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Abstract 

Background: The Nanoporation project set out to explore specific solutions to 

overcome the current challenges of targeted drug delivery (TDD) to tumours using 

magnetic resonance imaging guided focused ultrasound (MRgFUS) to cavitate 

microbubbles (MBs) for increasing cell permeability and to open ‘drug nano-capsules’ 

to release proven active anticancer drugs directly to the tumour site with reduction of 

systemic drug dosage needed for the desired therapeutic effect. 

Objective: The work reported here aimed to develop novel nano-carriers for existing 

anticancer drugs, by establishment of human cancer cell models to evaluate the carriers’ 

encapsulation efficiency in vitro and in vivo, by using animal models and a clinical 

MRgFUS system to investigate the carrier-drug vehicles’ in vivo distribution and 

localised drug release / cellular drug uptake. 

Methods: A novel γ-cyclodextrin (γ-CD) based carrier for encapsulation of 

doxorubicin (DOX) was synthesised and fully characterised. The encapsulation 

efficiency was assessed under various temperatures and pH levels by both chemical 

analysis and in vitro human cancer cell modeling with KB and HCT116 cells. A 

high-throughput in vitro FUS device was designed and applied, in combination with 

carrier-DOX inclusion. SonoVue
®
 MBs was used to investigate TDD in cell 

monolayers. Ex vivo and in vivo trials were carried out with a clinically approved 

ExAblate MRgFUS system (InSightec, Israel) to establish a safe and efficient clinical 

TDD protocol on small rodents.  

Results: The desired γ-CD based carrier greatly reduced DOX’s toxicity and the 

carrier-DOX inclusion was highly stable under physiological temperature conditions as 

well as under a wide range of acidic conditions (pH 1.0 ~ 7.0); the encapsulated DOX 

is slowly released under hyperthermic conditions (up to 50 °C). In the presence of MBs, 

application of FUS with low mechanical indexes, under which no thermal effect was 

observed, enhanced the drug uptake into tumour cells for both encapsulated and free 

DOX. Optimal setups of MR parameters and FUS parameters were identified ex vivo 



xxi 

and in vivo, allowing application of MRgFUS treatments to 4 live mice bearing tumours 

(human colorectal carcinoma, up to 1059.71 mm
3
) under anaesthesia with full recovery. 

Conclusions: The study demonstrated the possibility of translation of the constructed 

γ-CD derivative to potential clinical use as a delivery vehicle for DOX using combined 

thermal and mechanical release mechanisms by clinically applicable MRgFUS– 

triggered TDD with the potential for cancer therapy. 
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Chapter 1  

Introduction 

The main modalities of treatment for cancer patients are conventional surgery, 

chemotherapy and radiation therapy. Chemotherapy is particularly challenging 

primarily because of limited uptake of drugs by the tumour cells and the significant 

systemic toxicity. Better understanding of tumour biology in recent years and new 

targeted drug delivery (TDD) approaches that are being explored using different 

nanosystems, bioconjugates, administration routes and controlled delivery devices 

provide optimism in developing successful targeted and well controlled cancer therapy 

(Vasir and Labhasetwar 2005). 

In spite of that, the current drug delivery systems exhibit many specific problems: 

1) potencies and therapeutic effects of drugs are limited or otherwise reduced because 

of the partial degradation that occurs before drugs reach a desired target in the body; 2) 

time-release dependent drugs deliver treatment continuously once ingested, rather than 

providing relief of symptoms and protection from adverse events solely when 

necessary; and 3) in vivo circulation and distribution of drugs cannot be well monitored 

and controlled for their targeted delivery and release. Methods are not yet established 

to safely target drugs to specific areas of the body. Therefore, the purpose of reliable 

drug delivery systems is to deploy drugs intact to specifically targeted parts of the body 

through a medium that can control the therapy’s administration by means of either a 

physiological or chemical trigger combined with a visualised monitoring tool 

(Vogelson 2001). To achieve this aim, nanotechnology (nanocarrier) and 

energy-mediated delivery with real-time visualisation based monitoring systems were 

proposed and developed to improve TDD by many researchers during the last decade. 

http://europepmc.org/abstract/MED/16029056/?whatizit_url=http://europepmc.org/search/?page=1&query=%22cancer%22
http://europepmc.org/abstract/MED/16029056/?whatizit_url=http://europepmc.org/search/?page=1&query=%22tumor%22
http://europepmc.org/abstract/MED/16029056/?whatizit_url=http://europepmc.org/search/?page=1&query=%22tumor%22
http://europepmc.org/abstract/MED/16029056/?whatizit_url=http://europepmc.org/search/?page=1&query=%22cancer%22
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1.1 Targeted Drug Delivery (TDD) 

TDD is an intensive research area encompassing several engineering branches, 

physics, physical chemistry, and biology, combined with molecular pharmaceutics and 

etc. It essentially involves connecting a drug release site to a predetermined anatomical 

site with the objectives of high efficacy and safety via controlled drug release location, 

timing, dosage and transport (Kleinstreuer, Childress et al. 2013). The key 

requirements of an effective TDD system include retention, evasion, targeting and 

release. However, many obstacles exist to the purpose of strengthening the therapeutic 

index of a TDD system by selectively delivering it to target areas. Some of these 

concerns have been addressed by recent developments in areas such as liposomes, 

prodrugs, external targeting, controlled gene expression and antibodies (Mills and 

Needham 1999).  

In the various TDD systems, the physico-biochemical properties of the drug carrier, 

the delivery device and optimisation of targeting methodology are the most critical 

factors for successful TDD (Kleinstreuer, Childress et al. 2013). To improve the 

efficiency of TDD, various targeting mechanisms have been proposed. The most 

widely used TDD strategies are passive targeting by accumulation of nanomedicines 

through the leaky vasculature of a tumour or enhancement of permeability and 

retention effects, and active targeting by attaching specific ligands on the surface of 

the carriers to increase affinity towards the site of interest (Torchilin 2000; Farokhzad 

and Langer 2009). 

Besides, researchers have investigated a number of physical energy triggers to 

improve the efficiency of in vivo TDD, which are (Figure 1.1): ultrasound-mediated 

sonoporation, light intervention optoporation, electric field impelled electroporation, 

magnetic field forced magnetoporation, and temperature gradient triggered 

thermoporation, by using, for example, thermal effects or mechanical forces to enhance 

drug delivery within the targeted cells or tissues and to activate the drugs using a 

similar or a different external trigger (Lakshmanan, Gupta et al. 2013).  
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Figure 1.1 Different physical energy modalities used for drug delivery. Drug 

delivery enhancement through sonoporation, optoporation, electroporation, 

magnetoporation, and thermoporation are illustrated  

(Lakshmanan, Gupta et al. 2013). 

1.2 Nanocarrier 

A nanocarrier is a nanomaterial that is used to transport another substance, such as 

a chemotherapy agent. Widely used nanocarriers include micelles, polymers, 

dendrimers, carbon-based materials, liposomes and some other substances (Qian, Sun 

et al. 2012). Nanocarriers have the potential to improve the therapeutic effect of drugs 

that suffer from poor solubility and poor stability. This is done by improving their 

pharmacokinetics by tailoring the release rate (Blanco, Hsiao et al. 2011; Grazú, Moros 

et al. 2012; Venditto and Szoka Jr 2013), thereby reducing unwanted toxicity and 

changing the distribution of the drug in tissue. Sarker and Workman (Sarker and 

Workman 2007) stated that many existing cytotoxic agents discovered during the 

1960s such as the platinates, camptothecins and adriamycins, which all suffer from 

poor solubility, poor pharmacokinetics, reduction of therapeutic efficacy and various 

harmful side effects, are currently being improved by researchers through the use of 

nanomedicine for anticancer treatments (Davis, Chen et al. 2008). Therefore, 

nanocarriers are increasingly being used to improve the solubility and 

pharmacokinetics of the drug and show promising reductions of adverse side effects 

(Blanco, Hsiao et al. 2011). Figure 1.2 shows advantages of nanocarriers. 

http://en.wikipedia.org/wiki/Nanomaterial
http://en.wikipedia.org/wiki/Micelles
http://en.wikipedia.org/wiki/Polymers
http://en.wikipedia.org/wiki/Liposomes
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Figure 1.2 Advantages of nanocarriers for cancer nanomedicines  

(Mousa and Bharali 2011). 

1.3 Motivation 

 TDD trigger: Why focused ultrasound (FUS) and magnetic resonance guided 

FUS (MRgFUS)?  

One of the recently developed physical TDD drivers is focused ultrasound (FUS) 

(Dromi, Frenkel et al. 2007; Ibsen, Benchimol et al. 2011) that allows the deposition of 

ultrasound bio-effects including heating, cavitation and radiation force in deep tissues 

in order to: 1) enhance the permeability of pathological cells; 2) localise drug release 

from nanocarriers; 3) increase extravasation of drugs from carriers; and 4) improve 

diffusivity of drugs (Husseini and Pitt 2008; Deckers and Moonen 2010). For example, 

certain tumour microenvironments are characterised by mild hyperthermia (1 – 2 °C 

above physiological temperature) (Vaupel, Kallinowski et al. 1989; Venditto and 

Szoka Jr 2013) where thermo-responsive drug-carrier nanosystems can be used. In 

addition, ultrasound contrast agent (USCA) microbubbles (MBs) are playing an 

important role in diagnosis of cancer. Nowadays, USCA can not only help to 

distinguish tissues and improve imaging, but can also induce local drug delivery by 

enhancing accumulation of drugs at a targeted tumour site and by increasing tumour 

vascular permeability because of cavitation and oscillatory effects such as 

microstreaming within the sonic field (Lin, Li et al. 2012).  

Based on the treatment strategy of FUS, a new method developed very recently in 
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TDD is the combination of magnetic resonance guidance with FUS such that, by 

using MR imaging (MRI) as a tool, the safety profile of FUS-mediated targeted drug 

release and uptake (Dick and Gedroyc 2010) can be improved. Clinical MRgFUS 

systems have been developed by InSightec (work with GE MRI, Haifa, Israel) and 

Philips Healthcare (Amsterdam, The Netherlands). Specifically, many reports state that 

TDD applications to overcome the blood-brain barrier (BBB) can be applied safely, 

reliably and in a controlled manner on rhesus macaques by using an ExAblate 

MRgFUS system (from InSightec) (Vykhodtseva 2010; McDannold, Arvanitis et al. 

2012; Burgess and Hynynen 2013; Jolesz and McDannold 2014). Additionally, Treat et 

al. (Treat, McDannold et al. 2012) have reported their in vivo work using MRgFUS for 

TDD with liposomal doxorubicin in which result in rats have shown that FUS can 

temporarily permeabilise the BBB but without causing evident tissue damage (Figure 

1.3). This indicates that the approach may significantly increase the antineoplastic 

efficacy of the cytotoxic agent in the brain. Further authors have proposed that the 

therapeutic benefit of combined MRgFUS-enhanced chemotherapy, achieved with a 

single treatment, is an important step forward in the development of this technique for 

the improved treatment of patients with malignancies. 

 

Figure 1.3 T2-weighted MR images of a rat brain with implanted 9 L gliosarcoma 

(outlined) before and 1, 2 and 3 weeks after treatment with focused ultrasound 

and liposomal doxorubicin (FUS+DOX; top row) and treatment with liposomal 

doxorubicin (DOX only; bottom row). While the tumour in the rat treated with 

DOX only continued to grow exponentially (R
2
 = 0.999) even after treatment, 

tumour growth in the rat treated with FUS+DOX was visibly slowed in 

comparison (Treat, McDannold et al. 2012). 
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Additionally, researchers from Philips reported their advanced TDD study using 

drug release from temperature-sensitive liposomes (ThermoDox) mediated by 

Sonalleve MR-HIFU (high intensity focused ultrasound) in combination with 

gadolinium-based MRI contrast agent. They found the drug uptake in the targeted 

tumour was increased between 2 to 5-fold 

(http://www.newscenter.philips.com/main/research/news/ 

backgrounders/2011/20110207-mr-hifu-backgrounder.wpd#.UxRsE4UyOSr). The 

same scientists also stated that the visualisation results by MR guidance may provide 

an indication if the treatment was effective and may be capable of identifying regions 

within a tumour that are poorly perfused with blood. 

Therefore, MRgFUS system was selected as a TDD tool in this thesis as it has 

benefits of: 1) being completely non-invasive; 2) providing high-resolution tissue 

imaging guidance; and 3) providing real-time temperature mapping feedback of the 

treatment region. 

 Nanocarrier: Why cyclodextrin (CD) modification?  

In terms of drug carrier development, Venditto and Szoka Jr. (Venditto and Szoka 

Jr 2013) summarised the approved nanomedicines for cancer therapy, where the phases 

of invention, innovation and imitation were identified. As can be seen in Figure 1.4, 

monoclonal antibodies (Figure 1.4 C) and liposomes (Figure 1.4 B) have passed the 

invention and innovation phases and entered the imitation phase before 2000. However, 

polymer based nanomedicine (Figure 1.4 A), especially CD synthesis, began after 1980. 

To date, clinical trials are still in the innovation phase for all CD polymer modification 

and CD-based anticancer nanomedicine such as a remarkable nanoparticle assembly 

containing CD-based polymer and camptothecin (CRLX101), reported by Davis’ team 

(Gaur, Chen et al. 2012).  

 

http://www.newscenter.philips.com/main/research/news/%20backgrounders/2011/20110207-mr-hifu-backgrounder.wpd#.UxRsE4UyOSr
http://www.newscenter.philips.com/main/research/news/%20backgrounders/2011/20110207-mr-hifu-backgrounder.wpd#.UxRsE4UyOSr
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Figure 1.4 Invention, innovation and imitation timeline on the plot of publications 

per year with seminal publications highlighted. (A) Polymers; (B) Liposomes; (C) 

Monoclonal Antibodies (Venditto and Szoka Jr 2013). 
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For CDs, among the most common three native ones (α-, β- and γ-CD), α-CD and 

β-CD are known to be renally toxic and disruptive of biological membranes while γ-CD 

and some of its derivatives appear to be much safer (Stella and He 2008). Specifically, 

for the most frequently used cancer chemotherapeutic agent, doxorubicin (DOX), Anand 

et al. (Anand, Ottani et al. 2012) studied since the 90s the binding between DOX and 

unmodified natural CDs. Bekers and coworkers (Bekers, Beijnen et al. 1990; Bekers, 

Beijnen et al. 1991) as well as Dromi et al. (Dromi, Frenkel et al. 2007) experimentally 

demonstrated that DOX bonds significantly to γ-CD, whereas it possesses lower affinity 

to α-CD and β-CD.  

To summarise, two factors: 1) the modification of natural CDs is regarded as novel 

and has unexplored potential; and 2) γ-CD appears to be less toxic and exhibits higher 

binding affinity towards the anticancer agent DOX; have served as the motivation for 

undertaking the rational design and chemical modification of γ-CD as the delivery 

nanocarrier for DOX reported in this thesis. 

1.4 Structure of Thesis 

This thesis reports: 

1) The latest research progress in the field of nanocarriers in anticancer therapy 

and FUS-mediated TDD systems;  

2) The design, synthesis and evaluation of a novel γ-CD based nanocarrier for 

encapsulation and delivery of DOX;  

3) In vitro application of the carrier-drug inclusion by establishment of human 

cancer cell modelling through cytotoxicity assays and drug uptake investigations;  

4) In vitro application of a unique high throughput FUS device (a ‘sonicator’) in 

combination with USCA – SonoVue
®
 MBs to release the drug and/or increase cellular 

drug uptake;  

5) Ex vivo and in vivo pre-clinical trials of TDD in nude mice with a clinical 

ExAblate MRgFUS system.  

Chapters 1 & 2: Introduction & Literature review. This first chapter briefly 
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introduces the motivation of this work as well as the outline of this thesis. Chapter 2 

overviews the literature in the field and summarises the latest advances in nanocarriers 

in anticancer therapy and prospective applications of FUS-mediated TDD systems. 

Chapter 3: Development of a novel γ-cyclodextrin (γ-CD) based nanocarrier 

for doxorubicin (DOX). This chapter presents the detailed design, synthesis and 

evaluation of a novel γ-CD derivative: mono-6’-deoxy-6-[3-(naphthalen-2-yl)-2- 

(amino)propionylamino]-γ-cyclodextrin (carrier 3b) with a β-naphthyl alanine 

residue attached to the primary face of γ-CD. DOX encapsulation efficiency by carrier 

3b was evaluated under various temperatures and pH levels and the potential of the 

carrier 3b conjugate as a thermo-sensitive carrier for DOX is discussed. 

Chapter 4: In vitro study by human cancer cell modelling. This chapter 

provides information on in vitro experimental modelling undertaken on two human 

cancer cell lines: KB (human nasopharyngeal epidermal carcinoma) and HCT116 

(human colorectal carcinoma). It reports a series of cytotoxic and cellular drug uptake 

assays carried out to further validate the encapsulation capability of the carrier 3b for 

DOX under normal physiological conditions. Hyperthermia (up to 50 °C) was 

employed to investigate the potential unloading factors of DOX from the carrier 3b. 

The biological observation of the encapsulation capacity of carrier 3b and the 

potential application of the vehicle in TDD are addressed. 

Chapter 5: FUS mediated TDD: application of a unique in vitro sonicator 

device. A high-throughput in vitro sonicator device with FUS transducers was 

designed and implemented, in combination with USCA, in the form of SonoVue
®

 MBs, 

to test cells’ viability, drug release and cellular uptake of DOX from the drug-carrier 

inclusion. The results obtained by application of FUS in the absence and presence of 

MBs with low mechanical indexes, under which no thermal effects were observed, are 

discussed. Atomic force microscopy (AFM) is reported, to analyse membrane 

morphology of cancer cells upon exposure to FUS. A thermal camera and 

thermocouples were employed to monitor the temperature change during the 

application of FUS. This section of the study thus suggests that the constructed γ-CD 
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derivative may serve as a delivery vehicle of DOX with combined thermal and 

mechanical mechanism, e.g., clinically applicable FUS, -triggered TDD.  

Chapter 6: Ex vivo and in vivo trials with a clinically approved MRgFUS 

system. This chapter describes ex vivo and in vivo pre-clinical trials (without injection of 

drug and carriers) which have been carried out with the clinically approved ExAblate 

MRgFUS system, in order to establish a safe and efficient clinical TDD protocol on 

small rodents with subcutaneous human cancer xenografts. The optimal MRI and FUS 

parameters, as well as the setup of in vivo trials, are introduced to explain the possibility 

of allowing application of MRgFUS treatments in live nude mice bearing subcutaneous 

tumours under anaesthesia with full recovery.  

Chapter 7: Conclusions. The final chapter summarises achievements of the entire 

study, and further discusses and raises remaining problems, suggestions and possible 

solutions for future work. 

1.5 Contributions to Knowledge 

 A novel γ-CD based carrier 3b was successfully designed, synthesised and fully 

characterised for molecular encapsulation of the anticancer agent DOX. The evaluation 

by chemical analysis techniques, in vitro cytotoxic testing and cellular drug uptake 

investigation all showed that the carrier 3b had potent encapsulation ability for DOX. 

 Application of a unique in vitro sonicator device as a FUS source to expose cancer 

cells cultivated in 96-well plate. The use of this standardised device and experimental 

method reduced instrument-related variability in reported results, reduced the time 

associated with the FUS exposure of a large number of wells of a 96 well-plate and 

thus increase the accuracy of exposure duration of cells to encapsulated and 

non-encapsulated drugs. Moreover, with this high throughput device, the established in 

vitro protocol provides an important platform for biologists to carry out FUS-induced 

TDD in cell culture.  

 Successful evaluation and validation that the novel carrier 3b is thermally 

sensitive and stable under mechanical forces through bonding constant (Kbinding) 
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investigation of the carrier-DOX inclusion by exposure to hyperthermia / FUS with no 

thermal effects.   

 Ex vivo experiments offered a satisfactory simulation of in vivo studies, 

highlighting a series of questions and potential problems. A safe and efficient clinical 

TDD protocol was successfully established on small rodents. MRI and FUS parameters 

have been optimised. In addition, an optimal setup was identified that will allow the 

application of MRgFUS treatments to live mice with tumours under anaesthesia with 

full recovery.  

 The first in vivo trial provided many insights into the application of MRgFUS for 

targeted drug release in situ in a small animal model. The presented experiment tested 

and confirmed the feasibility of the MRI and FUS sonication modes.  
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Chapter 2  

Literature Review 

2.1 Introduction 

Cancer remains one of the leading causes of mortality worldwide, affecting over 10 

million new patients every year (Jemal, Siegel et al. 2010). At present, cancer 

treatments include surgical resection, chemotherapy and radiation. However, although 

over 90 chemotherapeutic drugs have been approved for clinical use, their efficacy has 

been severely hindered by dose-restriction toxicity and patient morbidity (Blanco, 

Kessinger et al. 2009). Since two decades ago, nanoscale (10 – 200 nm) therapeutic 

systems have emerged as one of the most novel therapeutic modalities for cancer 

treatment (Duncan 2003; Ferrari 2005; Peer, Karp et al. 2007). 

This chapter reviews the arsenal of nanosystems and molecules available in TDD 

systems for cancer therapy and emphasises the challenges for these nanosystems in the 

same applications. Cyclodextrin derivatives discussed particularly, as they are still 

regarded as novel excipients of unexplored potential (Brewster and Loftsson 2007). In 

addition, factors that may trigger release of anti-cancer agents from nano-vehicles, 

such as temperature, physiological pH environments and ultrasound, are introduced, 

focusing particularly on the MRgFUS mediated TDD that has been proposed as a 

powerful strategy. Finally, a summary discusses the contributions of the literature to 

the field of TDD in cancer therapy and the overall strengths and weaknesses of current 

progress as well as future research directions.  
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2.2 Nanosystems for TDD in Cancer Therapy: 

Potential and Challenges 

Nanotechnology has the potential to revolutionise cancer diagnosis and treatment. 

Pioneers’ contributions from protein engineering and materials science have given new 

hope to novel nano-scale targeting approaches that may bring benefits to cancer patients. 

To date, however, only a few clinically approved nanocarriers exist, incorporating 

anti-cancer molecules to selectively target and bind to cancer cells (Peer, Karp et al. 

2007). These include organic nanocarriers such as liposomes, micelles, polymer-based 

carriers and dendrimers; inorganic particulates like metal (gold and iron oxide) particles; 

and carbon nanotubes (Figure 2.1). In comparison to conventional small molecule-based 

therapies, nanotherapeutic systems have many potential advantages for cancer therapy, 

including higher payload capacity, prolonged blood circulation times, reduced toxicity 

to healthy tissues and improved anti-tumour efficacy (Blanco, Kessinger et al. 2009). 

 

Figure 2.1 Different nanocarriers for cancer nanomedicines  

(From: http://wichlab.com/research/)  

2.2.1 Organic Nanosystems for Cancer Treatment 

Liposomes 

Liposomes are one of the most attractive nanosystems. The interesting property is 

their natural ability to target cancer. Liposomes of certain sizes, typically less than 
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400 nm, can rapidly enter tumour sites from the blood, but are kept in the bloodstream 

by the endothelial wall in healthy tissue vasculature. Anti-cancer drugs such as 

doxorubicin (Doxil
®
, Ben Venue Laboratories, Bedford, Ohio, USA), camptothecin and 

daunorubicin (DaunoXome
®
, Nexstar Pharmaceuticals (Gilead Sciences), Foster City, 

California, USA) are currently being marketed in liposome delivery systems in cancer 

therapy. 

Most of the medical applications of liposomes that have reached the preclinical 

stage are in cancer treatment (Gregoriadis and Wiley 1988; Gregoriadis 1995; Lasic and 

Papahadjopoulos 1998). Kobayashi et al. (Kobayashi, Tsukagoshi et al. 1975), and 

Mayhew et al. (Mayhew, Papahadjopoulos et al. 1976) first demonstrated in vivo 

application of a liposome-encapsulated anti-cancer agent, cytosine arabinoside, in 

animal models, showing that liposome-protected cytosine arabinoside prolonged the 

survival time of mice suffering from L1210 leukemia. Presant et al. (Presant, Proffitt et 

al. 1988) first revealed human solid tumours (Kaposi's sarcoma and malignant 

lymphoma) to be successfully imaged by accumulation of indium 111-labeled 

liposomes in regions of enhanced vascular permeability (Presant, Blayney et al. 1990). 

Gabizon et al. (Gabizon, Peretz et al. 1989) presented the first clinical trial, in which 

liposome-associated DOX improved the tolerance of liver cancer patients by reducing 

side-effects such as nausea and vomiting.  

In contrast, Lasic (Lasic 1998) proposed that most early studies showed that 

liposome-entrapped drug molecules were only poorly bioavailable, which caused 

reduction of cytotoxicity but with a severe negative effect on efficacy. For instance, 

Lasic and Papahadjopoulos (Lasic and Papahadjopoulos 1998), Gabizon et al. (Gabizon, 

Chisin et al. 1991) and Barenholz et al. (Barenholz, Amselem et al. 1993) showed in 

several clinical studies that liposome-associated drugs were rapidly cleared by the 

reticuloendothelial system and had drug leakage during circulation. Therefore, the 

concept of ‘stealth liposomes’ was suggested to revive targeted liposomal drug delivery 

(Lasic 1998).  

Stealth liposomes, also known as long-circulating liposomes, are stabilised by 

polymers such as polyethylene glycol (PEG) (Allen and Cullis 2013). Several studies 

http://en.wikipedia.org/wiki/Foster_City,_California
http://en.wikipedia.org/wiki/Foster_City,_California
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(Blume and Cevc 1990; Klibanov, Maruyama et al. 1990; Allen, Hansen et al. 1991; 

Maruyama, Yuda et al. 1991; Papahadjopoulos, Allen et al. 1991; Senior, Delgado et al. 

1991) demonstrated that PEG-associated liposomes reduced the mononuclear phagocyte 

system (MPS) clearance. Senior et al. (Senior, Delgado et al. 1991) further reported that 

stealth liposomes have dose-independent pharmacokinetics. Following this, other 

studies demonstrated the therapeutic improvement of PEG-liposomes in animal models 

(Bakker-Woudenberg, Lokerse et al. 1992; Mayhew, Lasic et al. 1992; T.M. Allen 1992; 

Vaage, Mayhew et al. 1992; Woodle, Allen et al. 1992; Woodle, Storm et al. 1992). 

Gabizon et al.(Gabizon, Catane et al. 1994) first published the use of stealth liposomes 

in human studies, followed by a study by James et al. (James, Coker et al. 1994) that 

reported the first clinical trials of PEG-liposomes as DOX carriers (Doxil
®
) for Kaposi’s 

sarcoma treatment in HIV patients.  

In parallel, receptor-mediated endocytosis liposomes were demonstrated by 

Leserman  et al. (Leserman, Weinstein et al. 1980), Straubinger et al. (Straubinger, 

Hong et al. 1983) and Leamon and Low (Leamon and Low 1991), and developed by 

Heath et al. (Heath, Fraley et al. 1980) and Martin et al. (Martin, Hubbell et al. 1981). 

Shortly after these publications, Heath et al. (Heath, Montgomery et al. 1983) showed 

that antibody-targeted liposomes improved selective cytotoxicity of liposomal 

anti-cancer drugs to cancer cells. However, Papahadjopoulos and Gabizon 

(Papahadjopoulos and Gabizon 1987) proved that antibody-targeted liposomes could 

not overcome rapid clearance by the mononuclear phagocyte system as well, which 

restricted their in vivo distribution. Therefore, more coupling techniques such as newer 

attachment of antibodies, their fragments and some other ligands to the terminus of PEG 

molecules were investigated to develop the stability of liposomes-drug system (Ahmad 

and Allen 1992; Blume, Cevc et al. 1993; Allen, Agrawal et al. 1994; Lee and Low 

1994; Allen, Brandeis et al. 1995; Hansen, Kao et al. 1995; Maruyama, Takizawa et al. 

1995; Suzuki, Watanabe et al. 1995). Ahmad et al. (Ahmad, Longenecker et al. 1993) 

introduced the improved in vivo survival of targeted-liposomes in a mice lung tumour 

model. Figure 2.2 further shows the evolution processes of liposomes. 
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Figure 2.2 The evolution of liposomes: a) Simple liposomes are vesicles that have a 

shell consisting of a lipid bilayer; b) ‘Stealth’ liposomes developed for TDD 

applications, contain target specific biological targets (blue rectangle); c) Cationic 

liposome: DNA complexes have an onion-like structure, with DNA (purple rods) 

sandwiched between cationic membranes; d) Liposome bilayer are assembled 

from cavitands: vase-shaped molecules, with attached hydrophobic and 

hydrophilic chains which can trap angstrom-sized guest compounds (yellow 

diamonds)  

(Safinya and Ewert 2012). 

 

Overall, liposomes have been developed innovatively from the very simple bilayers 

through stealth targeted liposomes and cationic liposomes, to the very recent deep 

cavitand vesicles as drug carriers for anti-cancer agents (Figure 2.2). Notably, liposomes 

have many advantages because of their potency to encapsulate both hydrophobic and 

hydrophilic drugs to achieve reduction of unwanted cytotoxicity.  

In contrast, techniques for developing targeted liposomes are tedious and difficult 

to control. Moreover, liposomes are often cleared out by blood circulation rapidly 

(Allen and Cullis 2013). As mentioned in Chapter 1, Venditto and Szoka Jr. (Venditto 

and Szoka Jr 2013) reported that liposome-mediated nanomedicine had entered an 

imitation stage and that many liposomal anti-cancer nanomedicines have obtained FDA 

approval since mid-1990s. However, from 2000 to 2012, only a couple of anti-cancer 

liposomal-medicines, Lipo-Dox (Allen and Cullis 2013) and Marqibo (Sarris, 
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Hagemeister et al. 2000; Rodriguez, Pytlik et al. 2009) have been approved by the FDA 

Conversely, many other liposomes-based anti-cancer medicines are in the clinical trial 

stage. Therefore, more efforts are needed in order to improve the ‘targeting ligand’ on 

the surface of liposomes to promote the clinical approval.  

