Invasion Scenario 0B. Plots A-C show the profiles of MMP-2 concen-

tration, while plots D-F show the profiles of MT1-MMP concentration at t = 10, 50 and

100 (corresponding to ∼1.15, 5.75 and 11.5 days, respectively). The white contour line

in plots A, B, D & E and the black contour line in plots C & F shows the cancer cell

density at level 0.01 chosen to represent the maximum extent of invasion. Simulations

are performed using the baseline parameter set of Table4.4.
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Figure 4.15: Invasion Scenario 0B. Plots A-C show the profiles of the complex func-

tion f (where f is MT1-MMP:TIMP2:proMMP-2) concentration, while plots D-F show

the profiles of TIMP2 concentration at t = 10, 50 and 100 (corresponding to ∼1.15, 5.75

and 11.5 days, respectively). The white contour line in plots A-F shows the cancer cell

density at level 0.01 chosen to represent the maximum extent of invasion. Simulations

are performed using the baseline parameter set of Table4.4.
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Figure 4.16: Invasion Scenario 0B. Plots A-C show the profiles of the density of

ECM degraded solely by ms, while plots D-F show the profiles of the density of ECM

degraded solely by mt at t = 10, 50 and 100 (corresponding to ∼1.15, 5.75 and 11.5 days,

respectively). The white contour line in plots C-F and black contour line in plots A &B

shows the cancer cell density at level 0.01 chosen to represent the maximum extent of

invasion. Simulations are performed using the baseline parameter set of Table4.4.
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Figure 4.17: Invasion Scenario 0B. Plot A shows the subdomain integration of the

density of ECM (green), cancer (red) and empty space (blue) over the full time range

considered (t=0-100). Plot B shows the subdomain integration of the amount of ECM

degraded in total (black), solely by ms (blue) and solely by mt (red). Simulations are

performed using the baseline parameter set of Table4.4.

t c v ∅ ms mt T f ∆vtotal ∆vms ∆vmt

0 2.00 14.00 0 2.00 2.00 2.00 2.00 0 0 0

10 3.03 11.16 1.81 31.55 34.79 0.10 4.96 5.36 2.89 2.47

50 6.32 6.23 3.45 113.82 107.82 0.09 6.38 34.20 29.18 5.02

100 10.44 2.16 3.4 201.07 187.57 0.13 9.75 72.73 64.56 8.17

Table 4.6: Invasion Scenario 0B. Table showing the subdomain integration at t =

0, 10, 50 and 100 (corresponding to 0 days, ∼1.15 days, ∼5.75 days and ∼11.5 days) of

the model variables in addition to the inclusion of how much degradation has occurred

due to each and both of the MMPs considered.
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4.3.1 Parameter Sensitivity

In order to determine the sensitivity of the result dependent on the individual

parameters of the model, we perform additional simulations almost identical to

Invasion Scenario 0A where the only change is a single parameter by an increase

of 50%. We record the value of the subdomain integral of c (
∫
c dx) at t = 25

and present this data in Figure 4.18 where we consider how much each parameter

change has affected the result of
∫
c dx as a proportion of the maximum change

achieved by a single parameter change (φ53 has an 83% decrease in
∫
c dx at

t = 25).

By showing the sensitivity to each parameter we have performed a partial math-

ematical parameter sensitivity of the total amount of c at t = 25 to an increase

of 50% to the parameters of the model but to consider biological concerns where

we consider the sensitivity of the model to the sources of the parameters, we

have to consider the cases where we not only have caused a 50% increase to the

individual parameters but also to certain groupings of parameters. We define the

specified groupings of parameters to be where parameters are linked by either

having the same source or where one is defined in terms of the other. Included

at the bottom right of Figure 4.18 are the 5 cases where we have considered

changes to multiple, grouped parameters at once. Namely, φ31&φ51, φ32&φ62,

φ41&φ52&φ61, φ42&φ53&φ63 and δ1 (where δ1δ2 unchanged). By performing this

additional sensitivity analysis we have found that while there was a large decrease

in the total amount of cancer cells at t = 25 by the parameters of φ41 and φ53,

when the coupled sets of biological parameters of φ41, φ52, φ61 and φ42, φ53, φ63 are

each increased by 50%, there is in fact an increase in total amount of cancer cells

at t = 25.

The parameters that have the biggest affect on an increase in the overall number
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of cancer cells when they are increased by 50% are µc and Dc. While the cancer

cell production rate is unsurprisingly the parameter with the largest effect, we

note that the increase in diffusion rate of cancer cells having a larger effect than

the increase in haptotaxis is likely due to the volume filling that exists for the

haptotaxis but not diffusion of cancer cells where the diffusion allow cancer cells

to travel through regions where 1 − c − v = ε for some 0 ≤ ε << 1 which

would act as a barrier or significant reduction factor to the haptotaxis mediated

displacement of cancer cells.

We note that an increase in δ1 where δ1δ2 is unchanged causes a higher increase in

total cancer cells than an increase in δ2. This is unsurprising as MMP-2 is found

to be responsible for the bulk of collagenolysis when compared with MT1-MMP.

We therefore identify the parameters of µv and αT as being the most relevant

parameters that cause an decrease in the total amount of cancer cells at t = 25

when they are increased by 50%. While these parameters for ECM remodelling

and TIMP2 production would reasonably be expected to fulfil this described role,

we note that the parameter αT actually has a much more complicated relationship

with the progression of cancer. We expand on this by showing the effect of

changing αT in Figures 4.19 and 4.20 on the steady state values of ms,mt, f and

T by representing the percentage change from the values obtained when αT = 4,

the rate of TIMP2 production found in Table 4.4. As we note that the amount

of free TIMP2 plays a significant role in determining whether there is MMP-2

activated and in how much free MT1-MMP or MMP-2 are able to degrade the

ECM.

Figure 4.19 shows that for too small or too high a value of αT , there is a decrease

in the total amount of active MMP-2 and that the total amount of active MT1-

MMP is strictly decreasing for an increasing TIMP2 production. This is line
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Figure 4.18: We show how much of a change there is in
∫
c dx at t = 25 when each

individual parameter listed in Table4.4 is increased by 50%. The black bars indicate the

amount of increase while the red bars indicate the amount of decrease. We scale each

result by the maximum decrease of 83% that was achieved by φ53

with the numerical study of the activation system of MMP-2 by Karagiannis

and Popel (2004) where they find the same relation when considering a system of

ODEs that lack production of enzymes but have that there is a value for the initial

concentration of TIMP2 that provides a maximum rate of MMP-2 activation from

proMMP-2 and which a lower or higher concentration of TIMP2 reduces this rate.

4.4 Discussion

In this chapter we established a PDE model for cancer invasion of tissue, focussing

on the roles of the soluble MMP, MMP-2 and the bound MMP, MT1-MMP. We

also considered their interactions with one another where MT1-MMP plays a

role in the activation of MMP-2 from its proenzyme state. This advanced upon

previous mathematical models of cancer cell invasion that used either generic

matrix degrading enzymes and could be considered to be parallel to works that

focus on the uPA system in cancer cell invasion. The presented work also furthers

mathematical modelling of MMP-2 activation that has thus far tended to focus
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Figure 4.19: The percentage increase or decrease in the steady state values of the

variables ms and mt from the steady state values obtained from Table 4.4 when the

parameter αT is increased or decreased by a unit amount from the initial value of

αT = 4 to a minimum of 1 and maximum of 9. We represent the change in active

MMP-2 by the red line and the change in active MT1-MMP by the yellow line.
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Figure 4.20: The percentage increase or decrease in the steady state values of the

variables T and f from the steady state values obtained from Table 4.4 when the pa-

rameter αT is increased or decreased by a unit amount from the initial value of αT = 4

to a minimum of 1 and maximum of 9. We represent the change in the intermediate

function f by the red line and the change in TIMP2 by the yellow line.
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upon ODE models. The potential of the presented model to consider rich ECM

environments is examined in the following chapter.

We determined the appropriate forms of functions as defined by the background

biology that would cause an increase to the cancer cell and ECM component

populations while showing functions that previously pubished models have chosen

to use. This incorporated the key biological rules of mitosis in cancer cells and the

remodelling of ECM by fibroblasts not being reliant on the presence of ECM while

also incorporating the competition for space in these inter- and intra- cancer cells

and ECM reactions. The paradigms of a volume filling model of two variables

were established to be 1− c− v ≥ 0, c ≥ 0 and v ≥ 0.

To formulate our model, we first had to establish which dynamics of the MMP-2

activation system would be incorporated into our model and settled on a reduced

version of the system as outlined in Figure 4.2. We then presented the model

in dimensionalised and non-dimensionalised forms before determining the best

parameters for the model from either previous mathematical models or the bio-

logical literature. Where parameters were not directly obtainable, we presented

two smaller mathematical models of the MMP-2 activation system to determine

appropriate estimations of the parameters.

A steady state analysis was performed to find that there exists one stable, spa-

tially homogeneous steady state that the solution of the model will tend to as

t → ∞. This solution represented the case where cancer has fully invaded the

domain and no ECM was present. With the baseline parameter set of Table 4.4,

values for the steady state approximation of the concentration of MMP-2 was

found to be 21.25nM and for MT1-MMP this was found to be 19.37nM. The con-

centrations of TIMP2 and the intermediate complex of TIMP2:MT1-MMP were
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noticeably lower at 0.01nM and 0.81nM, respectively. This lower value is deter-

mined to be due to the relation of the production of TIMP2 and the unbinding

of TIMP2 from the interim complex being outstripped by the binding of TIMP2

to MT1-MMP and MMP-2.

We noted that the variables were able to breach the volume filling criterion of

1− c− v ≥ 0 and found that this could be the result of either of the flux terms

of diffusion or haptotaxis and found that such a breach did not facilitate the

breaking of the remaining volume filling criteria of c ≥ 0 and v ≥ 0. We found

that the inclusion of volume filling in the terms representing haptotaxis, cancer

cell production and ECM remodelling decreased the likelihood of finite time blow-

up solutions occurring. In the event that finite time blow-up solutions are found

for parameter values not yet examined or for small modifications to the model, we

note that the inclusion of a non-local volume filling in the haptotaxis term would

allow for a sensing radius and would would limit the breach of the volume filling

criterion of 1− c− v ≥ 0 to that from diffusion. It can be trivially shown that a

breach due to diffusion would not break the remaining volume filling criteria of

c ≥ 0 and v ≥ 0 as diffusion cannot increase c above the value of 1 and so the

production term for the cancer cells and the remodelling term for the ECM will

both cause a decrease when 1− c− v ≤ 0 however they will allow v to approach

but not pass zero. As such, the consideration of integro-PDE models in the future

(as considered in Gerisch and Chaplain (2008), Andasari et al. (2011), Domschke

et al. (2014) and others) may be of use.

We considered two scenarios of initial conditions to examine cancer growth and

spread of Invasion Scenario 0A and 0B which were shown to have quadratic and

linear growth, respectively. In Invasion Scenario 0A, we considered a central

mass of cancer cells invading radially outwards as may be seen in some in vivo

experiments or cases where a cancerous mass is surrounded by ECM and detailed
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the variables through a progression of time in Figures 4.8–4.12 and Table 4.5. For

Invasion Scenario 0B, we considered a second set of initial conditions to create

a situation similar to what may appear in some in vitro experiments where the

cancer cell mass forms a strip along the LHS of the domain and invades an ECM

construct from left to right as seen in Figures 4.13–4.17 and Table 4.6.

We find that MMP-2 and TIMP2 are able to diffuse past the boundary of the

cancer cell mass in contrast to the intermediate complex f and MT1-MMP, and

that the MMP-2 profile has a less steep front than that of MT1-MMP. As such, all

matrix degradation in advance of the cancer invasion boundary is the sole domain

of MMP-2 while the degradation of ECM components within this cancer invasion

front is shared by both MMP-2 and MT1-MMP. In addition, the majority of

bulk ECM degradation was due to MMP-2 over the considered timeframe where

the role of MT1-MMP mediated degradation was diminished in comparison to

that of MMP-2 over time (cf. Figure 4.12 and Figure 4.17). This relationship

between MMP-2 and MT1-MMP when it comes to bulk degradation supports

the paradigm proposed by Sabeh, Li, Saunders, Rowe and Weiss (2009) of se-

creted MMPs being functionally limited to bulk collagenolytic processes whereas

MT1-MMP is capable of acting in a focussed manner that supports subsequent

collagenolysis and therefore invasion.

Where we considered the cancer-ECM interface to be defined as the region be-

tween c=0.01 and v=0.01, we were able to provide approximations for the concen-

trations of MMP-2 (0A: 1-4nM, 0B:1-5.5nM) and MT1-MMP (0A&OB: 0.1-5nM)

within this region, then we can provide further approximations for these concen-

trations to the spatially homogeneous steady state and can compare favourably

with biological data found in serum from various forms of cancer of MMP-2 =

2.81nM, 7.89nM, 7.91-10.03nM and MT1-MMP= 0.04nM, 0.38nM.



112

Near the leading front of the cell invasion boundary (though not directly upon

the boundary) there is an increase in both the concentrations of the intermediate

complex f and TIMP2 from the concentration where the cancer population has

stabilised at the maximum non-dimensionalised value of 1. This increase in the

intermediate complex, f , was shown to not be due to the initial condition being

higher than this increased amount where in Invasion Scenario 0B f began near

its steady state and reached a maximum of almost twice this value.

A parameter sensitivity analysis finds that an increase in Dc has a larger impact

upon invasion than χ where we assume this to be due to the volume filling term

in the haptotactic sensitivity function limiting the movement of cancer cells in

the cancer-ECM interface. Additionally, we find that there is a value for αT at

which the steady state value of MMP-2 is at a maximum where either an increase

or decrease to this value reduces the value of MMP-2.
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Chapter 5

The Restructuring of ECM by

MT1-MMP in a PDE Model of

Cancer Invasion

5.1 Introduction

In the previous chapter, MT1-MMP was seen to be important in the early stages

of invasion where it outperformed MMP-2 in ECM degradation. However its

primary significance appeared to be due to its activation of MMP-2 which was

then able to diffuse into and degrade the bulk of the ECM (cf. Figure 4.12 A

and Figure 4.17). Although this corresponds to some of the known properties

of MT1-MMP proteins in cancer cell invasion (Sato et al., 1994), it lacks insight

into other roles of MT1-MMP which have been found to be of particular signifi-

cance in cancer invasion. For example, Hotary et al. (2003) consider MT1-MMP

to be a growth factor for cancer cells in a 3D ECM made up of collagen type-I,

both in vivo and in vitro due to its effect of enabling cancer cells to modify their
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shape. In this chapter we will examine MT1-MMP in its role of modifying the

local environment of cancer cells in ways that MMP-2 cannot. This will be done

through the inclusion of the effect the ECM architecture may have when applied

to a model of cancer invasion developed in the previous chapter. Elements of the

ECM architecture to be investigated include the pore size of the matrix and the

crosslinking of collagen fibres. We note that in some highly dense collagen struc-

tures such as breast tissue, the cancer cells are unable to physically fit through

a porous region. In this chapter we consider some cases where cancer cells are

reliant upon their attached MT1-MMP proteins to either forge a path or modify

the cell shape so that it can pass through an otherwise impassable ECM region al-

lowing degradation by either MT1-MMP or MMP-2 to take place and permitting

movement of cancer cells otherwise impossible.