Micelles 

Polymeric micelles are supramolecular (Figure 2.3), core-shell nanoparticles that 

offer considerable advantages for cancer diagnosis and therapy. They are relatively 

small (typically in the range of 10 – 100 nm), and have the capacity to solubilise 

hydrophobic drugs as well as imaging agents. In addition their improved 

pharmacokinetics provide a useful bioengineering platform for cancer applications 

(Blanco, Kessinger et al. 2009).  

 

Figure 2.3 Schematic representation of supramolecular structure of polymeric 

micelles (Lu and Park 2013).  

 

Ringsdorf et al. (Gros, Ringsdorf et al. 1981) reported the first use of micelles for 

cancer treatment in the early 1980s and they were first proposed by Bader at al. as drug 

carriers in 1984 (Bader, Ringsdorf et al. 1984). During the next three decades, 

micelle-mediated anti-cancer drug delivery developed rapidly. For example, Tokoama’s 

group (Yokoyama, Inoue et al. 1987; Yokoyama, Inoue et al. 1989; Masayuki, Mizue et 

al. 1990) found DOX-conjugated PEG-b-poly (aspartate) copolymers spontaneously 

formed polymeric micelles in an aqueous environment. Yokoyama et al. (Yokoyama, 

Okano et al. 1991) and Kwon et al. (Kwon, Suwa et al. 1994; Yokoyama, Okano et al. 

1999) then concluded that polymeric micelles significantly prolonged the blood 
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circulation time of associated anti-cancer agents. Shortly after, Kohori et al. (Kohori, 

Sakai et al. 1998) and Kim et al. (Kim, Kim et al. 2004) reported micelle-associated 

paclitaxel (Genexol-PM
®
) which has been approved for the treatment of breast, lung, 

and ovarian cancers in South Korea. At the same time, Matsumura et al. (Matsumura, 

Hamaguchi et al. 2004; Matsumura and Kataoka 2009) published micellar anti-cancer 

drug formulations that have entered different phases of clinical trials including NK911
®
, 

NK105
®
 (Hamaguchi, Matsumura et al. 2005; Hamaguchi, Kato et al. 2007), and 

NC6004
®
. Furthermore, several biodegradable micellar anticancer drugs, NK012 

(Hamaguchi, Doi et al. 2010), NC4016 (Gilchrist, Bunemann et al. 1999; Gong, Chen et 

al. 2012) and BIND-014 (Hrkach, Von Hoff et al. 2012) also have been approved in 

different phase clinical trials in Japan, USA and UK recently. Blanco et al. (Blanco, 

Kessinger et al. 2009) noted that polymeric micelles provided a unique and 

complementary nano-platform to the nanosystems including liposomes, polymer-drug 

conjugates and dendrimers in anti-tumour drug delivery applications.  

Nevertheless, many challenges still exist, despite the fact that polymer micelles 

have shown many advantages in drug delivery applications, with an active field of 

research to address them,. Allen et al. (Allen, Maysinger et al. 1999) and Gaucher et al. 

(Gaucher, Dufresne et al. 2005) indicated that the small size of micelles restricts the 

amount of drug that can be loaded in the core. Higher drug loading requires increasing 

micelle size and aggregation. Thus, Kim et al. (Kim, Shin et al. 1998) suggested that 

drugs would be released faster from the micelles because of their small size and limited 

drug loading, causing to premature release before the micelle reaches its desired 

targeted site. Additionally, Jones and Leroux (Jones and Leroux 1999) have raised 

several questions regarding the long-term stability of polymer micelles. In response to 

these concerns, several groups such as Bontha and coworkers (Bontha, Kabanov et al. 

2006) and Xu et al. (Xu, Tang et al. 2004) started examining core-cross linked micelles 

to improve micelle-drug stability in vivo. Finally, problems of anti-tumour efficacy of 

micelles in the clinical setting have been raised as well. To solve these issues, many 

researchers have explored new methods to ensure the accumulation of the micelles at 

the tumour site and release of their contents in a controlled, predetermined fashion 
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(Blanco, Kessinger et al. 2009).  

Dendrimers 

A dendrimer is tree-like polymer, generally described as a spherical body with a 

high degree of surface functionality and versatility (Holister, Vas et al. 2003). Two 

approaches have been developed to synthesise dendrimers. The first, called ‘divergent 

synthesis’ was reported by Vögtle’s group (E.Buhleier 1978). Pioneers, including 

Denkewalter’s team (Denkewalter, Kolc et al. 1981) from Allied Corporation, Tomalia 

and coworkers (James R. Dewald 1983; Tomalia, Baker et al. 1985) at The Dow 

Chemical Corporation and Newkome et al. (Newkome, Yao et al. 1985), described the 

first generation of dendrimers independently. Shortly after, Fréchet et al. (Hawker and 

Frechet 1990) introduced another new approach named ‘convergent synthesis’ of 

dendrimers.  

The family of dendrimers has been greatly developed by the above two methods 

and especially in applications of drug delivery, gene delivery and chemotherapy. From 

2000, Bosman et al. (Bosman, Janssen et al. 1999), Fréchet (Fréchet 2001), Donald  

(Donald 2005) reported over 100 compositionally different dendrimer families as well 

as over 1000 surface chemical modification methods (Nanjwade, Bechra et al. 2009).  

Lee and coworkers (Lee, MacKay et al. 2005), Svenson and Tomalia (Svenson and 

Tomalia 2005) and Yang and Kao (Yang and Kao 2006) identified and reviewed the 

potency of dendrimers as nanocarriers, particularly in biological and pharmaceutical 

applications. Gillies and Frechet (Gillies and Frechet 2005), Khan et al. (Khan, 

Nigavekar et al. 2005), and Tomalia et al. (Tomalia, Reyna et al. 2007) raised the 

increasing significance of dendrimer-based nanosystems in oncological applications as 

dendrimers’ unique properties are highly suitable for effective delivery of anti-cancer 

agents. In 2008, Wolinsky and Grinstaff (Wolinsky and Grinstaff 2008) described more 

dendrimer derivatives developed for greater specificity and functionality in 

pharmacokinetics and targeted delivery as the relationships between architecture, 

biocompatibility, retention and delivery of dendrimer families have become clearer. 

Wolinsky and Grinstaff further showed substantial progress in dendrimers applications 

for cancer diagnosis and treatment, including advances in the delivery of both 
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anti-neoplastic and contrast agents.  

After dendrimers started to be used clinically, in the early 1990s, Wu et al. (Wu, 

Brechbiel et al. 1994) and Wiener et al. (Wiener, Brechbiel et al. 1994) introduced the 

application of dendrimers conjugates in MRI of tumours. Kukowska-Latallo et al. 

(Kukowska-Latallo, Candido et al. 2005) reported preliminary results showing that 

methotrexate-containing polyamidoamine (PAMAM) dendrimers significantly reduced 

subcutaneous tumours in mice. In the same year, Patri et al. (Patri, Kukowska-Latallo et 

al. 2005) and Choi et al. (Choi, Thomas et al. 2005) further reported PAMAM with 

methotrexate-containing / generation 5 (G5) that was covalently conjugated with folic 

acid specifically to target high folate receptor-expressing cancer cells after intracellular 

delivery of the drug through receptor-mediated endocyctosis. Independently, Quintana 

et al. (Quintana, Raczka et al. 2002) synthesised an ethylenediamine core PAMAM of 

G5 dendrimer which was covalently attached to folic acid, fluorescein, and 

methotrexate. Kasai et al. (Kasai, Nagasawa et al. 2002) and Shimamura et al. 

(Shimamura, Kasai et al. 2006) provided research data relating to novel arginine-rich 

dendrimers, TX-1943 (with 8 Arg residues) and TX-1944 (16 Arg residues), that can be 

used to suppress the growth and metastasis of solid tumours. To date, many researchers 

(Hu and Zhang 2012; Lim and Simanek 2012; Mattheolabakis, Rigas et al. 2012) 

reported frequent employment of DOX and paclitaxel that were covalently bonded to 

dendrimers in cancer treatment research.  

Cheng et al. (Cheng, Wang et al. 2008) and Bawarski et al. (Bawarski, Chidlowsky 

et al. 2008) discussed the ideal size, tenability, and multifunctional capability that make 

dendrimers an excellent nanocarrier to enhance multiple drug interactions to deliver 

chemotherapeutic agents to specific tumour sites for tumour targeting and therapy. 

Those advances achieved in dendrimer-based delivery systems over the last two decades 

have led to development of large number of dendrimer technologies in oncology 

applications (Wolinsky and Grinstaff 2008). However, the continued research in the 

area of targeting to a specific cancer (Figure 2.4) still needs to be improved to increase 

specificity and efficacy towards the diagnoses and treatment of cancer in the clinic. 



24 

 

Figure 2.4 Dendrimer-based, cancer-targeted drug delivery.  

(a) Dendrimers with multiple surface functional groups can be directed to cancer 

cells by tumour-targeting entities. (b) The next step is intake into the cell, which 

occurs by membrane receptor-mediated endocytosis in the case of targeting group. 

(c) Once inside the cell, the drug generally must be released from the dendrimer. 

(d) Finally, the dendritic scaffold disintegrates.**TAAs refers to tumor associated 

antigens (Sampathkumar and Yarema 2007). 

2.2.2 Inorganic Nanosystems 

Inorganic nanosystems are attracting increasing attention in nanomedicine since 

many investigations on metal / metal oxide nanoparticles (NPs), quantum dots (QDs) 

and carbon nanotubes (CNTs) have shown that the biocompatibility of these 

nanosystems might be determined by functionalisation rather than by size, shape or the 

material, as summarised by Son et al. (Son, Bai et al. 2007). Specifically, Son et al. 

addressed the fact that inorganic nanosystems permit a wide range of functionality 

arising from their unique optical, electrical and physical properties, and that they might 

also provide novel solutions to overcome many physical barriers into the cell that 

restrict biomedical applications.  

Metallic NPs 

** 
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Metallic NPs are versatile agents with a variety of biomedical applications 

including: highly sensitive diagnostic assays (Baptista, Pereira et al. 2008; Selvan, Tan 

et al. 2009); radiotherapy enhancement (Hainfeld, Slatkin et al. 2004; Huang, Jain et al. 

2007); and drug and gene delivery (Thomas and Klibanov 2003; Han, Ghosh et al. 

2007). The nanostructured metal powders are typically reduced to the necessary particle 

size using metal salts or some type of corrosive alcohol. Metallic NPs include Au, Fe, 

Cu, Ag, Pt, Ru and Re etc. as well as their oxides, Al2O3, MgO, ZrO2, CeO2, TiO2, ZnO, 

Fe2O3, SnO and so on. The most popular are gold NPs (AuNPs) and iron oxide NPs. 

AuNPs, also known as colloidal gold, are nanosized Au particles in suspension. 

Specifically in cancer diagnosis and therapy, for example, El Sayed et al. (Huang, Jain 

et al. 2007) established that AuNPs assist cancer imaging through selectively 

transportation into the nuclei of cancer cells. Shortly after, Qian et al. (Qian, Peng et al. 

2008) introduced the development of cancer targeted AuNPs as a probe for Raman 

scattering in vivo and suggested that the highly specific recognition and detection of 

human cancer cells and active targeting of epidermal growth factor receptor 

(EGFR)-positive tumour xenografts in animal models can be made using 

surface-enhanced Raman scattering. Moreover, as previous spherical AuNPs 

absorptions were not optimal for applications in vivo, the invention of rod-shaped 

AuNPs by Murphy’s team (Busbee, Obare et al. 2003) circumvented the issue by tuning 

the absorption peak of the AuNP rods then making them selectively accumulate in 

tumours under laser light (IR region). Surrounding tissue is barely warmed as nanorods 

convert light into heat to kill the malignant cells. Several types of AuNPs were able to 

do this, up to 70 °C through near-IR light excitation or oscillating magnetic field 

stimulation, reported by Paciotti et al. (Paciotti, Myer et al. 2004), Visaria et al. (Visaria, 

Griffin et al. 2006) and Cheng et al. (Cheng, A et al. 2008), respectively. 

Iron oxide NPs include three main oxides of Fe2O3, FeO and Fe3O4 that are reddish 

brown and usually magnetic. Their biomedical applications in cancer treatment include 

TDD, gene delivery and stem cell tracking due to their ultrafine size, magnetic properties 

and biocompatibility (Mody, Siwale et al. 2010). For example, Sun and coworkers (Sun, 

Veiseh et al. 2008) developed a chlorotoxin (CTX)-conjugated superparamagnetic iron 

http://en.wikipedia.org/wiki/Epidermal_growth_factor_receptor
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oxide nanoprobe coated with PEG, which permits detection of glioma tumours via the 

surface-bound targeting peptide. Johannsen et al. (Johannsen, Gneveckow et al. 2007) 

presented another Phase I clinical study in which magnetic iron oxide NPs locally killed 

prostate tumour cells. Furthermore, iron oxide coated with aminosilane (Nanotherm M01) 

has been in Phase II clinical trials in Germany for treatment of brain cancer and recurrent 

prostate cancer using hyperthermia as well as thermal ablation methods (Alexis, Pridgen 

et al. 2010). Further development and modification of iron oxide is possible in 

combination with dendrimers, polymer-based NPs and liposomes. However, the toxicity 

of these magnetic NPs to certain types of neuronal cells is still a matter of concern 

(Pisanic, Blackwell et al. 2007). 

Quantum Dots (QDs) 

QDs, nanoscale light-emitting particles, are emerging as a new class of fluorescent 

probe for in vivo biomolecular and cellular imaging (Gao, Yang et al. 2005). Major 

advances have been made in their use for highly sensitive cellular imaging applications 

because of the particular properties of narrow and size-tunable emissions with superior 

signal brightness and greater resistance to photobleaching. QDs can also be 

functionalised with targeting ligands such as antibodies (Howarth, Liu et al. 2008), 

peptides (Akerman, Chan et al. 2002), DNA (Farlow, Seo et al. 2013), and small 

molecules that simultaneously passivate the inorganic core and provide the particles with 

additional functionalities (Kim, Tonga et al. 2013). These properties make QDs versatile 

nanoscale bases for designing multifunctional NPs with both imaging and therapeutic 

functions (Smith, Duan et al. 2008).  

Many attempts have been made to use QDs for tumour targeting under in vivo 

conditions. In the case of active targeting, QDs were functionalised with tumour-targeting 

molecules to selectively bind to cancer cells (Gao, Yang et al. 2005). While QDs 

involving passive targeting use the enhanced permeation and retention of tumour cells 

(Jain 1999; Jain 2001) for delivery, the first use of QD-peptide conjugates for targeting 

tumour vasculatures was reported by Akerman et al. (Akerman, Chan et al. 2002) in 2002, 

but unfortunately the QD probes were not detected in living animals. Shortly after, Gao et 

al. (Gao, Cui et al. 2004) demonstrate successful application of a new class of 
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multifunctional QD probes for simultaneous targeting and imaging of tumours in live 

animals. 

The remaining issue of QDs is their cytotoxicity in vivo. For example, Derfus et al. 

(Derfus, Chan et al. 2004) reported that CdSe nanocrystals were highly toxic to cultured 

cells under UV illumination, as the QDs can be dissolved under the energy of UV 

irradiation which is close to the covalent chemical bond energy of CdSe nanocrystals. In 

contrast, Ballou et al. (Ballou, Lagerholm et al. 2004) found that QDs with a stable PEG 

coating showed no toxicity in mice. Finally, many other questions such as how to find the 

optical and electrical properties to explain QDs’ energy states in theirs structures is an 

essential step (Mohammadi and Bahrami 2014) and must be carefully evaluated before 

QD applications in tumour or other diseases can be approved for human use. 

Carbon Nanotubes (CNTs) 

CNTs are the leading inorganic nanosystem for biomedical application. Kostarelos’ 

group (Lacerda, Bianco et al. 2006; Kostarelos, Lacerda et al. 2007) discussed their 

toxicology and pharmacology properties extensively. As the electrical conductance of 

CNTs is sensitive and changes with their surface adsorption, CNTs have been proposed as 

a sensor element for detection of biological molecules such as cancer markers (Collins, 

Bradley et al. 2000; Kong, Franklin et al. 2000; Shim, Javey et al. 2001). Specifically, a 

bio-molecular detector based on single-wall CNTs (SWCNTs) has been reported as a 

highly specific electronic sensor to detect important bio-molecules in the human body 

(Chen, Bangsaruntip et al. 2003). In 2005, Li et al. (Li, Curreli et al. 2005) introduced 

another type of biosensor based on SWNTs which were integrated into a biosensor for the 

detection of prostate cancer and, in the same year, Li et al. (Li, Zhang et al. 2005) 

successfully detected prostate-specific antigen (PSA), an interesting target for both 

imaging and therapeutic intervention in prostate cancer (Schülke, Varlamova et al. 2003), 

using SWCNTs. 

Although CNTs have attracted particular growing attention as new vectors for the 

delivery of therapeutic molecules because of their ease of translocation across cell 

membranes and the low toxicity demonstrated by many researchers (Bianco and Prato 

2003; Pantarotto, Singh et al. 2004; Vardharajula, Ali et al. 2012), issues of ultimate 

http://www.cancer.gov/cancertopics/factsheet/detection/PSA
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biocompatibility of CNTs have limited their widespread use in biomedical applications. 

For instance, SWCNTs’ pulmonary toxicity was proved by Lam et al. (Lam, James et al. 

2004) who showed, through animal models, that they are much more toxic than carbon 

black and can be more toxic than quartz. 

 

Figure 2.5 Conceptual diagram of (A) single-walled carbon nanotube (SWCNT) 

and (B) multi-walled carbon nanotube (MWCNT), showing typical dimensions of 

length, width, and separation distance between graphene layers in MWCNTs 

(Reilly 2007). 

2.2.3 Summary 

To sum up, non-specific accumulation into healthy tissues is always a concern for 

NP drug delivery systems. Typically, inorganic nanosystems such as metallic NPs use 

local sensitisation through light or temperature which may reduce overall toxicity but 

are expected to damage adjacent healthy tissues as well. In most applications, organic 

bio-nanosystems such as liposomes (Park 2002) and biodegradable polymers (El-Sayed, 

Hoffman et al. 2005) have played key roles in nanomedicine because they are 

considered to be safer in the human body. Inorganic nanosystems such as metals and 

metal oxide NPs as well as CNTs have been limited by safety issues and may not 

provide advantageous over organic nanosystems as they are not biodegradable, have 

low payloads, and have no controlled release properties (Alexis, Pridgen et al. 2010). 

On the other hand, Ferrari (Ferrari 2005) and Hillebrenner et al. (Hillebrenner, 

Buyukserin et al. 2006) have suggested that inorganic nanomaterials have fundamental 

advantages over bioorganic nanosystems such as liposomes, dendrimers, and 

biodegradable polymers in terms of size, shape control and surface functionalisation. 
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2.2.3 Cyclodextrin (CDs) Based Nanocarriers 

Overview 

CDs are natural, cyclic torus-shaped oligosaccharides mostly composed of 6, 7, or 

8 D(+)-glucose units, named α-, β-, and γ-CD, respectively (Szejtli 1988; Allegre and 

Deratani 1994). CDs have a variety of applications in the pharmaceutical industry due 

to their complexation ability and other versatile characteristics (Arun, Ashok et al. 

2008). One of the most noteworthy of these is the application of CDs as drug 

encapsulants in controlled release systems. As drug encapsulants, Uekama et al. 

(Uekama, Hirayama et al. 1998; Uekama 2004) noted that, because of the unique 

capability of forming inclusion complexes in the inner cavities and many other 

favourable physicochemical and biological properties, natural CDs and their 

derivatives have been applied in drug delivery systems to improve the solubility, 

stability, bioavailability, therapeutic index, efficacy, pharmacokinetics and biosafety of 

many hydrophobic drugs, with many concomitant pharmacological benefits such as 

reducing unwanted side effects.  

The interior cavity of a CD molecule is considerably more lipophilic than the 

aqueous environment while its exterior surface is relatively hydrophilic. These 

properties account for its capability to act as a complexing agent to increase solubility 

of lipophilic drugs, to further assist in increasing their stability and bioavailability 

(Brewster and Loftsson 2007; Tafazzoli and Ghiasi 2009). Generally, CDs do not 

penetrate lipophilic membranes as they are large, with a number of hydrogen donors 

and acceptors (Arun, Ashok et al. 2008) and they normally carry and transport 

non-covalently bound drugs to the targeted cells (Yamanoi, Kobayashia et al. 2006). 

Figure 2.6 summarises the characteristics of natural CDs. 
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Figure 2.6 Characteristics of natural CDs; a:
 Stability constants (K1:1) of 1:1 

guest/CD complexes in aqueous solutions at 25 ± 5 °C  

(Connors 1995; Brewster and Loftsson 2007). 

 

Research studies in animals and humans have shown that CDs and their derivatives 

can be used to improve drug delivery for almost any type of drug formulation from 

anti-cancer drugs to anti-viral drugs (Tiwari, Tiwari et al. 2010). When some cancer 

drugs are combined with CDs, their bioavailability increases. It takes far less of a drug 

to produce cancer killing effects if its bioavailability can be controlled in the 

bloodstream and acceptable drug levels are reached more effectively and precisely. CDs 

can thus make cancer treatment far less debilitating for a patient undergoing 

chemotherapy: less of a toxic drug in a person’s system may lead to fewer side effects.  

History of CD development 

CDs were first introduced in 1891 (Villiers 1891). Schardinger (Schardinger 1903; 

Schardinger 1911) then laid the foundation of CD chemistry and identified both α-and 

β-CD during the period 1903 – 11. In the 1930s, γ-CD was discovered by Freudenberg 

and Jacobi (Freudenberg and Jacobi 1935), and the hypothesis that larger CDs might 

exist was suggested in 1948 (Freudenberg and Cramer 1948). This hypothesis was later 

verified by French (French 1965) in 1965. Freudenberg et al. further demonstrated that 

CDs are cyclic oligosaccharides formed by glucose units, and shortly after, Cramer and 

coworkers described their ability to form inclusion complexes (Cramer 1954). By the 

early 1950s, the basic physicochemical characteristics of CDs had been discovered, 
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including their ability to solubilise and stabilise drugs. The first CD-based patent was 

issued in 1953 (Freudenberg 1953). However, pure CDs suitable for pharmaceutical 

applications did not become available until about two decades later, when the first 

CD-containing pharmaceutical product was marketed in Japan. CD-containing products 

appeared on the European market later and in 1997 also in the US. New CD-based 

technologies are constantly being developed and, thus, 100 years after their discovery, 

they are still regarded as novel excipients of unexplored potential (Brewster and 

Loftsson 2007).  

Chemical and Biological Properties of CDs 

CDs are relatively large, with molecular weight (MW) 1000 – 2000. They are 

chemically stable in aqueous alkaline solutions but are susceptible to hydrolytic 

cleavage under strong acidic conditions (Bender and Komiyama 1978; Hirayama, 

Yamamoto et al. 1992). CDs and their complexes will penetrate hydrophobic 

bio-membranes only with considerable difficulty under normal conditions. 

Arima et al. (Arima, Adachi et al. 1990) and Uekama et al. (Uekama, Adachi et al. 

1992) concluded stratum corneum was the main barrier to percutaneous absorption of 

CDs, and that penetration enhancers which decreased the barrier properties would 

enhance penetration of hydrophilic CDs into skin. For instance, Gerlóczy et al. 

(Gerlóczy, Antal et al. 1988) demonstrated that the absorption of 

heptakis(2,6-di-O-methyl)-β-CD (
14

C-DIMEB/DMβCD) was negligible even it was 

assumed that the absorption might be greater into skin. Another study reported by 

Tanaka et al. (Tanaka, Iwata et al. 1995) in 1995 showed that only 0.02% of topically 

applied radio-labelled hydroxypropyl-β-cyclodextrin (HPβCD) was absorbed by intact 

skin of nude mice under occlusive conditions. However, within the same study, around 

24% of HPβCD was absorbed into stripped skin. Some other bio-membranes were 

found to be slightly more permeable towards CDs, as summarised by Irie and Uekama 

(Irie and Uekama 1997) and Merkus et al. (Merkus, Verhoef et al. 1999). For example, 

Reeuwijk et al. (Reeuwijk, Irth et al. 1993) illustrated that 2.5 – 4% of nasally 

administered DMβCD was recovered in the urine in one clinical study. Another 

example addressed by Szatmári and Vargay (Szatmári and Vargay 1988) showed that 
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less than 10% of orally administered DMβCD was absorbed in rat trials.  

In terms of CDs becoming drug carriers, Bergeron (Bergeron 1984) proposed that, 

in theory, water molecules entrapped in CD’s interior cavity cannot satisfy their 

hydrogen-bonding potential and have higher enthalpy than bulk water molecules located 

in the aqueous environment. Therefore, in the aqueous environment, CDs can form 

inclusion complexes with many hydrophobic drugs through a process in which Loftsson 

and Masson (Loftsson and Masson 2001) suggested that water molecules located inside 

the central cavity are replaced by either the whole drug molecule, or more frequently, by 

some hydrophobic part of the drug. The driving force of complex formation was 

suggested by Loftsson and Brewster (Loftsson and Brewster 1996) to be enthalpy-rich 

water molecules releasing from CD’s interior cavity and thus lowering the energy of the 

whole system. However, Loftsson and Brewster also proposed that other forces may 

also be involved in CD-drug inclusion complexes including van der Waals interactions, 

hydrogen bonding, hydrophobic interactions, release of structural strains and changes in 

surface tension. Figure 2.7 shows CD-based nanocarriers carrying anti-cancer drug to 

bio-systems.     

 
Figure 2.7 Schematic representation of the systemic absorption of drug from its 

CD complex through biological membranes (Uekama, Hirayama et al. 1998). 

 

In summary, with regard to CDs’ permeability, it is generally believed that drug 

uptake by tissues is not possible with CD-drug complexes or free CDs, as stated by 
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Loftsson and Bodor (Loftsson and Bodor 1995), Rajewski and Stella (Rajewski and 

Stella 1996), and Uekama et al. (Uekama, Hirayama et al. 1998), respectively. On the 

aspect of the form of CD-drug inclusions, Stella and Rajewski (Stella and Rajewski 

1997) proposed that no covalent bonds were involved in CD-drug complex formation 

and drug molecules located within the interior cavity were in a very dynamic 

equilibrium with free drug molecules in the solution.  

Modification of CDs as anticancer drug carriers 

With the properties of drug-CD inclusion as a basis, from 2000, more and more 

modified CDs have been employed to improve the native CDs’ efficacy in 

transportation of anticancer agents and reduction of unwanted side-effects in TDD 

system for cancer therapy.  

Bhardwaj et al. (Bhardwaj, Dorr et al. 2000) reported the result of increased 

binding between the anticancer drug Mitomycin C and 2-hydroxypropyl-β-CD 

(2-HPβCD) and an attempt to reduce skin necrosis by employing the complex. Two 

years later, Xiang and Anderson (Xiang and Anderson 2002) found that the generation 

of supersaturated solutions of another anti-cancer agent, Silatecan, was possible by 

converting a precursor to the lactone at an appropriate pH in a sulfobutylether-β-CD 

(SBEβCD) solution. Shortly after, Sætern et al. (Sætern, Nguyen et al. 2004) proved 

that the solubility of Camptothecin had been increased by 30 to 50-fold by adding 

HPβCD-complexation. In parallel, Cheng et al. (Cheng, Khin et al. 2003) redesigned the 

linear β-CD polymer as a protection carrier for camptothecin on the basis of a linear CD 

copolymer patent obtained by Davis et al. (Davis, Gonzalez et al. 2004) in 2003. A year 

later, Cheng’s team (Cheng, Khin et al. 2004) further reported optimised conditions for 

β-CD polymer-camptothecin conjugates including HGGG6, LGGG10, HG6 and 

HGGG10 in small animal studies.  

In 2006, Phase I clinical trials with the CD-based polymer CRLX101 were first 

reported, then Davis (Davis 2009) took Insert Therapeutics-101 (IT-101, a CD 

polymer-camptothecin conjugate) into a Phase II trial in 2008 and was expected to 

complete the entire trial in 2013. At the same time, Yurkovetskiy and Fram 

(Yurkovetskiy and Fram 2009) also introduced another CRLX101-containing 
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camptothecin (XMT-1001) into a Phase II clinical study with Cerulean Pharma Inc. 

Since then, Davis et al. and their industrial partners have taken CD-based carrier 

transport anti-cancer agent/siRNA conjugates into clinical study (Venditto and Szoka Jr 

2013).    

As can be seen, β-CD is the most commonly applied medical research (Giordano, 

Novak et al. 2001; Loftsson and Masson 2001; Singh, Sharma et al. 2002; Loftsson 

and Duchene 2007) taking in 83.9% of all CD applications, while the application of 

γ-CD is only 6.5% (Kurkov and Loftsson 2012). However, as γ-CD is constituted by 8 

glucopyranoside units, it has the largest toroid compared to α- and β-CD and has 

demonstrated the highest solubility, the lowest toxicity and better complexing ability 

(Giordano, Novak et al. 2001). Additionally, both α-CD and β-CD and a number of 

alkylated CDs are known to be renally toxic and disruptive of biological membranes. 