The ECM will therefore need to be examined in greater detail than has been done

so far in the presented work where the architecture of the ECM plays a pivotal

role in cancer cell invasion (Kumar and Weaver, 2009; Friedl and Wolf, 2008; Lu

et al., 2012). Type I collagen fibres are non-branching, fibrous proteins that resist

tensile stresses and are the most common fibres found in the connective tissue

of almost all organs, as well as tendons, ligaments, fasciae, fibrocartilage and

bone (Eroschenko and Di Fiore, 2013). MMP-2 can degrade type-I collagen in

bulk, albeit at a rate 8 times slower than MT1-MMP. However Sabeh, Shimizu-

Hirota and Weiss (2009); Li et al. (2008) investigated embedding multicellular

spheroids of HT-1080 fibrosarcoma cells within gels of cross-linked native type I

collagen and found that MT1-MMP silencing blocks virtually all collagenolytic

and invasive activity. As such, Sabeh, Li, Saunders, Rowe and Weiss (2009)

proposed the paradigm that secreted MMPs are responsible for, but ultimately

limited to, bulk collagenolytic processes whereas MT1-MMP can cause focalised

degradation of ECM through which cancerous cells can then move and further
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Figure 5.1: Invasion of cancer cells through a 3 dimensional, in vivo generated net-

work of collagen type-I. Reproduced from Sabeh, Shimizu-Hirota and Weiss (2009) un-

der a Creative Commons license.

degradation by other MMPs can take place. Connective tissue is mainly formed

of collagen type-I whereas the stability of the basement membrane is determined

primarily by collagen type IV (Kühn, 1995).

While MMPs can collectively degrade virtually all components of the ECM (Kleiner

and Stetler-Stevenson, 1999), when considering an environment of mainly type

I collagen, we must consider the substrates of MMP-2 and MT1-MMP, since

MMP-2 may not be able to degrade fully-formed collagen in vivo. Further, 3-D

collagen-induced surface localization of MT1-MMP leads to MMP-2 activation

(Sakai et al., 2011). There is also uncertainty over the ability of MMP-2 proteins

to degrade collagen type-IV in vivo (Barrett et al., 2012). Zhang et al. (2013)

suggest that MMP-2 is unable to degrade cross-linked forms of collagen type -I
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and -IV.

As more expansively discussed in Chapter 2 of the presented work, collagen fibres

are cross-linked collagen molecules, where collagen molecules are formed from

three strands of collagen proteins. In the case of type I collagen, the three proteins

involved are of two types termed α-1 type I collagen and α-2 type I collagen. The

standard construction of type I collagen is formed from two α-1 type I collagens

and a single α-2 type I collagen, although some variants are formed of three

identical proteins of α-1 type I collagen (Chang et al., 2012). Gioia et al. (2007)

show (in vivo) that MT1-MMP proteins and MMP-2 proteins have functionally

different ways of degrading type I collagen where the ectodomain of MT1-MMP

can bind to either α-1 or α-2 followed by their degradation whereas MMP-2 binds

preferentially to the α-1 chain from which it degrades the α-2 chain. However,

3D in vivo models of collagen type-I have found MT1-MMP proteins and not

MMP-2 proteins modulating cancer cell invasion (Hotary et al., 2000; Sabeh,

Shimizu-Hirota and Weiss, 2009).

Monaco et al. (2006) found that the rate that MMP-2 proteins degrade type IV

collagen to be 1.2 × 104M−1s−1 at 42 and 5 × 103M−1s−1 at 37, while Inada

et al. (2004) found that at 25, MMP-2 degradation of collagen type I is virtually

non-existent. Thus it may be that the partial unwinding of type IV collagen that

happens at increased temperatures (Dölz et al., 1988) is what deforms the cross-

linked collagen fibrils into a form that MMP-2 can degrade. Further, Kuznetsova

et al. (2003) find in vitro that homotrimeric type I collagen denaturates 100 times

slower than heterotrimeric collagen when experiments are performed at the same

temperature.

We operate under the assumption that in vitro models of MMP-2 degrading col-

lagen either make use of uncross-linked variants of collagen that do not resemble
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the makeup of collagen in vivo, have MT1-MMP causing partial unwinding of

the collagen before degradation or are performed at temperatures such that the

collagen has become at least partially unwound. As such, we consider the ECM

to be, at times, “protected” from degradation by MMP-2 until remodelled into

an appropriate form by MT1-MMP.

5.1.1 Suitability Modifier: The Means by which Biologi-

cal Traits of the ECM are Modelled

In our model we denote by s(x, t) the suitability modifier as introduced in Deakin

and Chaplain (2013). The suitability modifier acts as an environmental factor by

reducing the proportion of a cell population that can physically move through the

matrix by attempting to take into account the pore size of the collagen substrate

along with reducing the amount of matrix that is considered available to be

degraded.

The two main motivations we consider as means by which the suitability of the

ECM can be changed is:

• regions of smaller pore size can be traversed by cancer cell that have had

their shape adapted; a process that can be achieved by MT1-MMP proteins

(Hotary et al., 2003).

• degradation of cross-linked type I collagen fibrils by MMP-2 proteins may

only be possible once partial degradation by MT1-MMP has occurred.

While we acknowledge that there are other ways of modelling the effects that have

been used to illustrate why the suitability modifier may be used (e.g. multiple

ECM populations), we believe that the consideration of the suitability of the



118

matrix may allow for quantifiable comparisons of tissues that will allow for simpler

models and faster computational results. Further, we find that this method offers

a simplified means of considering any combination of these effects, as well as

further effects that may be as of yet uncharacterised, while using the same model.

The combination of these effects would require extensive quantifying of tissues

before allowing for an individual analysis of imaging as input for a patient-specific

approach that is as of yet undeveloped. This would include properties such as the

effects of differing pore sizes on promotion or retardation of cancer cell movement,

specifically in bulk. Once imaging data has been obtained and quantified into a

form compatible with the suitability modifier for s(t = 0), a quicker calculation of

many complicating factors is possible than a more expansive model of split ECM

variables for each component with a more complex initial ECM distribution with

unique properties.

While MMP-2 may not be able to degrade type I collagen in vitro, it is able

to degrade gelatin in vitro and unwound collagen in vivo and we know that

MT1-MMP can degrade collagen into gelatin in vivo, can degrade gelatin in vitro

and can cause the partial unwinding of collagen in vitro. We therefore have

a justification for a suitability matrix that is remodelled by MT1-MMP into a

neural state.

What we do not have is a perfect biologically representative treatment of the

various interactions of ECM constituent parts and the cancer cells, since they are

grouped together into a single term (suitability modifier). However we note that

we do have a simplified presentation of many features that can now be implicitly

incorporated into the model without adding significant complication to the model

equations and therefore computational cost.
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5.2 A PDE Model of Cancer Invasion Including

Further Biological Effects of the ECM

We define a matrix environment with a neutral/no affect on cancer cell invasion

to have a suitability modifier value of 1. This represents a case where the results

of the model are identical to the reduced model where no consideration is placed

on the suitability of the environment, as presented in Chapter 4. A matrix en-

vironment containing difficult regions of ECM for cancer cells to invade will be

represented by a suitability modifier with a value 0 ≤ s < 1, with values towards

zero describing an environment that is more difficult for cancer cells to navigate

through the tissue, as well as a reduction in the amount of ECM that is available

to be degraded. A suitability modifier greater than 1 may be considered where

the environment is structured to encourage cell migration such as is the case in

a “follow the leader”/“Indian chain” dynamic (Schlüter, 2013; Friedl and Wolf,

2003b), although this is not investigated in the present work.

We note that two spatial locations with the same value of ECM density, v, will

not necessarily present the same dynamics depending on the value of the suitabil-

ity modifier at these locations. In addition, an interpretation of the suitability

modifier can be made as follows: a value of s = 1
4

may represent a region that

contains a tissue where (i) 3
4

of the constituent parts of the ECM are cross-linked

collagen, (ii) 3
4

of the considered ECM has a pore size below a threshold α that

blocks invasion, (iii) more than 3
4

of the considered ECM has a pore size in the

range α−β that slows invasion or (iv) some combination of the factors presented

in (i)-(iii) that has the equivalent effect.

We present a modified PDE model of cancer invasion in equations (5.1)-(5.7)

where we have indicated through the functions gi(s, v) reactions that we feel
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further investigation into the effects of the ECM should be considered. We ensure

that there are appropriate functions of gi(s, v) where the model presented in

Chapter 4 can be recovered.

We highlight a minor difference in the way that the terms of ECM degradation are

presented where in the previous chapter, we considered there to be a degradation

rate of both MMP-2 and MT1-MMP which then experiences some scaling factor

of δ2 for the total degradative capability of MT1-MMP. This does not allow for

an examination of cases where MMP-2 is unable to degrade our chosen ECM

structures and so we modify the ECM degradation term of Chapter 4, from

−δ1v(ms + δ2mt) to −(δ1g2(s, v)ms + δ2g3(s, v)mt) where the parameter choices

for δ1 = 1 and δ2 = 1 in Table 4.4 are left unchanged and we note that the forms

of ECM degradation in both chapters are equivalent for this parameter choice.

The full non-dimensionalised model is therefore:

∂c

∂t
= ∇ · (Dc∇c− χcg1(s, v)(1− c− v)∇v) + µcc(1− c− v), (5.1)

∂v

∂t
= −(δ1g2(s, v)ms + δ2g3(s, v)mt) + µv(1− c− v), (5.2)

∂ms

∂t
= ∇ · (Dms∇ms)− φ31Tms + φ32mtf − βmsms, (5.3)

∂mt

∂t
= mt∇ · (Dc∇c− χcg1(s, v)(1− c− v)∇v)

−φ41Tmt + φ42f − βmtmt + αmtc(1 + v), (5.4)

∂T

∂t
= ∇ · (DT∇T )− φ51Tms − φ52Tmt + φ53f + αT c, (5.5)

∂f

∂t
= f∇ · (Dc∇c− χcg1(s, v)(1− c− v)∇v)

+φ61Tmt − φ62fmt − φ63f, (5.6)

∂s

∂t
= δsmt(1− s). (5.7)

We apply zero-flux boundary conditions to close the system. The initial condi-

tions imposed depend on the precise invasion scenario we are considering. In first
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three Invasion Scenarios (1A, 1B, 2) we have a cluster of cancer cells in the centre

of a homogeneous density ECM and suitability defined in the appropriate section

with a small amount of activated enzymes already released. The second grouping

of three Invasion Scenarios will be similar to the first three with the exception of

the layout where we consider a mass of cancer cells moving from left to right.

We simulate the model in 2 spatial dimensions and use the baseline parameters

outlined in Table 4.4, unless otherwise specified, along with the introduction of

δs which will have its value specified on a case by case basis. The key concepts of

the “suitability modifier” are dependent upon 3 dimensional effects such as the

pore sizes of the cross-linked collagen constituent of the ECM, which are then

represented by a numerical value that is applied as a modifier to interactions

involving the ECM. This means that the ECM density does not explicitly consider

these issues and, crucially, two ECM densities of value 0.5 will not necessarily

facilitate invasion in the same way if the corresponding “suitability matrix” values

are different at the two locations.

In Chapter 4, we considered the density of the ECM components to be the sole

factor of importance of the ECM when it came to the ability of MMPs to degrade

ECM components and cancer cells to move. As such, when the choice of g1(s, v) =

g2(s, v) = g3(s, v) = v is made, the model presented in Chapter 4 is recovered. In

this chapter, we now consider other characteristics of the ECM that may impact

on cancer cell growth and invasion before proposing alternative forms for the

functions g1(s, v), g2(s, v), g3(s, v).

Identifying appropriate functions (gi) by which the suitability modifier may be

modelled is done by first recognising that the choice of g1(s, v) = g2(s, v) =

g3(s, v) = v recovers the model presented in Chapter 4. This, however, completely

ignores the introduction of the suitability modifier but as we hope to extend the
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previous model, we impose the condition that where the suitability modifier is

neutral, i.e. s = 1, the previous model of equations (4.9)-(4.14) is recovered,

g1(1, v) = g2(1, v) = g3(1, v) = v. For example:

• s = 1 provides a neutral environment when g1(1, v) = g2(1, v) = g3(1, v) =

v.

• 0 ≤ s < 1 provides an environment that is less effective than the neutral

case.

• s > 1 provides an environment that actively facilitates invasion.

• if s1 < s2 then s2 is an environment that offers increased invasive potential.

There are many possible forms for the functions g1(s, v), g2(s, v), g3(s, v) that may

be appropriate. Some such forms are as follows: v, sv, sn−1+v, (s−1)n+v,
sn + a

a+ 1
.

In Figure 5.3 we plot the suitability modifier against the ECM density for the

examples where n = 1 and a = 1 of v, sv, s− 1 + v,
s+ 1

2
v.

In Figure 5.3 A we have a case where the suitability modifier plays no role and

there is a linear increase in v. In plot B we have very small output from the

function unless v + s ≥ 1. In plot C we find have to incorporate the condition of

v+s ≥ 1 and so the function is not valid where this condition is not met. We have

contours of constant values along the line v = s. In plot D we have a stretched

version of plot B where we note that plot B would be the result of
sn + a

a+ 1
where

a = 0 and plot D is the case where a = 1. Notably from this representation of

gj(s, v) we have that when s = 1, we have a v that varies between 1
2

and 1. In all

four plots we have that v increases linearly from 0 to 1 when s = 1.

The precise form of g1(1, v), g2(1, v), g3(1, v) that we choose to use for the remain-

der of this chapter is g1(s, v) = g2(s, v) = g3(s, v) = −(1 − s − v). This is an
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Figure 5.2: Plot A shows the function gi(s, v) = v. Plot B shows the function

gi+1(s, v) = vs. Plot C shows the function gi+2(s, v) = −(1 − s − v) when consid-

ered with the condition of gi+3(s, v) = s+ v ≥ 1 and Plot D shows the function v s+1
2 .
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extension to the volume filling principles, though we note that s and v should

not be considered to be “in competition” with one another. The current form of

the model must also introduce further conditions that prevent the considering of

the feature of s > 1 promoting invasion through a “follow the leader”/“Indian

chain” dynamic (Schlüter, 2013; Friedl and Wolf, 2003b). As such we impose the

conditions that s + v ≥ 1 and s ≤ 1, otherwise, instead of limiting movement

(g1(s, v)), movement would be encouraged in the opposite direction and instead

of limiting tissue degradation (g2(s, v) and g3(s, v)), the tissue degradation term

would cause the density of ECM to increase. Furthermore, we note that the

degradation of ECM term stops v from being degraded below s− 1 + v = 0 and

that the remodelling of ECM is only negative where c + v ≥ 1, therefore the

minimum v value that can be achieved is v = 1− s and we have the condition for

the model of v + s ≥ 1.

We consider the impact this has on the haptotactic sensitivity function where we

now have (s − 1 + v)(1 − c − v) by plotting in Figure 5.3 this function at four

values of c = 0, 0.25, 0.5, 0.75. Care must be taken when reading this figure to

ensure that the correct scale of the axis and value is read as we have imposed the

conditions of c+ v ≤ 1 and v + s ≥ 1.