γ-CD and some of its derivatives appear to be much safer (Stella and He 2008). These 

are key issues in the present study and are the reasons why native γ-CD has been 

selected as the modification model for delivery of DOX. 

Overall, CDs are potent nanocarriers to overcome some of the formulation and 

delivery limitations of highly hydrophobic drugs. However, just as with other 

nano-systems, they have both strengths and weaknesses. The major strengths of CDs 

are: 1) the specific form of the equilibrium interaction between CDs and drug 

molecules; and 2) their capability to deliver a number of intractable and cytotoxic drug 

molecules safely. However, this specific nature of their interaction is also a weakness, 

in that the inclusion complex of drug-CD is applicable only to those molecules with 

suitable size, geometry, and intrinsic solubility properties. This is also the reason that 

modifications are essential for improving CD’s encapsulation ability towards different 

drug molecules. 

Binding constant determination of CD-drug inclusion by fluorescence spectroscopy 

CDs and their derivatives can behave as fluorophore quenchers for fluorescent drug 

molecules such as DOX, under the premise of the drugs being trapped by CDs 

dynamically. This property and the binding constant between CDs and different guest 

molecules were validated and calculated, respectively, by Yorozu et al. (Yorozu, 
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Hoshino et al. 1982; Yorozu, Hoshino et al. 1982).  

As discussed in the above section, the complexation interaction between CDs and 

their guests is a dynamic process because no covalent bonds exist during the CD-guest 

complex formulation (Tafazzoli and Ghiasi 2009). Moreover, the rates of fluorophore 

entry into and exit from CD cavities are considered much slower than the rate of 

fluorescence decay of the fluorophore. For example, the fluorescence decay of free 

DOX in aqueous solution corresponds to a lifetime of 1.1 nsec, independent of its 

concentration (Dai, Yue et al. 2008). Thus, there is very little possibility for fluorophore 

guests to enter or exit CD cavities during the lifetime of their excited state. Therefore, 

fluorescence intensity change of CD-fluorophore inclusion is in the steady-state 

fluorescence of the fluorophore upon complexation with CDs. 

The above interaction model makes it possible to analyse binding affinity of 

CD-fluorophore complexation by steady-state fluorescence theory (Park 2006) through 

modified Stern-Volmer correlation (Equation 2.1) (Lehrer 1971; Yorozu, Hoshino et al. 

1982; Yorozu, Hoshino et al. 1982; Lee and Okura 1998; Lee, Shin et al. 2001; Lo, Chu 

et al. 2008; Sorokin, Fylymonova et al. 2012).  

 

𝐼0
𝐼0 − 𝐼𝑥

=
1

𝑓𝐾[𝐻]𝑥
+

1

𝑓
 

Equation 2.1 Modified Stern-Volmer equation. 

 

In Equation 2.1, Io is the fluorescence intensity of fluorophores in the absence of 

CD carriers, Ix is the fluorescence intensity of fluorophores in the presence of different 

concentrations (x) of CDs, [H]x is the concentration of CD carriers as a host compound, 

and 1 / f should be one in the study if only one fluorescence quencher is employed (Lee 

and Okura 1998). In this thesis, only one fluorophore, DOX, was employed and the 

corresponding K binding was calculated by the relationship of the intercept / slope value 

which is equal to (1 / f) / (1 / fK) and derived from the linear plot y = ax + b generated 

from I0 / (I0 – Ix) vs. 1 / [H]x. Hence, the binding constant K can be calculated by the 

following equation: 
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𝐾 =
𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝑠𝑙𝑜𝑝𝑒
=  

 

 
 

Equation 2.2 Calculation of binding constant K. 

To summarise, the fluorimetric properties of a fluorophore are affected by its 

encapsulation by CDs. Hence, the binding affinity between CDs and guest molecules 

with fluorimetric characteristics can be evaluated by measuring their fluorescence 

intensities. It should be noted that this method has to be applied at low concentrations of 

a fluorophore to afford information on the monomer complexation, since the dimer is 

known to be not emissive at all (Agrawal, Barthwal et al. 2009).  

2.3 Triggers Involved in TDD for Cancer Therapy 

2.3.1 Temperature 

Topical temperature increases, also called hyperthermia, are a type of cancer 

treatment by exposure of body tissue to high temperatures, up to 45 °C. However, 

hyperthermia treatment by itself is still under clinical trial and is not widely available 

(Wust, Hildebrandt et al. 2002). Instead, it is usually combined with other forms of 

cancer therapy as warmer temperatures can make the cells more likely to be affected by 

treatments such as chemotherapy and radiation therapy (van der Zee 2002; Wust, 

Hildebrandt et al. 2002). Hence, hyperthermia was also highlighted as a useful trigger 

tool in nanosystem-associated anti-cancer agents in chemotherapy / radiation therapy in 

order to: 1) enhance the effects of certain anticancer drugs; 2) enlarge the pore size of 

tumour microvessels (Lefor, Makohon et al. 1985) to increase tumour perfusion (Karino, 

Koga et al. 1988); and 3) control release of drugs from thermally-sensitive 

drug-protection carriers (Gaber, Wu et al. 1996; Kong, Braun et al. 2000; Kong, Braun 

et al. 2001) at targeted tumour sites.  

Thermo-sensitive nanosystems in cancer TDD include thermo-sensitive liposomes 

(Drummond, Noble et al. 2008; Koning, Eggermont et al. 2010), thermo-responsive 

polymers (Schmaljohann 2006) and thermo-sensitive nanoparticles (Rahimi, Kilaru et al. 

2008). For example, the development of thermo-responsive liposomes for cancer 
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therapy was first introduced in 1999 (Anyarambhatla and Needham 1999), when a novel 

method for preparing thermo-sensitive liposomes was described, which significantly 

enhanced the release of entrapped contents at mild hyperthermia temperatures, 39 – 

40 °C.  

A year later, Needham and coworkers (Needham, Anyarambhatla et al. 2000) 

introduced a new lipid formulation of liposome-encapsulated DOX in combination with 

mild hyperthermia which appeared to be much more efficient than free DOX or other 

existing liposomes at reducing tumour growth in a human squamous cell carcinoma 

xenograft line. Then Celsion Corporation developed ThermoDox which can be triggered 

to release DOX by any heat-based treatment including radiofrequency ablation (RFA) 

and microwave hyperthermia as well as FUS. Apart from thermo-sensitive liposomes, 

Chilkoti et al. (Dreher, Raucher et al. 2003; Furgeson, Dreher et al. 2006) have designed 

a thermally responsive elastin-like polypeptide-DOX (ELP-DOX) conjugate for cancer 

therapy; Purushotham et al. (Purushotham, Chang et al. 2009) have presented a range of 

thermo-responsive polymer-coated magnetic NPs loaded with anti-cancer drugs and 

suggested they are of considerable interest for novel multi-modal cancer therapies. 

2.3.2 pH 

In most tumour tissues, the phenomenon of increased aerobic glycolysis (Gatenby 

and Gillies 2004) named the Warburg effect (Kim and Dang 2006), leads to lower 

extracellular pH (6.5 to 7.2) of cancer cells  (Schmaljohann 2006; Alfarouk, Muddathir 

et al. 2011). The relative acidity of the extracellular / interstitial milieu of tumours 

compared to normal tissues provides a basis for the selective treatment of cancer 

(Gerweck and Seetharaman 1996). This has been actively exploited to develop drug 

carriers that can specifically respond to cancer cells with low pH values while staying 

inactive under normal physiological conditions (Gatenby, Gawlinski et al. 2006).  

Many pH-triggered NP / nanocarrier-drug delivery systems have been developed 

during the last decade. Lim et al. (Lim, Huh et al. 2011) reported that pH-responsive 

drug-delivering magnetic nanoparticles (DMNPs) successfully released DOX under 
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acidic conditions within cancer cells. Schmaljohann (Schmaljohann 2006) introduced 

several types of thermo-responsive polymer-conjugated drugs such as pH-sensitive 

polymeric-micelles composed of poly(L-histidine) (polyHis)/PEG and poly(L-lactic 

acid) (PLLA)/PEG block copolymer associated-adriamycin (Lee, Na et al. 2003), with 

the drug released under acidic environment.  

In summary, pH sensitive drug delivery system can effectively release drugs 

according to physiological pH levels in the local environment of diseases including 

tumours and are a promising TDD system in the future (Balamuralidhara, Pramodkumar 

et al. 2011). 

2.3.3 Focused Ultrasound (FUS) 

FUS allows the deposition of thermal and mechanical energies deep inside the 

human body non-invasively. One of the remarkable advantages of FUS is that it can be 

focused within pathological tissue in a region of about diameter 2 mm. 

Ultrasound-mediated techniques were proposed for TDD in the mid-1990s (Miller, 

Miller et al. 1996; Greenleaf, Bolander et al. 1998). The bio-effects of US can lead to 

local tissue heating, cavitation, and radiation force, which in TDD applications can be 

used to: 1) increase extravasation of drugs and / or carriers and enhance diffusivity of 

drugs; 2) increase the permeability of tumour cell membranes; and 3) control localised 

drug release from nanocarriers circulating in the blood stream.  

When exposed through FUS to temperature / mechanical forces through oscillating 

ultrasound pressure waves, in sensitive nanocarrier-drug inclusion systems, entrapped 

drugs can be released locally. For example, thermo-sensitive liposomes have been 

suggested for targeted drug release in combination with local hyperthermia more than 

25 years ago and MBs can be designed specifically to induce cavitation effects in order 

to cause sonoporation in pathological cell membranes. Moreover, real-time imaging 

methods, such as MRI, have led to insights and methods for ultrasound TDD. The 

following content discusses detailed thermal effects, cavitation and radiation force 

generated by FUS and MB-assisted TDD as well as therapeutic applications of 
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MRgFUS mediated TDD.  

Heat 

When US propagates through tissue, absorption of acoustic energy occurs and this 

energy normally will be converted into heat (Fry 1950). One widespread application of 

US heating is HIFU-induced solid tumour ablation. A HIFU pulse with several seconds 

duration generated by a high intensity ultrasound transducer is the basis of HIFU 

ablation. Because of the highly localised concentration of acoustic energy in the focused 

spot, the tissue in that small region is heated rapidly and a sharply-circumscribed lesion 

caused by thermal coagulation is induced. At the same time, tissue penetrated by 

unfocused ultrasound remains completely unaffected or shows negligible temperature 

rise. The temperature reached within the focal region during a single sonication should 

be between 60 to 95 °C to induce tissue lesions and necrosis.  

To date, many clinical studies using HIFU ablation technique have been performed 

to treat solid tumours in different organs (Al-Bataineh, Jenne et al. 2012). HIFU therapy 

has been successfully employed in patients with prostate cancer (Lee, Hong et al. 2006; 

Ahmed, Zacharakis et al. 2009; El Fegoun, Barret et al. 2011), uterine fibroids 

(Fruehauf, Back et al. 2008; Okada, Morita et al. 2009; Zhang, Chen et al. 2010), breast 

cancer (Gianfelice, Khiat et al. 2003; Furusawa, Namba et al. 2007; Wu, Wang et al. 

2007), liver (Li, Sha et al. 2007; Zhang, Zhu et al. 2009; Zhu, Zhou et al. 2009), kidney 

(Wu, Wang et al. 2003; Illing, Kennedy et al. 2005; Klingler, Susani et al. 2008) and 

pancreas tumours (Wu, Wang et al. 2005; Li, Sha et al. 2007; Xiong, Hwang et al. 

2009). 

Current methods of ablation can result in marginal recurrences of larger lesions and 

in difficulty treating tumours located near large blood vessels. The novel approach of 

applying FUS for the purpose of TDD to extend treatment out to the margins where 

temperatures do not provide complete treatment with ablation alone may be useful, by 

combining thermal ablation with drug-loaded thermo-sensitive nanocarriers (Dewhirst, 

Landon et al. 2013). Hence, the heat may cause the augmented inflow of drugs / 

drug-carriers and a significant enhancement of drug extravasation from the carriers. It is 

worth taking this into consideration for the potential application of low power of FUS in 

http://europepmc.org/abstract/MED/23622079/?whatizit_url=http://europepmc.org/search/?page=1&query=%22tumors%22
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TDD for cancer therapy. The approach is suitable for those thermal-responsive drug / 

drug-carriers combined with techniques such as chemotherapy and radiation therapy, as 

well as those patients with cancers that cannot be treated by thermal ablation.  

To date, many heat-sensitive nanosystems for delivering anti-cancer agents in 

cancer therapy have been developed as discussed earlier in this chapter. Overall, the 

heating effect from US has been traditionally employed in physical therapy to warm up 

tissues (Draper, Castel et al. 1995), in TDD to melt drug-containing nanocarriers 

(Tacker and Anderson 1982) and in medical therapy to ablate pathological tissues 

(Huber, Jenne et al. 2001; Kennedy, Ter Haar et al. 2003; Madersbacher and Marberger 

2003). Thus, US induced heating, especially mild hyperthermia in TDD, accomplishes 

the role of heating drugs / drug carriers and tissues to enhance drug efficient. 

Cavitation 

Acoustic cavitation is defined as the formation and / or activity of gas-filled 

bubbles in a medium exposed to US (Barnett, ter Haar et al. 1994). When the pressure 

wave passes through the medium, gas bubbles of any size will expand at low pressure 

and contract at high pressure. If the resulting oscillation within the bubbles is fairly 

stable and reversible, the cavitation is called stable or non-inertial cavitation (Leighton 

1994). In contrast, if the amplitude of oscillation in the bubble increases with the sonic 

intensity up to a point that it cannot reverse the direction when the acoustic pressure 

reverses, the gas bubble will be continuously compressed to a very small volume until it 

collapses, creating extremely high pressures and temperatures (May, Allen et al. 2002). 

This type of cavitation is called transient or inertial cavitation (Leighton 1994).  
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Figure 2.8 Cavitation bubbles are created when ultrasonic energy input is 

initiated. Bubbles require several cycles of sound waves to grow to a size which 

will result in an implosive collapse (A and B). The population of bubbles in the 

growth stage interferes with the transmission of sound waves thereby producing a 

diminished number of cavitation bubble implosions.  

(From 

http://www.ctgclean.com/tech-blog/2012/03/ultrasonics-pulse-more-about-pulsed-

ultrasonics/, created by John Fuchs). 

 

As US induced cavitation causes the permeability of cell membranes to increase the 

cellular drug uptake (Klibanov 2006; Deckers, Rome et al. 2008; Frenkel 2008), this 

property has led to US-mediated drug delivery as a novel strategy to assist 

non-permeable therapeutic agents to be internalised so as to enhance the cellular uptake 

of conventional drugs in cancer therapy (Deckers and Moonen 2010). US radiation is 

known to be the mechanism which induces cavitation (Larina, Evers et al. 2005) and in 

vivo application of US-mediated TDD is highly attractive as US radiation can be 

focused at almost any part of the body. Again, localised US induced cavitation may lead 

to highly selective and efficient drug delivery in vivo.  

US-induced cavitation to deliver macromolecules in vitro has been considered by 

many research groups since the 1980s. In 1989, Kost et al. (Kost, Leong et al. 1989) 

first studied the effect of US on the degradation of polymers and the release rate of  

molecules incorporated within the polymers. The examination revealed 5-fold reversible 

http://www.ctgclean.com/tech-blog/2012/03/ultrasonics-pulse-more-about-pulsed-ultrasonics/
http://www.ctgclean.com/tech-blog/2012/03/ultrasonics-pulse-more-about-pulsed-ultrasonics/
http://www.ctgclean.com/tech-blog/author/admin/
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increases in degradation rate of polymers and 20-fold reversible increases in the release 

rate of incorporated molecules, with the authors observing that the release rate increased 

in proportion to the intensity of US and proposing that cavitation appeared to play a 

significant role. In 2003, Schaaf et al. (Schaaf, Langbein et al. 2003) reported that naked 

plasmid DNA can be easily and effectively delivered to malignant urothelial cancer 

cells in vitro upon exposure to acoustic shock-waves. Moreover, Guzman et al. 

(Guzman, Nguyen et al. 2002) measured the effects of cellular uptake of several 

different sizes of molecules including caicein (623 Da), bovine serum albumin (66 kDa) 

and two kinds of dextrans (42 Da and 464 kDa) by exposure of DU145 prostate cancer 

to 500 kHz US, with the results suggesting that the cellular uptake of all molecules were 

correlated with applied acoustic energy and thus providing a means to use US cavitation 

for laboratory and possibly clinical drug delivery applications.  

As regards in vivo studies, Esenaliev et al. (Esenaliev, Larina et al. 2001) proposed 

an in vivo cavitation-induced drug delivery trial in nude mice bearing KM20 human 

colon tumours. They investigated the delivery of a macromolecular rhodamine-dextran 

and anti-cancer drug 5-FU under low cavitation US exposure in combination with 

radiation. The results showed significantly enhanced penetration of 5-FU in irradiated 

tumours and improvement of cancer therapy.  

As US cavitation-enhanced drug delivery has a great potential for in vivo 

application in cancer chemotherapy and radiation therapy, optimisation of 

ultrasound-mediated cavitation in delivery of macromolecular drugs in vitro may 

provide a basic protocol that could routinely be employed in anti-cancer nanomedicine 

design and in vivo applications (Larina, Evers et al. 2005).  

Microbubbles (MBs) 

MBs are bubbles smaller than 1 mm in diameter but larger than 1 µm. They are 

used in medical diagnostics as USCA to assist imaging (Agrawal, Barthwal et al. 2009) 

because they oscillate and vibrate when applying an acoustic energy field. This 

behaviour helps to distinguish the MBs from surrounding tissues. MBs have gas cores 

and are usually entrapped by solid shells such as lipids, polymers or proteins (Bekers, 

Beijnen et al. 1991) as unshelled gas bubbles lack of stability in liquid environment.  
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With the exception of enhancement of molecular imaging through their use as 

functionalised contrast agents, MBs’ utilisation as targeted delivery vehicles is one of 

the most popular research topics related to USCAs. As discussed above, cavitation 

generated by bubbles in an acoustic field can increase the permeability of endothelial 

vasculature, allowing small molecules to enter into tissues more easily from the blood 

stream; this technique is one form of sonoporation (Bekers, Beijnen et al. 1990). 

However, the exact mechanisms of induction of sonoporation are still unclear. It is 

generally believed that sonoporation is due to either direct penetration by inertial 

cavitation (Yorozu, Hoshino et al. 1982) or microstreaming around stable cavitation 

(Yorozu, Hoshino et al. 1982). Figure 2.9 shows the schematic sonoporation process for 

drug delivery. 

 

 

Figure 2.9 Sonoporation process on cell membrane for drug delivery  

(Lentacker, De Cock et al. 2013). 

 

A range of in vitro exposures of US to prostate cancer cell suspensions in the 

presence of gradient concentrations of Optison MBs (see Table 2.1) were reported by 

Guzman et al. (Husain, Ndou et al. 1992). The results suggested extensive molecular 

uptake into cells at high viability occurs for low-energy US applied at a high 

cell-to-bubble ratio. Many studies have demonstrated that a combination of US 

sonication and MBs with chemotherapeutics may provide a promising way to treat 

animal tumours (Price, Chappell et al. 2006; Rapoport, Kennedy et al. 2009). For 

example, Anand et al. (Anand, Ottani et al. 2012) confirmed that MB-induced cellular 
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release of pre-loaded fluorescent dextrans evoked transient pore formation of primary 

endothelial cells after US exposure. Moreover, Lin and coworkers (Lin, Li et al. 2012) 

reported that US sonication with MBs significantly enhanced the accumulation of DOX 

in the sonicated tumour positions in animal models. 

US-mediated drug delivery with MBs could also non-invasively enhance the 

transport of therapeutic agents to overcome the difficulties of drug delivery posed by 

vascular walls, which can provide a better transport for nanomedicines in tumour tissues 

and permit specific and effective cellular uptake to targeted tumours (Primeau, Rendon 

et al. 2005; Bohmer, Chlon et al. 2010; Lin, Huang et al. 2010). 

Table 2.1 Commercially available ultrasound contrast agents  

(Frenkel, Etherington et al. 2006; Reilly 2007) 

Contrast 

agent 

Shell Core (gas) Market 

company 

Registered 

region 

Year of 

approval 

Levovist Phospholipids/ 

galactose 

Air Schering SA, 

Germany 

Europe, 

China, 

Japan, 

Canada and 

USA 

1995 

Optison 

(Albunex) 

Human albumin Perfluoropropane GE 

Healthcare 

USA, 

Canada 

1998 

Definity 

(Luminity) 

Phospholipids Perfluoropropane Bristol-Myers 

Squibb 

USA, 

Canada, 

Europe 

2001 

SonoVue Phospholipids Sulfur 

hexafluoride 

Bracco, Italy Canada, 

Europe, 

China, India, 

Korea 

2001 

Imagent Phospholipids Perflexane IMCOR USA 2003 

 

 

Figure 2.10 Schematic illustration of SonoVue MBs (Reilly 2007). 
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Table 2.1 lists commercially marketed MBs with their compositions and approved 

medical application year and regions. Figure 2.10 is the schematic picture of SonoVue
®

 

MBs, which was the type applied in this thesis. A detailed description of SonoVue
®
 and 

its application is further introduced in Chapter 5. 

FUS-mediated TDD and MRgFUS-TDD 

FUS can be focused at defined locations in living tissues to generate thermal or 

mechanical effects as described in previous sections. During the last decade, a wide 

range of research has been conducted to demonstrate the concept of FUS-induced TDD 

in vitro and in vivo. In terms of FUS-mediated drug delivery, Frenkel et al. (Frenkel, 

Etherington et al. 2006) first applied pulsed HIFU, followed by tail vein injections of 

Doxil (liposomal DOX) in murine breast cancer tumours grown in the bilateral flanks of 

mice. However, the FUS exposure was not found to enhance the release of Doxil, nor 

did it allow for lower doses to obtain tumour regression. Nevertheless, this trial was the 

first to show that pulsed-HIFU exposure was safe in vivo and it also demonstrated that 

blood vessels treated with HIFU were dilated, as observed by using fluorescent dextran.  

A year later, Dromi et al. (Dromi, Frenkel et al. 2007) reported both in vitro and in 

vivo studies using low temperature sensitive liposomes (LTSLs) in combination with 

pulsed HIFU at a thermal dose of 42 °C for 2 min, which resulted in 50% release of 

DOX from LTSLs and enhanced anti-tumour effects.  

Therapeutic FUS induced thermal and mechanical effects have shown novel and 

potential trigger advantages for drug release at target tumour sites. Proper monitoring 

and guidance to control the acoustic treatment region is a useful adjunct to minimise 

unwanted damage to adjacent healthy structures (Thanou and Gedroyc 2013). Therefore, 

the combination of nanomedicines and non-invasive FUS triggering from outside the 

body together with techniques such as MR-guidance are providing novel approaches to 

achieve spatio-temporal control of drug delivery.  

MRgFUS refers to FUS treatment within an MRI scanner. This setup allows tumour 

targeting and real-time treatment monitoring by MRI. In FUS-induced TDD, MRI 

guidance allows better control of the drug's bio-distribution, the pharmacokinetics and 

pharmacodynamics. Specifically, an MRgFUS system in the field of TDD can be used 
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for:  

1) Real-time manipulation of drug guidance within the targeted area;  

2) Spatio-temporal guidance of actions to control release or activate the drugs and / 

or permeabilise membranes;  

3) Evaluation of a drug’s bio-distribution, pharmacokinetics and 

pharmacodynamics;  

4) Physiological readouts to evaluate therapeutic efficacy precisely (Thanou and 

Gedroyc 2013). 

Kamaly et al. (Kamaly, Kalber et al. 2009) observed the effective accumulation of 

folate-targeted and fluorescent liposome delivery to solid tumours (IGROV-1 cells) 

induced in nude mice monitored by dynamic real-time MRI, providing MR-guided 

insight into the kinetics of nanoparticles targeted to solid tumours. Negussie and 

coworkers (Negussie, Yarmolenko et al. 2011) developed an MR imageable LTSL 

(MR-iLTSL) by co-loading liposome with the MRI contrast agent 

ProHance
®
Gd-HP-DO3A and DOX. MR-HIFU triggered experiments have been done 

both in vitro and in vivo, with the results showing that MR imaging had the greatest 

effect in the heated tumour region. A year later, Ranjan et al. (Ranjan, Jacobs et al. 2012) 

reported their MR-HIFU drug delivery trials in rabbits bearing tumours by injection of 

LTSL-based DOX. LTSL + MR-HIFU treatment suggested an improved distribution, 

with DOX found in both the tumour periphery and core.  

The MRgFUS TDD technique is non-invasive, has excellent penetration depth with 

FUS and can be applied to different organs. It has real-time imaging as a guidance tool 

to provide accurate temperature mapping, high-resolution tissue imaging and precise 

targeting during FUS therapy. Therefore, the MRgFUS system may have an advantage 

over other methods for delivery of drugs to specific sites, especially for solid tumours. 

However, just as with sonoporation, the exact mechanism of FUS-mediated delivery is 

not completely understood. Multiple studies suggest that FUS and agents such as MBs 

facilitate the formation of transient pores in the plasma membrane via cavitation. These 

pores are known to spontaneously reseal within a short time (from seconds to minutes) 

(Schlicher, Radhakrishna et al. 2006; van Wamel, Kooiman et al. 2006; Kudo, Okada et 
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al. 2009). Moreover, MRI equipment is expensive; its use is labour-intensive and its 

spatial resolution is sometimes reduced (Thanou and Gedroyc 2013). Even allowing for 

these issues, the new field of MRgFUS triggered drug delivery opens up opportunities 

to expand applications for existing small drugs in cancer chemotherapy and radiation 

therapy. 

2.4 Conclusions 

To summarise, this chapter reviewed the literature which provided many 

contributions and insights into the invention of novel nanomedicines for TDD in cancer 

therapy, from design, synthesis, and evaluation in vitro and application in vivo, up to 

clinical trials. The improvement of nano-vehicles for carrying toxic and unstable 

anti-cancer drugs has never stopped; in contrast, their structures have been developed 

generation by generation as well as combinations of different nano-systems to improve 

their transportation abilities.  

The combination of anti-cancer nanomedicines with traditional chemotherapy and 

radiation therapy, and with novel non-invasive thermal / ultrasound tumour ablation and 

drug delivery techniques has been successfully applied to many cancer patients. 

Numerous in vivo experiments and clinical trials have revealed valuable references for 

those new generations of researchers and clinicians. 

Notwithstanding that many improvements and innovations have been achieved in 

TDD for cancer treatment, many problems remain, such as non-specific dosage, toxicity 

of nanocarriers themselves, fast clearance from the blood stream, low drug release rate 

and some unclear mechanism of trigger strategies. More efforts need to be made to 

overcome these weaknesses to promote more trustable and potent clinical cancer 

treatment protocols. 
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Chapter 3  

Drug Carrier Development: Chemical 

Modification and Evaluation of a 

γ-cyclodextrin Derivative 

3.1 Introduction 

In aqueous solutions, CDs form inclusion complexes with anthracyclines (Grosse, 

Bressolle et al. 1999) which are potent antitumor antibiotics (Fujiwara, Hoshino et al. 

1985). In present, cancer chemotherapeutic agent DOX, a DNA-intercalating antitumor 

agent, is the most frequently used member of the anthracycline group (Fernandez, 

derpoorten et al. 2001) in spite of being chemically unstable (Bekers, Beijnen et al. 

1990) in aqueous media with major problems of acute and chronic toxicity (Muggia 

and Green 1991) and appearance of cellular multidrug-resistance. The best way to 

overcome serious side-effects associated with DOX administration is to limit the 

amount of DOX intake or alternatively, to encapsulate the drug in various 

drug-delivery systems. An ideal TDD vehicle should be able to solubilise, protect and 

transport the drug specifically to cancer cells and slowly release the drug molecules 

inside the cells to the site of their pharmacological activities. This can be achieved by 

attaching biological signals such as hormones, vitamins or antibodies (Willis and 

Forssen 1998), which can recognise cancer cells, to the surface of the vehicles (Low 

and Antony 2004; Lukyanov, Elbayoumi et al. 2004). Moreover, drug targeting can 

also be achieved by using drug vehicles sensitive to the surrounding enzymes, 

temperature or pH (Soppimath, Tan et al. 2005; Li, Zhang et al. 2006; Liu, 

Wiradharmaa et al. 2007)  

Recently, several studies reported (Yamanoi, Yoshida et al. 2005; Hattori, 

Kenmoku et al. 2006; Yamanoi, Kobayashi et al. 2006; Oda, Kobayashi et al. 2008; 
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Oda, Yanagisawa et al. 2008; Oda, Miura et al. 2009; Kralova, Konak et al. 2010; Li, 

Zhao et al. 2012) that introduction of a suitable substituent (e.g., glucose, galactose, 

arbutin, hydroquinone α-glycoside, porphyrin or β-carboline) to the rim of α- and 

β-CDs, can enhance the binding affinity towards DOX through cooperative 

interactions between the CD’s cavity and guest molecules. Although, α- and β-CD is 

the most exploited CDs, (Sorokin, Fylymonova et al. 2012) little has been published on 

γ-CD as targeted drug delivery system. Having 8 glucopyranoside units thus the largest 

cavity, the γ-CD possesses higher water solubility, better inclusion ability of large-size 

drugs, and orally and is parenterally administered non-toxic (Totterman, Schipper et al. 

1997). 

In the present study, a novel chemically modified γ-CD derivative, 

mono-6’-deoxy-6-[3-(naphthalen-2-yl)-2-(amino)propionylamino]-γ-cyclodextrin(carr

ier 3b), with a β-naphthyl alanine residue attached in the primary face of γ-CD, was 

rationally designed and synthesised. The DOX encapsulation efficiency by this carrier 

was evaluated under various temperatures and pH and the potential of the novel carrier 

3b conjugate as a thermo-sensitive carrier for DOX was discussed. 