5.3 Results

We consider the same dummy variables (∆vms and ∆vmt) and functions (∅ =

1 − c − v and ∆vtotal) as in the previous chapter in addition to the function

of γ = s + v − 1 which is used to show where there is potential tissue to be

degraded by MMP-2, as well as verifying that s + v ≥ 1 to ensure that ECM

degradation has a negative impact on total ECM density. The function γ also
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Figure 5.3: Plots A-D are of the function (s − 1 + v)(1 − c − v), which is the value

of haptotactic sensitivity function where g1 = s− 1 + v. Each plot (A-D) is the repre-

sentation of the function where c = 0, 0.25, 0.5 and 1, respectively. We draw particular

attention to the ranges of s and v in each plot and the value of the maximum as these

decrease from plot A → plot B → plot C → plot D.
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serves to illustrate how the suitability modifier affects the degradation of ECM or

movement of cancer cells. We also consider the function λ1 = mt(1− s) to show

where there is an overlap of MT1-MMP and suitability modifier of value < 1

which indicates the amount of suitability modifier that is in the process of being

remodelled back to the neutral state and indicates the regions that retard cancer

cell movement. The third and final function that we introduce is λ2 = ms(1− s)

which allows us to identify the regions in which MMP-2 degradation of ECM is

being impacted upon.

We now present the computational simulation results of our invasion model in

a 2-dimensional spatial domain (all parameter values are from the baseline set

found in Table 4.4). We consider 6 Invasion Scenarios formed from varying either

the initial conditions of the model or the parameter δs to identify characteristics

of results obtained by the model that may offer insight into either in vivo or in

vitro experiments.

We plot the time evolution of the various variables as well as noting some results

that are not immediately obvious from these plots, namely, the amount of tissue

degradaded by MMP-2 and MT1-MMP individually and offer a comparison of

these values.

The first grouping of scenarios (Invasion Scenarios 1A, 1B, 2) considers an initial

mass of cancer cells represented by a Gaussian distribution in the centre of a

two dimensional square domain along with two specific forms the surrounding

media can take (two initial condition data for s) along with v(0) = 1 − c(0),

ms(0) = mt(0) = T (0) = f(0) = 5c(0). These can be seen as comparable with

Invasion Scenario 0A. The second grouping of scenarios (Invasion Scenarios 3A-)

consider an initial strip of cancer cells on the left hand side of the domain and

how they proceed to invade through some varyingly heterogeneous surrounding
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media along with v(0) = 1 − c(0), ms(0) = mt(0) = T (0) = f(0) = c(0). These

can be seen as comparable with Invasion Scenario 0B.

Invasion Scenario 1A is the first scenario we consider in which the tissue is consid-

ered to have a neutral effect on invasion in the top half of the domain by having a

matrix suitability modifier s = 1, with the lower half of the domain having mod-

erate characteristics limiting invasion by having the matrix suitability modifier of

s = 1
2
, as shown in Figure 5.4 C. This splits the domain into two regions where the

upper region, which has s(t = 0) = 1 and therefore has dynamics present in this

region that are identical to that of simulating the model presented in Chapter 4,

where the suitability modifier is not considered at all. The only minor difference

in comparing it with the previous model is that there is no zero flux boundary

across the line defined by y = 0 and therefore some movement of cancer cells

from the unrestricted upper region into the lower region is possible.

The lower region, on the other hand, is the first simulated result where the effects

of the suitability modifier are considered. This creates an asymmetric invasion

of the cancer cells as can be seen from the plots in Figure 5.4 with a reduced

invasion in the lower half of the domain (cf. Figure 5.4 D) and also an increased

overall ECM profile in the lower half of the domain (cf. Figure 5.4 E).

Figures 5.5 & 5.6 show the corresponding evolution of the various enzyme con-

centrations. The plots in Figures 5.5 F & 5.6 F show that any free TIMP2 that is

produced or released from a complex is quickly bound to either free MT1-MMP

or MMP-2. The plots in Figures 5.5 D & 5.6 D show that while MMP-2 can

freely diffuse throughout the environment, its profile is affected by the source

term coming from the asymmetric cancer cell invasion dynamics. The plots in

Figures 5.5 E & 5.6 E show how the degradative effect of MT1-MMP is limited

by its dependence on transport by the cancer cells. This is demonstrated by a
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reduced invasive profile in the bottom half of each plot.

In Figure 5.7 we note that there is a higher amount of degradation of tissue in

the upper half of the region where we have considered s(t = 0) = 1. This shows

the degree to which the suitability modifier has limited ECM degradation.

In Figure 5.8 we perform domain integrations of the variables v, c, ∅, λs, λt,

∆vtotal, ∆vms, ∆vmt, ms and mt to better examine the contributions of these

variables to the dynamics of the model across the considered timeframe of t =

0 − 40, corresponding to 4.6 days. We specifically note that while the domain

integration of ∆vtotal reaches ∼ 16 by t = 40, this should not be taken to mean

that the entirety of the ECM has been degraded as the ECM is remodelled (gained

density/recovered) over time. Indeed we note that the domain integration of v

at t = 40 is approximately 7
8
th the value of what it was initially. By plotting

the domain integrations of ms and mt we have shown that the difference between

∆vms and ∆vmt is not down to the relative concentrations of MMP-2 and MT1-

MMP (which are the same) but instead due to their relative locations (cf. Figure

5.4 and 5.5) where MMP-2 can diffuse past the boundary of the cancer cells,

which defines the full extent of MT1-MMP location, and gain access to ECM

that MT1-MMP cannot reach.

Finally, in Figure 5.9 we plot the location for the free space ∅ = 1−c−v and the

function s− 1 + v to gain insight into how the suitability modifier is influencing

cellular locomotion (g1 = s− 1 + v) and ECM degradation (g2 = g3 = s− 1 + v).

We note that degradation of ECM can only happen where s − 1 + v > 0 and

that haptotaxis of cancer cells to ECM gradients can only occur where both

1 − c − v > 0 and s − 1 + v > 0. While we refer the reader back to Figure 5.3

to see the plotting of (s − 1 + v)(1 − c − v) for s against v for various chosen

c to get an idea of what some of these values may be, we can use Figure 5.9 to
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Figure 5.4: Invasion Scenario 1A. Plots A-C show the initial values of the cancer cell

and ECM densities as well as the initial stucture of the matrix suitability modifier with

D-F showing their resultant profiles at t = 40 (corresponding to ∼4.6 days). Simulations

are performed using the baseline parameter set of Table 4.4 along with δs = 0.025.

see the locations where both 1 − c − v > 0 and s − 1 + v > 0 and can draw the

conclusion that the suitability modifier has blocked haptotaxis in the bottom half

of the domain where s− 1 + v = 0 at all points where c > 0 despite the volume

filling term not blocking haptotaxis at this location.
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Figure 5.5: Invasion Scenario 1A. The concentrations of MMP-2, MT1-MMP, the

intermediary complex f and TIMP2 are shown in plots A,B,C and F respectively at

t = 20 (corresponding to ∼2.3 days). Plots D, E show the MMP-2 and MT1-MMP

concentrations at t = 20 with appropriate thresholds near the invasive front of the

cancer cell invasion. The white contour line shows the cancer cell density at level 0.01

chosen to represent the maximum extent of invasion. Simulations are performed using

the baseline parameter set of Table 4.4 along with δs = 0.025.
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Figure 5.6: Invasion Scenario 1A. The concentrations of MMP-2, MT1-MMP, the

intermediary complex f and TIMP2 are shown in plots A,B,C and F respectively at

t = 40 (corresponding to ∼4.6 days). Plots D, E show the MMP-2 and MT1-MMP

concentrations at t = 40 with appropriate thresholds near the invasive front of the

cancer cell invasion. The white contour line shows the cancer cell density at level 0.01

chosen to represent the maximum extent of invasion. Simulations are performed using

the baseline parameter set of Table 4.4 along with δs = 0.025.
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Figure 5.7: Invasion Scenario 1A. Plots A & B show the profiles of the density of

ECM degraded solely by ms, while plots C & D show the profiles of the density of

ECM degraded solely by mt at t = 20 and 40 (corresponding to ∼2.3 and 4.6 days,

respectively). The white contour line in plots A-D shows the cancer cell density at level

0.01 chosen to represent the maximum extent of invasion. Simulations are performed

using the baseline parameter set of Table 4.4 along with δs = 0.025.
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Figure 5.8: Invasion Scenario 1A. Domain integrations of various variables and func-

tions where plot A features
∫
c,
∫
v and

∫
∅ =

∫
1−c−v representing the total amount of

cancer cell density (red), ECM density (green) and amount of free space (blue), respec-

tively. Plot B features
∫
λ2 =

∫
ms(1−s) and

∫
λ1 =

∫
mt(1−s) to represent the amount

of overlap between the suitability modifier with MMP-2 (magenta) and with MT1-MMP

(cyan), respectively. Plot C features
∫

∆vtotal,
∫

∆vms, and
∫

∆vmt, to represent the

total amount of ECM degraded (black), total ECM degraded by MMP-2 (blue) and total

ECM degraded by MT1-MMP (red). Plot D features
∫
ms and

∫
mt to represent the

total amount of MMP-2 (magenta) and MT1-MMP (cyan), respectively. Simulations

are performed using the baseline parameter set of Table 4.4 along with δs = 0.025.
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Figure 5.9: Invasion Scenario 1A. The function of ∅ = 1 − c − v is plotted in plots

A-C for the times of t = 0, 20 and 40 while the function of s − 1 + v is plotted in

plots D-F for the times of t = 0, 20 and 40, relating to 0,∼ 2.3 days and ∼ 4.6 days

respectively. The white contour line in all plots shows the cancer cell density at level

0.01 chosen to represent the maximum extent of invasion. Simulations are performed

using the baseline parameter set of Table 4.4 along with δs = 0.025.
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Invasion Scenario 1B follows on from Invasion Scenario 1A, which we note

offers a clear comparison between the dynamic of results obtained from the model

presented in Chapter 4 (cf. upper region of plots D, E and F in Figure 5.4) and

results obtained when the suitability modifier is actively impacting the spread of

cancer cells and the degradation of ECM (cf. lower region of plots D, E and F in

Figure 5.4). We now proceed to consider what impact having a considerably high

value of δs in a scenario that is otherwise the same as Invasion Scenario 1A. By

having such a high value for δs, we are representing the unfit matrix being very

quickly remodelled into a neutral state. By doing so, we will again be able to

compare the upper and lower regions (separated by the line y = 0) to determine

what effect a rapidly neutralised suitability modifier will have on the growth and

spread of cancer cells.

We offer only a minimal interpretation and presentation of the results of this In-

vasion Scenario as we note that this is only minimally varied from that of Invasion

Scenario 1A. As such, we have condensed the results presented into a singular fig-

ure of Figure 5.10 where we show the resultant profiles at t = 40 (corresponding to

∼ 4.6 days) of cancer cell density, ECM, suitability modifier and concentrations of

MMP-2, MT1-MMP, the intermediate complex of TIMP2:MT1-MMP:proMMP-2

and TIMP2 in the plots of A-F and I, respectively. We also consider the presence

of MMP-2 and MT1-MMP when within defined concentration ranges.

It can be seen from the plot in Figure 5.10 A that the cancer cells invade in an

almost symmetric manner (unlike the scenario in Figure 5.4 D). However, we can

also see from the plot in Figure 5.10 B that there is a reduced ECM profile in

the upper half of the domain compared with the lower half. This is due to a

limiting of ECM degradation beyond the cancer cell boundary in the lower half

of the domain which can only be due to a reduction in ECM degradation by

MMP-2. While the cancer cell profile is near symmetric and the ECM profile is
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asymmetric, we note that the remaining variable of ms,mt, T and f all appear

to be as symmetric as the cancer cell profile. This is due to the reliance of these

variables on cancer cells for production or activation depending on enzymes found

to cancer cells.
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Figure 5.10: Invasion Scenario 1B. Simulations are performed using the baseline

parameter set of Table 4.4 along with the key constant of δs = 10. Plots A-C show

the values of the cancer cell and ECM densities as well as the initial layout of the

matrix suitability modifier at t = 40 (corresponding to ∼4.6 days). Plots D-G show

the concentrations of MMP-2, MT1-MMP, the intermediary complex f and TIMP2 at

t = 40 (corresponding to ∼4.6 days). Plots H, I show the MMP-2 and MT1-MMP

concentrations at t = 40 with appropriate thresholds near the invasive front of the

cancer cell invasion. The black contour line shows the cancer cell density at level 0.01

chosen to represent the maximum extent of invasion.
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Invasion Scenario 2 considers the tissue to have neutral effects on invasion in

a diagonal strip across the region by having a matrix suitability modifier s = 1,

while the remaining domain is considered to have characteristics that strongly

limit invasion by having the matrix suitability modifier of s = 1
4
, as shown in

Figure 5.11 C. All parameters are kept at the baseline values and we use the same

initial conditions as Invasion Scenario 1A, with the exception of s(t = 0) defined

above. As can be seen from the plots in Figure 5.11 we observe an asymmetric

invasion by the cancer cells, with a reduced invasion in the region where s was

originally s = 1
4

(cf. Figure 5.11 D) and also a reduced degradation of ECM in

this region (cf. Figure 5.11 E).

Figures 5.12 & 5.13 show the corresponding evolution of the various enzyme

concentrations using the baseline parameter set. The plots in Figures 5.12 F &

5.12 F show that we retain the characteristic of any free TIMP2 that is produced

or released from a complex is quickly bound to either free MT1-MMP or MMP-

2. In comparing these two plots, it can be seen that there is a higher TIMP2

concentration in the invading front when there is a more suitable matrix to be

invaded, i.e. where s = 1. Evaluation of the other enzyme concentrations shown

in Figures 5.12 A–E & 5.12 A–E shows similar insight as was obtained from

Invasion Scenario 1A.

Plots showing the simulation results obtained in a two-dimensional domain where

asymmetric invasion of the ECM is achieved by the cancer cells. We use the

matrix suitability modifier s to represent a medium with neutral abilities in the

upper half of the region (s = 1; red) and with a reduced, moderate, suitability

for invasion in the lower half (s = 0.5; green).
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Figure 5.11: Invasion Scenario 2. Plots A-C show the initial values of the cancer cell

and ECM densities as well as the initial layout of the matrix suitability modifier with D-

F showing their resultant profiles at t = 80 (corresponding to ∼9.2 days). Simulations

are performed using the baseline parameter set of Table 4.4 along with the key constant

of δs = 0.025.
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Figure 5.12: Invasion Scenario 2. Plots A-C show the initial values of the cancer cell

and ECM densities as well as the initial layout of the matrix suitability modifier with D-

F showing their resultant profiles at t = 40 (corresponding to ∼4.6 days). Simulations

are performed using the baseline parameter set of Table 4.4 along with the key constant

of δs = 0.025.
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Figure 5.13: Invasion Scenario 2. Plots A-C show the initial values of the cancer cell

and ECM densities as well as the initial layout of the matrix suitability modifier with D-

F showing their resultant profiles at t = 40 (corresponding to ∼4.6 days). Simulations

are performed using the baseline parameter set of Table 4.4 along with the key constant

of δs = 0.025.
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Figure 5.14: Invasion Scenario 2. Plots A & B show the profiles of the density of

ECM degraded solely by ms, while plots C & D show the profiles of the density of

ECM degraded solely by mt at t = 20 and 40 (corresponding to ∼2.3 and 4.6 days,

respectively). The white contour line in plots C & D and black contour line in plots A

& B shows the cancer cell density at level 0.01 chosen to represent the maximum extent

of invasion. Simulations are performed using the baseline parameter set of Table 4.4

along with the key constant of δs = 0.025.
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Comparison of Invasion Scenarios 0A, 1A, 1B, 2 is offered up here where in recog-

nising that the six Invasion Scenarios proposed in this chapter can be separated

into two groups that bear similarities to the Invasion Scenarios of the previous

chapter, we compare the results obtained from each to see what conclusions we

can draw from the results. Here, we consider the first three Invasion Scenarios

proposed in this chapter of 1A, 1B and 2 with the first Invasion Scenario proposed

in the previous chapter of 0A.