3.2 Essential Chemical Synthesis and Analysis Techniques 

3.2.1 Purification Techniques 

3.2.1.1 Precipitation 

Precipitation is a chemical reaction that uses a precipitant (precipitation agent) to 

extract desired substances or impurities, by decreasing their solubility to form a solid 

precipitate.  

Precipitation is used in the applications such as making pigments, removing salts 

from water and in qualitative inorganic analysis, as well as to isolate some products 

during post-reactions. But ideally, the substance of the reaction is insoluble in the 

reaction solvent. Thus, when precipitate is formed, pure crystals is preferably formed 

(Adler, Longo et al. 1967). Precipitation may also occur when the environment is in 

http://en.wikipedia.org/wiki/Pigments
http://en.wikipedia.org/wiki/Salts
http://en.wikipedia.org/wiki/Qualitative_inorganic_analysis
http://en.wikipedia.org/wiki/Workup_%28chemistry%29
http://en.wikipedia.org/wiki/Crystallization
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the presence of an anti-solvent (a solvent in which the substance is insoluble), which 

can drastically reduce the solubility of the desired substance. Therefore, the precipitate 

may easily be separated by filtration, decanting, or centrifugation (Adler, Longo et al. 

1970). Precipitation is also useful in purifying products where it precipitates (Dupont, 

Consorti et al. 2003).  

The precipitation method has been found to be very efficient in the isolation of CD 

based compounds from water, dimethylformamide (DMF) or dimethyl sulphoxide 

(DMSO) (Connors 1997). In particular, the reaction products in the synthesis within 

this thesis report were isolated by pouring the reaction mixture into acetone (Gorin, 

Riopelle et al. 1996). 

3.2.1.2 Recrystallisation 

Recrystallisation (Harwood 1989) is a procedure for purifying chemical 

compounds by dissolving both impurities and desired compound in an appropriate 

solvent. The most commonly used procedure for recrystallisation from a solution 

involves the following steps (Armarego and Chai 2003): 1) A near-saturated solution is 

obtained by dissolving the impure material in a suitable solvent, followed by shaking 

or vigorous stirring at or near its boiling point; 2) Insoluble particles are then removed 

by filtration of the above solution (a heated filter funnel can be used to prevent 

crystallisation during the filtration procedure, or the solution can be diluted with more 

solvent); 3) The solution is then allowed to cool slowly so that the dissolved substance 

can crystallise out; 4) The crystals are separated from the mother liquor, usually by 

filtering under vacuum suction through a sintered glass or a Büchner funnel; and 5) 

The pure crystals are finally washed by a little fresh cold solvent to remove traces of 

the mother liquor, and then dried. 

3.2.1.3 Adsorption chromatography  

Adsorption chromatography is based on the difference in the extent to which 

substances in solution are adsorbed onto a suitable surface. The main techniques in 

adsorption chromatography include thin layer chromatography (TLC), paper and 

http://en.wikipedia.org/wiki/Filtration
http://en.wikipedia.org/wiki/Decanting
http://en.wikipedia.org/wiki/Centrifugation
http://en.wikipedia.org/wiki/Chemical_compound
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column chromatography (Armarego and Chai 2003). The chromatographic purification 

procedures employed in this thesis are TLC, reversed-phase column chromatography 

(RPCC) and high performance liquid chromatography (HPLC). 

Thin layer chromatography (TLC) 

TLC is a simple and inexpensive separation technique that can quickly reveal how 

many components are in a mixture. TLC is widely used to identifying a compound in a 

mixture by comparing Rf values (Figure 3.1) of a unknown compound to a known 

compound. 

  =
                              

                                       
 

Figure 3.1 Schematic drawing of TLC experiment demonstration and Rf value 

calculation. 

 

A TLC plate can be a sheet of glass, metal (aluminium foil), or plastic which is 

coated with a thin layer (0.2 – 2 mm) of a solid adsorbent (silica, alumina or cellulose) 

(Armarego and Chai 2003). A small amount of the mixture to be analysed is spotted 

near the bottom of the plate. The TLC plate is then placed in a shallow pool of a 

solvent in a developing chamber so that the bottom of the plate is in the liquid with the 

spotted mixture just above the solvent. This liquid, known as the eluent, or mobile 

phase and it slowly rises up the TLC plate by capillary action. At all times, the solid 

phase will adsorb a certain fraction of each component of the mixture and the 

remainder will be in the solution. Depending on different adsorption speed on TLC 

sheet, the components separation is achieved. The separated bands can be visualised 

conveniently by ultraviolet (UV) lamp if they are UV active or by treating the TLC 
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sheet with a suitable visualisation reagent such as iodine vapour (a good general 

reagent for hydrocarbon containing compounds) for few seconds or other more 

selective reagents. 

Reversed-phase column chromatography (RPCC) 

In RPCC, a non-polar or hydrophobic sorbent is usually filled in a vertical glass 

column as stationary phase (McNaught and Wilkinson 2012) leading to the separation 

of the sample components. The mobile phase is typically a mixture of water or aqueous 

buffers and organic solvents are used to elute analytic substrates. The substances to be 

purified are usually placed on the top of the column and the solvent runs down through 

the column by either gravity or external pressure such as vacuum suction. Fractions are 

collected and checked for compounds by using TLC (UV, heat, chemical spray and / or 

other means of visualisation) (Armarego and Chai 2003).  

High performance liquid chromatography (HPLC) 

HPLC is different to traditional liquid chromatography as its operational pressures 

are significantly higher between 50 to 350 bars, while ordinary liquid chromatography 

typically relies on the force of gravity to pass the mobile phase through the column.  

HPLC utilises a liquid mobile phase to separate the components of a mixture. The 

stationary phase can be a liquid or a solid phase. Due to the small sample amount 

separated in analytical HPLC, typical column dimensions are 2.1 – 4.6 mm in diameter, 

and 30 – 250 mm in length. Also, HPLC columns are made with smaller sorbent 

particles size (2 – 50 µm) which gives HPLC superior resolving power when 

separating mixtures. Because of the improved efficiency of the columns, this technique 

has been referred to as high performance, high pressure, or high speed liquid 

chromatography and has found great importance in chemistry and biochemistry 

(Armarego and Chai 2003). 

3.2.2 Characterisation and Analysis Techniques 

3.2.2.1 Mass spectroscopy (MS) 

http://en.wikipedia.org/wiki/Chromatography#Liquid_chromatography
http://en.wikipedia.org/wiki/Resolving_power
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MS is a powerful analytical technique that can be used to identify unknown 

compounds in a sample by comparison with a database of known compounds. It is 

particularly useful for identifying components of a mixture when combined with initial 

chromatographic separation: gas chromatography-MS (GC-MS) or HPLC-MS. The 

technique ionises the chemical compounds within a sample generating charged 

molecules (molecular ions) and/or molecule fragments and measures their 

mass-to-charge ratios (m/z) (Sparkman 2000). The distribution of masses (mass 

spectrum) is characteristic of a compound. Ions are generated by inducing either the 

loss or gain of a charge from a neutral species. The ions formed are electrostatically 

directed into a mass analyser where they are separated according to m/z and finally 

detected. The result of molecular ionisation, ion separation, and ion detection is a 

spectrum that can provide molecular mass and structural information (Wilson, Plumb 

et al. 2005; Djukovic, Nagana Gowda et al. 2013). 

In the current study of the modification one hydroxyl proton on the primary rim of 

γ-CD, MS method is an essential tool applied to determine the final substituent, to 

prove the desired modification formula. 

3.2.2.2 Nuclear magnetic resonance (NMR) methodology and spectroscopy 

NMR is the phenomenon of nuclei absorbing and re-emitting electromagnetic 

radiation in a magnetic field (radiofrequency ν = 60 – 600 MHz). NMR spectroscopy is 

a powerful structural technique that provides information about changes in magnetic 

properties of certain NMR active atomic nuclei. 
1
H and 

13
C are the two most 

commonly studied nuclei, among others, for their different environment, and provide 

different signals for magnetically non-equivalent nuclei of the same atom present in the 

same molecule (Kumar 2006).  

Chemical shift 

Unlike infrared or ultraviolet-visible spectroscopy (section 3.2.2.3), where 

absorption peaks are simply located at a frequency or a wavelength, however, in NMR 

spectroscopy, the location of different NMR signals is dependent upon both the 

external magnetic field strength and the reference frequency. The problem here is 

http://en.wikipedia.org/wiki/Ionization
http://en.wikipedia.org/wiki/Mass-to-charge_ratio


54 

resonance frequencies always vary as no two magnets have exactly the same field. 

Thus, it is necessary to find a method for characterising and specifying the location of 

NMR signals. 

One suggestion to solve this problem is to report a reference signal from a 

standard compound, added to the investigated sample. Tetramethylsilane (TMS, 

(CH3)4Si), is a chemically inert compound and it can be easily removed from the tested 

sample (Balci 2005), has become the reference compound of choice for both proton 

and carbon NMR. The distance between the TMS signal and the sample signal is called 

the chemical shift (∆ ) (Equation 3.1) of the corresponding proton/carbon.  

 

∆ =         −                

Equation 3.1 Signal distance of the reference signal and the sample signal. 

 

In Equation 3.1,         is the resonance frequency of the sample,                

is the resonance frequency of the standard TMS, ∆  is the distance between the above 

two signals.  

However, the chemical shift given in Hz will vary from on instrument to another 

as different NMR operating systems have different magnetic field strengths (1.4 – 21T), 

therefore, an additional step is needed to provide a uniform location unit which is 

independent of the strength of the external magnetic field. In order to correct these 

frequency differences, ∆  can be divided by the spectrometer frequency (dividing Hz 

by MHz). Since the chemical shifts area always very small number, the factor 10
6 

is 

introduced to simplify the numerical values (Balci 2005), having units of 

parts-per-million (ppm) and designated by the symbol δ (Equation 3.2): 

 

𝛿 =
∆ 

             
× 1   

Equation 3.2 Chemical shift calculation. 

 

Where, 𝛿 is the chemical shift,               is the spectrometer frequency in Hz.  
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Two-dimensional (2D) NMR spectroscopy: correlation spectroscopy (COSY) and 

Nuclear Overhauser effect spectroscopy (NOESY) 

Conventional (one-dimensional spectra) NMR, although potent to observe distinct 

peaks for the various functional groups of small chemical molecules, can be limited in 

use for more complex molecules having  many overlapping resonances. The presence 

of overlapping peaks can make the interpretation of an NMR spectrum difficult. 2D 

NMR overcomes this problem by adding additional experimental variables and 

introducing a second dimension to the resulting spectrum, providing data that is easier 

to interpret and often more informative (Giraudeau, Guignard et al. 2007). 

Specifically, one-dimensional NMR spectra are plots of intensity vs. frequency 

while in 2D spectroscopy intensity is plotted as a function of two frequencies. COSY 

and NOESY are two of the most common used 2D NMR methods. COSY is the most 

basic 2D NMR form among others; it is useful for determining the coupling between 

nuclei that are connected through one to three bond lengths. In 2D NOESY, the 

cross-peaks appear between protons that are within 6Å of each other, the closer in 

space the two protons are to each other, the more intense of the cross-peak. The 

NOESY experiment correlates all protons which are close enough. It also correlates 

protons which are distant in the amino acid sequence but close in space due to tertiary 

structure. Thus, 2D NOESY is the most important tool for the determination of protein 

structures. 

NMR spectroscopy is not only a method for the determination of the structure of 

the molecule, but also a very functional spectroscopic method that explains the 

dynamic. Hence, NMR spectroscopy is widely utilised in CD complexation 

determination (Rekharsky and Inoue 1998; Schneider, Hacket et al. 1998). For 

example in the case of 
1
H NMR, the observation of changes in the chemical shift of 

one or more protons on the guest, or those on the CD (host), particularly the hydroxyl 

protons can provide the geometrical information of CD-guest complex inclusion 

(Wagner 2006). 

3.2.2.3 Ultraviolet-visible (UV-Vis) spectroscopy and fluorescence spectroscopy 

http://en.wikipedia.org/wiki/Nuclear_Overhauser_effect
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UV-Vis spectroscopy (λ = 200 – 800 nm) studies the changes in electronic energy 

levels within the molecule arising due to transfer of electrons from π- or non-bonding 

orbitals (Kumar 2006). It is often called as electronic spectroscopy or reflectance 

spectroscopy in the ultraviolet-visible spectral region, where it uses light in the visible 

and adjacent (near-UV / near-infrared) ranges. UV-Vis spectroscopy has many 

applications especially in the quantitative determination of solutions of transition metal 

ions highly conjugated organic compounds and biological macromolecules. The 

information provided by UV-Vis spectroscopy when combined with the information 

obtained by NMR and infrared (IR) spectral data leads to valuable structural 

information (Kumar 2006). UV-Vis spectroscopy is a complementary technique to 

fluorescence spectroscopy, where, fluorescence deals with transitions from the excited 

state to the ground state, while absorption measures transitions from the ground state to 

the excited state (Skoog 2007). 

CD / CD-inclusion complexes can be studied by a number of experimental 

techniques including UV-Vis spectroscopy (Busch, Swamidoss et al. 2003) and 

fluorescence spectroscopy (Li, Zhao et al. 2012). In the case of UV-Vis spectroscopy, 

a change in absorbance and/or absorption wavelength of the guest is observed; while in 

the case of fluorescence, a change in the emission intensity and/or emission 

wavelength maximum of the guest is observed (Wagner 2006).  

Fluorescence is the most sensitive method for study of CD complexation and has 

many advantages in comparison to other methods, because: 1) it is high sensitivity and 

is applicable to complexation studies with large binding constant K values (the 

fluorescence method can be used to determine K values as high as 10
7  

M
-1

, whereas 

1
H NMR measurement is used for K < 10

4  
M

-1
 and UV-Vis spectroscopy is usually 

used for 10
2
 < K < 10

4  
M

-1
) (Wagner 2003); 2) upon complexation with a CD, the 

fluorescent properties usually change more sensitively than the other spectroscopic 

properties; and 3) it requires the lowest concentration of sample. Thus, fluorescence 

spectroscopy is an excellent technique for studying CD inclusion phenomena (Wagner 

2006).  

http://en.wikipedia.org/wiki/Absorption_spectroscopy
http://en.wikipedia.org/wiki/Ultraviolet
http://en.wikipedia.org/wiki/Visible_spectrum
http://en.wikipedia.org/wiki/Near-infrared
http://www.wikipedia.org/wiki/Quantitative_analysis
http://www.wikipedia.org/wiki/Transition_metal
http://www.wikipedia.org/wiki/Conjugated_system
http://www.wikipedia.org/wiki/Organic_compound
http://en.wikipedia.org/wiki/Fluorescence
http://en.wikipedia.org/wiki/Excited_state
http://en.wikipedia.org/wiki/Excited_state
http://en.wikipedia.org/wiki/Ground_state
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3.3 Materials and Methods 

3.3.1 Materials 

3.3.1.1 Reagents and solvents 

Reagents/Solvents Manufacturer and place of origin 

γ-cyclodextrin Mesochem Technology Co.,Ltd, Beijing, 

China 

doxorubicin (DOX) Mesochem Technology Co.,Ltd, Beijing, 

China 

P2O5 Sigma Aldrich, Israel 

4,4-Dimethylaminopyridine (DMAP) Sigma Aldrich, USA 

1-Hydroxybenzotriazole (HOBt) Discovery fine chemicals, UK 

N-Boc-3-(2-naphthyl)-D-alanine Sigma Aldrich, Israel 

1-Ethyl-3-(3-dimethylaminopropyl) 

carbodiimidehydrochloride (EDC) 

Sigma Aldrich, Israel 

Dimethylformamide (DMF) Sigma Aldrich, Germany 

Dimethyl sulphoxide (DMSO) Sigma Aldrich, Israel 

trifluoroacetic acid (TFA) Sigma Aldrich, Israel 

dichloromethane (CH2Cl2) Sigma Aldrich, Israel 

deuterated water (D2O) Sigma Aldrich, Israel 

Acetonitrile (AcN) Sigma Aldrich, Israel 

acetone(C2H6CO) YavinYedaa, Israel 

1-butanol Sigma Aldrich, Israel 

sulfuric acid Sigma Aldrich, Israel 

Methanol Sigma Aldrich, Israel 

Ethanol Sigma Aldrich, Israel 

NH3(aq) Sigma Aldrich, Israel 

PBS tablets Oxoid, UK 

dibasic sodium phosphate Sigma Aldrich, UK 

sodium phosphate monobasic Sigma Aldrich, UK 

citrate acid monohydrate Sigma Aldrich, UK 

potassium chloride Sigma Aldrich, UK 

hydrochloric acid Sigma Aldrich, UK 

Distilled/deionized water Millipore, UK 
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3.3.1.2 Glassware, consumables and equipment 

Glassware, consumables 

and equipment 

Manufacturer and place 

of origin 

Specification 

TLC plates Yavin-Yeda, Israel Silica gel 60 

PLC plates Yavin-Yeda, Israel Silica gel 60 F254 

96-well plates Greiner, Austria Black Polystyrene without 

lid 

UV Cuvettes Yavin-Yeda, Israel 4mL volume clear 

Reversed-phased column Merck, Israel LiChroprep RP-18, 40 – 63 

μm 

HPLC Sedere, France UV/Vis & ELSD (Sedex 

75) 

UV spectrophotometer Thermo Electron 

Corporation Instrument, 

USA 

Thermo Electron 

Mass spectroscopy Waters, USA Micromass ZQ 2000 

Melting Point Apparatus Thermo Scientific, Israel Electrothermal IA9100 

Digital 

Lyophilizer Labconco, USA Freezone 2.5 Plus 

500 MHz NMR 

spectrometer 

Bruker, USA Advance III 

400 MHz NMR 

spectrometer 

Bruker, USA Advance III 

Fluorescence 

spectrophotometer 

Agilent Technologies, 

USA 

Varian Cary Eclipse 

pH meter Scientific Laboratory 

Supplies, UK 

SevenEasy pH Mettler 

Toledo 

Multi-mode plate reader Tecan, Austria Tecan infinite M200 

Oven Scientific Laboratory 

Supplies, UK 

INV064 

Vacuum oven Swagelok, Israel  

3.3.2 Methods 

3.3.2.1 Preparation of γ-CD derivative 

a) General coupling reaction of pre-crude product: 

Mono-6’-deoxy-6-[3-(naphthalen-2-yl)-2-(tert-butyloxycarbonylamino)propionyla

mino]-γ-cyclodextrin (3a) 

Native γ-CD was dried at 110 °C/0.1 mmHg in the presence of P2O5 by vacuum 

oven for 24 hr. Dry γ-CD (12.97 g, 10 mmol), DMAP (1.22 g, 10 mmol), HOBt (1.35 g, 
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10 mmol), N-Boc-3-(2-naphthyl)-D-alanine (3.15 g, 10 mmol) and 

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) (4.12 g, 20 

mmol), were dissolved in DMF (50 mL) and stirred at room temperature for 24 hr. The 

precipitate was removed by paper filtration and the filtrate solution was added drop 

wise with stirring to a hot acetone (500 mL, ~ 40 °C). Then, TLC analysis was 

performed on silica gel plates to figure out the Rf value of 3a. TLC eluent solution was 

prepared by mixing isobutanol: ethanol: NH4OH(aq) at [4 : 5 : 6 (v / v / v)]. Then, spot 

detection was carried out by spraying with 5% (v / v) concentrated sulphuric acid in 

ethanol and heated up at 150 °C by means of hot plate for 5 min. After TLC analysis, 

the precipitate was filtered and dried under vacuum to obtain the pre-crude product of 

3a: mono-6’-deoxy-6-[3-(naphthalen-2-yl)-2-(tert-butyloxycarbonyl amino) 

propionylamino]- γ-cyclodextrin. 

b) Purification of pre-crude product 3a by reversed-phase column 

chromatography 

  The pre-crude product 3a was dissolved in 500 mL hot water (60 – 90 °C) and the 

resulting solution was applied to a reversed-phased column (300 g of LiChroprep 

RP-18, 40 – 63 μm; 50 mm × 260 mm). The column was eluted with 100% ddH2O (500 

mL), methanol: water at 10 : 90 (1000 mL), 20 : 80 (1000 mL), 30 : 70 (1000 mL) and 

100% methanol (500 mL), respectively. Collected column eluted samples 15 mL/tube, 

then, TLC analysis was performed to validate the Rf value of purified 3a. (TLC eluent 

solution and performance were the same as described in section 3.2.2.1a). After TLC 

analysis, fractions of 80 mL volume were collected. The solvent was removed by 

evaporation under reduced pressure affording white crystalline material (yield 50%) to 

obtain crude product of 3a.  

c) Removal of the tert-butoxycarbonyl protecting group from pre-crude product 

3a to obtain final product of mono-6’-deoxy-6-[3-(naphthalen-2-yl)-2-(amino) 

propionylamino]-γ-cyclodextrin (carrier 3b)   

Compound (3a, 5 g) from the above procedure was dissolved in TFA (20 mL) and 

CH2Cl2 (20 mL), and the mixture was stirred at room temperature for 3 hr. Then, the 
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solvent was removed by evaporation under reduced pressure (< 25 °C). The residue 

was dissolved in water (5 mL) and poured in methanol (200 mL). The white precipitate 

was filtered and dried under vacuum (yield 84%). TLC was carried out (the method is 

the same as described in section 3.2.2.1a) and showed one major spot which is the final 

residue of carrier 3b. The pure carrier 3b product was dissolved in ddH2O (10 mL/g). 

The solution was filtered and freeze dried by Lyophilizer for 2 days. 

d) Further purification of carrier 3b by TLC and HPLC 

TLC analysis was conducted the same as mentioned described in section 3.2.2.1a. 

HPLC analysis was performed on a Thermo Electron instrument equipped with UV/Vis 

& ELSD (Sedex 75) detectors. The column was by means of a Gemini 5 μm octadecyl 

carbon chain bonded silica (C18) (110 Å, 250 – 4.6 mm) mobile phase: H2O / 

Acetonitrile (AcN), with a gradient ratios: 98% / 2%, 50% / 50%, 10% / 90%, 98% / 2% 

and 98% / 2% at 0 min, 10 min, 15 min, 20 min and 30 min respectively, under a 

constant flow rate of 1.2 mL/min.  

3.3.2.2 Characterisation of carrier 3b 

a) General characterisation 

The UV spectroscopy signal of carrier 3b was measured at λ = 254 nm. UV 

analysis was performed on a UV spectrophotometer. MS was performed using 

Micromass ZQ 2000 detector, nitrogen flow 500 L/hr, nitrogen cone flow 70 L/hr, 

source temperature 110 °C, desolvation temperature 350 °C, and cone voltage 30 V. 

Melting point (MP) was performed by using Electrothermal IA9100 Digital Melting 

Point Apparatus. 
1
H-NMR, 

13
C-NMR, COSY and NOESY spectra were recorded on 

Bruker 400 MHz Advance III spectrometer with D2O as a solvent. All the chemical 

shifts are expressed as δ units (ppm). 

b) Fluorescence spectrometry analysis 

Inclusion association analysis of carrier 3b with DOX 
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The inclusion association of carrier 3b with DOX was quantitatively evaluated by 

titration method by measuring the fluorescence intensity of DOX at constant 

concentration (5 µM) in the presence of different concentrations (0.67 to 5000 µM) of 

carrier 3b. The carrier 3b : DOX molar ratios, in the tested solutions, varied from 0.13 

: 1 to 1000 : 1. Fluorescence spectra were measured by fluorescence spectrophotometer. 

Experiments were performed in 0.1 M PBS buffer solutions (pH = 7.4) at 37 °C. A DOX 

stock solution (100 mM) was made by dissolving 58 mg DOX powder (purity ≥ 98%) 

by 1 mL DMSO and kept frozen. A solution of 5 µM DOX was prepared by dilution of 

100 mM DOX stock solution (in DMSO) into PBS. The final concentration of DMSO in 

the diluted solution is 0.005%. To 10 mL of the final 5 µM DOX solution, 7.47 mg/mL 

of carrier 3b was added to obtain a carrier concentration of 5000 µM (1000 : 1 molar 

ratio of carrier 3b : DOX). Double dilutions from 1000 : 1 of carrier 3b : DOX 

solution by using 5 µM DOX solution was performed to obtain the various ratios of 

carrier 3b : DOX in the final solutions. Each solution was transferred into a 4 mL 

cuvette (Figure 3.2) and the fluorescence intensity was measured at λexcitation = 480 nm, 

λemission = 500 – 800 nm (λmax = 592 nm) (Kerry K. Karukstis and Rosenfeld 1998; Dai, 

Yue et al. 2008), with excitation and emission slits of 10 nm. 

 

Figure 3.2 DOX at constant concentration of 5 µM in the presence of different 

concentrations (0.67 to 5000 µM) of carrier 3b in cuvette before measuring 

fluorescence intensity. 

 

Thermal-responsivity of the inclusion complex of carrier 3b : DOX  

In thermal-responsivity investigations, DOX concentrations were employed 

constant at 2, 5 and 12.5 µM, respectively. The ratio between carrier 3b and DOX was 
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from 0.13 : 1 to 1000 : 1 (20 gradients). Tested solutions were prepared the same as 

described above (the section right above) but were transferred 200 µL/well to a black 

96-well plate (Figure 3.3 A) and test solutions arrangement can be seen from Figure 

3.3 B.  

 

Figure 3.3 Black 96-well plate for fluorescence intensity investigation (A); 

Schematic drawing of test solutions arrangement in 96-well plate (B). 

 

The first fluorescence intensity at room temperature (~ 25 °C) was measured by 

multi-mode plate reader under fluorescence optimal gain mode. Then INV064 oven 

(–10 °C to 50 °C) was used for achieving the higher desired temperatures (37 °C, 42 °C 

and 50 °C) by placing the same plate with the same test solutions 40 min with plate 

cover, fluorescence intensity at each temperature was recorded at the same setting of 

multi-mode plate reader. Then, the same plate was cooled down to room temperature 

again and the final set of fluorescence intensity was recorded. 

pH-responsivity of the inclusion complex of carrier 3b : DOX  

pH dependence of carrier 3b : DOX was assessed by dissolving the complex in 

different buffer solutions. The buffer solutions were prepared by using 0.2 M/0.1 M 

dibasic sodium phosphate (Na2HPO4), 0.1 M sodium phosphate monobasic 

(NaH2PO4∙H2O), 0.1 M citrate acid monohydrate, 0.1 M Potassium chloride (KCl) and 

0.1 M hydrochloric acid (HCl) (Mohan 2003). Table 3.1 shows pH buffers ingredients 

in details and final pH values measured by pH meter at 25 °C and 37 °C, respectively.  
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Table 3.1 pH buffers preparation and their final pH values at 25 °C and 37 °C 

 Ingredients (mL) Final pH 

Aimed 

pH 

value 

PBS 0.1 M 

Citric 

Acid 

0.1 M 

Na2HPO4 

0.2 M 

Na2HPO4 

0.1 M 

NaH2PO4 

∙H2O 

0.1 M 

KCl 

0.1 M 

HCl 

ddH2O 25°C 37°C 

8.0   10  125   70 8.004 7.970 

7.4 100        7.317 7.214 

7.0  15  45    40 7.047 6.912 

6.5  18.6  36.4    50 6.484 6.407 

5.5  24.2  27.8    50 5.503 5.429 

5.0  25  25    50 5.054 4.974 

4.5  29  23    50 4.532 4.507 

4.0  35  19    50 3.998 3.810 

3.0  48  10    50 3.057 2.980 

2.0      50 12 50 2.051 2.012 

1.0      50 90 90 1.095 1.024 

 

Tested solutions were prepared the same as the above section in a 96 well-plate 

with DOX concentration constant at 5 µM but by using different pH buffers instead of 

PBS. Fluorescence intensities of test solutions at room temperature (~ 25 °C) and 

heated to 37 °C were measured by multi-mode plate reader under fluorescence optimal 

gain mode. 

3.3.3 Calculations of encapsulation efficiency and binding 

constant 

3.3.3.1 Calculation of encapsulation efficiency of carrier 3b to DOX 

The encapsulation efficiency of carrier 3b to DOX was calculated by Equation 3.3:  

 

%100% 



o

xo

I

II
ionEncapsulat  

Equation 3.3 Encapsulation percentage of DOX by carrier 3b through 

fluorescence intensity measurement. 
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Where, I0 is the fluorescence intensity of DOX in the absence of carrier and Ix is the 

fluorescence intensity of DOX in the presence of different concentrations (x) of carrier 

3b.  

3.3.3.2 Calculation of binding constant K of carrier 3b to DOX 

It has been well reported that in the literature (Emara S 2000), addition of native 

γ-CD added to DOX at a ratio of up to 5000 : 1 can significantly stabilise DOX in 

aqueous solution via complex formation. Some other literatures (Swiech, Mieczkowska 

et al. 2012), where it has been shown that DOX encapsulation within CDs can 

significantly lower the fluorescence and absorbance signals of the guest molecule which 

means CDs can be considered as a fluorophore quencher for DOX molecular. 

Therefore, the binding constant can be calculated according to modified Stern-Volmer 

Equation 3.4 (Sorokin, Fylymonova et al. 2012) (which has been introduced in section 

2.2.3 in Chapter 2): 

fHfKII

I

xxo

o 1

][

1



 

Equation 3.4 Modified Stern-Volmer equation. 