We can compare Invasion Scenarios 1A and 1B in order to examine the effect of

the parameter δs on cancer cell invasion. Invasion Scenarios 0A and 1B can

be compared to establish the connection between no consideration of a suit-

ability modifier (s(t = 0) = 1) and the case where the suitability modifier is

quickly remodelled by MT1-MMP (δs >> 0). In comparing the initial overlap of

c(0)(1−s(0)) for IS1A & 1B with IS2, we find that they begin at different values.

This means that we cannot directly compare IS2 with either IS1A or IS1B to

obtain precise results for the effect of the parameter δs, however some general

trends may be commented on, such as the effect of s(0) on later time cancer cell

invasion. Further, IS2 can be compared with IS0A to understand the effects that

the suitability modifier has had on cancer cell invasion when presented with the

scenario of s(t = 0) and δs in IS2.

We present three tables; Tables (5.1, 5.2) and (5.3), to show domain integra-

tion data and some functions thereof obtained from the model presented in this

chapter of equations (5.1)-(5.7) when solved with the parameters defined in the

previous chapter in Table 4.4. This has been done so that there is able to be a

meaningful comparison with the results obtained in the previous chapter for In-

vasion Scenarios 0A&B. One such method for comparing total amount of MMPs

present at various time steps is to scale the subdomain integration over a suit-

able domain or other term. We have decided to scale it against the subdomain
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integration of c here. We also consider the proportion of ECM that has been

degraded by the two functionally different MMPs and how much the suitability

matrix has changed.

We label the functions identified in Table 5.3 as the following: α = ms

c
, β =

mt

c
, γ = ms

mt+ms
, δ = mt

mt+ms
, ε = ∆vms

∆vmtotal
, ζ =

∆vmt

∆vmtotal
, η = s

s(t=0)
, θ = s − s(t =

0), ι = T
c

While a parameter sensitivity is offered in the previous chapter, the inclusion of

the suitability matrix incorporates a new parameter (δs) and more importantly,

further consequences that can be discussed. As we note that Invasion Scenarios

1A&B are identical with the exception of the parameter δs, we choose to consider

the impact of the parameter δs on cancer cell invasion by varying it and in doing

so we can view Invasion Scenarios 1A&B.

We explore the following functions in Table (5.4): A = [
∫
s(25) dx]δs=ψ−

∫
s(0) dx,

B = [
∫
c dx]δs=ψ − [

∫
c dx]δs=0.025, C = [

∫
∆vtotal]

δs=ψ − [
∫

∆vtotal]
δs=0.025, D =

[
∫

∆vmt∫
∆vtotal

]δs=ψ − [
∫

∆vmt∫
∆vtotal

]δs=0.025, E = tc.

We consider 8 possible parameter values for δs of 0, 0.005, 0.015, 0.025, 0.05, 0.1,

1, 10 and record various data from each simulation. We first show in Table 5.4

(A) the amount that the suitability modifier has changed by where it logically

proceeds that we consider the minimum to be 0 where δs = 0 and record the

changes from this choice of δs instead of from δs = 0.025, (B) the amount specific

results change from the values obtained for the choice of δs = 0.025 for the

results of the total cancer cell density, (C) the total ECM degradation and (D)

the proportion of the ECM degradation that has been achieved by MT1-MMP.

We note that the values of [
∫
c dx]δs=0.025 = 0.64, [

∫
∆vtotal]

δs=0.025 = 6.98 and

[
∫

∆vmt∫
∆vtotal

]δs=0.025 = 0.28 were recorded to provide the values that the other choices

for δs are recorded to deviate from. As a final result (E), we consider the time,
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IS t c v ∅ ms mt T f s

0A 0 0.06 15.94 0 0.31 0.31 0.31 0.31

1A 0 0.06 15.94 0 0.31 0.31 0.31 0.31

1B 0 0.06 15.94 0 0.31 0.31 0.31 0.31

2 0 0.06 15.94 0 0.31 0.31 0.31 0.31

0A 20 0.57 13.14 2.29 5.29 6.02 0.04 1.19 NA

1A 20 0.44 14.14 1.42 2.41 2.69 0.08 1.69 12.10

1B 20 0.57 13.51 1.92 5.22 5.88 0.04 1.24 12.38

2 20 0.53 14.48 0.99 2.62 2.95 0.08 1.91 6.87

0A 40 2.01 9.11 4.88 24.75 25.69 0.07 3.14 NA

1A 40 1.51 11.79 2.70 8.84 8.62 0.16 4.81 12.30

1B 40 1.97 10.01 4.02 24.32 25.24 0.07 3.08 12.90

2 40 1.39 12.99 1.62 9.08 8.36 0.13 4.26 7.18

Table 5.1: Invasion Scenarios 0A, 1A&B, 2. The domain integration of the model

variables at t = 0, 20 and t = 40 (corresponding to 0 days, ∼2.3 days and ∼4.6 days).

We note that all the Invasion Scenarios detailed here have the same initial conditions

with the exception of s and therefore identical domain integration values at t = 0 for

the remaining variables.
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IS t ∆vtotal ∆vms ∆vmt

0A 0 0 0 0

1A 0 0 0 0

1B 0 0 0 0

2 0 0 0 0

0A 20 7.29 6.21 1.08

1A 20 4.83 3.43 1.40

1B 20 6.25 5.18 1.07

2 20 4.06 2.56 1.50

0A 40 25.72 23.04 2.68

1A 40 15.45 11.55 3.94

1B 40 21.66 19.01 2.65

2 40 10.80 7.46 3.34

Table 5.2: Invasion Scenarios 0A, 1A&B, 2. The domain integration of how much

degradation has occurred due to each and both of the MMPs considered at t = 0, 20

and t = 40 (corresponding to 0 days, ∼2.3 days and ∼4.6 days). We note that all the

Invasion Scenarios detailed here have the same initial conditions with the exception of

s and therefore identical domain integration values at t = 0 for the remaining variables.
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α β γ δ ε ζ η θ ι

Scenario0A 12.31 12.78 0.49 0.51 0.90 0.10 NA NA 0.03

Scenario1A 5.85 5.71 0.51 0.49 0.75 0.25 1.02 0.27 0.11

Scenario1B 12.35 12.81 0.49 0.51 0.88 0.12 1.07 0.87 0.04

Scenario2 6.53 6.01 0.52 0.48 0.69 0.31 1.05 0.37 0.09

Table 5.3: Comparison of Invasion Scenarios 0A–2. The subdomain integration of

functions of the model variables where we define these functions (α–$ι) in the text.

Results are found at t = 40 unless otherwise specified. The values of the subdomain

integration for specific variables for Invasion Scenario 0A, 1A, 1B, 2 can be found in

Tables 5.1 and 5.2.

tc, when the switch from more degradation being due to MT1-MMP to more

degradation from MMP-2.

From columns A–C we can determine that an increase in parameter δs causes an

increase in the amount of suitability modifier that has been remodelled, an in-

crease in the amount of total cancer cells and an increase in the total degradation

of ECM.

Additionally, we find from these data is that the proportion of ECM that is

degraded by MT1-MMP is reduced for the cases where δs is reduced and increased

for when we have an increased δs. This result appears paradoxical at first as we

would expect that by decreasing δs we would increase the amount of time that

certain ECM is considered unavailable to be degraded by MMP-2. Indeed, when

we compare the results obtained from Table 5.3 for proportion of degradation by
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MT1-MMP between Invasion Scenario 1A and 1B at t = 50, we find that there is

a marked reduction in the amount of degradation of ECM by MT1-MMP in IS1B

from 1A (25% to 12%) where the parameter δs has increased from δs = 0.025

to δs = 10. This results in a contradiction that requires further examination

and so we consider the plots of
∫

∆vms and
∫

∆vmt to find some clarity. We

find that for early times we have more than half of the degradation being done

by MT1-MMP with a switch occurring at t = tc where more than half of the

degradation is being done by MMP-2. We note that as degradation by MMP-2

increases at a quadratic rate of a higher power, the proportion of degradation as a

result of MT1-MMP decreases as the time progresses. In comparing the amount

of degradation by MMP-2 for each δs, we do find that there is an increase as δs

increases however this is balanced at lower timeframes by the increase in tc for

increasing δs. As such we have identified that for lower timeframes, there is an

increase in the proportion of degradation of ECM by MT1-MMP for increasing

δs whereas for longer timeframes, there is the reverse where an a decrease in the

proportion of degradation of ECM by MT1-MMP for increasing δs

We compare the data obtained for Invasion Scenario 0A and 1B in Tables 5.1 and

5.2 and find that having a high δs is almost analogous to having no suitability

modifier considered with the exception of a reduced degradation of ECM in ad-

vance of the cancer invasion boundary where s < 1 (cf. Figure 4.8 E and Figure

5.4 E). We show in Figure 5.15 that the amount of overlap between cancer cells

and the suitability matrix, that is to say the value of c(1 − s), increases for a

decreasing δs where there is virtually no overlap across the considered timeframe

for the case where δs = 10.

We note that for the case where there is a high δs, which is understood as a

case where the suitability modifier is rapidly remodelled upon contact with the

MT1-MMP attached to cancer cells, we recover many of the details, though not
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Figure 5.15: Invasion Scenario 1A. We show the values of c(1−s) across a timescale

of t = 0− 25 for varying values of the parameter that represents the remodelling of the

suitability of the matrix, δs = 0, 0.005, 0.015, 0.025, 0.05, 0.1, 1 and 10. Simulations are

performed using the baseline parameter set of Table 4.4 along with the indicated values

of δs.
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ψ A B C D E

0 0 -0.08 -0.24 -0.01 -0.06

0.005 0.03 -0.06 -0.18 -0.01 -0.04

0.015 0.08 -0.03 -0.07 -0.01 -0.02

0.025 0.11 0 0 0 0

0.05 0.17 0.04 0.11 0 0.05

0.1 0.22 0.08 0.24 0.01 0.14

1 0.44 0.16 0.65 0.03 0.89

10 0.57 0.19 1.05 0.04 0.90

Table 5.4: The amount that functions A–E, defined in the text, have increased or

decreased at t=25 for when the parameter δs has a range of values 0-10 where we

measure the variation from δs = 0 in A and δs = 0.025 for B-E.

all, that are representative of the model from the previous chapter. The reason

for the similarity, though not replication, is that as MT1-MMP rapidly remodels

the suitability modifier, g1 = g2 = g3 = v where c > 0. As g1 and g3 would

only matter where there already exists either cancer cells or MT1-MMP attached

to cancer cells, it is only g2 that offers meaningful difference from the model of

the previous chapter where g2 = v. We have therefore determined that for cases

where δs is high, we have a model that is an extension from the previous model

only where MMP-2 is limited in its ability to degrade the ECM in advance of the

cancer cell boundary. By setting the diffusion rate of MMP-2 to 0, we would in

fact have the two models converging as δs →∞.

Invasion Scenario 2 can be seen as an alternative exploration from that of Invasion

Scenario 1A of the effects of the suitability modifier where the two scenarios have

the same parameters and initial conditions with the exception of
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We note that there appears to be two classifications of results where Scenario

0A and 1B exist as one such classification while Scenario 1A and 2 represent

the other. More specifically, we note that for Invasion Scenarios 0A and 1B we

have that invasion has not been significantly hampered by the suitability matrix

(where Invasion Scenario 0A is equivalent to a neutral s(t = 0) = 1 and as such

is the scenario the others are compared to to measure the effect of the suitability

modifier).

When examining Table 5.3, we make the following remarks:

(i) the ratio of total MT1-MMP to MMP-2 across the entire domain is approxi-

mately equal for all scenarios (ii) in the scenarios where MT1-MMP is less signif-

icant than MMP-2 (Invasion Scenarios 0A and 1B: where there is comparatively

less a proportion of ECM degraded by MT1-MMP when compared to MMP-2 and

there is either no suitability modifier to remodel or a high value of δs) we have

that there is a higher proportion of MT1-MMP than MMP-2 despite the previ-

ously shown results of the MMP-2 being freely diffusive and as such being able

to extend past the cancer cell invasive boundary while MT1-MMP is restricted

by the movement of the cancer cells and cannot extend beyond the cancer cell

invasive boundary.

The subdomain integration of TIMP2 concentration divided by the cancer cell

density is either ∼ 0.03 − 0.04 (Scenarios 0A, 1B) or ∼ 0.09 − 0.11 (Scenarios

1A, 2) at t = 40 where we note that the stable steady state would provide

a TIMP2 concentration of 0.01nM and a cancer cell density of 1 across the 4

by 4 domain providing a TIMP2 concentration scaled by the cancer density of

0.01, a value below either result obtained from the dynamically evolving results.

The approximately threefold results for TIMP2 concentration scaled by cancer

cell density in the second grouping of scenarios correlates with the the scenarios
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where the cancer cells have been the least successful in growing and spreading.

We further note that as the function of the domain integrals T
c

reduces (Invasion

Scenario 1A and 2 → 1B and 0A) we see am increase in total cancer cell density

(1.51 and 1.39 →1.97 and 2.01). From this we may suspect that an increase

in TIMP2 concentration may lead to a decrease in invasion from the ability of

TIMP2 to inhibit the matrix degrading capabilities of MMP-2 however upon

inspection of the spatial layout of TIMP2 in Invasion Scenario 1A in Figures

5.5 F & 5.6 F we see the increase in TIMP2 concentration is in the top half of

the domain where we have an increased and active invasion. This paradoxical

definition of an increased invasion where there is an increased concentration of

TIMP2 while a lower overall TIMP-2 concentration benefits invasion means that

TIMP2 cannot be an effective indicator of tumour invasiveness on its own.
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t c v ms mt T f s ∆vtotal ∆vms ∆vmt

0 2.00 14.00 2.00 2.00 2.00 2.00 9.00 0 0 0

100 7.26 6.74 147.60 147.90 0.09 6.71 11.30 43.24 36.02 7.22

Table 5.5: Invasion Scenario 3A. Table showing the subdomain integration at t = 0

and t = 100 (corresponding to 0 days and ∼11.5 days) of the model variables in addition

to the inclusion of how much degradation has occurred due to each and both of the MMPs

considered.

Invasion Scenario 3A examines computational simulation results of cancer

cell invasion in a more heterogeneous environment such as would be expected in

certain in vitro experiments (and also in vivo). For this scenario, we used the

baseline parameter set, except for the parameter δs which is reduced by a factor

of ten to a value of 0.0025. The plots in Figures 5.16 D–F show that the cancer

cells take a longer time to invade the less suitable regions of ECM resulting in

a heterogeneous invasion pattern. In Figure 5.16 F, we can see that there are

regions of higher cancer cell density (small red zones) in advance of regions of

lower cancer cell density (small green zones) but without having broken off from

the main mass entirely. The corresponding plots of the concentrations of MMP-2

and MT1-MMP at t = 10, 50, 100.

Figure 5.17 shows the plots of the corresponding MMP-2 and MT1-MMP con-

centrations. Plots A-C show the MMP-2 concentration at t = 10, 50 and 100

(corresponding to ∼1.15, 5.75 and 11.5 days, respectively), while plots D–F show

the MT1-MMP concentration at t = 10, 50 and 100 respectively.
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Figure 5.16: Invasion Scenario 3A. Plots showing the simulation results obtained in a

two-dimensional domain with a spatially complex matrix suitability modifier s to more

accurately depict the observations of certain in vivo experiments. Plots A-C show the

initial values of the cancer cell and ECM densities as well as the initial structure of the

matrix suitability modifier. Plots D-F show the resultant profiles of cancer cell density

at t = 10, 50 and 100 (corresponding to ∼1.15, 5.75 and 11.5 days, respectively). The

white contour line shows the cancer cell density at level 0.01 chosen to represent the

maximum extent of invasion. Plots G-I show the resultant profiles of ECM density at

t = 10, 50 and 100. The simulations were performed using the baseline parameter set

with the exception of the parameter δs = 0.0025.
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Figure 5.17: Invasion Scenario 3A. Plots showing the simulation results obtained

in a two-dimensional domain with a spatially complex matrix suitability modifier s to

more accurately depict the observations of in vivo experiments. Plots A-C show the

evolution of MMP-2 concentration at t = 10, 50 and 100 (corresponding to ∼1.15, 5.75

and 11.5 days, respectively). Plots D-F show the evolution of MT1-MMP concentration

at t = 10, 50 and 100 respectively. The white contour line shows the cancer cell density

at level 0.01 chosen to represent the maximum extent of invasion. Simulations are

performed using the baseline parameter set with the exception of δs = 0.0025.
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Figure 5.18: Invasion Scenario 3A. Plots showing the simulation results obtained

in a two-dimensional domain with a spatially complex matrix suitability modifier s to

more accurately depict the observations of in vivo experiments. Plots A-C show the

profiles of the density of ECM degraded solely by ms, while plots D-F show the profiles

of the density of ECM degraded solely by mt at t = 10, 50 and 100 (corresponding to

∼1.15, 5.75 and 11.5 days, respectively). The white contour line shows the cancer cell

density at level 0.01 chosen to represent the maximum extent of invasion. Simulations

are performed using the baseline parameter set with the inclusion of δsu = 0.025.



157

Invasion Scenarios 3B-E are variations of Invasion Scenario 3A where by

considering different initial distributions of the suitability modifier (s(t = 0))

while imposing
∫
sdΩtotal remaining the same (Ω represents the entire domain)

with the additional constraints of
∫
sdΩi remaining the same for defined smaller

regions Ωi. We note that the initial condition for Invasion Scenario 3A was

determined in part by the term 0.5cos(4πx
2

)cos(kπy2 where k = 4, for information

in the final 3
4

of the domain. As such, the natural division is for 26 Ωi where,∫
sdΩ1 = P,

∫
sdΩ2 = Q,

∫
sdΩ3 = R, (5.8)∫

sdΩ4 = S,

∫
sdΩj = T (5.9)

For positive k and some constants P,Q,R, S and T where j = 5, ..., 16

Therefore, we choose to consider the cases where k = 0, 2, 6, 8 as Invasion Sce-

narios 3B-E, respectively. In considering the case where k = 0, we note that we

no longer have the condition of
∫
sdΩj = T for j = 5, ..., 16 but instead have∫

sdΩk = U(k) for k = 1, ..., 8 and U(k) = (P +Q,R + S, 2T, 2T, 2T, 2T, 2T )T .

As the results of each of these Invasion Scenarios of 3C-F will be qualitatively the

same as those obtained in Invasion Scenario 3A and Invasion Scenario 3B will be

qualitatively similar to Invasion Scenario 0B, we present only the initial condition

for s(t = 0) for each scenario while the results of the domain integration of c will

be presented in the next subsection in Figure 5.20.
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Figure 5.20: Plot of the domain integration of cancer cells,
∫
cdΩtotal, for Invasion

Scenarios 3A-E

Comparison of Invasion Scenarios 3A-E enables considering the effect of

changing the distribution of the initial condition for s(t = 0) while maintaining

the properties of
∫
sdΩtotal and

∫
sdΩi for i = 1, ..., 16 remaining the same for all

of the Invasion Scenarios 3A-E.

In comparing the domain integrations of cancer cells in Figure 5.20, we find that

the results are the same for t < 35 for Invasion Scenarios where k > 0. After this

time, however, there is a breaking of the fellowship where the domain integration

of the cancer cells becomes stratified where the Invasion Scenarios with higher

k values show increased total cancer cell density. This suggests that a location

with a suitability modifier value that is twice as restrictive as another location
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will have less than twice the impact on cancer invasion over time. This can be

understood as the remodelling term of the suitability modifier of δsmt(1 − s)

will not provide a linear rate of remodelling over the time period it will take to

obtain a value of s = 1 as there will be an increase in the amount of MT1-MMP

present as more cancer cells reach the location of overlap. This affect will be

even more pronounced for a lower δs, higher cancer diffusion or higher haptotaxis

rate. This highlights the importance of effectively modelling the spatial aspect

of the suitability modifier as even though we have subdomain integrations over

each subdomain, Ωi being the same between the Invasion Scenarios, there is still

a difference in the total amount of cancer cells present at later times.
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5.4 Discussion

By including a suitability modifier in the model considered in the previous chap-

ter, we have found that this modification can provide a wide range of new results

as well as providing an additional function for MT1-MMP which has now become

much more significant to cancer cell invasion for specific types of tissue that may

be considered to be closer to 3D in vitro models as well in vivo models.

Additionally we introduced the concept of “matrix suitability”, governed by the

variable s in our model. By considering the suitability of the matrix as a factor

affecting ECM degradation and the movement of enzymes and cancer cells, we

were able to generate heterogeneity in the ECM caused solely by matrix degrada-

tion. This meant we were able to focus on the effects of these gradients explicitly

caused by matrix degradation rather than ECM density gradients due to some

intrinsic tissue heterogeneity. This also allows for the consideration of stable spa-

tially heterogeneous conditions in the initial ECM layout (while v(t = 0) = 1)

where the ECM remodelling term of µv(1− c− v) will not affect this initial het-

erogeneous condition over time. More specifically, if we were to not include the

suitability modifier at all and wanted to have an initially heterogeneous ECM, we

would have to have a spatially heterogeneous v(t = 0). ECM that is not in the

cancer-ECM interface would then be remodelled by the term µv(1− c− v) to the

non-spatially heterogeneous value of 1 before cancer cells have come into contact

with the region. The only 3 ways of preventing this would be to (i) consider a

small enough domain that the remodelling of ECM has not fully taken place by

the time cancer cells have reached the specified region, (ii) have a low enough

parameter value µv (down to the point of being zero) for the same reason as in

the first case and (iii) have the ECM remodelling term by dependent upon the

spatially significant initial condition of v.
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We found the parameter δs to be significant in determining the morphology of

the cancer mass as evidenced by the comparison between Invasion Scenario 1A

and 1B where the only difference was the increase in the parameter δs. We found

that for a high enough δs, the results of the model are similar to, but do not tend

to, those obtained for when there is no suitability modifier considered (Invasion

Scenario 0A), unless there is a lack of diffusion for the MMP-2 proteins.

An increase in parameter δs causes an increase in the amount of suitability modi-

fier that has been remodelled, an increase in the amount of total cancer cells and

an increase in the total degradation of ECM.

We observed the time dependence on the effect of the parameter δs where when

we compared the proportion of degradation of ECM by MT1-MMP for varying

values of δs, we found that at t = 25 the relation was an increase for increasing

δs whereas at t = 50 the relation was reversed with a decrease for increasing

δs. This was due to the effect on the point measured as tc which measured the

time where the switch from more degradation occurring due to MMP-2 instead of

MT1-MMP occurs where as t increases further, we will maintain this relation of

an increase in δs will further reduce the proportion of ECM degradation caused

by MT1-MMP.

Further, we have found that the ratio of MT1-MMP to MMP-2 is unaffected

by either the suitability modifier or the rate at which it is remodelled, however,

when there is a need for the suitability to be remodelled (s(t = 0) < 1), there

is a higher proportion of total ECM degraded by MT1-MMP. We find that the

total amount of TIMP2 when scaled by total cancer cell population is markedly

increased to threefold in Invasion Scenarios 1A and 2 when compared to Invasion

Scenarios 0A and 1B. This overall increase in relative TIMP2 concentration can

be seen to be a result of an increase in TIMP2 at areas where there is active
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degradation of ECM and a stabilised, reduced TIMP2 concentration at the area

where cancer cell invasion has been completely successful (c = 1).

We formulated Invasion Scenarios 3A-E in such a way as to investigate the effect

of a changing initial condition for the suitability modifier while maintaining 16

regions of constant total suitability modifier. We find that the initial spatial

layout of the suitability modifier is important as while a location with a suitability

value of 1− 2β will have twice the impact as a suitability value of 1− β for some

constant β, when it comes to remodelling these locations to the value of 1, it

will take t1 for the first case and t2 for the second case where t2 ≤ t1 ≤ 2t2

due to the increase in MT1-MMP that is moved to the location that is being

remodelled. This effect will therefore become more significant for an increase in

the parameters of Dc, χ and a decrease in the parameter δs.

In summation, the computational simulation results showed that the matrix suit-

ability modifier and its regulation played an important role in determining the

precise pattern of invasion. As has been observed in the experimental data of

Sabeh, Shimizu-Hirota and Weiss (2009) and Li et al. (2008), we have shown

that the architecture of the tissue can negatively impact invasion under circum-

stances of pore-size being below on optimal level or in environments of cross-linked

collagen type I and IV, with both of these conditions requiring tissue remodelling

specifically by MT1-MMP. In addition to this, invasion is reduced where TIMP2

is over or under produced. To investigate the matrix suitability modifier from a

biological perspective, experiments would need to be carried out to obtain the

initial layout of the suitability modifier as well as the parameter δs. The first

step in doing this would be to find out the effects of different tissue pore size on

cancer cell migration to establish what range of pore sizes would be considered

a neutral modifier, what range of pore sizes allow migration at reduced levels

and what range of pore sizes completely block migration. This could be done by
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using the approaches of Nyström et al. (2005) and Martins et al. (2009) where

they performed in vitro experiments using a collagen:matrigel assay to investi-

gate the invasiveness of cancer cells to establish a quantitative “invasive index” in

organotypic cultures. Once there is quantitative data for these effects, obtaining

data on the structure of the tissue through effective imaging techniques such as

those described in Wolf et al. (2009) would allow one to generate realistic initial

conditions of the matrix suitability modifier. An estimate of the parameter δs

could then be obtained by validating the model against experiments similar to

those found in Sabeh, Shimizu-Hirota and Weiss (2009) or Li et al. (2008), who

performed in vitro experiments using a cross-linked native type I collagen assay

to investigate the importance of MT1-MMP in cancer invasion.
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Chapter 6

Stochastic Modelling of the

MMP-2 Activation System at

Invadopodia

6.1 Introduction

In this chapter we move from the much larger spatial scale considered in the

previous two chapters to discuss MMP-2 activation by MT1-MMP proteins at

the smaller subcellular scale of invadopodia (of volume 2× 10−15 L Murphy and

Courtneidge, 2011). While MMP-2, with its relatively high diffusion rate, is

not responsible for localised ECM degradation at invadopodia, it is capable of

degrading many components of the ECM, including type IV collagen. Type IV

collagen is the main component of the basement membrane, a cellular barrier

which cannot be degraded by MT1-MMP. Initially, we present a model of an

invadopodium in isolation before analysing this model with simulations to show

the affect an invadopodium has in the context of its surroundings, as well as the
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Cube of length (cm) Volume (L) Maximum number of

cancer cells in domain

1 1× 10−3 67, 000, 000

0.1 1× 10−6 67, 000

0.01 1× 10−9 67

0.0025 1.59× 10−11 1

a fraction equal to the

0.000126 2× 10−15 volume of an invadopodia

Murphy and Courtneidge (2011)

Table 6.1: A clarification on the scales involved at various spatial scales in regards

to the amount of cancer cells that can fill the volume. The values are based off of the

cancer cell volume filling value in the previous two chapters of 6.7× 107cells cm−3.

affect that the surroundings have on the invadopodia.

Invadopodia are actin-rich membrane protrusions from a cell that form adhesion

sites with the ECM and propagate ECM degradation by the releases of matrix

degrading enzymes (Chen, 1989; Kelly et al., 1994). As such, they are of particular

significance when it comes to cancer cell invasion (Basbaum and Werb, 1996;

Weaver, 2006; Yamaguchi and Condeelis, 2007). This ECM degradation fuels

migration of the cell through the ECM (Chen and Wand, 1999). Invadopodia are

distinct from other cell protrusions (e.g. filopodia, lamellipodia, podosomes) in

size and function (Chen and Wand, 1999; Murphy and Courtneidge, 2011). The

maximum number of cancer cells that is capable of filling various volumes is listed

in Table 6.1 to illustrate the spatial scale involved.

MT1-MMP is found to be the most critical of the matrix degrading enzymes
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Figure 6.1: Image showing focalised ECM degradation as a result of invadopodia.

Reproduced from Yamaguchi et al. (2005), published under a creative commons licence.

at invadopodia where they are not required for invadopodia formation but are

essential for invadopodia function (Artym et al., 2006). A single carcinoma cell

may feature 1–10 invadopodia at one time and these are generally formed in a

cluster (Linder, 2007). This clustering causes focalised degradation of ECM as can

be seen in Figure 6.1. MT1-MMP shuttling to invadopodia is essential for cancer

cell invasion (Nakahara et al., 1997) and causes increased MMP-2 activation.

Kwiatkowska et al. (2011) found that blocking this shuttling to lamellipodia can

downregulate MMP-2 expression.

The precise number of MMP-2 proteins that can be activated at invadopodia must

be estimated from the total amount produced by an entire cell. Here, we provide

three methods of estimating this value using the property that a cell may produce

MMP-2 at a rate of 100,000–1,000,000 h−1. In all three methods, we will assume

that the volume of a cell is 1.59 × 10−11L and the volume of an invadopodium

is 2 × 10−15L, as in Table 6.1. Further, we will consider a cancer cell without

invadopodia to be a sphere of radius 15.6µm and a single invadopodium to be a
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r(cell)

5 µm

Figure 6.2: Schematic diagram illustrating a cell with an invadopodium used to ap-

proximate the amount of MMP-2 proteins that can be activated at an invadopodium.

Scale bar = 5µm.

cone of radius 0.5µm and height 7.5µm where we note that these values maintain

the volumes defined previously.

A method based off dividing the volume of the cell by that of the invadopodium

provides an estimate of 12–126 proteins per hour. A method based off comparing

the relative surface areas of the cell and invadopodium provides an estimate

of 380–3800 proteins per hour. A third method, where additional details are

provided below, provides an estimate of 2–30 proteins per hour.

The region defined as that in which enzyme reactions between membrane bound
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and freely diffusive proteins can take place is termed the active region. The active

regions of invadopodia is referred to as the invadopodial regions.

If we consider this active region to be up to a cm from the cell membrane then

the volume of the active region for a cell without invadopodia would be Vac =

4

3
π((r + a)3 − r3) =

4

3
π(3r2a + 3ra2 + a3)cm3. For simplicity, we neglect the

minor difference as would be caused by the overlap of the active region of the

cell and the invadopodia. The volume of the active region of the invadopodia is

Vai = π(r + a)2h+ a

3
− πr2h

3
=

4π

3
(
r2

4
+
ar(h+ a)

2
+
a2(h+ a)

4
). Therefore, the

amount of MMP-2 proteins that can be produced at invadopodia is estimated

to be (
Vai
Vac
× 100)% of 100,000–1,000,000h−1. We plot

Vai
Vac
× 100 in Figure 6.3.