 

Where, [H]x is the concentration of the host compound carrier 3b and 1 / f is 

equal to 1 since only one fluorescence quencher was employed in the present study 

(Lee 1998). The corresponding K binding, was calculated by the relationship of the 

intercept/slope value which is equal to (1 / f ) / (1 / fK) and derived from the linear plot 

of I0 / (I0 - Ix) vs. 1 / [H]x. 

3.4 Results and Discussion  

3.4.1 Characterisation of Carrier 3b 

Mono-6’-deoxy-6-[3-(naphthalen-2-yl)-2-(tert-butyloxycarbo 

nylamino)propionylamino]-γ-cyclodextrin (3a) was prepared by direct coupling of dry 

γ-CD (1) with 2-((tert-butoxy carbonyl)amino)-3-(naphthalen-2-yl)propanoic acid (2) 
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using HOBt, DMAP and EDC in DMF at 25 °C for 24 hr as shown in Figure 3.4 (step 1). 

Precipitation of the crude product from hot acetone, vacuum filtration of the white solid, 

careful purification by RP-18 column chromatography (H2O / CH3OH), recrystallisation 

from hot water and drying, afforded colourless crystals of pure 3a in 50% yield. 3a was 

converted to mono-6’-deoxy-6-[3-(naphthalen-2-yl)-2-(amino) 

propionylamino]-γ-cyclodextrin (carrier 3b) by removal of the tert-butoxycarbonyl 

protecting group using TFA in CH2Cl2 (1 : 1) at 25 °C (Figure 3.4, step 2). 

Concentration of the solvents under reduced pressure (< 25 °C), precipitation from hot 

acetone, vacuum filtration and freeze drying, afforded colourless crystals of pure 

carrier 3b in 84% yield (overall yield 42%). Compound carrier 3b was then fully 

characterised. Figure 3.5 shows γ-CD before and after modification.  

O

HN

O

(OH)8(OH)8

(OH)7

(OH)8(OH)8

(OH)8

1.  DMF, DMAP, HOBt, 
     EDC, 25 °C, 24 h

6

23

66'

23

HO

NH

O

+

1 3a2

O
O

O

H2N

O

(OH)8(OH)8

(OH)7

2.   CH2Cl2, TFA, 25 °C

      3 h

66'

23

3b

O
O

 

Figure 3.4 Synthetic approaches to 3a and carrier 3b. 
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Figure 3.5 Dry γ-CD before modification (A); and modified γ-CD derivative 

carrier 3b after purification and freeze-dry (B). 

3.4.1.1 TLC, HPLC, UV, MS and MP characterisation  

To analyse the conjugated product of the carrier synthesis, TLC and HPLC were 

conducted. TLC analysis showed Rf (γ-CD) = 0.18, Rf (3a) = 0.48 and Rf (carrier 3b) = 

0.25, respectively. The chromatogram obtained by HPLC (Figure 3.6) of crude carrier 

3b contains the following peaks: 12.06 min (carrier 3b), 12.9, 13.5, 14.1 min (unknown 

impurities), 17.1, 17.8, 18.8 min (di-substituted γ-CD), 36.6, 37.5, 46.8 min (unknown 

impurities). Where, retention time of the monosubstituted carrier (83% of the product) 

was 12.06 min. The unwanted di-substituted and tri-substituted (14.1% in total) 

retention times were manily three parts happened from 12.9 min to 14.1 min, 17.1 min 

to 18.8 min and 36.6 min to 46.8 min, respectively, which depending on the relative 

position of the substituents to each other. As this is a non-specific reaction, it was 

stopped on purpose after 50% of the reagents had reacted and carefully purified. This 

action was done to avoid the creation of unwanted di- and tri-substitution on the rim of 

γ-CD. 
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Figure 3.6 HPLC Chromatogram of crude carrier 3b. It contains the following 

peaks: 12.06 min (carrier 3b), 12.9, 13.5, 14.1 min (unknown impurities), 17.1, 

17.8, 18.8 min (di-substituted γ-CD), 36.6, 37.5, 46.8 min (unknown impurities). 

 

UV spectra found 8 peaks above -3.00 A between started wavelength at 190 nm and 

stop wavelength at 1100 nm which gave a highest peak at absorbance 0.895 of 278 nm 

(Figure 3.7). MS result of ESI-MS m/z calculated for C61H91NO41 (carrier 3b) as 

1494.51, measured as 1494.77 (Figure 3.8). MP (carrier 3b, H2O) = 220 – 222 °C.  

 
Figure 3.7 UV spectrum of carrier 3b. 
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Figure 3.8 Electrospraying Ionisation Mass Spectroscopy (ESI-MS) (1.36×10
7
) of 

carrier 3b. 

3.4.1.2 NMR characterisation 

1
H-NMR and 

13
C-NMR mesurements were performed to validate the structure of 

desired carrier 3b (Gourevich, Dogadkin et al. 2013). The 
1
H-NMR spectra (Figure 

3.9 A) and especially 
13

C-NMR spectra (Figure 3.9 B) suggested that the chemical 

structure of the carrier is consistent with the desired yield being the monosubstituted 

γ-CD with a β-naphthyl alanine residue on one of the hydroxyl groups on the primary 

face. 
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Figure 3.9 NMR spectra of carrier 3b (20 mM) in D2O. 
1
H-NMR spectrum (A); 

13
C-NMR spectrum (B). 
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1
H-NMR (400 MHz, D2O) of carrier 3b: 3.20 (d, 4H), 3.52 (d, 2H), 3.86 (s, 6H-6), 

3.79 (t, 5H), 3.97 (d, 3H), 4.41 (d, 9H), 4.50 (s, 8H), 5.10 (d, 1H), 7.39 (s, 19H), 7.57 

(m, 15H), 7.57 (m, 14H), 7.65 (m, 11H), 7.81 (m, 18H), 7.83 (m, 16H), 7.85 (m, 13H). 

13
C-NMR (400 MHz, D2O) of carrier 3b: 36.53 (9C), 53.87 (8C), 59.63-60.15 

(6C), 65.84 (*6C), 69.52 (*5C), 71.56-71.82 (5C), 72.01-72.38 (2C), 72.64-73.06 (3C), 

79.83-80.90 (4C), 100.97-102.17 (1C), 126.59 (15C), 126.73 (14C), 126.81 (18C-18), 

127.31 (13C), 127.53 (16C), 127.94 (19C), 128.35 (11C), 131.69 (17C), 132.23 (12C), 

132.92 (10C), 169.68 (7C). (*Carbon of the substituted ring) 

It is well documented in the literature (Schneider, Hacket et al. 1998) that H-1, H-2, 

H-4 and H-6 protons in γ-CD are located on the exterior surface of the molecule and 

exposed to bulk environments, while H-3 (δ = 3.95 ppm) and H-5 (δ = 3.88 ppm) 

protons are located in the interior cavity of γ-CD. 
1
H-NMR analysis of carrier 3b 

(Figure 3.9 A), shows that H-3 (δ = 3.97 ppm) and H-5 (δ = 3.79 ppm) protons 

experience magnetic perturbation and have a downfield shift of 0.02 ppm and an upfeild 

shift of 0.09 ppm, respectively. These observations suggest the existence of certain 

cooperative hydrophobic interactions between the CD’s interior cavity and the 

β-naphthalene moeity. Such interaction could be achieved only by partial or fully 

self-assembly inclusion of the β-naphthalene subsituent within the hydrophobic cavity 

of carrier 3b, as suggested by 3D interaction modelling in work reported previously 

(Gourevich, Dogadkin et al. 2013).  

3.4.2 Inclusion Association of Carrier 3b to DOX  

3.4.2.1 NMR analysis of carrier 3b to DOX complexation 

In order to investigate the inclusion behavior of DOX molecule as a guest to the host 

molecule of carrier 3b, further NMR measurements were performed in an aqueous 

solution D2O. The NMR results showed significant changes (black circles positions in 

Figure 3.10) in the majority of the protons from both carrier 3b and DOX molecular. 
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Figure 3.10 

1
H-NMR spectra of 10 mM DOX (top), 10 mM carrier 3b (middle), 

1:1 of carrier 3b : DOX (10 mM each) complex (bottom) in D2O with significant 

chemical shifts (black circle areas). 5’-CH3(black arrow) δ = 1.33 ppm and 8-H2 

(red arrow) δ = 2.30 ppm are as indicated. Black circles indicate interations of 

(from left to right): 3H of DOX with protons on β-naphthalene; 1’H of DOX with 

1H of CD’s ring; 3H and 5H interior protons of CD’s ring with 4-OCH3 of DOX 

and protons on β-naphthalene; 10H2 of DOX with protons on CD’s ring. 

 

 

Figure 3.11 
1
H-NMR spectra of DOX (2 mM) in D2O. 
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Where, the complex spectrum of carrier 3b and DOX mixture in D2O is not a 

simple superposition of the carrier and DOX spectra (Figure 3.11) (Wang, Wang et al. 

2010), which illustrating that there is indeed an interaction between these two 

molecules. Closer evaluation of the significant amount and manner of DOX and 

carrier 3b’s chemical shifts in aqueous solution suggested the encapsulation of DOX 

happens within carrier 3b’s cavity (Swiech, Mieczkowska et al. 2012). 

As mentioned above in section 3.4.1.2, H-3 and H-5 of carrier 3b are both facing 

the inner space of the cone and are affected by the removal of D2O and DOX entrance 

(Singh 2010). Thus, explanations for the encapsulation might be found from the 

upfeild chemical shifts of the protons in the 3
rd

 and 5
th

 positions in the γ-CD ring. 

Additional information obtained from the 
1
H-NMR spectrum of the complex can 

indicate the orientation of the DOX within the carrier. Again, as can be seen from 

Figure 3.10, the methyl moiety on the 5
th

 position of the amino sugar ring with the 

peak position of δ = 1.33 ppm (5’-CH3, black arrow in Figure 3.10) and the proton on 

the 8
th

 position of the aromatic ring with peak position of δ = 2.30 ppm (8-H2, red 

arrow in Figure 3.10) of the DOX molecule are not influenced by adding the carrier 

3b, which suggested that moiety of DOX is located outside the γ-CD cavity. 

Additional information on the 3D structure of the complex was achieved by 

NOESY and COSY measurements. Subtraction of the COSY and NOESY full 

spectrums (Figure 3.12, 3.13 and 3.14) provided the information on the non-covalently 

bonded protons present in proximity to each other in the 3D structure of the molecule. In 

the measurement of the 
1
H-NOESY spectra of the carrier 3b and DOX (Agrawal, 

Barthwal et al. 2009) (1 : 1) complex in D2O, the NOE interactions between the proton 

H-3 of DOX (6.9 ppm), which is located on the first phenyl ring next to the methyl group, 

and the β-naphthalene protons (7.6 ppm) of carrier 3b were observed (black arrow in 

Figure 3.13 C). This observation indicated that these protons were located close to each 

other and there was a strong probability of the formation of π-π stacking complex 

between the naphthyl group of carrier 3b and the included DOX (Figure 3.15). 
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Figure 3.12 
1
H–NMR (A) COSY and (B) NOESY full spectra and (C) their 

subtraction of carrier 3b : DOX (1 : 1) complex in D2O. 
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Figure 3.13 6 – 8ppm 
1
H–NMR (A) COSY and (B) NOESY spectra and (C) their 

substraction of carrier 3b : DOX (1 : 1) complex in D2O. 
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Figure 3.14 5 – 6ppm 
1
H–NMR (A) COSY and (B) NOESY spectra and (C) their 

subtraction of carrier 3b : DOX (1 : 1) complex in D2O. 
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Figure 3.15 Interaction model of carrier 3b-DOX inclusion complex 

3.4.2.2 Carrier 3b to DOX complexation analysed by fluorescence spectroscopy 

The inclusion complex created between carrier 3b and DOX in the present study 

was detected through fluorescence measurements based on the DOX fluorescence signal 

at 592 nm. According to the fluorescence studies, the fluorescence intensity of DOX was 

gradually decreased with increasing carrier 3b’s concentrations (Figure 3.16). This 

signal decays in the presence of carrier 3b, suggesting that good coupling between the 

DOX and carrier 3b is formed due to encapsulation, which is allowing energy transfer 

between the guest and host molecule. Therefore, the DOX excited state decays 

non-radioactively leading to lower fluorescence signals. The experimental results also 

validated that carrier 3b is a fluorophore quencher for DOX, because the fluorescence 

intensities of the carrier 3b : DOX samples were constantly lower than those of the free 

DOX. The observed decrease in the fluorescence intensity of DOX is in a good 

correspondence with literatures (Wagner, Fitzpatrick et al. 2003; Park 2006). 
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Figure 3.16 Fluorescence spectrum of DOX in the prescence of carrier 3b. 5 μM 

DOX with increasing concentrations (0.67 to 5000 µM) of carrier 3b in PBS was 

tested at λexcitation = 480 nm, λemission = 500 – 800 nm (λmax = 592 nm) with slits 10 

nm 

 

According to the calculation of encapsulation efficiency (Equation 3.3) between 

carrier 3b and DOX (Figure 3.17), DOX encapsulation efficiency was gradually 

enhanced with increasing concentration of carrier 3b, while no inclusion evidence was 

observed using the non-modified γ-CD with DOX, under similar conditions. Significant 

encapsulation of DOX within carrier 3b was observed at ratios as low as 1 : 1. 

Satisfying encapsulation was obtained of carrier 3b : DOX at the ratio of 10 : 1 which 

will be further discussed in section 3.4.4. 

 

Figure 3.17 Encapsulation of DOX (5 μM) by carrier 3b (0.67 to 5000 µM) and 

γ-CD (0.67 to 5000 µM) analysed by fluorescence spectroscopy. 
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3.4.2.3 Binding constant calculation of carrier 3b to DOX by modified 

Stern-Volmer equation 

Since a good correspondence function between 1 / ([carrier 3b], M
-1

) and 

fluorescence intensity of DOX in the presence of x M carrier 3b was obtained above 

(Figure 3.17), the corresponding K binding value, was calculated by the obtained liner 

plot of y = 5×10
5 

x+1.0263 derived from the correspondence of I0  / (I0-Ix) vs. 1 / [H]x 

(y and x axis in Figure 3.18, respectively) at R
2 

= 0.9936 through the intercept (1.0263) 

/ slope (5×10
5
) value which finally equal to 20,526 M

-1 
at physiological temperature. 

This value is a factor of 102 higher than the fluorescence established Kbinding reported 

by Anand et al. recently (Anand, Ottani et al. 2012) for the native γ-CD with DOX in 

1 : 1 complex formation. The higher value of Kbinding of the modified carrier 3b can be 

attributed to the modification by the naphthalene group, which potentially exhibits π-π 

interactions between the aromatic rings of carrier 3b and DOX molecule. The analysis 

is consistent with the previous carrier 3b to DOX inclusion’s NMR structure 

investigation. 

 

Figure 3.18 Binding constant K of carrier 3b with DOX. Fluorescence intensity of 

DOX (5 μM) mixed with carrier 3b (0.67 to 5000 µM) was measured and K 

binding was calculted as described in the Materials and Methods (K = 20526 M
-1

). 

3.4.2.4 Drug Loading efficiency of the carrier 

An additional important factor in the complex formation is the concentrations of the 

reagents and their molar ratio in solution. As can be seen in the 
1
H-NMR spectra of 
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carrier 3b : DOX at ratio 1 : 1 and 10 : 1 (Figure 3.19), the top spectrum has broader, 

which has more widely distributed peaks. This variation between the spectra suggests 

that, in the 1 : 1 solution, the created complexation has a more rigid structure than with 

excess of the carrier 3b. In the former case (10 : 1), several carrier 3b molecules can 

encapsulate a certain DOX encouraging it to exhibit a faster dynamic equilibrium 

between the free and encapsulated forms. Additionally, the comparison of the two 

spectra can aid in the attribution of the peaks to the appropriate molecules. The 

appearance of a certain peak (black circle in Figure 3.19) only in the 1 : 1 complex 

spectrum provides a strong indication that the peak belongs to DOX rather than the 

carrier 3b. A good example is the peak at 6.9 ppm which appears only in the 1 : 1 

spectrum and corresponds to DOX H-3.  

 

Figure 3.19 
1
H–NMR spectra of carrier 3b : DOX complexes at ratios 10 : 1 (top) 

and 1 : 1 (bottom) in D2O, respectively. 20 mM carrier 3b and 2 mM DOX were 

applied for the 10 : 1 complex; and 10 mM carrier 3b and 10 mM DOX were 

applied for the 1 : 1 complex. 

 

The drug loading efficiency was also validated by fluorescence spectroscopy in 

which increasing concentrations of DOX were used while carrier 3b : DOX was kept 

at the same ratio. The results suggested that increasing the concentration of DOX (2, 5 

or 12.5 μM) led to increased drug loading (Figure 3.20), which further confirmed that 
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increasing either the concentration of the carrier or DOX will lead the equilibrium of 

the two molecules to the direction of forming more encapsulation. These results 

demonstrate the potential of this carrier in reducing the dose of DOX in chemotherapy. 

 

Figure 3.20 Loading efficiency of DOX by carrier 3b. The DOX concentrations 

were as indicated (2 μM, 5 μM and 12.5 μM) and carrier 3b was applied at the 

ratios to each concentration of DOX from 26 : 1 down to 0.5 : 1. 

3.4.3 pH Stability of Carrier 3b : DOX Complex  

The pH responsivity of carrier 3b for the inclusion of DOX was investigated by 

fluorescence spectroscopy. The fluorescence emission values of free DOX were found 

to be unaffected in different pH media (Figure 3.21). Therefore, any change in the 

fluorescence intensity of DOX will be a result of the encapsulation. The encapsulation 

efficiency of carrier 3b to the drug was estimated under a wide range of pH values (1.0 

– 7.4) at 37 °C (Figure 3.22).  
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Figure 3.21 Fluorescence intensity of DOX in solutions of various pH values. 

 

 

Figure 3.22 Encapsulation percentage (%) of DOX by carrier 3b in solutions of 

various pH values and at different carrier 3b : DOX ratios at 37 °C 

 

Since the encapsulation efficiencies are all in the same order of magnitude, the 

results indicate a similar chemical stability of the complex (Bekers, Beijnen et al. 1990; 

Emara S 2000) and comparable encapsulation mode in a wide range of acidic 

environments and at a wide range of carrier 3b : DOX ratios. 
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3.4.4 Thermal Responsivity of Carrier 3b : DOX Complex 

The same method was utilised to evaluate the thermal responsivity (Schmaljohann 

2006) of the inclusion complex carrier 3b : DOX. Testing temperatures were 25, 37, 

42, 50 °C and then cool down at 25 °C (Figure 3.23). The modified Stern-Volmer plot 

shows a clear correlation between the encapsulation efficiency of carrier 3b with DOX 

and the temperature of the surrounding environment (Figure 3.24).  

 

Figure 3.23 Thermal responsivity of carrier 3b : DOX inclusion complex at pH7.4. 

 

 
Figure 3.24 Modified Stern-Volmer plot showing binding affinities of carrier 3b 

(0.67 to 5000 µM) to DOX (5 μM) at varying temperatures. K25 °C = 34433, K37 °C = 

20526, K42 °C = 12475, K50 °C = 9960, K25 °C (cool down) = 25377 M
-1
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Increasing the temperature from 25 to 50 °C led to a decrease of the K binding by ~ 

3.5-fold and release of the DOX from the inclusion complex. In addition, after cooling 

down the testing solutions to 25 °C, a re-encapsulation process of DOX by carrier 3b 

was observed. This phenomenon demonstrated the reversible equilibrium process of 

DOX + carrier 3b  carrier 3b-DOX and further confirmed the dynamic 

complexation interaction between DOX and carrier 3b. It is well known in the literature 

(Tabushi, Kiyosuke et al. 1978) that the complexation process of CDs is driven by 

enthalpy and entropy, typically exhibiting large negative enthalpy changes as well as 

small negative entropy changes. The negative enthalpy changes results from van der 

Waals interaction and hydrogen bonding between guests and the cavities of CDs, while 

the negative entropic change is due to the steric barrier caused by the molecule’s 

geometrical shape and the limit of CD cavity to the freedom of shift and rotation of guest 

molecules (Chen, Xu et al. 2005).   

Optimal (highest) DOX release from the inclusion by temperature changes 

occurred when the carrier 3b : DOX ratio was around 10 : 1 as indicated by the 

release rate (Table 3.2) calculated according to data obtained in Figure 3.23. This ratio 

formation was applied thereafter in in vitro cell culture studies in Chapter 4 and 5. 

 

Table 3.2 DOX (5 µM) release from encapsulation by temperature changes 

 Ratio of carrier 3b to DOX 

39 26 17 11 8 5 3 

Temperature *Release rate (%) 

25 °C to 37 °C 7.3 9.5 11.5 12.3 12.0 12.5 10.8 

37 °C to 42 °C 7.0 8.5 9.0 9.8 9.2 8.6 7.3 

42 °C to 50 °C 8.8 10.3 9.6 10.6 6.6 6.1 4.3 
*Release rates were calculated by deducting the encapsulation efficiency (%) at lower temperature from that of at higher 

temperature. 

3.5 Conclusions  

In conclusion, a novel γ-CD derivative carrier 3b has been successfully designed 

and constructed which showed significantly improved encapsulation ability for DOX. 

The carrier possesses thermo-sensitivity and high pH stability. The delivery system was 
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designed to be used in combination with heat treatments, such as RFA, microwave 

hyperthermia and HIFU (May and Li 2013). However, whether this carrier would be 

efficient in encapsulation of DOX in in vitro and in vivo stages, and how the specific 

transportation and distribution of carrier 3b-DOX inclusion would be, are need to be 

further validated. The further investigation and application of this delivery system, in 

vitro and in vivo, are further introduced and discussed in Chapter 4, 5 and 6. 
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Chapter 4  

Establishment of in vitro Evaluation of 

Doxorubicin Encapsulation by 

γ-cyclodextrin Derivative 

4.1 Introduction 

On the basis of chemical analysis for the encapsulation affinity between the novel 

modified γ-CD carrier and DOX discussed in last chapter, it is essential to establish 

proper human cancer cell models to verify the encapsulation ability of the carrier to 

DOX for potential pre-clinical studies in the future. 

Cell culture plays an important role in the development and evaluation of novel 

anticancer drugs in vitro through carrying out experiments such as cellular drug uptake, 

drug efflux, cellular metabolism and cell proliferation assays. The development of 

methods for culturing human cancer cells in vitro has raised the question of whether it 

might be possible to use cell culture methods to model all of the features important for 

clinical anti-tumour activities. Such approaches might also lead to the development of 

novel nanocarriers for transportation of existing anticancer drugs that are selective for 

human tumour targets (Baguley, Hicks et al. 2002).  

Cell cultures are often used to: 1) screen compounds for carcinogenicity or 

mutagenicity; 2) analyse of the cells themselves; 3) examine cell to cell communication; 

4) assess cell’s response to chemical compounds; and 5) produce cellular-derived 

protein products (Varga 2011).  

The main theme of this chapter is the investigation of encapsulation capacity of the 

novel modified γ-CD carrier to DOX by cytotoxic and cellular drug uptake assays. 

Cytotoxic assays are particularly useful in evaluation of cell survival following 

exposure to novel compounds designed for anti-cancer treatments, while cellular drug 
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uptake evaluation is an efficient tool to investigate the encapsulation affinity of 

designed nanocarriers towards existing cytotoxic anti-cancer agents in vitro.  

4.2 Human Cancer Cell Culture and Selection of 

Methodology 

4.2.1 Selection of Suitable Human Cancer Cell Lines: KB and 

HCT116 (Langdon 2003)  

KB, human nasopharyngeal epidermoid carcinoma, is a HeLa (cervical carcinoma) 

contaminant cell line according to American Tissue Culture Collection (ATCC, 

CCL-17). KB cell line is widely used as it contains the highest expression required in 

many studies (Antony, Kane et al. 1989; Elwood 1989; Saikawa, Knight et al. 1993; Lee 

and Low 1994). It is also relatively sensitive to doxorubicin (Shen, Lu et al. 1991; 

Kamimura, Furukawa et al. 2013).  

HCT116 (ATCC, CCL-247) is a human colorectal carcinoma that has wild type p53. 

It carries a RAS mutation in codon 13 and is tumourigenic in nude mice. Cell lines from 

human colorectal cancers are useful tools in the study of cell biology and in the 

development and testing of new therapeutic modalities. In general, colorectal cancer cell 

lines are relatively easy to establish and grow (Langdon 2003).  

4.2.2 Selection of Methodology: Anti-proliferative (Growth 

Inhibition) Assays 

Anti-proliferative assays include cell cytotoxic assays and cellular drug uptake 

assays, which discuss the measurement of growth inhibition rather than cell killing 

(Baguley, Hicks et al. 2002). Cell cytotoxic assays such as the evaluation of the half 

maximal inhibitory concentration (IC50) (Belotti 1996) of a certain drug to different cell 

lines, is a particularly important strategy for DNA-damaging drugs such as DOX which 

was employed in the thesis reported here. DNA damage generally arrests cells in G2 
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phase (Furnari, Rhind et al. 1997) especially when p53 function is present (Abedin and 

King 2010). IC50 determination is the most direct method of measuring cytotoxic 

activity of a drug by in vitro, which may provide useful pharmacokinetic information 

for in vivo application (Fridborg, Nygren et al. 1995). 

Another commonly used anti-proliferative assay is cellular drug uptake. It provides 

a promising evaluation approach for drugs / nanomedicines such as those designed for 

selective activation by specific enzymes in tumour cells; those transportable by 

targeting ligands; and those released by physical or chemical triggers. In the above cases, 

useful activity depends not only on the ability of the drug to act as a substrate for the 

enzyme system but also on its ability to enter the tumour cells. This cell-based method 

is particularly suitable for detecting potential components such as cell targets that are 

difficult to represent in isolated biochemical systems. 

Cytotoxicity investigation by MTT assay  

Mitochondrial reduction of the dye methylthiazoldiphenyltetrazolium (MTT), has 

been first developed and reported as a rapid and quantitative assay for cell survival and 

proliferation investigation by Mosmann (Mosmann 1983).  

In MTT assay, cells should be in their exponential phase of growth and are exposed 

to cytotoxic chemicals. The exposure duration of MTT assay is usually determined by 

the time required for maximal damage to occur but is also depends on the stability of 

the tested drugs. After removal of testing compounds, the cells are usually post-cultured 

to proliferate for two to three doubling times to distinguish between cells that remain 

viable and are capable of proliferation and those that remain viable but cannot 

proliferate (Langdon 2003). Surviving cell numbers are then determined indirectly by 

MTT dye reduction.  

MTT reagent is a yellow water-soluble tetrazolium dye which is reduced by 

mitochondria of live cells (Liu, Peterson et al. 1997) by forming a blue formazan 

product that is insoluble in aqueous solutions (Figure 4.1 A). The amount of produced 

formazan can be determined spectrophotometrically once solubilised in a suitable 

solvent such as DMSO. The advantages of MTT assay are 1) it is a quick and easy 

screening procedure; 2) it allows a large number of assays to be carried out in one batch; 
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3) The results can be read on a multi-well scanning spectrophotometer and show a high 

degree of precision; and 4) No washing steps are used in the assay and lack of any 

radioisotope. But a drawback of the assay is that it cannot distinguish between a 

cytotoxic (cell kill) and a cytostatic (reduced growth rate) effect (Langdon 2003).  

 

Figure 4.1 MTT assay formazan formed by live cells (A) and dead cells (B). 

 

In terms of MTT application, the assay has been adapted successfully to measure 

growth and drug sensitivity of a variety of tumour cell lines by Finlay et al. (Finlay, 

Wilson et al. 1986) and Scudiero et al. (Scudiero, Shoemaker et al. 1988) in the 1980s. 

Moreover, the American National Cancer Institute (NCI) reported MTT dye reduction 

evaluation as a possible endpoint in a rapid screening assay (Alley, Scudiero et al. 1988). 

Shortly after, Berridge and Rao (Berridge and Rao 1993) further investigated the 

cellular reduction including sub-cellular localisation, substrate dependence, and 

involvement of mitochondrial electron transport in MTT reduction.  

Many other tetrazolium salts such as XTT (2, 

3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide), MTS 

(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetraz

olium) in the presence of phenazine methosulfate (PMS) (Cory, Owen et al. 1991) and 

water soluble tetrazolium salts (WSTs) have been developed as water soluble 

tetrazolium salts to alternatively replace MTT assay. However, no single cytotoxicity 

assay is ideal and it is always advisable to support results with those obtained from 

alternative assays where possible and applicable. In the thesis reported here, MTT assay 

was adopted to investigate cell viabilities.  
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Cellular drug uptake and cell total protein measurement by the bicinchoninic acid 

(BCA) assay 

Cellular DOX uptake can be observed first of all by fluorescence microscopy. 

When DOX has been up-taken by cells, its fluorescence signal is visible under 

fluorescence microscopy by using a black glass fluorescence filter. The quantitation of 

DOX cellular uptake can be further determined by breaking down cells by lysis buffer 

and measuring cell lysate’s fluorescence intensity. The obtained fluorescence intensities 

of cell lysates need to be normalised further by the total cellular protein using 

bicinchoninic acid (BCA) assay. 

Tuszynski and Murphy (Tuszynski and Murphy 1990) reported BCA assay is a 

rapid and convenient method for the determination of the actual and relative cell 

numbers in tissue culture by using bicinchoninic acid to measure the total cellular 

protein of cultured cells. 

In BCA assay, cells usually are treated by cell lysis buffer to ensure cell protein 

release. By adding BCA reagent to cell lysate, Cu
2+

 firstly oxidises the protein and is 

converted to Cu
1+

, followed by bicinchoninic acid which complexes with the formed 

Cu
1+

 to form a purple colour. The oxidation reaction can be performed at room 

temperature for 2 hr, or at 37 °C for 30 min. The colour generated at the end of the 

incubation period is fairly stable. This assay is rapid and simple to perform. The data 

generated are also very reproducible and the assay is ideal for screening a large number 

of samples.  