Therefore, the number of MMP-2 proteins that can be produced at invadopodia

is estimated to be 0.0025 − 0.003% of the range 100,000–1,000,000h−1, or, 2-30

proteins per hour.

Taking the three methods into account, we choose to consider a default range

for the amount of MMP-2 proteins to be activated of 0–216 proteins (0–180nM)

per hour. This can be achieved by simulating the invadopodial region with zero

flux boundary conditions with a corresponding initial proMMP-2 concentration

of 0–180nM and no production.

Stochastic simulations are widely used for intracellular dynamics in computa-

tional cell biology (Cai and Wang, 2007; Bressloff and Newby, 2013; Sturrock,

2013). Traditionally, intracellular chemical reactions have been modelled with

deterministic reaction rate equations (RREs), namely ordinary differential equa-

tions (ODEs). The justification for modelling these reactions stochastically lies in

the low population number of mRNAs as well as the fact that small fluctuations

in their levels have a knock-on effect where each mRNA may produce 1000s of

active proteins.
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Figure 6.3: Identifying the proportion of MMP-2 proteins that are produced by an

invadopodium is achieved by plotting the function Vai
Vac
× 100 for various values of the

radius defining the invadopodial region, a, where h=7.5µm and r=0.5µm. The minimum

value of a is considered to be 0.001µm with a maximum a of 0.1µm, which we note is

one fifth the radius of the invadopodium.
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At invadopodia, only a small number of proteins (0-432) comes into play in a

relatively short time (1-2 hours). The knock-on effect from a localised increase in

the activation of MMP-2 increases the degradation of ECM across the considered

domain. However the most significant knock-on effect is that the increased ECM

degradation occurring at invadopodia as a result of MT1-MMP activity can fuel

locomotion of the entire cell through a medium (Chen and Wand, 1999). We

therefore apply stochastic methods when considering the activation system of

MMP-2 by MT1-MMP and TIMP2 at invadopodia.

We formulate our model based on the Gillespie Algorithm (SSA: stochastic sim-

ulation algorithm Gillespie, 1977), which is explained in detail in Higham (2008).

We will use this approach to model the system of activation of MMP-2 by MT1-

MMP as outlined in Figure 6.4.

We will therefore be simulating a similar scenario to that which is considered in

a deterministic way with a system of ODEs in Karagiannis and Popel (2004),

which was later developed to consider the tip endothelial cell in sprouting angio-

genesis in Karagiannis and Popel (2006). We note that continuum modelling is

an appropriate method of modelling the protein interactions considered in this

chapter when applied to a domain considering one or more cancer cells as the

larger spatial and temporal scales results in a large amount of proteins and less

consequences in fluctuations of their populations.

The other notable attempt at modelling MT1-MMP mediated MMP-2 activation

along with related interactions in regards to cancer cell invasion is that of Hoshino

et al. (2012). The focus of their work is an invadopodium of size ∼ 1.39µm3

with a total domain of size ∼ 73.61µm3. They modelled the invadopodium and

surrounding environment as a 3D discretised space of 2601 compartments of di-

mensions 0.0973µm × 0.0973µm × 3µm where the invadopodium consisted of
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49 clustered compartments. The freely diffusive proteins and protein complexes

were modelled with reaction diffusion equations while the interactions of pro-

teins within the invadopodium were modelled by a systems of 39 ODEs in ACell

(Ichikawa, 2001). The main finding of their work is that the rapid turnover of

MT1-MMP is responsible for the increased degradation of ECM at invadopo-

dia. This was determined from both of their in silico and in vitro modelling

approaches where the blocking of vesicle transport blocked ECM degradation.

6.2 Model Development

A schematic diagram of the MMP-2 activation system from its pro-enzyme form

is shown in Figure 6.4. The N-terminal inhibitory domain of a freely diffu-

sive TIMP2 protein binds to the active site (catalytic region) of the membrane

bound MT1-MMP. This blocks catalytic activity on the part of MT1-MMP.

The C-terminal domain that remains free on TIMP2 binds with the C-terminal

hemopexin domain of proMMP-2. This stochiometric trimer of form 1:1:1 is

then split by a free MT1-MMP protein concluding the activation of MMP-2 from

its proenzyme form. Additionally, we consider an alternative route by which the

trimer of MT1-MMP:TIMP2:proMMP-2 can be formed by the initial formation of

the complex TIMP2:proMMP-2 that can then bind to a free MT1-MMP protein.

As both proMMP-2 and MMP-2 bind to TIMP2 with a high rate in comparison

to the dissociation rate (Olson et al., 1997), we consider this reaction to be irre-

versible. Before we present the reaction equations, we must define the notation

involved.

Notation for the stochastic model largely follows the mathematical literature

(Higham, 2008):
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MT1

T2

MT1:T2

MT1:T2:pM2:MT1pM2

MT1:T2:pM2

MT1

M2

Stage 1 Stage 3

Stage 2 Stage 4

MT1:T2

MT1

cell

MT1

T2pM2 M2 pM2

T2

T2:pM2

MT1

MT1:T2:pM2

Alternative stage 1

Alternative stage 2
A

B

C

Figure 6.4: The schematic diagram of MMP-2 activation. Plot A indicates whether

a protein or complex is bound to the membrane of the cell or capable freely diffusing

throughout the domain. Plot B illustrates the first pathway by which proMMP-2 can

become activated while plot C illustrates the alternative route by which proMMP-2 can

become activated. In all plots, ‘MT1’ represents MT1-MMP, ‘T2’ represents TIMP2,

pM2 represents proMMP-2 and M2 represents MMP-2, while in plots B and C, a pro-

tein/complex is in a blue box if it is directly produced by a cancer cell and black if it is

formed from later reactions.
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N : the number of chemical species.

M : the number of chemical reactions or reaction channels that the chemical

species partake in.

X(t) : the state vector, elements of which are defined below.

Xi(t) : elements of the state vector represent the number of elements of chemical

species i, where i = 1, ..., N .

νj : the stochiometric vector, also known as the state-change vector, details how

the state vector is modified by chemical reaction j where j = 1, ...,M .

A: the stochiometric matrix is a matrix whose columns are made up of the

stochiometric vectors, i.e., A = [ν1, ..., νM ].

We define the state vector of our model as follows:

X(t) =



X1(t)

X2(t)

X3(t)

X4(t)

X5(t)

X6(t)

X7(t)

X8(t)

X9(t)



=



proMMP-2

MMP-2

MT1-MMP

TIMP2

MT1-MMP:TIMP2

MT1-MMP:TIMP2:proMMP-2

MT1-MMP:TIMP2:proMMP-2:MT1-MMP

MMP-2:TIMP2

proMMP-2:TIMP2



, (6.1)

and we can proceed to write out the chemical reactions outlined above in a manner

that will be easier for our modelling efforts.
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Stage 1: X3 +X4
c1→ X5 (6.2)

X5
c2→ X3 +X4 (6.3)

Stage 2: X5 +X1
c3→ X6 (6.4)

Stage 3: X6 +X3
c5→ X7 (6.5)

X7
c6→ X6 +X3 (6.6)

Stage 4: X7
c7→ X5 +X2 +X3 (6.7)

Alternative stage 1: X1 +X4
c8→ X9 (6.8)

Alternative stage 2: X3 +X9
c1→ X6 (6.9)

X6
c2→ X3 +X9 (6.10)

X2 +X4
c8→ X8 (6.11)

Now that we have formulated the system in this way, it is easier to see what each

of the reactions defined by equations (6.2)–(6.11) does to the state vector X(t).

For example, for one reaction taking us from t = t1 to t = t2 of equation (6.7)

to occur we require an X7(t1) ≥ 1 with the result being X7(t2) = X7(t1) − 1,

X9(t2) = X9(t1) + 1, X2(t2) = X2(t1) + 1, X3(t2) = X3(t1) + 1 with the remaining

Xj(t2) = Xj(t1) for j = 1, 4, 5, 6, 8. In formalising this, X(t1 + τ) = X(t1) + νj

where τ is the adaptively determined timestep for the chemical reaction j to occur
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and νj are defined as the columns of the stochiometric matrix A where:

A =



0 0 −1 1 0 0 0 −1 0 0 0

0 0 0 0 0 0 1 0 0 0 −1

−1 1 0 0 −1 1 1 0 −1 1 0

−1 1 0 0 0 0 0 −1 0 0 −1

1 −1 −1 1 0 0 1 0 0 0 0

0 0 1 −1 −1 1 0 0 1 −1 0

0 0 0 0 1 −1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 −1 1 0



. (6.12)

We are left with two issues that need to be dealt with. Firstly, how we will choose

which of the chemical reactions takes place and secondly, in what manner will

we define their respective timesteps represented by τ . It is in both of these steps

that we will find our stochasticity. By using the Gillespie Algorithm, we obtain

the following iterative method of identifying which reaction will next take place

and what the time length, τ , for this reaction to take place will be where we use

the function rand in Matlab to generate a random number, r, from a uniform

distribution in the interval (0,1). The reaction rates determined in units involving

concentrations (c1, ..., c8) are transformed into appropriate form (a1, ..., a11) where

the probability of a reaction, j, to take place is determined by
aj

11∑
i=1

ai

.

A minimal form of one iteration of our model is presented below in equations

(6.13)–(6.29) where the probability of which reaction takes place is initially de-

fined before the reaction that is chosen to take place and the time that this takes

is determined. The molecule population and the probability of which reaction

would take place would therefore be updated in the next iteration.
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a1 =
c1

NAv
×X3 ×X4 (6.13)

a2 = c2 ×X5 (6.14)

a3 =
c3

NAv
×X1 ×X5 (6.15)

a4 = c4 ×X6 (6.16)

a5 =
c5

NAv
×X6 ×X3 (6.17)

a6 = c6 ×X7 (6.18)

a7 = c7 ×X7 (6.19)

a8 =
c8

NAv
×X1 ×X7 (6.20)

a9 =
c1

NAv
×X3 ×X9 (6.21)

a10 = c2 ×X6 (6.22)

a11 =
c8

NAv
×X2 ×X4 (6.23)

α =
11∑
i=1

ai (6.24)

βk =

k∑
i=1

ai

α
(6.25)

j = min(k) s.t. r < βk (6.26)

τ =
1

α
ln(

1

r
) (6.27)

X = X + νj (6.28)

t = t+ τ (6.29)

Rate constants for the model are established by collecting those that were used

in previous chapters as well as the biological literature and are presented in Table

6.2. We note that there is a high level of uncertainty when it comes to parameter

c5 which can be fitted to the experimental results of English et al. (2001) and

Butler et al. (1998), similarly done in the ODE model considered in Karagiannis
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and Popel (2004) to obtain a value of ∼ 4.3 × 103M−1. Indeed, we show how

the proposed stochastic model can obtain a similar approximation to this value

in Figure 6.5. This is, however, significantly lower than the parameter value of

2× 106M−1 used in Hoshino et al. (2012) and 4.3× 104M−1 used in the previous

chapters of this work and that of Deakin and Chaplain (2013). As such, while we

continue to use the value of 4.3× 104M−1, we acknowledge that a more accurate,

biologically obtained, estimate for this parameter is required.

We examine the activation system of MMP-2 mediated by MT1-MMP and TIMP2

and as such consider a spatial region around the external boundary of invadopo-

dia. We define this spatial region of interest to be approximately the same

size as the invadopodia itself of 2 × 10−15L. This is equivalent to choosing a

value of a =∼ 0.3µm. As we lack significant data for the production rates of

proMMP-2, TIMP2 and MT1-MMP, we consider the system to be closed by set-

ting αpM2 = αMT1 = αT2 = 0.

We initially consider two cases with differing initial conditions, where we show the

results of the proposed schematic when run over 1 hour with zero-flux boundary

conditions. We present the cases concurrently, divided into two figures detailing

the population dynamics across the initial 60s (Figure 6.6) and then the entire

lifespan of the invadopodium, defined as 1 hour (Figure 6.7).

For the first case, we consider proMMP-2(t = 0) = 60nM, MT1-MMP(t = 0) =

70nM and TIMP2(t = 0) = 50nM, while all other enzymes and enzyme complexes

are assumed to be zero. In the second case, we consider proMMP-2(t = 0) =

60nM, MT1-MMP(t = 0) = 47.5nM and TIMP2(t = 0) = 50nM where, again,

all other enzymes and enzyme complexes are assumed to be zero. We note that

when we define the I.C.s to be of form pM2=z1, T2=z2 and T2:pM2=z3, we can

vary the initial conditions of these three proteins and complexes and maintain
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Figure 6.5: Plots showing comparisons of the stochastic model with the parameters of

Table 6.2 with the exception of c5 = 4.3×103M−1s−1. The experimental data of Butler

et al. (1998) is represented in plots A & B and English et al. (2001) in plot C.
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Parameter Dimensionalised value Source

c1 2.74× 106 M−1s−1 Toth et al. (2000)

c2 2× 10−4 s−1 Toth et al. (2000)

c3 1.406× 105 M−1s−1 Olson et al. (1997)

c4 4.7× 10−3 s−1 Olson et al. (1997)

c5 4.3× 104 M−1s−1 estimated

c6 9× 10−7 s−1 Karagiannis and Popel (2004)

c7 2× 10−2 s−1 Karagiannis and Popel (2004)

c8 3.26× 104 M−1s−1 Olson et al. (1997)

cshuttle
1

tshuttle
s−1 definition

αpM2 0

αMT1 0

αT2 0

NA 6.022× 1023 Perrin (1909)

volume (v) 2× 10−15L estimated

Table 6.2: List of parameter values used in this chapter (unless otherwise stated).



181

qualitatively similar results provided the conditions of z1 + z2 + 2× z3 = C1 and

z1 + z3

z2 + z3

= C2 are met, for some constants C1 and C2.

We note that the plots of Figure 6.6 are qualitatively similar. However, there

are some noticeable differences where the first difference we remark upon is

one we have not found to be significant. In the first case, the complex MT1-

MMP:TIMP2:proMMP-2 (brown) is first formed at t =∼ 7s in comparison to

t =∼ 3s in the second case. Further, the number of TIMP2 proteins in the first

case has almost reached zero in half the timeframe while this number has not

dropped below 8 in the entire timeframe in the second case. This difference is

caused by the amount of TIMP2 binding to MT1-MMP where we remark that

MT1-MMP(t=60)=25 in the first case compared to the very low value of MT1-

MMP proteins in the second case by this time.

It is in the plots of Figure 6.7 that we notice a much more significant difference

between the two cases. Critically, there is minimal MMP-2 present by the end of

the simulation for the second case. This is the result of TIMP2 proteins binding

to every available MT1-MMP protein meaning that there is a lack of free MT1-

MMP proteins that are able to take place in the severing of the pro domain as

indicated in stages 3 and 4 of Figure 6.4. In fact, the only enzymes and enzyme

complexes larger than 10 in case ii are MT1-MMP:TIMP2:proMMP-2 (brown),

proMMP-2 (red) and MT1-MMP:TIMP2 (green).

We note that from 10 simulations (not shown) where there were the same initial

conditions as presented in case ii, the percentage of MMP-2 activated by t=3600s

varied between 0 and 15 with mean value ∼4.4% and standard deviation of ∼3.2.

This compares to the percentage of MMP-2 activated by t=3600s where we con-

sider the volume of the well-mixed system to be 2×10−11L, where Higham (2008)

showed that the Gillespie Method converges to the ODE model of the interactions
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Figure 6.6: Plots showing the short time dynamics (t=0-60s) of the MMP-

2 activation system. Plot A represents the first case while plot B repre-

sents the second case. proMMP-2 is presented in red, MT1-MMP in yellow,

TIMP2 in blue, MT1-MMP:TIMP2 in green, MT1-MMP:TIMP2:proMMP-2 in

brown, MT1-MMP:TIMP2:proMMP-2:MT1-MMP in dark blue, MMP-2 in black and

TIMP2:proMMP-2 in lavender.
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Figure 6.7: Full term dynamics (t=0-3600s) of the MMP-2 activation system where

no MT1-MMP shuttling takes place. Plot A represents the first case while plot

B represents the second case. proMMP-2 is presented in red, MT1-MMP in yel-

low, TIMP2 in blue, MT1-MMP:TIMP2 in green, MT1-MMP:TIMP2:proMMP-2 in

brown, MT1-MMP:TIMP2:proMMP-2:MT1-MMP in dark blue, MMP-2 in black and

TIMP2:proMMP-2 in lavender.
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at high volumes, of 6.0%.

The conclusions that we can draw from these observations are that when the

initial number of TIMP2 proteins is larger than the initial amount of MT1-MMP

proteins, rapid binding of MT1-MMP to TIMP2 can prevent there from being any

free MT1-MMP proteins to take place in the activation of MMP-2. However, we

can also conclude that stochastic effects allow for the production of some MMP-2

proteins despite this with the maximum of 11% of the proMMP-2 being activated

in the simulations run.

We have proposed a method of examining invadopodia in isolation from the cell

and the majority of the surrounding ECM by imposing zero-flux boundary con-

ditions on a domain defined as the invadopodial region (the difference between

the volume of one cone of radius, r, and height, h, and a larger cone of radius,

r+ a, and height, h+ a). While there may be experiments that can be set up to

study just such a scenario, we consider the additional dynamics of freely diffusive

proteins capable of diffusing into the invadopodial region to be more reflective

of the majority of potential in vivo and in vitro experiments. We note that due

to the relatively high diffusion rate of the freely-diffusive proteins (O(108cm2s−1)

Collier et al., 2011), this would not be an inconsequential amount. We must

therefore expand the model to capture the dynamics involved with the activation

process of MMP-2 in a more expansive set of biological considerations.

We define a scenario similar to the experimental results shown in Figure 6.1 by

using the schematic illustrated in Figure 6.8, where we consider a layer of ECM

constituent parts of dimensions 5×50× 50µm with a single cancer cell, placed on

top of this region with a cell-ECM interface of 5 × 10−6cm−2 and consider the

ECM degradation that would take place through both MT1-MMP and MMP-2.
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MT1-MMP shuttling to invadopodia is, by necessity, dependent on the consid-

eration of a region larger than an isolated invadopodium. As such, we can now

appropriately model MT1-MMP shuttling to invadopodia. MT1-MMP shuttling

to invadopodia is independent of all other reactions so we treat this separately

and we consider an additional MT1-MMP shuttled to the invadopodia after a

time tshuttle. To couple this with the SSA time steps, we consider a production

of a single MT1-MMP protein every tshuttle and apply the additional number of

MT1-MMP proteins after every cycle of the SSA. Note that this can be inter-

preted as adding νs to the state vector, X(t), where this adds one protein of

MT1-MMP, νs = (0, 0, 1, 0, 0, 0, 0, 0, 0)T .

Reactions involving one or more membrane-bound proteins/complexes can take

place only within the active region defined by the sensing radius a and reactions

between two freely diffusive proteins can take place both outside and inside this

defined region. Once again we define the invadopodia to be a cone of radius

0.5µm and height 7.5µm.

Since the number of enzymes used to form complexes at invadopodia is much

lower than the total number of these enzymes in the domain, combined with the

high diffusion rate of these enzymes, we consider the concentration of proMMP-

2, TIMP2 and TIMP2:proMMP-2 to be constant within the invadopodial region

by considering a replacement protein to be instantly transported within the in-

vadopodial region when a complex is formed that would otherwise use them up.

Further, we define the separation of complexes to no longer release these proteins
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and we model these modified reactions within the invadopodial region as:

Stage 1: X3 +X4
c1→ X4 +X5, (6.30)

X5
c2→ X3, (6.31)

Stage 2: X5 +X1
c3→ X1 +X6, (6.32)

X6
c4→ X5, (6.33)

Stage 3: X6 +X3
c5→ X7, (6.34)

X7
c6→ X6 +X3, (6.35)

Stage 4: X7
c7→ X5 +X3 +X2, (6.36)

X3 +X9
c1→ X6 +X9, (6.37)

X6
c2→ X3, (6.38)

with a corresponding stochiometric matrix B of form:

B =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

−1 1 0 0 −1 1 1 −1 1

0 0 0 0 0 0 0 0 0

1 −1 −1 1 0 0 1 0 0

0 0 1 −1 −1 1 0 1 −1

0 0 0 0 1 −1 −1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 1



. (6.39)
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We consider the amount of ECM to be degraded as a result of the invadopodium

to be the sum of degradation by MT1-MMP at the invadopodium and the degra-

dation of MMP-2 activated at the invadopodium. For simplicity, we consider the

amount of ECM degraded by either MT1-MMP or MMP-2 to be a linear rela-

tion to the sum of their respective lifespans. As such, the total amount of ECM

degradation is assumed to be of the form:

δ1

∫
X(3)dt+ δ2

∫
X(2)dt. (6.40)

In order to consider a simple method by which the dissolution of the invadopodia

is the result of MT1-MMP dissociating cortactin, we set

δ3

∫
X(3)dt, (6.41)

to be dissociation of cortactin and that the invadopodia lifespan ends when this

value passes some critical value χ.

While the total amount of degraded ECM will generally be unaffected by dif-

ferently defined sizes of regions of ECM in our formulation, the distribution of

the ECM degradation by MMP-2 will differ as we impose zero-flux boundary

conditions on this region of ECM.

Since we have insufficient data for the linked parameters of δ3, tshuttle and χ, we

simply leave δ3 undefined and determine δ3χ from running the default parameter

set indicated in Table 6.2 along with the chosen default value of MT1-MMP

shuttling of 1
tshuttle

= 0.18s−1 to obtain the amount of cortactin degraded over a 1

hour lifespan of δ3

∫ 3600

0
X(3) dt = χ. We then set the lifespan of an invadopodia

to be the lowest time, t, s.t. δ3

∫
X(3) dt ≥ χ. In doing so, we have uncoupled

the lifespan of invadopodia from being one hour and linked it to the amount of

cortactin that has been degraded. Finally, an estimate for the range of permissible

rates of MT1-MMP shuttling 1
tshuttle

is identified.
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In making these approximations, we make no quantitative predictions for the

levels of cortactin dissociated. However we are able to provide qualitative results

for the lifespan of invadopodia, how this is affected by MT1-MMP shuttling as

well as the resultant MMP-2 activation and ECM degradation across the lifespan

of an invadopodium.

While we have to consider the two regions of the invadopodial region and the

domain minus the invadopodial region, we formulate our model by considering the

domain minus the invadopodial region to be in stasis in terms of the population

concentrations of all enzymes with the exception of MMP-2 and the invadopodial

region is assumed to be in stasis for the populations of the freely diffusive proteins.

We assume that any MMP-2 proteins that are produced in the invadopodial

region are instantly transported to the region made up of the domain minus

invadopodial region. This allows us to calculate the lifespan of each active MMP-2

protein, defined as the time until it is inhibited by TIMP-2, by using the Gillespie

Algorithm to be τi =
log(1/rand)

2.5× 10−2
where rand is a function that generates a

random number uniformly distributed in the interval (0,1). We note that this is

not dependent on the volume of the region considered so will be unchanged by

the size of the region of ECM that we consider. Since τi is in the range 0–100s

and Dms = 1.29 × 108cm2s−1 (with a correspondingly high root mean squared

displacement), MMP-2 activated at invadopodia are active over a much larger

spatial scale than the invadopodia themselves. We have therefore shown that it

is appropriate to consider MMP-2 activated at invadopodia to be considered as

instantly acting over the larger well-mixed region. We note that the size of the

larger domain does not affect the production of MMP-2 or the lifespan of the

proteins and so does not need to be explicitly defined.

In order to identify suitable forms of initial conditions for a scenario where the

majority of ECM degradation happens at invadopodia and for the amount of
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Figure 6.8: Schematic diagram showing the location of the invadopodium and its

relative size when compared to a cell.

MT1-MMP shuttled to the invadopodium as determined by biologically realis-

tic approximations, we note that, as illustrated in Figure 6.7, we have found

that there are minor amounts of active MT1-MMP or MMP-2 proteins when

TIMP2(t = 0) >MT1-MMP(t = 0), and therefore a correspondingly minor

amount of ECM degradation. We therefore choose initial conditions for MT1-

MMP(t = 0) = 47nM and TIMP2(t = 0) = 50nM. Additionally, we choose to use

an initial concentration of proMMP-2 of 60nM.

In order to obtain an estimate for the default shuttling rate of MT1-MMP to

invadopodia, tshuttle, we define it to be the rate that allows for the production

of 60nM of MMP-2 after an hour from the initial conditions prescribed above.

We have done so as we note that this is also the fastest shuttling rate allowed

as the amount of activated MMP-2 after one hour is 10% the initial amount

of proMMP-2 proteins from simulations performed with the increased TIMP-2

concentration of 143nM. This follows as a limit from Artym et al. (2006) where

they note that complete inhibition of matrix degradation at invadopodia occurs
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when the TIMP2 concentration is 143nM (3 µg/ml). As such, we have identified

a default MT1-MMP shuttling rate of tshuttle = 5.56s.

In performing ten computational simulations with these defined initial conditions

and default shuttling rate, we obtain a mean value of
∫ 3600

0
X(3) dt of 7028.6

with standard deviation of 339.8. This means that we take χ to be equal to

δ3 × 7028.6 and assume that instead of invadopodia terminating at one hour,

they now terminate once
∫

X(3) ≥ 7028.6.

6.3 Results

In order to identify the permissible range of values for the MT1-MMP shuttling

rate, we note that the default rate is the fastest possible shuttling rate and pro-

ceed to identify the slowest MT1-MMP shuttling rate. We performed groups of

ten computational simulations for increasing tshuttle until we identified a limit of

tshuttle = 17.8s. This limit was determined as we have not observed invadopodia

having a lifespan of over 2 hours in the biological literature. We present these

findings in Table 6.3.

From the available data, presented in Table 6.3, we are now able to establish

a range of permissible rates of MT1-MMP shuttling to invadopodia of tshuttle =

5.56 − 17.8s. We note that decreasing the shuttling rate of MT1-MMP, 1
tshuttle

,

causes an increase in the lifespan of the invadopodium. Despite the increase in

invadopodium lifespan, the total amount of MT1-MMP proteins shuttled to the

invadopodium over the course of its lifespan is decreased with decreasing shuttling

rate of MT1-MMP.

The amount of ECM degraded by MT1-MMP at, and MMP-2 activated at, the
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Figure 6.9: Short time dynamics (t=0-60s) of the MMP-2 activation system. Plot

A has a shuttling rate of 5.56s while plot B has no MT1-MMP shuttling. proMMP-

2 is presented in red, MT1-MMP in yellow, TIMP2 in blue, MT1-MMP:TIMP2 in

green, MT1-MMP:TIMP2:proMMP-2 in brown, MT1-MMP:TIMP2:proMMP-2:MT1-

MMP in dark blue, MMP-2 in black and TIMP2:proMMP-2 in lavender.
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Figure 6.10: Full term dynamics (t=0-3600s) of the MMP-2 activation system. Plot

A has a shuttling rate of 5.56s while plot B has no MT1-MMP shuttling. proMMP-

2 is presented in red, MT1-MMP in yellow, TIMP2 in blue, MT1-MMP:TIMP2 in

green, MT1-MMP:TIMP2:proMMP-2 in brown, MT1-MMP:TIMP2:proMMP-2:MT1-

MMP in dark blue, MMP-2 in black and TIMP2:proMMP-2 in lavender.
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Invadopodium MT1-MMP Activated Sum of MMP-2

tshuttle Lifespan (s) Shuttled MMP-2 Lifespans

5.56 3527.2 ± 105.6 817 ± 30 68 ± 10 2640.0 ± 400.1

9 4915.4 ± 144.8 792 ± 26 68 ± 10 2722.1 ± 501.5

13 6110.0 ± 125.5 754 ± 19 68 ± 10 2887.9 ± 514.4

17.8 7276.1 ± 279.3 742 ± 34 62 ± 4 2444.1 ± 357.6

Table 6.3: Mean with standard deviation values for when the time between MT1-MMP

molecules shuttling to MT1-MMP is varied from 5.56s to 17.8s. Further, we note here

that the total amount of ECM degraded by MT1-MMP will remain near constant across

the computational simulations regardless of the lifespan of the invadopodia by definition.

invadopodium, as defined by δ3

∫
X(3) and δ3

∫
X(3), respectively, remains ap-

proximately the same (∼ 7028.6 and ∼ 2500) as the shuttling rate of MT1-MMP

to invadopodium changes. As the lifespan of invadopodium is strictly increasing

with decreasing shuttling rate of MT1-MMP, the rate of degradation by MT1-

MMP proteins at invadopodia decreases as well as the rate of ECM degradation

by MMP-2 proteins activated at the invadopodia. As such, we have found that

while the amount of ECM degraded by invadopodia is not linked to the MT1-

MMP shuttling rate, the rate of ECM degradation is directly linked to the MT1-

MMP shuttling rate. Further, from computational simulations where we assume

MT1-MMP shuttling to invadopodia has been blocked, 1
tshuttle

= 0, we find that

there is only minimal levels of ECM degraded by either MT1-MMP or MMP-2

proteins.

.
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6.4 Discussion

We have studied MMP-2 activation at the smaller spatial and temporal scales

that are relevant when considering invadopodia by formulating a SSA model. We

have identified that stochastic effects on the scale of invadopodia can allow for

a significant activation of MMP-2 (up to 25% over 1 hour) in comparison to the

approximation of the ODE model presented of 3.06% when there is a constraint

on the initial conditions of TIMP2(t = 0) = 0.95MT1-MMP(t = 0). Further,

we found that when TIMP2(t = 0) > 0.95MT1-MMP(t = 0), little to no ECM

degradation of ECM takes place (δ1

∫
MT1-MMP+δ2

∫
MMP-2 is very small as

can be seen from plot B of Figure 6.7).

In contrast to the in silico approach in Hoshino et al. (2012), we consider MT1-

MMP shuttling to invadopodia to be responsible for the increased ECM degrada-

tion at invadopodia. However, our result would match their in vitro observation

that the blocking of vesicle transport of MT1-MMP would eliminate this increased

ECM degradation.