As Tuszynski and Murphy finally pointed that the cell-derived absorbance reading 

as determined by BCA protein assay was proportional to the number of cells, in this 

thesis, BCA assay has been adopted for the indication of total cell numbers for 

normalising the fluorescence intensity by DOX in cellular drug uptake assay. 
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4.3 Materials and Methods 

4.3.1 Materials 

4.3.1.1 In vitro cell culture, medium, supplementation and other reagents 

Medium, supplementation and 

reagents 

Manufacturer and 

place of origin 

Specification 

KB cell line American Tissue Culture 

Collection, USA 

CCL-17 

HCT116 cell line American Tissue Culture 

Collection, USA 

CCL-247 

Roswell Park Memorial Institute 

(RPMI)1640 

Gibco® Invitrogen, UK [+] L-Glutamine 

Dulbecco’s Modified Eagle’s 

Medium (DMEM) 

Gibco®  Invitrogen, 

UK 

[+] 4.5g/L D-Glucose 

[+] L-Glutamine 

[+] Pyruvate 

Phenol Red Free Dulbecco’s 

Modified Eagle’s Medium 

(DMEM) 

Gibco®  Invitrogen, 

UK 

[+] 4.5g/L D-Glucose 

[+] L-Glutamine 

[+] 25Mm HEPES 

[−] Sodium Pyruvate 

Fetal Bovine Serum (FBS) Gibco Invitrogen, UK Origin: South America 

Trypsin- 

Ethylenediaminetetraacetic 

acid (EDTA) 

Gibco Invitrogen, UK 0.05% 

Penicillin Streptomycin 

(Pen-Strep) 

Sigma-Aldrich, UK 10,000 units penicillin 

and 10 mg 

streptomysin/mL 

L-Glutamine Sigma-Aldrich, UK 200 mM 

Sodium Pyruvate Gibco®  Invitrogen, 

UK 

100 mM 

Non-Essential Amino Acids Gibco®  Invitrogen, 

UK 

 

HEPES buffer solution Gibco®  Invitrogen, 

UK 

1 M 

MycoAlert PLUS Mycoplasma 

Detection Kit 

Lonza, USA 10 test kit 

Dimethyl Sulphoxide (DMSO) Sigma-Aldrich, UK Biotechnology use, 

sterile filtered, endotoxin 

tested, hybridoma tested 

Sodium Dodecyl Sulfate (SDS) Sigma-Aldrich, UK 0.05% (w/v) in ddH2O 

3-(4,5-Dimethylthiazol-2-yl)-2,5 Sigma-Aldrich, UK 5 mg/mL in PBS 
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- 

diphenyltetrazolium bromide 

(MTT) 

Bicinchoninic Acid (BCA) 

Protein Assay Kit 

Sigma-Aldrich, UK Solution A: 

bicinchoninic acid, 

sodium carbonate, 

sodium tartrate, sodium 

bicarbonate in 0.1 M 

NaOH (final pH 11.25). 

Solution B: 4% (w/v) 

copper(II) sulfate 

pentahydrate 

Protein Standard (Bovine Serum 

Albumin-BSA) 

 

Sigma-Aldrich, UK 1.0 mg/mL bovine serum 

albumin in 0.15 M NaCl 

with 0.05% sodium azide 

doxorubicin (DOX) Mesochem Technology 

Co.,Ltd, Beijing, China 

Purity ≥ 98% 

PBS tablets Oxoid, UK Typical Formual (g/L): 

Sodium chloride 8.0; 

Potassium chloride 0.2; 

Di-sodium hydrogen 

phosphate 1.15; 

Potassium dihydrogen 

phosphate 0.2. 

1tablet/100mL, pH 

7.3±0.2 at 25°C 

4.3.1.2 Complete RPMI1640 and DMEM medium formulation 

Complete RPMI1640 

Supplementation Supplementation 

Fetal bovine serum (FBS) Fetal bovine serum (FBS) 

L-Glutamine L-Glutamine 

Penicillin and Streptomycin (Pen-Strep) Penicillin and Streptomycin (Pen-Strep) 

Sodium Pyruvate Sodium Pyruvate 

Non-essential Amino Acids Non-essential Amino Acids 

HEPES buffer HEPES buffer 

Complete DMEM 

Supplementation Supplementation 

Fetal bovine serum (FBS) Fetal bovine serum (FBS) 

L-Glutamine L-Glutamine 

Penicillin and Streptomycin (Pen-Strep) Penicillin and Streptomycin (Pen-Strep) 
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4.3.1.3 Cell culture consumables and equipment 

Consumables and 

equipment 

Manufacturer and place 

of origin 

Specification 

Cell culture flasks Techno Plastic Products 

(TPP), Switzerland 

75 cm
2
 

6-well, 12-well, 24-well 

and 96-well plate 

Techno Plastic Products 

(TPP), Switzerland 

transparent 

Black 96-well plate Greiner, Austria Non cell culture treated 

black base microplates 

Haemacytometer Marienfeld, Germany Depth: 0.1 mm 

Area: 0.0025 mm
2
 

Sterile Syringe filters Fisher Scientific, UK 0.45 µm cellulose acetate 

membrane 

Serological pipettes Techno Plastic Products 

(TPP), Switzerland 

5 mL, 10 mL and 25 mL 

Multi-mode plate reader Tecan, Austria Tecan infinite M200 

Oven Scientific Laboratory 

Supplies, UK 

INV064 

Multi-channel pipettes Eppendorf, UK 8-channel/12-channel 

Distilled/deionized water Millipore, UK  

4.3.2 Methods 

4.3.2.1 IC50 evaluation of DOX for KB and HCT116 cell lines 

Cultured KB / HCT116 cells were harvested and seeded at the density of 4000 per 

single well in a 96-well micro-plate 1 day prior to the assay. Cells were not plated in 

columns 1 and 12, rows A and H, but filled with complete medium (CM) because these 

are used as blank controls for the absorbance of the residual medium and MTT in the 

wells.  

DOX stock solution was prepared by dissolving 58 mg DOX powder in 1 mL 

DMSO to obtain the stock DOX concentration at 100 mM and kept the solution frozen. 

A solution of 100 μM DOX was prepared by dilution of the DOX stock solution by CM. 

The final concentration of DMSO in the diluted solution was 0.1%. This solution was 

then filtered by 0.45 µm filter and was diluted by 3/4 dilution method by CM to obtain 
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DOX concentrations from 100 μM to 2.4 μM for KB cell line (14 DOX concentration 

gradients, Figure 4.2 A) experiments, and to obtain DOX concentrations from 100 μM 

to 0.56 μM for HCT116 cell line (19 DOX concentration gradients, Figure 4.2 B) 

experiments, respectively.  

Cells were then exposed to the pre-heated (20 min at 37 °C water bath) test 

solutions by incubation with 100 µL of each solution/well for 30 min in triplicates. 

Experimental arrangement is presented as in Figure 4.2. At the end of incubation, test 

solutions and CM in control wells were removed and cells were washed by pre-heated 

CM twice and replaced with 100 µL/well fresh CM. Cells were then observed under the 

microscope to assess cell loss. Cell in the plate with refilled 100 µL/well fresh CM were 

further incubated for 48 hr. 
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Figure 4.2 Experimental design for IC50 determination of DOX to KB cell line (A) 

and HCT116 cell line (B) in 96-well plates. 

 

Cell viability was then evaluated by MTT colorimetric assay that uses the 

enzymatic activities of cells as a measure for their viability 48 hr post DOX exposure. 

For the MTT assay, 5 mg/mL MTT powder was dissolved in PBS and 20 µL of the 

prepared reagent was added directly into each well of cultured cells (100 µL CM) and 

A: KB cells 

B: HCT116 cells 
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incubated for 3 hr in a standard incubator. After incubation, the liquid was gently 

aspirated from the wells with a multi-channel pipette without touching the bottom of 

wells. Then, 100 µL/well of DMSO was added to dissolve the formazan, an artificial 

chromogenic product created by the reduction of the tetrazolium salt in metabolically 

active cells. The absorbance for each well, which is proportional to the number of viable 

cells, was read using the multi-mode Infinite M200 plate reader at a wavelength of 550 

nm with 2 min pre-shaking (this step helps to dissolve formed formazan thoroughly). 

Cell inhibition percentages (Inhibition %) by DOX can be calculated based on the 

absorbance values (OD) at 550 nm obtained from MTT assay by Equation 4.1: 

 

𝐼𝑛ℎ𝑖 𝑖𝑡𝑖𝑜𝑛% = (1 −
𝑂𝐷𝑐𝑒𝑙𝑙+𝐷𝑂𝑋 − 𝑂𝐷𝑏𝑙𝑎𝑛𝑘

𝑂𝐷𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑂𝐷𝑏𝑙𝑎𝑛𝑘
) × 1  % 

Equation 4. 1 Cell inhibition percentage upon exposure to DOX solutions. 

 

Where, 𝑂𝐷𝑐𝑒𝑙𝑙+𝐷𝑂𝑋 is the absorbance of cells exposed to gradient concentration of 

DOX solutions, 𝑂𝐷𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is the absorbance of cells with no DOX exposure and 

𝑂𝐷𝑏𝑙𝑎𝑛𝑘 is CM without cells. Then, a correlation between Inhibition% and common 

logarithm of DOX concentrations (Log10 [DOX, M]) (Stewart and Watson 1983; 

Martone, Zhou et al. 2009; Chavez-Gutierrez, Bammens et al. 2012) can be obtained as 

typically showed by Figure 4.3.  

 

Figure 4.3 Determination of IC50 of unlabeled drug 
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As IC50 is the concentration at which the curve passes through the 50% inhibition, 

the inhibition at IC50 concentration  𝐼𝑛ℎ𝑖 𝑖𝑡𝑖𝑜𝑛𝐼𝐶50
%  can be then calculated according 

to Equation 4.2: 

 

𝐼𝑛ℎ𝑖 𝑖𝑡𝑖𝑜𝑛𝐼𝐶50
% = [𝐼𝑛ℎ𝑖 𝑖𝑡𝑖𝑜𝑛𝑚𝑎𝑥 − 5 % ×  𝐼𝑛ℎ𝑖 𝑖𝑡𝑖𝑜𝑛𝑚𝑎𝑥 − 𝐼𝑛ℎ𝑖 𝑖𝑡𝑖𝑜𝑛𝑚𝑖𝑛 ] × % 

Equation 4.2 Inhibition at IC50 concentration 

 

Where, 𝐼𝑛ℎ𝑖 𝑖𝑡𝑖𝑜𝑛𝑚𝑎𝑥 is the maximum inhibition rate of DOX to this cell line, 

while 𝐼𝑛ℎ𝑖 𝑖𝑡𝑖𝑜𝑛𝑚𝑖𝑛  is the minimum inhibition rate. Thus, the IC50 can be determined 

as the DOX concentration at which inhibition equals to 𝐼𝑛ℎ𝑖 𝑖𝑡𝑖𝑜𝑛𝐼𝐶50
value. 

4.3.2.2 Calibration curve of DOX 

Two sets of calibration curves for DOX fluorescence intensity vs. DOX 

concentration were determined by preparation of two sets of gradient concentrations (2 

µM to 0.034 µM and 1 µM to 0.017 µM) of DOX in 0.5% SDS cell lysis buffer. Then 

DOX solutions were transferred to a black plate 200 µL/well in triplicate per sample, 

and fluorescence intensities were obtained by infinite M200 multi-mode plate reader at 

λexcitation = 485 nm, λemission = 500 – 800 nm and the fluorescence intensity at 592 nm 

(λmax) was adopted for the calibration curves. 

4.3.2.3 Cytotoxicity evaluation assays 

Cultured KB / HCT116 cells were harvested and seeded at the density of 4000 per 

single well in a 96-well micro-plate 1 day prior to the assay. Cells were not plated in 

columns 1 and 12, rows A and H, but filled with CM as these are used as blank controls 

for the absorbance of the residual medium and MTT in the wells. 

To test the modified carrier’s cytotoxicity, a solution of 1250 / 2500 μM carrier was 

prepared by dissolving 1.875 / 3.75 mg/mL carrier in CM and filtered by 0.45 µm filter 

for KB and HCT116 cells respectively. For the mixture of carrier and DOX cytotoxic 

assays, a solution of 12.5 / 25 μM DOX (corresponding to the test for KB / HCT116 cell 
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lines, respectively) was prepared by dilution of the DOX stock solution (100 mM) in 

DMSO by CM. The final concentration of DMSO in the diluted solution is 0.0125 / 

0.025%, respectively. To the final 12.5 / 25 μM DOX solution, 0.1875 / 0.375 mg/mL of 

carrier was added to obtain a concentration of 125 / 250μM (10 : 1 of carrier : DOX 

molar ratio). This solution was then filtered by 0.45 µm filter and was diluted by 12.5 / 

25 μM DOX solution to obtain carrier : DOX molar ratio at 100 : 1, 50 : 1, 25 : 1, 10 : 1, 

5 : 1 and 2.5 : 1, to keep the concentration of DOX constant at 12.5 / 25 μM. DOX 

solution of 12.5 / 25 μM with native γ-CD (100 : 1 of γ-CD : DOX molar ratio) was also 

experimented to compare the encapsulation affinity of γ-CD to DOX with the modified 

γ-CD.  

 

Figure 4.4 Cytotoxicity test by exposure KB / HCT116 cells to gradient 

concentrations of carrier in the presence of constant concentration of DOX (12.5 / 

25 µM, respectively). 

 

Cells were then exposed to the pre-heated (20 min at 37 °C water bath) test 

solutions by incubation with 100 µL of each solution/well for 30 min in triplicates 

according to Figure 4.4. At the end of incubation, test solutions and CM in control wells 

were removed and cells were washed by pre-heated CM twice and replaced with 100 
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µL/well fresh CM. Cells were then observed under the microscope to assess cell loss. 

Cells in the plate with refilled 100 µL/well fresh CM were further incubated for 48 hr.  

Cell viability was evaluated with MTT colorimetric assay 48 hr post exposure, as 

described in section 4.3.2.1. 

4.3.2.4 Cellular drug uptake evaluation assays 

KB / HCT116 cells were harvested and seeded at the density of 1.3×10
5
 per well in 

a 24-well plate and allowed to grow over 3 days prior to the assay. A solution of 12.5 / 

25 μM DOX (corresponding to the test for KB / HCT116 cells, respectively) was 

prepared by dilution of the DOX stock solution (100 mM) in DMSO by CM. The final 

concentration of DMSO in the diluted solution is 0.0125 / 0.025%, respectively. To the 

final 12.5 / 25 μM DOX solution, 0.1875 / 0.375 mg/mL of carrier was added to obtain a 

concentration of 125 / 250 μM (10 : 1 of carrier : DOX molar ratio). This solution was 

then filtered by 0.45 µm filter and was diluted by means of 12.5 / 25 μM DOX solution 

to obtain carrier : DOX molar ratio at 100 : 1, 50 : 1, 25 : 1, 10 : 1, 5 : 1 and 2.5 : 1, to 

keep the concentration of DOX is constant at 12.5 / 25 μM. Cells were exposed to DOX 

solution of 12.5 / 25 μM with native γ-CD (100 : 1 of γ-CD : DOX molar ratio) to 

compare the encapsulation affinity of unmodified γ-CD’s to DOX with that of modified 

γ-CD to DOX.   

For physiological temperature test, cells were exposed to the pre-heated (20 min at 

37 °C water bath) test solutions by incubation with 300 µL/well of each solution for 30 

min in triplicates / duplicates (see Figure 4.5). For thermal-responsivity test, cells were 

exposed to preheated (30 min at 42 °C and 50 °C oven) test solutions by incubation with 

300 µL/well of each solution in triplicates / duplicates (Figure 4.5). 
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Figure 4.5 Cellular DOX uptake by exposure KB / HCT116 cells to 

carrier-protected DOX (12.5 / 25 µM). The arrangement was the same for all 

experimental conditions: physiological (37 °C) and hyper-thermal temperatures 

(42 °C and 50 °C). 

 

At the end of the incubation time, test solutions were removed and the wells were 

washed twice with preheated (at 37 °C water bath) PBS. PBS was removed and 250 µL 

0.5% SDS were added to each well. Following observation under the microscope to 

ensure complete cell disruption by SDS, 200 µL total cell lysates from each well were 

transferred into wells of a black 96-well plate with µ-clear bottom for the measurement 

of the fluorescence intensity of intracellular DOX. Meanwhile, 25 µL of cell lysates 

from the same samples were transferred to wells of a normal transparent 96-well cell 

culture plate for protein determination by the BCA assay.  

BCA reagent was prepared by mixing 50 parts of bicinchoninic acid (reagent A) and 

1 part of 4% (w / v) copper sulphate solution (reagent B). Standard bovine serum 

albumin (BSA) solutions from 25 µg/mL to 500 µg/mL were prepared by diluting the 

standard BSA solution (1000 µg/mL) in the BCA kit by using the same cell lysis buffer 

(0.5% SDS). BCA assay was then carried out by adding 200 µL BCA reagent into 25 µL 

of cell lysates samples or BSA standard solutions to obtain the ratio of reagent and 

protein sample at 8 : 1. The plate was shaken for 30 sec and incubated for 30 min at 37 
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°C. After incubation, the plate was cooled down to room temperature and the absorbance 

was recorded. 

Both fluorescence intensity and absorbance were read by Infinite M200 multi-mode 

plate reader. Fluorescence intensity was measured at excitation and emission 

wavelengths at 485 nm and 592 nm, respectively. Absorbance of BCA assay was 

measured at a wavelength at 562 nm. 

The cellular uptake of DOX (% of free DOX) can be calculated according to 

Equation 4.3: 

 

 𝑝𝑡  𝑒% =
𝐼𝑥 𝑂𝐷𝑥⁄

𝐼𝐷𝑂𝑋 𝑂𝐷𝐷𝑂𝑋⁄
× 1   

Equation 4.3 Cellular uptake of DOX (% of DOX alone). 

 

Where, 𝐼𝑥  (IDOX) is the fluorescence intensity of cells exposed to DOX in the 

presence (or absence) of x concentration of carrier while 𝑂𝐷𝑥  (ODDOX) is the 

absorbance of BCA test for corresponding samples. DOX calibration curve can be 

adopted further to calculate the amount of cellular DOX uptake in the unit of µmol/µg 

total protein. 

4.4 Results and Discussion  

4.4.1 Cytotoxicity Test 

4.4.1.1 IC50 determination of DOX for KB and HCT116 cell lines 

KB and HCT116 cells were exposed to gradient concentrations of DOX to 

determine the IC50 for both cell lines. IC50 is an important criterion for choosing proper 

DOX concentration for further cell culture studies presented later in this chapter and 

Chapter 5. 
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Figure 4.6 IC50 determination for DOX to KB cells expressed by the cell viability 

curve and the correlation between Inhibition% and Log10 [DOX, M] (Inset). 

 

Figure 4.6 demonstrates the viability of KB cells against gradient concentrations 

of DOX (30 min exposure at 37 °C), and the correlation curve and equation obtained 

by DOX inhibition rate for KB cells vs. the value of Log10 [DOX, M]. The viability of 

KB cells sharply decreased with increasing concentrations of DOX. When DOX 

concentrations went up to around 23.73 µM and higher, the viability of KB cells 

reached to a plateau where cell viable rate was only 2%, which gave the maximum 

inhibition rate at 98% (𝐼𝑛ℎ𝑖 𝑖𝑡𝑖𝑜𝑛𝑚𝑎𝑥). Accordingly, the maximum KB cell viability 

in the presence of DOX was 94.24%, thus, the minimum cell inhibition rate was 5.76% 

(𝐼𝑛ℎ𝑖 𝑖𝑡𝑖𝑜𝑛𝑚𝑖𝑛). Therefore, 𝐼𝑛ℎ𝑖 𝑖𝑡𝑖𝑜𝑛𝐼𝐶50
% was obtained as 51.95% according to 

Equation 4.2. Together with the correlation equation generated between inhibition rates 

and Log10 [DOX, M], the value of Log10 [DOX, M] is equal to −5.52 at InhibitionIC50%, 

hence, DOX IC50 to KB human epidermal carcinoma cells was finally determined by 

Log10 [DOX, M] = −5.52 as IC50 (DOX to KB) = 5.01 µM.  
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Figure 4.7 IC50 determination for DOX to HCT116 cells expressed by the cell 

viability curve and the correlation between Inhibition% and Log10 [DOX, M] 

(Inset). 

 

Similar to KB cell line, Figure 4.7 depicts the viability of HCT116 cells exposed to 

DOX solutions (30 min exposure at 37 °C) and the relationship between DOX 

inhibition rates to HCT116 cells and Log10 [DOX, M]. In comparison to KB cells, 

HCT116 human colorectal cell line showed more resistance to DOX, as the minimum 

cell viability of HCT116 to DOX was at 20% whereas KB cells showed only 2%. The 

maximum viability of HCT116 to DOX was similar to KB cells, which was at 94.80%. 

Hence, the maximum inhibition rate of DOX to HCT116 cells was 80% while the 

minimum inhibition rate was 5.2%. According to Equation 4.2 again, 𝐼𝑛ℎ𝑖 𝑖𝑡𝑖𝑜𝑛𝐼𝐶50
% 

was calculated as 42.6%, and Log10 [DOX, M] = −5.014 was obtained. Finally, IC50 of 

DOX to HCT116 human colorectal carcinoma cells was determined as IC50 (DOX to 

HCT116) = 9.68 µM. 

For easy calculation in future experiments, IC50 = 5 µM for KB cell line and IC50 = 

10 µM for HCT116 cell line were adopted, respectively. Consequently, concentrations 

of 2.5 × IC50 (O'Neill, Ormerod et al. 1996; Keenan, Liang et al. 2004; Vandyke, White 
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et al. 2007) of DOX for the treatment of KB and HCT116, 12.5 µM and 25 µM 

respectively, were employed for the viability and drug uptake assays by exposure KB 

and HCT116 cells to DOX in the presence of carriers. 

4.4.1.2 Cytotoxicity of encapsulated DOX by unmodified γ-CD and modified γ-CD 

carrier  

To validate the encapsulation capability of the carrier, in vitro cytotoxicity 

experiments were performed at 37 °C for 30 min. Both KB and HCT116 cells were 

exposed to gradient ratios (100 : 1, 50 : 1, 25 : 1, 10 : 1, 5 : 1 and 2.5 : 1) of 

carrier-DOX complex and were compared with DOX alone and γ-CD associated DOX, 

while keeping constant concentration of DOX.   

 

Table 4.1 Effect of carrier encapsulation on the viability of KB and HCT116 cells 

by DOX 

  KB cells 

(Viability % 

of control) 

HCT116 cells 

(Viability % 

of control) 

Ratio of 

Carrier : DOX 

100:1 95.5±3.4 92.7±3.4 

50:1 84.6±3.9 91.8±3.3 

25:1 84.1±6.8 78.7±2.0 

10:1 85.4±4.5 65.9±4.1 

5:1 66.5±2.4 59.2±4.8 

2.5:1 39.4±2.9 54.2±1.7 

DOX alone 12.5 / 25 µM 

(KB / HCT116) 

12.9±1.2 37.2±1.5 

Carrier alone 1250 / 2500 µM 

(KB / HCT116) 

100.7±2.6 97.8±2.0 

γ-CD+DOX 

(100:1) 

(125+12.5 µM)/(250+25 µM) 

(KB / HCT116) 

24.7±3.5 37.9±0.8 

*The data were compiled from five separate experiments performed in triplicates and were expressed as means±SD. 

The MTT results (Table 4.1) show that this modified γ-CD derivative itself has no 

obvious cytotoxic effect on cancer cells, in which, 100.7 ± 2.6% viable KB cells and 

97.8 ± 2.0% viable HCT116 cells were observed after exposure to 1250 µM and 2500 

µM carrier, respectively. For both KB and HCT116 cell line, cell viability increased by 

increasing the concentration of carriers. Specifically, KB cells showed 85.4 ± 4.5% 



104 

viability when the ratio between carrier and DOX was 10 : 1, when the carrier to DOX 

ratio was increased to 25 : 1 and 50 : 1, The rates of viable KB cells (84.1± 6.8% and 

84.6 ± 3.9%) were similar to that at 10 : 1, and at highest ratio of 100 : 1 of carrier to 

DOX, viability of KB cells increased to 95.5 ± 3.4%. In comparison to KB cells, 

HCT116 cells exhibited relatively lower cell viability when the same ratio of carrier 

and DOX was employed, 65.9 ± 4.1% at 10 : 1, 78.7 ± 2.0% at 25 : 1, and 92.7 ± 3.4% 

at 100 : 1.  

In comparison to the exposure of DOX alone and DOX in the presence of 

unmodified γ-CD, inclusion of DOX by the modified carrier significantly reduced the 

toxicity of DOX in both KB and HCT116 cells: 12.9 ± 1.2 / 37.2 ± 1.5% of the cells 

were viable at the dose of 12.5 / 25 µM of DOX alone for KB / HCT116 cells; 24.7 ± 

3.4 / 37.9 ± 0.8% of the KB/HCT116 cells were viable when exposed to DOX in the 

presence of unmodified γ-CD. In addition, 39.4 ± 2.9% of KB cells and 54.2 ± 1.7% of 

HCT116 cells were found viable in the presence of lowest concentration of modified 

γ-CD derivative when exposed to DOX, all higher than that of cells exposed to DOX 

alone or DOX associated by native γ-CD.  

The above results indicate that the inclusion of DOX by the modified γ-CD 

derivative prevented DOX from eliciting cytotoxic effect on cultured human cancer 

cells. These results also validate that the encapsulation mechanism of CDs to drug 

molecules is in equilibrium: CDs+DOXCDs-DOX; when the concentration of CDs 

is increasing, the equilibrium moves to the right side to form more CDs-DOX complex 

inclusion which causes higher encapsulation efficiency. Moreover, HCT116 cells 

showed again higher resistance (higher cell viability) to DOX than KB cells, which is 

consistent with the IC50 evaluation of DOX in both cell lines in section 4.4.1.1. These 

results suggest that the optimal application ratio between the carrier and DOX is 10 : 1 

especially for KB cell line, which further supported this conclusion obtained in section 

3.4.4 in Chapter 3. Thus, ratio of 10 : 1 of carrier: DOX was adopted for a range of 

cellular drug uptake assays conducted in Chapter 5. 
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4.4.2 Cellular Drug Uptake   

4.4.2.1 Cellular drug uptake under physiological conditions 

Cellular DOX uptake investigation was performed to further confirm the 

encapsulation capability of the carrier. Similar to the above cytotoxicity assays, KB 

and HCT116 cells were exposure to gradient ratios (100 : 1, 50 : 1, 25 : 1, 10 : 1, 5 : 1 

and 2.5 : 1) of carrier-DOX complex and were compared with DOX alone and γ-CD 

associated DOX, while keeping DOX’s concentration constant. Drug exposure 

condition was 30 min at 37 °C. 

 

Table 4.2 Effect of carrier encapsulation on the uptake of DOX by KB cells and 

HCT116 cells 

  KB cells 

(Uptake % of 

DOX alone) 

HCT116 cells 

(Uptake % of 

DOX alone) 

Ratio of 

Carrier : DOX 

100:1 2.4±1.1 2.1±0.5 

50:1 4.6±0.6 3.6±0.2 

25:1 8.0±0.3 5.9±0.4 

10:1 13.3±2.4 11.5±0.5 

5:1 34.2±3.7 19.9±1.2 

2.5:1 53.1±4.5 35.7±2.9 

γ-CD+DOX 

(100:1) 

(125+12.5µM)/(250+25µM) 

(KB/HCT116) 

61.7±5.3 58.9±3.6 

*The results were compiled from five separate experiments performed in triplicates and were expressed as means±SD. 

Table 4.2 presents the prevention effect of carrier on DOX from being up-taken by 

both KB and HCT116 cells. Cellular DOX uptake percentage gradually increased 

along with decreasing concentrations of carrier. In the presence of the carrier, DOX 

cellular uptake had minimum 46.9 ± 4.5% reduction to KB cells and 64.3 ± 2.9% 

reduction to HCT116 cells at carrier-DOX ratio of 2.5 : 1. In consistence with above 

DOX IC50 and cytotoxicity results, HCT116 cells behaved more resistant to DOX 

exposure as their DOX uptake was lower than those by KB cells in both absence and 

presence of carriers. Unmodified γ-CD demonstrated some encapsulation capacity 

towards DOX as cellular DOX uptake by KB and HCT116 cells was 61.7 ± 5.3% and 
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58.9 ± 3.6%, much lower than DOX alone exposure.  

Overall, the cellular DOX uptake results confirmed the encapsulation capability of 

the carrier to DOX as well as validated that at carrier-DOX ratio of 10 : 1, the 

reduction of DOX uptake was as potent as 86.7 ± 2.4% and 88.5 ± 0.5% for KB and 

HCT116 cells. These results further suggested that the ratio of carrier and DOX at 10 : 

1 may be suitable for future cell culture studies and in vivo trials. 

To further quantify DOX uptake by cells in the unit of µmol/µg total protein, 

DOX calibration curves and BSA standard curve were obtained in each cellular uptake 

experiment. Figure 4.8 is an example of a DOX calibration curve up to DOX 

concentration of 1 µM (A), and a BSA standard curve (B).  

 

Figure 4.8 DOX calibration curve up to 1 µM at λexcitation = 485 nm, λemission = 592 

nm and optimal gain at 127 (A); BSA standard protein curve (B). 