6.5 Future Work

The results of our model can be formulated into a manner similar to the biological

imaging shown in Figure 6.1 by using the schematic illustrated in Figure 6.11,

where where we consider a layer of ECM constituent parts of dimensions 5×50×

50µm with a single cancer cell, placed on top of this region with a cell-ECM

interface of 5 × 10−6cm−2 and consider the ECM degradation that would take

place through both MT1-MMP and MMP-2. The size of the region of ECM

degraded by each invadopodium would be determined by the size and shape of
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Radius by Volume of MT1-MMP

Height (µm) Invadopodial Region (L) shuttling rate

A 0.5 7.5 1.99× 10−15 1
tshuttleA

B 0.4 5 1.12× 10−15 1
tshuttleB

C 0.6 8 2.48× 10−15 1
tshuttleC

D 0.3 6 1.05× 10−15 1
tshuttleD

E 0.8 9 3.60× 10−15 1
tshuttleE

Table 6.4: Characteristics of the invadopodia labelled A-E

each invadopodial region, along with the amount of ECM within that region that

is predicted to be degraded. Further, the amount of ECM degraded across the

entire domain will be dependent upon the amount of free MT1-MMP at regions

other than the invadopodia as well as MMP-2 across the entire domain.

We consider 5 invadopodium labelled A-E in Figure 6.11. We consider each

invadopodia to have a related domain of volume 1.05× 10−15–3.60× 10−15L and

MT1-MMP shuttling rate as described in Table 6.4. We define this related domain

to be the region in which enzyme reactions can take place between membrane

bound and freely diffusible proteins, prescribed from a radius of a = 0.2µm from

the invadopodia.

We present the form that a typical result of such a model would take in Figure

6.12 where for simplicity, we have defined the amount and distribution of ECM

degraded by each invadopodium to be identical.

Further fruitful extensions of the model would seem to fall in into three categories.
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Figure 6.11: The location of the 5 considered invadopodia (A-E).

The first is to include further dynamics relating to MT1-MMP such as dimerisa-

tion, catalytic shuttling etc. as was incorporated in the ODE model of Karagian-

nis and Popel (2004). The impact of these additional processes on invadopodial

function is not yet clear and so such an extension may offer insights into com-

plimentary biological works. The second is having an adaptive invadopodium

shape which adapts according to the lifespan of the invadopodium. This could be

coupled with a computational model that maps the lifecycle of invadopodia in-

cluding retraction and formation such as that proposed in Enderling et al. (2008)

or the implementation of a moving boundary framework such as that proposed

in Trucu et al. (2013). The third is to incorporate the proposed model into one

which considers the entire cell. To do so would provide the benefits of being able

to include intracellular processes and be useful for the identification of significant

pathways for MT1-MMP shuttling and resultant ECM degradation.
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Figure 6.12: Results of the proposed model in the future work would be of this form.

In this case, we have defined the related distribution and amount of ECM degraded by

each invadopodium to be identical as the figure is currently an artificial construct rather

than the direct interpretation of results of the model.
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Chapter 7

Conclusions and Future Work

Throughout this presented work, we have concurrently studied two aspects of

cancer cell invasion. Firstly, degradation of tissue mediated by the soluble MMP-

2 and the membrane bound MT1-MMP, secondly the activation system of MMP-2

mediated by MT1-MMP and TIMP2. We applied the study of these elements of

cancer cell invasion in three circumstances. In Chapter 4, we established a novel

model of cancer invasion at the tissue scale through a system of PDEs, advancing

upon previous mathematical models of cancer cell invasion that consider generic

matrix degrading enzymes and could be considered to be parallel to works that

focus on the uPA system in cancer cell invasion. The potential of the presented

model to consider rich ECM environments is explored in Chapter 5 where we

consider only a minor modification to the system of PDEs, where we note that

the original model can be recovered. In the third and final research chapter,

Chapter 6, we considered a motivating problem that happens on the smaller

scale, that of subcellular invadopodia.

To establish the bare bones of the cancer cell invasion model in Chapter 4, we

drew on existing models in an examination of the most appropriate way in which
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to model the competition for space between the cancer cells and ECM constituent

parts through the haptoatactic sensitivity function and production terms of both

the cancer cell population and ECM density. We then developed this framework

to consider degradation of ECM mediated by MT1-MMP and MMP-2 where

the latter protein is activated solely through the cleavage by MT1-MMP of the

pro domain region of proMMP-2 when the proMMP-2 protein is in a complex

formation of MT1-MMP, TIMP2 and proMMP-2. Rather than considering all of

the intermediary complexes that would be involved in this process, a simplified

schematic for this activation process was proposed to minimise computational

expense.

Parameterisation of the presented model came under two parts. Initially, a num-

ber of parameters could be drawn from the literature where similar mathematical

models of cancer cell invasion with ECM degradation mediated by generic matrix

degrading enzymes. The second part of the parameterisation came with the con-

sideration of the specific matrix degrading enzymes of MMP-2 and MT1-MMP

and the activation process of MMP-2 mediated by MT1-MMP and TIMP2. To

completer the parameterisation, we were required to briefly study two submod-

els of MMP-2 activation in order to validate the simplified schematic of MMP-2

activation by the use of biologically estimated parameters.

Despite the steps taken, there remained one parameter that was very poorly

parameterised. While this parameter is featured in every research chapter, we

feel that it is sufficient to remark upon it in the context of the initial research

chapter, only. The rate in which a free MT1-MMP protein binds to the complex

of MT1-MMP, TIMP2 and proMMP-2 was considered to be 3 × 103M−1s−1 in

Karagiannis and Popel (2004) and 2 × 106M−1s−1 where we chose to consider

this reaction rate to be 4.3× 104M−1s−1. As we consider this to be a significant

potential source of errors in our model, a better biological estimation of the rate
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at which this reaction takes place must be found before further validation of the

presented models against biological data and meaningful predictions can take

place.

By considering the definition of volume filling/competition for space, we noted

that only results of c + v ≤ 1 + α may be biologically relevant, where 0 ≤

α << 1, and only when the case of c + v > 1 is short lasting and righted to be

c + v ≤ 1. We noted that by considering volume filling terms in the haptotactic

sensitivity function, the likelihood of finite tie blow-up solutions was reduced and

the production terms of the cancer cells and ECM ensured that the populations

of c and v were reduced, but not below zero, such that c + v ≤ 1. Future work,

which would compliment the effects of considering volume filling terms in the

haptotactic sensitivity function of reducing the likelihood of finite time blow-

up solutions, would be in the consideration of cell-cell and cell-ECM adhesion

through the use of integer-PDEs, as outlined in the earlier chapter focusing on

providing a literature review. There would also be exciting possibilities that could

be considered in such models that have not, to the best of the author’s knowledge,

been investigated. MT1-MMP that is unbound from TIMP2 has the ability to not

only degrade extracellular components but can cause the dissociation of integrals

responsible for cellular adhesion. As a decrease in cellular adhesion has been

linked to an increased invasiveness of cancer cells, such a consideration in an

integro-PDE model of cancer cell invasion may provide a means of modelling a

cancer cell population that becomes progressively more invasive over time at a

rate determined by the amount of free MT1-MMP.

We identified an appropriate form of considering the significance of the degrada-

tion by the two types of matrix degrading proteins to be in measuring the running

total of how much degradation of ECM has taken taken place from each of the

specific MMPs. We found that the majority of bulk collagenolytic activity was
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due to degradation of ECM by MMP-2 after a short time interval. Where we con-

sidered the cancer-ECM interface to be defined as the region between c=0.01 and

v=0.01, we were able to provide approximations for the concentrations of MMP-2

(0A: 1-4nM, 0B:1-5.5nM) and MT1-MMP (0A&OB: 0.1-5nM) within this region.

These values are broadly defined by the parameters αmt, αT , βmtandβms, which

can be modified to form a closer match with biological observations that may

be obtained. We specifically note that where the parameter defining the produc-

tion rate of TIMP2, αT , was modified in isolation of all other parameters, there

was found to be a value that allowed for a peak amount of the activated MMP-2

steady state. We performed our simulations at the approximate value of this peak

of αT = 4 where we note that the ratio of the steady state concentrations of the

active MMP-2 to MT1-MMP can be modified to match desired results through

the varying of parameter for the production rate of TIMP2 (Figure 4.19) with the

knock on effect to the steady state concentrations of the intermediate complex,

f , and TIMP2 as indicated in Figure 4.20.

In Chapter 5, we introduced the concept of the “suitability of the matrix” through

only a small modification to the equations defining the model. This allowed for

a much larger range of richly composed ECM constructs that can be considered

with the model. We found the parameter δs to be significant in determining

the morphology of the cancer mass as evidenced by the comparison between

Invasion Scenario 1A and 1B where the only difference was the increase in the

parameter δs. We found that for a high enough δs, the results of the model are

similar to, but do not tend to, those obtained for when there is no suitability

modifier considered (Invasion Scenario 0A), unless there is a lack of diffusion for

the MMP-2 proteins. Specifically, an increase in parameter δs causes an increase

in the amount of suitability modifier that has been remodelled, an increase in the

amount of total cancer cells and an increase in the total degradation of ECM.
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A new role for MT1-MMP was now considered in which it was able modify the

suitability of the ECM to a neutral state. This granted a much more significant

role for MT1-MMP in determining the invasiveness of the cancer in some struc-

tured ECM in which there was considered to be a low initial suitability of the

matrix. However, we note that the ratio of active MT1-MMP to active MMP-2

is unaffected by the suitability of the matrix, as considered in this model.

A qualitative result that occurred across all simulations of the model proposed

in Chapters 4 & 5 was that near the leading front of the cell invasion boundary

(though not directly upon the boundary) there is an increase in both the con-

centrations of the intermediate complex f and TIMP2 from the concentration

where the cancer population has stabilised at the maximum non-dimensionalised

value of 1. This increase in the intermediate complex, f , was shown to not be

due to the initial condition being higher than this increased amount where in

Invasion Scenario 0B f began near its steady state and reached a maximum of

almost twice this value. An increase in TIMP2 and the intermediate complex, f ,

is therefore considered to take place at areas where there is active degradation of

ECM.

Computational simulation results showed that the matrix suitability modifier

and its regulation played an important role in determining the precise pattern of

invasion. As has been observed in the experimental data of Sabeh, Shimizu-Hirota

and Weiss (2009) and Li et al. (2008), we have shown that the architecture of

the tissue can negatively impact invasion under circumstances of pore-size being

below an optimal level or in environments of cross-linked collagen type I and IV,

with both of these conditions requiring tissue remodelling specifically by MT1-

MMP. Pampaloni et al. (2007) propose that 3D in vitro models can be used

to closer approximate whole-animal systems than 2D cell cultures where we note

that the model proposed in Chapter 4 may be sufficient for 2D in vivo cell cultures
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whereas the marginally more complex model of Chapter 5 is more appropriately

compared with 3D in vitro or in vivo observations.

To further investigate the matrix suitability modifier from a biological perspec-

tive, a number of biologically motivated works would need to take place. Firstly,

through imaging of defined 3D tissue constructs in vitro, quantification of ECM

constructs can take place. If this is coupled with the effect on cancer cell invasion

through these mediums, we can obtain quantification of the suitability of the ma-

trix and estimates of the parameter for the remodelling of suitability, δs. These

biological experiments could follow the approaches of the in vitro experiments

performed in Nyström et al. (2005) and Martins et al. (2009) where instead of

using a collagen:matrigel assay, a 3D construct such as is considered in Sabeh,

Shimizu-Hirota and Weiss (2009) or Li et al. (2008) could be used to investi-

gate the invasiveness of cancer cells to establish a quantitative “invasive index”

in organotypic cultures. Once such thorough quantification of the parameter δs

has been undertaken with a working knowledge of how to quantify the suitability

of the matrix, comparison with accurate in vivo imaging data will allow for the

consideration of patient-specific predictions for how the cancer cell invasion will

progress.

If we were to investigate the impact of new inhibitors on cancer cell invasion, the

reduced schematic of MMP-2 activation would be too focused and would need to

be expanded back to the original format before the impact of selective inhibitors

to specific parts of the MMP-2 activation system could be considered.

To expand on these models mathematically, a multi scale approach, such as that

considered in Trucu et al. (2013), would more accurately allow for the consid-

eration of dynamics at the leading edge of the cancer cell mass. As we have

considered remodelling of the suitability of the matrix to be the sole domain of
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MT1-MMP, which are bound to cancer cells, the leading edge of the cancer cell

mass will face movement through ECM that is considered to be the least suitable

to move through. As such, the leading edge of cancer cell invasion would benefit

from a more focussed approach to better approximate the overall morphology of

the cancer cell mass.

Further, in order for a tumour to grow past 2–3mm in diameter, there needs to be

sufficient nutrients attracted towards the tumour through angiogenesis (Folkman

and Hochberg, 1973). As the models proposed in Chapters 4 & 5 can provide esti-

mates for how the cancer cell mass will progress for spatial considerations beyond

the 2-3mm limit, the inclusion of oxygen distribution and related dynamics offers

exciting capabilities for the inclusion of additional heterogeneity in the ECM and

cancer environment. This could be done through the inclusion of some of the dy-

namics from the many mathematical models for angiogenesis, which are covered

in the review papers of Mantzaris et al. (2004), Chaplain and Lolas (2006) and

Scianna et al. (2013).

In Chapter 6, we studied MMP-2 activation at the smaller spatial and temporal

scales that are relevant when considering invadopodia by considering a stochastic

approach with and without MT1-MMP shuttling to invadopodia. We identified

that stochastic effects could cause significant fluctuations in the activation of

MMP-2 which is in contrast to the ordinarily tightly regulated MMP system.

The possibility of an increased activation of MMP-2 at invadopodia in conjunction

with the shuttling of MT1-MMP to invadopodia allows for a potentially significant

increase in overall ECM degradation.

We identified a default value of MT1-MMP shuttling to invadopodia in accordance

to the biologically observed scenario (Yamaguchi et al., 2005) of the majority of

ECM degradation on the cell level being the result of MT1-MMP focalised at
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invadopodia. We constructed this scenario in accordance to the biological ob-

servation of ECM degradation at invadopodia being wiped out at set TIMP2

concentrations (Artym et al., 2006). In order to predict a range of MT1-MMP

shuttling rates, we made the assumption that invadopodia have a lifetime depen-

dent upon the amount of cortactin dissociated by MT1-MMP and then found the

limits of MT1-MMP shuttling that allowed for the lifetime of invadopodia to be

within biologically observed timeframes.

If we were to instead couple the dynamics proposed in this model to a model

of invadopodia formation and lifespan, more accurate approximations of generic

invadopodia could be approximated. Further, with the consideration of a growing

and moving invadopodia, we would be able to model a moving domain where

interactions with the membrane bound MT1-MMP and associated complexes

can take place.

We could again make use of a multi scale mathematical approach of the form

considered in Trucu et al. (2013) when applied to an individual cell as in Peng

(2015), coupled with a model for invadopodia formation and regulation, to ap-

proximate the amount of MMP-2 activated following a cell boundary and how

this compares to the increase of MMP-2 activated at invadopodia as a result of

MT1-MMP shuttling. Adapting such a model would allow for the examination

of how MT1-MMP is shuttled to invadopodia intracellularly and open up possi-

ble avenues of research related to what causes and affects this shuttling with the

result it would have on MMP-2 activation and ECM degradation.
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I., Cal, S., Hoyer-Hansen, G. and López-Ot́ın, C. (2012), ‘New and paradoxi-

cal roles of matrix metalloproteinases in the tumor microenvironment’, Front.

Pharmacol. 3, 140.

Nyström, M., Thomas, G., Stone, M., Mackenzie, I., Hart, I. and Marshall, J.

(2005), ‘Development of a quantitative method to analyse tumour cell invasion

in organotypic culture’, J. Pathol. 205(4), 468–475.
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