 

Taking the above Figure 4.8 as an example, if fluorescence intensity of tested 

sample is 30000, by substituting it into equation 30000 = 45247x1, then x1 = 30000 / 

45247 = 0.66 (µM of DOX). If the same sample’s BCA absorbance is 0.75, then 0.75 = 

0.0013x2, in which x2 is equal to 0.75 / 0.0013 which is 576.92 (µg/mL). DOX cellular 

uptake per unit of total protein is then calculated as x1 / x2 = 0.66 / 576.92 = 1.14×10
-6 

µM/µg protein. This method will be applied in experiments wherever discussion of 

absolute amount of drug uptake is necessary. 
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4.4.2.2 Cellular drug uptake under hyperthermia 

As described in Chapter 3, the modified γ-CD derivative was found to be 

thermo-sensitive. More cellular DOX uptake assays were performed by exposure of 

cancer cells to carrier-DOX under hyperthermia conditions (42 °C and 50 °C) to 

validate carrier’s thermo-responsivity in cell culture application. KB and HCT116 cells 

were exposed to various ratios (100 : 1, 50 : 1, 25 : 1, 10 : 1, 5 : 1 and 2.5 : 1) of 

carrier-DOX complex and the drug uptake was compared with DOX in the absence of 

carrier at 37 °C, 42 °C and 50 °C for 5 min, respectively. 

 

 

Figure 4.9 Effect of carrier encapsulation on the uptake of DOX by KB cells (A) 

and HCT116 cells (B) under hyperthermia conditions. 

 

Figure 4.9 depicts DOX cellular uptake by exposure of human cancer cells to 

carrier-DOX complex under hyperthermia conditions, 42 °C and 50 °C in comparison 

to physiological temperature (37 °C). DOX uptake by KB cells exhibited clear trend 
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that the uptake was increased by increasing exposure temperatures. For HCT116 cells, 

there was a slight increase of uptake when temperature was risen from 37 °C to 42 °C. 

At higher temperatures (50 °C) DOX cellular uptake was significantly increased 

compared to lower temperatures exposure.  

 

Figure 4.10 DOX release correlation with temperature changes. 

 

Figure 4.10 shows the correlation between temperature rise and DOX release rate 

from the carrier through carrier-DOX binding investigation. The drug release was 3.34% 

when temperature increased from 37 °C (73.50 ± 4.25% encapsulation) to 42 °C (70.16 

± 4.23% encapsulation) (see the table within Figure 4.10). And the increase of DOX 

cellular uptake in KB cells was 4.76% according to Figure 4.9 A (red circled), higher 

than DOX release rate of 3.34%. It should be noticed that the binding test between 

carrier and DOX conducted in Chapter 3 went through 30 min hyperthermia incubation 

without cells; while in the hyperthermia uptake assay reported here, cells were only 

treated by 5 min ‘heat shock’ and nonetheless showed higher uptake rate.  

Therefore, these results suggest that hyperthermia may have two effects on cellular 

drug uptake. The first effect is hyperthermia triggered DOX release from the 

encapsulated carrier-DOX inclusion which has been confirmed in Chapter 3 by the 

observation that binding affinity between carrier and DOX decreased when 
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temperatures increased; the second effect is that hyperthermia may enable the 

enlargement of pore size of cell membranes to allow more DOX enter the tumour cells, 

as thermal treatment has been shown to enhance permeability of cells (Ponce, 

Vujaskovic et al. 2006; Cabuy 2011).  

4.4.3 Statistical Analysis 

All cytotoxicity and drug uptake data were expressed as mean ± SD (standard 

deviations). P values for expressing differences between DOX alone / carrier+DOX 

treated samples and controls were calculated by unpaired two-tailed equal variance 

Student's t-test. Statistical significance was set at p < 0.05. 

4.5 Conclusions 

To summarise, the encapsulation potency of modified γ-CD derivative for DOX has 

been validated and confirmed by a range of cytotoxicity and cellular drug uptake 

evaluations in comparison to the exposure of drug alone and drug plus unmodified γ-CD. 

The encapsulation efficiency was potent enough at 10 part of carrier with 1 part of DOX; 

the ratio of 10 : 1 was further employed in sonoporation experiments in Chapter 5. The 

cell culture studies further confirmed the thermo-sensitive property of the novel 

modified γ-CD carrier, suggesting that this delivery system may have the potential to be 

used in chemotherapy in combination with heat treatments, such as RFA, microwave 

hyperthermia and HIFU.    
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Chapter 5  

In vitro FUS Sonication Investigation by A 

Standardised High Throughput Ultrasound 

Device 

5.1 Introduction 

As discussed in Chapter 2, US may play an increasing role in medical applications 

because of its thermal and mechanical effects on tissue, cells and bio-molecules, 

expanding its traditional applications from imaging and diagnostics to therapeutics. 

While hyperthermia and ablation with HIFU (ter Haar 2001) are better established 

therapeutic methods, there is very significant research interest in ultrasound-mediated 

delivery of therapeutic agents to cells and solid tumours (Lavon and Kost 2004; ter Haar 

2007; Deckers and Moonen 2010) including chemotherapeutics, genetic material 

(Hernot and Klibanov 2008), proteins and small molecules (Pitt, Husseini et al. 2004). 

US in focused form is thus expected to play an important role in future medical 

technologies (Jolesz and McDannold 2008) with potential major benefits including 

significantly reduced side effects via efficacious and targeted delivery of drugs. To 

translate the benefits of FUS into drug delivery for medical therapies, there is a need for 

an increase in experiments in vitro to form the basis of preclinical and in vivo studies.  

Referring to the experimental methodology reported in pioneers’ work on cell 

sonoporation, several common features of setups are:  

1) Most of the in vitro ultrasound exposure was conducted for cell suspensions 

(Ashush, Rozenszajn et al. 2000; Sundaram, Mellein et al. 2003; Karshafian, Bevan 

et al. 2009);  

2) Sonications were performed in dedicated chambers (Guzman, Nguyen et al. 2001; 

Feril, Kondo et al. 2002; Deng, Sieling et al. 2004), in Opti-cell environments 
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(Eisenbrey, Huang et al. 2009; Feril, Tachibana et al. 2010) or in wide petri-dishes 

(Hundt, Steinbach et al. 2009; Conti, Grimaldi et al. 2010);  

3) Most of the acoustic sources were bespoke transducers (Wang, Xu et al. 2010; 

Yudina, Lepetit-Coiffe et al. 2011).  

However, in vitro studies concerning the action of FUS by using piezoceramic bowl 

transducers with cells cultured in monolayers in a 96-well plate presently lack a 

standardised way to deliver the FUS and the comparative evaluation is difficult. 

In this chapter, a new high-throughput in vitro sonicator device is described, which 

was designed in the Nanoporation project based on the results obtained by Gerold et 

al.(Gerold, Gourevich et al. 2012). Sonoporation procedures in combination with USCA 

SonoVue
®
 MBs were applied to monolayers of human cancer cells cultured in 96-well 

plates and, through testing of cells’ viability, the drug release and cellular uptake of 

DOX from the modified γ-CD carrier-DOX inclusion discussed in the previous two 

chapters was determined.  

This chapter puts forward results obtained by application of FUS in the absence / 

presence of MBs with low mechanical indexes, under which negligible thermal effects 

were observed. AFM was employed for preliminary analysis of membrane morphology 

of cancer cells upon exposure to FUS. A thermal camera and thermocouples were 

employed to monitor temperature changes during the application of FUS. 

5.2 In vitro Micro-scale Sonicator 

5.2.1 FUS: Principles and FUS Device for TDD 

Similar, in principle, to using magnifying glass to focus multiple beams of light to a 

single point, ultrasound can be focused: 1) geometrically via a lens such as a 

polystyrene lens or a spherically curved transducer; 2) electronically via a phased array 

(the relative phases of electrical signals to an array of elements that comprise a 

transducer ); and 3) effectively by resonant electrical excitation of thin plates of a 

suitable piezoceramic, in the required frequency region (Hill and ter Haar 1995).  
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In general, the interaction between FUS waves and biological tissue can be divided 

into thermal and non-thermal (mechanical) effects (Jenne, Preusser et al. 2012), have 

been discussed in Chapter 2. However, thermal and mechanical effects of FUS 

propagation through tissue or cells can be described, and thus controlled, through a 

number of parameters that depend on the source characteristics and medium properties.  

When ultrasound travels through a medium, the intensity decreases as the energy of 

the wave is absorbed by the medium and as a result, local heating can occur. The 

intensity (I, W/m
2
) of a FUS beam (Hoskins, Martin et al. 2010) produced by a FUS 

source (transducer) is defined as the acoustic power (Pac, W), or the rate at which the 

energy of the FUS is produced by the source, flowing through the cross sectional area of 

the beam (S, m
2
), shown in Equation 5.1: 

 

𝐼 =
𝑃𝑎𝑐
𝑆

 

Equation 5.1 Calculation of FUS beam intensity according to acoustic power. 

 

The intensity is also proportional to the acoustic pressure, P (MPa), as shown by the 

following Equation 5.2 (Husseini and Pitt 2008): 

 

𝐼 =
𝑃2

𝑍
 

Equation 5.2 Calculation of FUS beam intensity according to acoustic pressure. 

 

Where, 𝑍  Pa ∙ s/m or N ∙ s/m3 = 𝜌 × 𝑐, is the acoustic impedance of the medium, 

ρ (kg/m
3
) is the density of the medium and c (m/s) is the speed of sound in that medium. 

Mechanical effects of ultrasound propagating through a medium can be estimated from 

P, which is a function of the acoustic power, calculated using both Equations 5.1 and 

5.2 to obtain Equation 5.3: 

 

𝑃 = √
𝑃𝑎𝑐 × 𝜌 × 𝑐

𝑆
 

Equation 5.3 Correlation between acoustic power and pressure. 
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If the medium contains gas MBs (ultrasound contrast agent), the FUS pressure 

waves can induce oscillations (volume changes) in the MBs at lower values, and 

generate violent collapse (inertial cavitation) at higher pressures. A useful parameter 

which can give a qualitative indication of the likelihood of cavitation is the mechanical 

index (MI) (Duck, Baker et al. 1998) expressed in Equation 5.4:  

 

𝑀𝐼 =
𝑃𝑁𝑃

√𝑓
 

Equation 5.4 Calculation of mechanical index (MI). 

 

Where, PNP is the peak negative pressure normalised to 1 MPa and f (MHz) is the 

centre frequency of the FUS field normalised to 1 MHz. As MI gives an estimation of 

the risk of the non-thermal effects including cavitation and streaming, thus, MI is most 

applicable with the use of ultrasound contrast agents. It is well documented that when 

MI < 0.3, it is preserving the contrast agents; while MI > 0.7 means cavitation risk is 

existing (De Jong 2002).  

A large number of experimental and acoustic parameters are used in the relevant 

literature including frequency of acoustic field, intensity, power, pressure, mechanical 

index, exposure duration, total energy delivered and others, in relation to FUS field 

interacting with the biological material or gas MBs. When the large volume of studies in 

TDD is taken into account, this makes determining the optimum drug delivery system 

for a specific type of cancer virtually impossible. Moreover, the issue of repeatability in 

FUS-mediated TDD in vitro experiments has been highlighted in recent reports (Hensel, 

Mienkina et al. 2011; Leskinen and Hynynen 2012), which specifically note that the 

methods of FUS exposure and the experimental conditions vary greatly between 

investigators, making it difficult to compare results. It has also been highlighted that 

there is an increased need for standardisation of experimental conditions and the 

reporting of FUS exposure levels (ter Haar, Shaw et al. 2011). 
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5.2.2 Standardisation of in vitro FUS Device for TDD 

It is common in FUS-mediated TDD experiments, to use a simple setup containing 

a transducer as an ultrasound source and a chamber containing a cell suspension as the 

target. However, a standard 96-well plate is best accommodated by most biological 

sample characterisation equipment. Transfer of biological samples for characterisation, 

after FUS exposure, from a suspension chamber to a 96-well plate, is likely to generate 

less accurate results. Therefore it was decided to carry out the experiments directly in 

the 96-well plates. 

To address this fundamental issue, a high-throughput sonication device was 

designed (section 1 in Appendices) to be small, robust and portable, and capable of 

generating customised and highly reproducible FUS conditions for a wide range of 

experiments in vitro, allowing sonication of the contents in selected wells or sequences 

of wells within standard 96-well cell culture plates (or other plates) in a short period of 

time. The rationale behind using the 96-well cell culture plate is to allow a large number 

of repetitions and also accurate and identical sonication of various sample groups on the 

same plate, including control groups used as references for drug uptake, sonoporation or 

MBs effects, creating a lab-on-a-bioplate approach. One of the advantages of this 

device is that it allows a large number of experiments under similar US exposures, as 

well as significant flexibility in experiment design on the same 96-well plate and is, 

uniquely, reported in sufficient detail here for the work to be reproduced fully and 

accurately.  

The high-throughput experiments were initially approached through a clinical 

MRgFUS system, ExAblate 2000/2100 for in vitro TDD experiments (Gourevich, 

Dogadkin et al. 2013). Although this approach could be useful for translation of in vitro 

results to in vivo experiments, due to limitations such as the multifocal sonication (16 

foci) on the clinical multi-element transducer (ExAblate 2100 Conformal Bone System) 

only 16 wells per plate could be used. Moreover, a rapid sequence of sonications on the 

clinical machine is difficult to obtain since this would require the repetition of treatment 

planning procedures, which are time consuming. The very high costs associated with 



115 

such a clinical FUS device in combination with a bulky MR system, also render the 

approach impractical for in vitro testing in a laboratory.  

5.3 Materials and Methods 

5.3.1 Materials 

5.3.1.1 In vitro cell culture, medium and supplementation 

Medium, supplementation 

and reagents 

Manufacturer and place 

of origin 

Specification 

KB cell line American Tissue Culture 

Collection, USA 

CCL-17 

HCT116 cell line American Tissue Culture 

Collection, USA 

CCL-247 

Fetal Bovine Serum (FBS) Gibco Invitrogen, UK Origin: South America 

Roswell Park Memorial 

Institute (RPMI)1640 

complete medium 

Gibco® Invitrogen, UK [+] 10% Fetal bovine 

serum (FBS) 

[+] 1% L-Glutamine 

[+] 1% Penicillin and 

Streptomycin (Pen-Strep) 

[+] 1% Sodium Pyruvate 

[+] 1% Non-essential 

Amino Acids 

[+] 0.5% HEPES buffer 

Dulbecco’s Modified 

Eagle’s Medium (DMEM) 

complete medium 

Gibco® Invitrogen, UK [+] 10% Fetal bovine 

serum (FBS) 

[+] 4.5g/L D-Glucose 

[+] 1% L-Glutamine 

[+] Pyruvate 

[+] Penicillin and 

Streptomycin (Pen-Strep) 

Phenol Red Free 

Dulbecco’s Modified 

Eagle’s Medium (DMEM) 

Gibco® Invitrogen, UK [+] 4.5g/L D-Glucose 

[+] L-Glutamine 

[+] 25Mm HEPES 

[−] Sodium Pyruvate 
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5.3.1.2 Other reagents 

Medium, supplementation and 

reagents 

Manufacturer and 

place of origin 

Specification 

Trypsin-Ethylenediaminetetraacetic 

acid (EDTA) 

Gibco® Invitrogen, UK 0.05% 

Dimethyl Sulphoxide (DMSO) Sigma-Aldrich, UK Biotechnology use, 

sterile filtered, 

endotoxin tested, 

hybridoma tested 

Sodium Dodecyl Sulfate (SDS) Sigma-Aldrich, UK 0.05% (w/v) in ddH2O 

3-(4,5-Dimethylthiazol-2-yl)-2,5- 

diphenyltetrazolium bromide 

(MTT) 

Sigma-Aldrich, UK 5 mg/mL in PBS 

Bicinchoninic Acid (BCA) Protein 

Assay Kit 

Sigma-Aldrich, UK Solution A: 

bicinchoninic acid, 

sodium carbonate, 

sodium tartrate, sodium 

bicarbonate in 0.1 N 

NaOH (final pH 11.25). 

Solution B: 4% (w/v) 

copper(II) sulfate 

pentahydrate 

Protein Standard (Bovine Serum 

Albumin –BSA) 

 

Sigma-Aldrich, UK 1.0 mg/mL bovine 

serum albumin in 0.15 

M NaCl with 0.05% 

sodium azide 

Doxorubicin (DOX) Mesochem Technology 

Co.,Ltd, Beijing, China 

Purity ≥ 98% 

Sonovue® Bracco, Italy  

Terephthalic Acid (TA) Sigma-Aldrich, UK  

Hydroxyterephthalic Acid (HTA) Sigma-Aldrich, UK  

PBS tablets Oxoid, UK Typical Formual (g/L): 

Sodium chloride (8.0); 

Potassium chloride 

(0.2); Di-sodium 

hydrogen phosphate 

(1.15); Potassium 

dihydrogen phosphate 

(0.2). 1tablet/100mL, 

pH 7.3±0.2 at 25°C 
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5.3.1.3 Other consumables  

Other consumables Manufacturer and place 

of origin 

Specification 

Distilled/deionised water Millipore, UK  

Cell culture flasks Techno Plastic Products 

(TPP), Switzerland 

75 cm
2
 

96-well plates Greiner, Austria Polystyrene cell culture 

black microplates with 

µClear® bottom 

Titer Tops™ sealing film ESM, USA  

Multi-mode plate reader Tecan, Austria Tecan infinite M200 

Atomic Force Microscopy 

(AFM) 

Bruker AXS, Cambridge, 

UK 

BioScope Catalyst 

Thermocouples 

 

Omega, UK Type T, PTFE-insulated 

Cu-Constantan, 0.076 mm 

wire diameters 

Thermocouple data logger Omega, UK TC-08 

Infrared (IR) thermo 

camera 

FLIR, UK JADE 

RF power amplifier Electronics and 

Innovation, Rochester, 

NY, USA 

A075 

LabVIEW National Instruments, UK  

5.3.2 Methods 

5.3.2.1 KB cell line viability screening 

To demonstrate accuracy and repeatability combined with high-throughput, that all 

facilitate a standardised experimental system (sonicator, section 1 in Appendices) for 

TDD in vitro, a wide range of cell viability tests were performed under various 

sonication sequences with different set of FUS parameters (frequencies, MI, power, 

duration, mode: continuous or pulsed) for human nasopharyngeal epidermal carcinoma 

KB cell line.  

In KB cells viability screening assays, FUS was applied at available frequencies: 

f = 0.4868, 1.142, 1.467 and 2.022 MHz, in continuous / pulsed FUS exposures with 

various acoustic intensities and sonication durations. Plate arrangement for sonications 

can be seen from Figure 5.1. 
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Figure 5.1 Protocols of KB cells viability screening by each transducer in a 96-well 

plate. Colour filled wells were treated by various sets of FUS parameters and 

selected control wells (purple) without FUS treatment. 

 

KB cell viabilities were screened by sonications within the parameter range shows 

in Table 5.1 by four transducers.  

 

      Table 5.1 Sonication parameters range for KB cell viability screening 

 Continuous Wave Pulsed Wave 

Transducer 

frequency 

(MHz) 

Intensity 

(W/cm
2
) 

Duration 

(sec) 

Intensity 

(W/cm
2
) 

Duration 

(sec) 

Duty Cycle 

(%) 

0.4868 14.04 – 61.7 60 – 300 14.04 – 61.7 180 – 300 20 

1.142 17.72 – 277.87 40 – 600 116.25 – 195.65 60 – 180 10, 15, 20 

1.467 63.36 – 1339.51 40 – 300 575.12 – 1011.33 60 – 180 10, 15, 20 

2.022 58.08 – 1665.94 40 – 300 623.3 – 1127.73 60 – 300 10, 15, 20 

 

KB cell viability was calculated according to Equation 5.5: 

 

𝑉𝑖  𝑖𝑙𝑖𝑡𝑦% =
𝑂𝐷𝑐𝑒𝑙𝑙+𝐹𝑈𝑆 − 𝑂𝐷𝑏𝑙𝑎𝑛𝑘

𝑂𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑂𝐷𝑏𝑙𝑎𝑛𝑘
× 1  % 

Equation 5.5 Cell viability calculation after sonication treatment. 

 

Where, 𝑂𝐷𝑐𝑒𝑙𝑙+𝐹𝑈𝑆 is the absorbance of cells sonicated by FUS, 𝑂𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is the 

absorbance of control cells without FUS treatment, 𝑂𝐷𝑏𝑙𝑎𝑛𝑘 is the MTT reading of 
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CM without cultured cells.  

5.3.2.2 Temperature evaluation in the 96 wells by thermal camera and 

thermo-couples  

The thermal effect generated by the sonicator transducer at f = 0.4868 MHz was 

evaluated by FLIR thermal camera and Omega type T, PTFE-insulated 

Copper-Constantan thermocouples respectively to investigate temperature rising within 

selected sonication parameters in the absence / presence of SonoVue
®
 MBs.  

Thermal camera 

Infrared (IR) camera is a device that forms an image by using IR radiation rather 

than visible light used by normal camera. Instead of the 450 – 750 nm range of the 

visible light camera, IR cameras operate in wavelengths as long as 14 µm. These IR 

rays were mainly devoted to thermal measurement (Herschel 1800; Corsi 2014).  

Thermal camera was employed to monitor temperature changes of medium filled 

in wells of 96-well plate during sonication treatment. By using the IR thermal camera 

(Figure 5.2 A), which was placed above a partially submerged 96-well plate placed 

inverted inside the sonicator, focusing vertically against the transducer which is 

underneath of the focused single well of a 96-well plate (Figure 5.2 A). Temperatures 

within captured region can be selected and analysed according to points of interest, 

such as marked positions 4 (the well is being sonicated), 5 (the well will be sonicated 

next) and 6 (the well has just been sonicated) in Figure 5.2 B. 

 
Figure 5.2 IR thermal camera vertically setting up on top of the plate placed 

inside the sonicator (A); Thermal camera imaging region of a 96-well plate, where, 

the transducer is focused at marked position 4 underneath the plate (B). 

http://en.wikipedia.org/wiki/Infrared_radiation
http://en.wikipedia.org/wiki/Wavelength
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Thermocouples 

Type T PTFE-insulated Copper-Constantan precision fine wire thermocouples 

(diameter 0.07 mm) were used to do the same temperature evaluation, aimed to 

confirm the results obtained from IR thermal camera experiments. Type T 

thermocouples were selected due to their wide range of temperature measurement 

(from –200 °C to 350 °C) and relatively low error (1 °C or 0.75% above 0 °C and 1 °C 

or 1.5% below 0 °C) (Omega-Thermocouple Reference Tables Type T ).  

In the current study, Type T thermocouples were placed inside of each well by 

drilling a small hole in the center of each well from the bottom of plate, and 

thermocouples were fixed and sealed by clear glue (Figure 5.3).  

 

Figure 5.3 Thermocouples fixed inside wells from bottom of the µclear 96-well 

plate and sealed by glue. 

 

Thermocouples were then connected to a Pico TC-08 thermocouple data logger 

(Figure 5.4) and real-time temperatures in wells were recorded by data acquisition 

software (Picolog). 

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCkQFjAA&url=http%3A%2F%2Fwww.omega.com%2Ftemperature%2FZ%2Fpdf%2Fz207.pdf&ei=tpbbUunVMeuM7AbqkoCgAQ&usg=AFQjCNGBQhDip3G0pXNCqnBOEXgGH8DIBg&bvm=bv.59568121,d.d2k
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Figure 5.4 Thermocouples connected to a Pico TC-08 thermocouple data logger. 

 

For both thermal camera and thermocouples temperature evaluations, test solution 

was prepared by using serum free PRMI1640 / DMEM medium in the absence / 

presence (0.1%, 1%, 2.5% and 5%) of SonoVue
® 

MBs. Sonication parameters were 

applied at: MI = 0.24, 0.31 and 0.53; sonication duration = 10 sec at continuous FUS 

wave. 

5.3.2.3 Stable / inertial cavitation detection 

Although the mechanism of US-mediated TDD has not been fully understood (Pitt, 

Husseini et al. 2004; Myhr and Moan 2006), its function is normally divided into 

thermal effects and non-thermal effects (Afadzi, Davies Cde et al. 2012). Among all 

the non-thermal effects, as introduced in section 2.3.3 in Chapter 2, FUS induced 

acoustic cavitation is the most important non-thermal mechanism and it has been 

shown to play a critical role in a wide range of novel therapeutic ultrasound 

applications during last two decades (Coussios, Farny et al. 2007).  

Cavitation can be classified into two types: stable cavitation and inertial cavitation 

(Naji Meidani and Hasan 2004). Stable cavitation generally refers to lower intensity 

insonations, whereby bubbles undergo stable, low amplitude oscillations. In contrast, 

inertial cavitation is associated with high intensity insonation, with bubbles undergoing 

significant volume fluctuations, and strong, violent collapses (Leighton 1994; Young 

1999; Leighton, Cox et al. 2000). Such bubble collapses can produce intense local 

(core) heating (5000 K) and high pressure (~ 1000 atmospheres) (Leighton, Cox et al. 
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2000).  

Inertial cavitation can also generate free radicals from the breakdown of water and 

other molecules to form radical-containing chemical species (McLean and Mortimer 

1988; Mason, Lorimer et al. 1994; Fang, Mark et al. 1996). The specific mechanism is 

the acoustic energy level achieved which can lead to the homolytic cleavage of 

covalent bonds between the oxygen and hydrogen atoms comprising water molecules. 

Water sonolysis then leads to the formation of reactive oxygen species such as 

hydroxyl radicals (OH･) and hydrogen peroxide (H2O2) according to the following 

chemical reactions (Villeneuve, Alberti et al. 2009): 

H2O → H･+ OH･ 

H･+O2 → HO2･ 

HO2･+ HO2･→ H2O2 + O2 

OH･+ OH･→H2O2 

H + H2O → H2OH･ 

In order to investigate whether inertial cavitation induced by FUS, the 

measurement of the OH radicals dissolved in sonication treated liquid was conducted 

by using chemical dosimetry method based on terephthalic acid (TA). TA is a 

well-known OH scavenger which has no chemical reactions with other radicals such as 

HO2 and H2O2 (Kanazawa, Furuki et al.), TA is also a non-fluorescent compound. 

When inertial cavitation happens, the generated OH radical can convert TA to a 

fluorescent compound 2-hydroxyterephthalic acid (HTA) according to Reaction 1:  

O OH

HO O

O OH

HO O

OH

OH

TA (Non-fluorescent) HTA (Fluorescent 425nm)

UV 310nm

C6H4(COOH)2 + OH → C6H4(COOH)2 OH  

Reaction 1 Terephthalic acid (TA) is converted by free OH radical to 

2-hydroxyterephthalic acid (HTA). 
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Where, the fluorescence intensity of HTA can be detected by fluorescence 

spectroscopy with excitation and emission wavelengths at 310 nm and 425 nm 

respectively.  

Initial TA solution was prepared by dissolving 16 mg TA powder by 0.5 ml NaOH 

(5 mM), as TA cannot be dissolved in acidic or neutral solutions (Mason, Lorimer et al. 

1994). The solution of dissolved TA in NaOH was then diluted to 50 mL by ddH2O to 

achieve the concentration of TA at 2 mM. Sonications were then performed by using 

transducer f = 0.4868 MHz, with 0.24 ≤ MI ≤ 0.91 and sonication duration of 10 sec 

in the absence / presence of 2.5 / 5% SonoVue
®
 MBs according to protocols in Figure 

5.5. Fluorescence intensities of sonicated TA were recorded at λexcitation = 310 nm and 

λemission = 425 nm before and after sonication.  

 
Figure 5.5 Protocols of TA solution sonication. 

5.3.2.4 Carrier-DOX binding investigation by exposure to FUS 

Certain groups of FUS parameters were employed to the carrier-DOX inclusion 

complex introduced in Chapter 3 by the in vitro sonicator, to investigate the 

responsivity of the carrier-drug system to FUS mechanical effects. Serum free 

RPMI1640 / DMEM medium was prepared as test solution in the absence / presence 

(0.1%, 1%, 2.5% and 5%) of SonoVue
®

 MBs. Sonication parameters were: MI = 0.24, 

0.31 and 0.53; sonication duration = 10 sec at continuous FUS wave. 

Similar as the Kbinding investigation performed in section 3.3.2.2b in Chapter 3, test 
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solutions’ fluorescence intensities were recorded before and after FUS treatment, and 

the drug release rate after sonication was calculated according to Equation 5.6: 

 

𝐸𝑛𝑐 𝑝𝑠𝑢𝑙 𝑡𝑖𝑜𝑛% =
𝐼 𝑐𝑎𝑟𝑟𝑖𝑒𝑟+𝐷𝑂𝑋 

𝐼𝐷𝑂𝑋
× 1  %  (1) 

 𝑒𝑙𝑒 𝑠𝑒𝐷𝑂𝑋% = 𝐸𝑛𝑐 𝑝𝑠𝑢𝑙 𝑡𝑖𝑜𝑛%𝑏𝑒 𝑜𝑟𝑒 𝑈𝑆 − 𝐸𝑛𝑐 𝑝𝑠𝑢𝑙 𝑡𝑖𝑜𝑛%𝑎 𝑡𝑒𝑟 𝑈𝑆 (2) 

Equation 5.6 Encapsulation and release rate of DOX after FUS sonication 

treatment in the absence/presence of MBs. 

 

In Equation 5.6 (1), 𝐼 𝑐𝑎𝑟𝑟𝑖𝑒𝑟+𝐷𝑂𝑋  is the fluorescence intensity of encapsulated 

DOX with / without FUS sonication treatment in the absence / presence of MBs, while 

𝐼𝐷𝑂𝑋 is fluorescence intensity of DOX alone solutions with / without FUS sonication 

treatment in the absence / presence of MBs. In Equation 5.6 (2), 

𝐸𝑛𝑐 𝑝𝑠𝑢𝑙 𝑡𝑖𝑜𝑛%𝑏𝑒 𝑜𝑟𝑒 𝑈𝑆 and 𝐸𝑛𝑐 𝑝𝑠𝑢𝑙 𝑡𝑖𝑜𝑛%𝑎 𝑡𝑒𝑟 𝑈𝑆 were both obtained from 

Equation 5.6 (1) for each test samples before and after FUS treatment. 

5.3.2.5 Cell viability test 

After KB cells viability screening assays, more cell viability tests were focused on 

the application of f = 0.4868 MHz transducer in the presence (0.1%, 1%, 2.5% and 5%) 

of SonoVue
® 

MBs. Two human cancer cell lines KB and HCT116 were selected. 

Various solutions were added to each well according to the defined protocols in 5 

replicates (Figure 5.6). Sonication parameters were: MI = 0.24, 0.31 and 0.53; 

sonication duration = 10 sec at continuous wave. 
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Figure 5.6 Protocols of cell viability sonication. 

 

Cell viability in this section was calculated by Equation 5.7: 

 

𝑉𝑖  𝑖𝑙𝑖𝑡𝑦% =
𝑂𝐷𝑈𝑆/ 𝑈𝑆+𝑀𝐵𝑠 − 𝑂𝐷𝑏𝑙𝑎𝑛𝑘

𝑂𝐷𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑂𝐷𝑏𝑙𝑎𝑛𝑘
× 1  % 

Equation 5.7 Cell viability calculation after FUS sonication treatment. 

 

Where, 𝑂𝐷𝑈𝑆/ 𝑈𝑆+𝑀𝐵𝑠  is the MTT absorbance of cells treated by FUS in the 

absence / presence of MBs, 𝑂𝐷𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is the MTT absorbance of cells without any 

treatment and 𝑂𝐷𝑏𝑙𝑎𝑛𝑘 is the MTT absorbance of medium without cultured cells.  

5.3.2.6 Cellular drug uptake test 

Cellular drug uptake assay was performed to further investigate carrier-DOX 

inclusion’s responsivity to FUS sonication, as well as the response of human cancer 

cells to FUS treatment. Sonication experiments were focused on the application of f = 

0.4868 MHz transducer at FUS parameters without thermal effects but in the presence 

(0.1%, 1%, 2.5% and 5%) of SonoVue
® 

MBs. DOX concentration was applied at 12.5 

µM for KB cell line and at 25 µM for HCT116 cell line, the ratio of carrier-DOX was 

10 : 1. Various solutions were added to each well according to the defined treatment 

groups in 5 replicates (Figure 5.7). Sonication parameters were: MI = 0.24, 0.31 and 

0.53; sonication duration 10 sec at continuous wave. 
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Figure 5.7 Protocols of cellular drug uptake sonication assays. 

 

DOX cellular uptake calculation is according to Equation 5.8: 

 

 𝑝𝑡  𝑒% =
𝐼 𝑈𝑆 𝑀𝐵𝑠 𝐷𝑂𝑋/ 𝑐𝑎𝑟𝑟𝑖𝑒𝑟+𝐷𝑂𝑋 

𝑂𝐷 𝑈𝑆 𝑀𝐵𝑠 𝐷𝑂𝑋/ 𝑐𝑎𝑟𝑟𝑖𝑒𝑟+𝐷𝑂𝑋 
⁄

𝐼𝐷𝑂𝑋  𝑂 𝑈𝑆 𝑂𝐷𝐷𝑂𝑋  𝑂 𝑈𝑆⁄
× 1  % 

Equation 5.8 Cellular drug uptake calculation after FUS sonication treatment. 

 

Where, 𝐼 𝑈𝑆 𝑀𝐵𝑠 𝐷𝑂𝑋/ 𝐷𝑂𝑋+𝑐𝑎𝑟𝑟𝑖𝑒𝑟 
 is the fluorescence intensity of the cell sample 

exposure to DOX alone / carrier+DOX with FUS treatment in the absence / presence of 

MBs, 𝑂𝐷 𝑈𝑆 𝑀𝐵𝑠 𝐷𝑂𝑋/ 𝑐𝑎𝑟𝑟𝑖𝑒𝑟+𝐷𝑂𝑋 
 is the BCA absorbance reading of those samples 

correspondingly. 𝐼𝐷𝑂𝑋  𝑂 𝑈𝑆 is the fluorescence intensity of the cell sample exposed to 

DOX alone solution without FUS treatment, 𝑂𝐷𝐷𝑂𝑋  𝑂 𝑈𝑆 is the BCA absorbance of 

this cell sample. 

5.3.2.7 Atomic Force Microscopy (AFM) cell membrane topography 

measurement 

AFM is a high-resolution type of scanning probe microscopy (SPM). It utilises a 

fine tip to measure surface morphology and properties through an interaction between 

the tip and sample surface. In an AFM, a constant force is maintained between the 

probe and sample while the probe is raster scanned (parallel lines) across the surface. 
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By monitoring the motion of the probe as it is scanned across the surface, a three 

dimensional image of the surface is constructed (Quate and Gerber 1986). AFM thus 

becomes one of the foremost tools for imaging, measuring, and manipulating matter at 

the nanoscale.  

In terms of biological applications, AFM is a well-established technique used to 

both image the topography of rigid / fixed samples (Langer and Koitschev 2002) and 

measure the mechanical properties of living material such as tissue and cells 

(Radmacher 1997). In this thesis report, Peak Force Quantitative Nano Mechanics 

(QNM), an extension of Peak Force Tapping mode in AFM was employed to 

investigate human cancer cell morphological and physico-mechanical behaviour 

changes in response to exposure to FUS.  

AFM was employed to measure the short time membrane morphology changes of 

KB cells, which were exposed to different frequencies transducers for various 

sonication durations (sec), in the absence / presence of SonoVue
®
 MBs. KB cells were 

seeded at a density of 8000 cells/well on sterilised glass cover slips (6 mm in diameter) 

placed in 96-well plates and incubated for 24 hr before FUS exposure. To be noticed 

that the glass cover slip did not influence the cells during sonication, as the cell culture 

plate was placed inverted and the monolayer of cells were facing to the transducer 

directly. Immediately after each FUS treatment, the medium was removed and cells 

were exposed directly to 200 µL/well of 2.5% (v/v) Glutaraldehyde fixed solution 

(freshly prepared on the day of the experiment), plates were placed in 4 °C fridge for 1 

hr. After fixation, fixed solution was aspirated carefully; cells were then washed by 

PBS three times to remove residual fixed solution, and washed by distilled water for 

five times. After all washing procedure, the glass cover slips with fixed cells were 

taken out carefully from 96-well plates and fixed on the surface of glass slides, cells 

were allowed to dry at room temperature for another 2 hr.  

Fixed and dried samples were then scanned in air at room temperature by 

BioScope Catalyst AFM in ScanAsyst imaging mode, using ScanAsyst in Air probe 

(tip radius: 2 nm), at scan frequency of 0.25 Hz with 384 scan lines per image. 

http://en.wikipedia.org/wiki/Nanometre
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5.3.2.8 General methods of cell seeding and solution preparation 

Cell handling 

KB and HCT116 were selected for FUS sonication experiments based on 

fundamental in vitro cell culture studies performed in Chapter 4. KB and HCT116 cells 

were cultured in complete RPMI1640 medium (section 4.3.1.2, Chapter 4) and 

complete DMEM medium (section 4.3.1.2, Chapter 4), respectively. 

For cell viability investigations, KB / HCT116 cells were harvested from the flask 

and seeded in 96-well plates with µclear base at cell density 4000 cells/well in 100 µL 

complete medium (CM) 1 day prior to sonication. Cells were not plated in columns 1 

and 12, rows A and H, but filled with CM as these are used as a blank for the plate 

reader to allow for the absorbance of the residual medium and MTT in the wells. 

Before sonication, up to 420 µL/well of CM was added in each well and the plate was 

sealed with Titer-Tops
®

 (plate-sized US-transparent films, Figure 5.8 A), carefully 

avoiding air-bubble formation. After sealing, the plate was inverted and placed in the 

sonicator using the plate holder located above the FUS sources (Figure 5.8 B), so that 

the cells adherents to the µclear base were uppermost. 

 

Figure 5.8 96-well plate fully filled with medium and sealed with Titer-Tops
®
 

sealing without air-bubble formation (A); Inverted plate with µclear bottom fixed 

in sonicator by plate holder and further fixed by rubber bands in both sides (B). 

 

After sonication treatment, the wells were emptied of their entire volume of CM 

carefully and refilled with 100 µL/well fresh CM, cells were observed by microscope 

for cells detach inspection. Cells were then followed by incubation for a further 48 hr. 

Cell viability was evaluated by MTT colorimetric assay (section 4.3.2.1, Chapter 4). 

For cellular drug uptake investigations, KB / HCT116 cells were harvested from 
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flask and seeded in 96-well plate with µclear base at cell density 12000 cells/well in 

100 µL CM and allowed to expand over 2 days prior to sonication. Before exposure to 

FUS, 420 µL of various solutions were added to each well according to the defined 

treatment groups in 5 replicates. After adding solutions, the plates were sealed with 

Titer-Tops
®
 sealing film to maintain cell culture sterility. After sealing, the plate was 

inverted, so that the cells adherent to the µclear base were uppermost, and placed in the 

sonicator using the plate holder located above the FUS transducer sources and fixed.  

At the end of FUS treatments, test solutions and CM in control wells were 

removed and the wells were washed by preheated PBS twice. Cells were observed 

under the microscope for cells lost inspection. PBS was then removed and 200 µL 0.5% 

SDS in ddH2O were added to each well. Following observation under the microscope to 

ensure total cell disruption by SDS, quantification of the fluorescence intensity of 

intracellular DOX was recorded. The fluorescence readings were normalised by total 

protein amount by transferring 25 µL of cell lysates from the same samples to wells of 

a normal transparent 96-well cell culture plate for protein determination by using the 

BCA method (section 4.3.2.4, Chapter 4).  

5.3.2.9 Test solutions preparation 

Solutions with SonoVue
®
 

SonoVue
®

 MBs stock solution (100%) were prepared according to its manufacture 

protocol (Figure 5.9) and kept in ice box after preparation.  

 

Figure 5.9 Preparation of SonoVue
® 

stock solution. 
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In cell viability / AFM inspection assays, 1 µL/mL, 10 µL/mL, 25 µL/mL and 50  

µL/mL MBs stock solution were added into CM to obtain SonoVue
® 

MBs 

concentration at 0.1%, 1%, 2.5% and 5%, respectively. Similarly, in carrier-DOX 

binding investigation or cellular drug uptake assays, 1 µL/mL, 10 µL/mL, 25 µL/mL 

and 50 µL/mL MBs stock solution were added into DOX alone / carrier+DOX 

solutions to obtain SonoVue
® 

MBs concentration at 0.1%, 1%, 2.5% and 5%, 

respectively. 

DOX and carrier+DOX solutions 

A solution of 100 mM DOX stock was prepared by dissolving 58 mg DOX 

powder in 1 mL DMSO and kept frozen. A solution of 12.5 / 25 µM DOX was 

prepared by dilution of the DOX stock solution (100 mM) by CM for KB and HCT116 

cells accordingly. The final concentration of DMSO in the diluted solution is 0.0125 / 

0.025%. To 50 mL of the final 12.5 / 25 µM DOX solution, 0.1875 / 0.375 mg/ml of 

carrier was added to obtain a concentration of 125 / 250 µM (10 : 1 carrier : DOX 

molar ratio). Preheated (20 min at 37 °C) test solutions before exposure to cells. 

SonoVue
®
 MBs stock solution (100%) were prepared according to its manufacture 

protocol and placed in ice box. 1 µL/mL, 10 µL/mL, 25 µL/mL and 50 µL/mL MBs 

stock solution were added into DOX / carrier+DOX and to obtain SonoVue
® 

MBs 

concentration at 0.1%, 1%, 2.5% and 5% prior to sonication respectively. 

SDS reagent 

0.5% (w/v) SDS was prepared by dissolving 0.5 g SDS powder in 100 mL ddH2O, 

the solution was then stirred by magnetic plate stirrer until SDS salt dissolved 

completely.  

MTT reagent 

5 mg/ml MTT reagent was prepared by dissolving 250 mg of the MTT salt by 50 

ml PBS. The solution was stirred by magnetic plate stirrer until all solid was dissolved. 

The solution was filtered using a 0.45 µm filter, then aliquoted 10 ml/tube and kept 

frozen (–20 °C) until use. 

BCA reagent 

BCA reagent was freshly prepared on the day of the experiment, by mixing 50 
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parts of Bicinchoninic acid (reagent A) and 1 part of 4% (w/v) Copper sulphate 

solution (reagent B). Standard bovine serum albumin (BSA) solutions from 25 µg/mL 

to 500 µg/mL were prepared by diluting the standard BSA solution (1000 µg/mL) in 

the BCA kit by using the same cell lysis buffer (0.5% SDS).  

5.4 Results and Discussion 

5.4.1 Cell Viability Screening Results 

An initial cell culture application by all frequencies (2.022, 1.467, 1.142 and 

0.4868 MHz) of transducers has been employed through cell viability investigation by 

exposure KB cells to FUS source. Various combinations of US parameters (frequency, 

power, duration and US mode (continuous / pulsed), Table 5.1) have been applied in 

order to identify the optimal set of parameters in terms of safe mechanical response of 

equipment especially the power amplifier, FUS focused beam diameters, beam length 

(according to Table A.1 in Appendices) and temperature rising at different levels.  

Transducer f = 2.022 MHz 

For the transducer frequency of 2.022 MHz, KB cells were exposed to continuous 

FUS wave at power from 0.6 W to 17 W, and sonication duration from 40 sec to 300 

sec; while in pulsed FUS wave mode, FUS power was applied from 6.5 W up to 12 W, 

sonication duration was from 60 sec to 300 sec, selected duty cycles were 10%, 15% 

and 20%.  
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Figure 5.10 KB cells viability (% of control) 48 hr post transducer f = 2.022 MHz 

sonications. Continuous FUS wave mode (A); Pulsed FUS wave mode (B). 

 

As can be seen from Figure 5.10 A, KB cell viabilities were all over 82.36% when 

continuous FUS was applied under or equal to 5.3 W (at sonication duration of 40 sec, 

viable KB cells of 52.72% was obtained; it is suggested that this is an error in 

comparison to other higher / longer treatments). When 6W  ≤ Pac  ≤ 12 W and 

sonication duration was under 120 sec, cell viabilities showed higher than 73.24%; 

while, within this power range but when longer durations (120 sec and over) were 

applied, cell viability had sharp decreases (all under 50.55%). Moreover, higher power 

of 14 W and 17 W induced lower cell viabilities when sonication duration was 60 sec.  

In pulsed FUS sonications (Figure 5.10 B) mode, three FUS powers of 6.5 W, 10 
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W and 12 W were applied respectively, where, viable cells were over 95.21% when the 

power was lower than 10 W and sonication time was fewer than 180 sec. At FUS 

power of 12 W, cell viabilities decreased upon increased sonication durations at duty 

cycle of 20% (bars within the red square in Figure 5.10 B).  

Transducer f = 1.467 MHz 

In frequency of 1.467 MHz transducer’s sonication, results obtained by employing 

continuous FUS wave (Figure 5.11 A) were similar in comparison to frequency of 

2.022 MHz transducer. FUS power was applied from 0.78 W up to 17 W, sonication 

duration was from 40 sec to 300 sec. When FUS power was lower than 5.5 W, all 

treatment groups of cells responsed with high cell viabilities (over 74.39%); when FUS 

power was applied over 6 W (bars within the red square), KB cell death rate increased 

upon ever-increased both FUS power and sonication duration.  

 

 

Figure 5.11 KB cells viability (% of control) 48 hr post transducer f = 1.467 MHz 

sonications. Continuous FUS wave mode (A); Pulsed FUS wave mode (B). 
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In 1.467 MHz pulsed FUS wave sonications, three powers of 7.1 W, 10 W and 12 

W were employed. It is easy to conclude from Figure 5.11 B that at lowest power of 

7.1 W, cell viabilities were not affected much by all sonication treatments as the lowest 

cell viable rate was 91.77%. At higher power of 10 W and 12 W applications, cell 

viabilities again decreased by increased sonication duration when keeping the duty 

cycle constantly at 20%. 

Transducer f = 1.142 MHz 

In the third transducer at frequency of 1.142 MHz sonication treatments, KB cell 

viabilities (Figure 5.12 A and B) exhibited not much affected by all sonication 

parameters combinations in both continuous and pulsed wave mode. Where, two 

extreme low cell viability values (red circled bars) obtained under continuous wave 

mode at 0.8 W for 300 sec duration (34.64%) and under pulsed wave mode at 3 W for 

60 sec, 20% duty cycle induced viable cells were only 5.35% which was suggested to 

be error by comparing to those data obtained by higher FUS parameters.  
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Figure 5.12 KB cells viability (% of control) 48 hr post transducer f = 1.142 MHz 

sonications continuous FUS wave mode (A); Pulsed FUS wave mode (B). 

 

Transducer f = 0.4868 MHz 

The lowest frequency (0.4868 MHz) of transducer, again, did not severely affect 

KB cell monolayer post sonications, except after longest duration of 300 sec with 

highest continuous power of 4.8 W applied, cell viable rate expressed at only 3.19%. 

For all the other parameters applied, cell viable rate were all over 81.22% (Figure 5.13 

A and B). 



136 

 

 

Figure 5.13 KB cells viability (% of control) 48 hr post transducer f = 0.4868 MHz 

sonications. Continuous FUS wave mode (A); Pulsed FUS wave mode (B). 

 

Summary 

To summarise, cell viability values were high (over 80%), for FUS exposures at 

f = 1.142 and 0.4868 MHz and power in the range of 0.3 – 5 W. This suggests that cell 

viability and proliferation is not much affected, as expected, or sometimes even 

enhanced / triggered by FUS at low acoustic intensity (Pitt and Ross 2003; Yu, Wang et 

al. 2004). Cell viabilities after 48 hr incubation post sonication at f = 2.022 and 1.467 

MHz with continuous power under 6 W were still over 80%; with pulsed power under 

10 W and duration under 180 sec were over 73%. Cell viabilities also observed drop 

dramatically below 50% for various combinations of higher acoustic intensity, 

frequency and exposure time. However it is desirable for TDD experiments to maintain 

high cell viability values (over 80%) for accurate control and repeatability.  

Cell viable rate upon sonication is a crucial aspect in the following in vitro cellular 
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drug uptake assay and in vivo MRgFUS application to animals. As targeted drug 

release is an active process, and the energetic cavitational phenomena discussed in this 

chapter that may be detrimental to tissues are requisite in promoting the physical or 

chemical release of drugs from the nanocarriers, or the transport of drugs into cells. 

However, low acoustic intensity may not be adequate to effectively active TDD. Thus a 

proper level of cavitational activity must be compensated to achieve the medicinal 

purpose of FUS-mediated TDD. Somewhere between these harsh and mild extremes 

lies the desired realm of ultrasonic TDD – a cavitational level that produces cavitation 

activity sufficient to sonoporate cell membranes temporary without killing the cells, an 

energy level that creates a sufficient number of micro-jets to allow extravasation from 

capillary walls without killing the endothelial cells or causing thrombosis, or a level 

that generates sufficient microstreaming to break open desired γ-CD based 

nanocarriers or other vesicles without lysing red cells or other host cells (Pitt, Husseini 

et al. 2004). 

5.4.2 Evaluation of MBs Related Temperature Effects 

If the thermal effects of US are exploited, then a small focal zone, diameter 1 – 3 

mm, and increased US durations may provide the energy necessary for the desired 

effects through heat transfer. However, the size of the focal zone is highly relevant for 

US-mediated TDD experiments, if carrier-drug insensitive to temperature or sensitive 

to mechanical effects are used, then those mechanical effects of FUS in conjunction 

with gas MBs as possible “tools” to open the carriers and release the drug in the 

vicinity of the cell membrane will benefit from a wider focal zone, and the coverage of 

US-exposed cell layers will improve.  

According to mechanical characterisations of acoustic field and focused zone 

(section 2 in Appendices), efficiency (section 3 in Appendices) and temperature rising 

with various combinations of US parameters for each transducer (section 4 in 

Appendices), combined with the target carrier-drug system were found to be 

thermo-sensitive (Chapter 3 and Chapter 4), it is necessary to have rational 
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experiments design to figure out responsivity of the carrier-drug system under US 

mechanical effects only, in which, thermal effects need to be avoid.  

Therefore, transducer f = 0.4868 MHz was selected for the following experiments, 

as 1) it shows lowest energy efficiency to delivery as low acoustic power as desired; 2) 

it has lowest temperature rising; and 3) its focused zone is the largest of 5.3 mm 

(obtained from experimental scan) to cover the most cells monolayer on a 6.9 mm well, 

among others. Together with SonoVue
®
 MBs half-life time is 41.05 ± 1.83 sec when 

exposure to 1 MHz transducer at intensity of 4 W/cm
2
 (Tinkov, Bekeredjian et al. 

2009), desired plate sonication arrangement and total drug exposure time in drug 

cellular uptake investigation, sonication duration for the following experiments was 

determined for 10 sec per single well constantly. To assess the impact of FUS 

application on cells in the presence of MBs, selected MI between 0.2 to 0.6 was 

applied, as stable cavitation happen with MBs when 0.1 < MI < 0.6 (Hernot and 

Klibanov 2008) and MBs destruction (oblique implosion) reported to occur when MI is 

over 0.7 (Lindner 2002).  

Moreover, it is well known that bubble collapsing is a microscopic implosion that 

generates high local turbulence and the release of heat energy. The consequence is a 

significant increase of temperature and pressure (Leong, Ashokkumar et al. 2011). 

Furthermore, it is reported that at 20 kHz ultrasound frequency, the bubbles generated 

in the acoustic field are relatively large and their collapse results in strong shockwaves 

(Leong, Wooster et al. 2009). However, acoustic frequency between 100 to 1000 kHz, 

their collapse induces a higher increase in temperature (Suslick and Crum 1998). Thus, 

the aim of experiments in this section is to evaluate whether MBs’ concentration would 

affect temperature changes upon sonication. IR thermal camera and thermocouples 

have been adopted to investigate thermal effect within selected US parameters in the 

presence of different concentrations of MBs. 
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5.4.2.1 Temperature measurement by thermal camera 

MI = 0.24 

 

 

Figure 5.14 Temperature changes by US exposure of MI = 0.24, duration 10 sec, in 

the absence/presence (0.1%, 1%, 2.5% and 5%) of SonoVue
®
 MBs. Temperature 

mapping from thermal camera (A); Calculated temperature changes of before 

and after US treatment (40 msec time record frame) (B) 

 

As can be seen from the thermal camera temperature mapping shows in Figure 

5.14 A, temperatures in three wells (position 4, 5 and 6) have been selected to analyse 

the results. Temperature in position 4 (light blue curve) was the well being sonicated, 
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position 5 and 6 are the two adjacent wells, 5 would be sonicated next, 6 was the well 

just been treated (pictures can be found in Figure 5.2 B within this chapter). The 

temperature mapping indicated not much temperature changes in three interested 

positions before and after US exposure. In Figure 5.14 B, very little temperature 

increase (maximum 0.34 ± 0.32 °C) was observed according to data calculation in all 

treatment groups.  

MI = 0.31 

 

 
Figure 5.15 Temperature changes by US exposure of MI = 0.31, duration 10 sec, in 

the absence/presence (0.1%, 1%, 2.5% and 5%) of SonoVue
®
 MBs. Temperature 

mapping from thermal camera (A); Calculated temperature changes of before 

and after US treatment (40 msec time record frame) (B). 
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Different temperature mapping displays in Figure 5.15 A and it illustrates that 

when MI = 0.31, sonicated well (position 4) had a sharp temperature increase within 10 

sec (increasing segment on light blue curve) from around 34 °C up to roughly 35.5 °C. 

While, temperatures in adjacent position 5 (light brown curve, non-sonicated wells) 

were not influenced much which stated insignificant heating (< 0.2 °C) spread to 

adjacent wells within desired US parameters. Figure 5.15 B further demonstrates 

calculated temperature changes within this set of US parameters, where, the maximum 

temperature increase was 1.30 ± 0.46 °C. Furthermore, the presence of MBs showed 

no additional thermal effects.  
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MI = 0.53 

 

 

Figure 5.16 Temperature changes by US exposure of MI = 0.53, duration 10 sec, in 

the absence/presence (0.1%, 1%, 2.5% and 5%) of SonoVue
®
 MBs. Temperature 

mapping from thermal camera (A); Calculated temperature changes of before 

and after US treatment (40 msec time record frame) (B). 

 

Results in Figure 5.16 are similar to Figure 5.15, when MI = 0.53 applied, higher 

temperature increase was observed (maximum 1.97 ± 0.43 °C), but again, little heating 

(< 0.5 °C) spread to adjacent wells and MBs did not affect thermal effects of US 

treatment. 

All temperatures presented here are average temperatures compiled from three 
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separate experiments performed in triplicates and were expressed as means ± SD.  

5.4.2.2 Temperature measurement by thermocouples 

Thermocouples are complementary experiments to confirm results obtained by 

thermal camera. Temperatures by exposure MI = 0.24, 0.31 and 0.53 in the absence of 

MBs, and MI = 0.53 in the presence of 5% MBs were tested.  
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Figure 5.17 Temperature mapping by thermocouples. MI = 0.24, no MBs (A); MI 

= 0.31, no MBs (B); MI = 0.53, no MBs (C); and MI = 0.53 with 5% MBs (D). 

 

From Figure 5.17 A and B, very little temperature increase (< 0.5 °C) was received 

when MI = 0.24 and 0.31. To be noticed in both A and B, channel 1 exhibits a sharp 

temperature increase segment where channel 1 thermocouples was placed in the first 

sonicated well, this phenomenon suggested the very first sonication might be subjected 

to a split-second higher US power then desired, at the moment of switching on the 

power amplifier.  
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In Figure 5.17 C and D, obvious temperature rise (marked ascendant part of curve 

by black dotted line) happened to all thermocouples channels when US MI = 0.53 was 

employed; the maximum temperature increase was around 2 °C, which was consistent 

with data received by thermal camera.  

Temperature evaluation within selected US parameters is critical reference for the 

next carrier-drug binding test and drug cellular uptake assays, which helps to 

distinguish what is the main effects (thermal or mechanical) to cause drug release or 

increased cellular drug uptake.  

5.4.3 Cavitation 

By exposure FUS to TA solutions to test fluorescence intensity changes by 

selected low acoustic parameters; no obvious increasing of fluorescent signals was 

received after 10 sec sonication.  

 
Figure 5.18 Fluorescence intensity changes of TA solutions post US exposure in 

the presence of 5% MBs. The embedded table lists fluorescence intensities of two 

control samples: TA with no MBs no US and TA with 5% MBs no US. 

In Figure 5.18, a slight increase of fluorescence intensity was detected, however, 

in comparison to two control groups of data displays in the table embedded in Figure 

5.18, TA solution without MBs with no US treatment also has an increasing of 

fluorescence intensity from 62.33 ± 6.00 to 66.00 ± 2.64, and TA solution with 5% of 

MBs but no US treatment was also observed fluorescence intensity increased from 

61.00 ± 1.53 to 68.33 ± 4.81. Data of TA with 2.5% MBs will not present here as 
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similar results gained as above. 

Thus, observation of increased fluorescent signal was believed not due to inertial 

cavitations occurring, it is suggested to be physical influences such as temperature, 

exposure time in air and etc. Therefore, it is difficult to say inertial cavitations were 

induced by desired low acoustic parameters. However, it is also hard to conclude that 

only stable cavitations existed. Better analysis methods are needed to clarify this point. 

All data presented here is average fluorescence intensity compiled from three 

separate experiments performed in triplicates and were expressed as means ± SD. 

5.4.4 Carrier-drug Binding Results 

Carrier-DOX inclusion solution was exposed to FUS and their encapsulation 

changes were obtained. 

 

Table 5.2 Encapsulation percentage of DOX by the carrier before and post 10 sec 

US sonication treatment at MI = 0.24, 0.31 and 0.53 in the presence of MBs (0.1%, 

1%, 2.5% and 5%) 

 Encapsulation 

(% of control) 

Before US 

Encapsulation (% of control) 

After US 

No US, No 

MBs 

81.06±1.19 MI=0.24 MI=0.31 MI=0.53 

No MBs+US 81.21±0.29 77.69±0.37 77.60±0.08 77.88±0.12 

0.1% MBs+US 81.28±0.39 77.96±0.22 77.20±0.15 78.56±0.14 

1% MBs+US 80.19±0.48 77.37±0.14 76.89±0.04 77.12±0.19 

2.5% MBs+US 80.84±0.22 77.11±0.20 76.61±0.27 76.48±0.08 

5% MBs+US 85.32±0.21 78.20±0.30 78.57±0.30 78.68±0.56 
*The results are presented from three separate experiments carried out in triplicates and were expressed as means±SD. 

As can be seen from Table 5.2, encapsulation efficacy of DOX by the carrier is 

over 80% before US treatment. Three groups of US treatment showed slightly DOX 

release after sonication, minimum encapsulation rate was 76.48 ± 0.08%. However, 

this ~ 4% ‘drug release’ was believed not attributed to US mechanical effects and it is 

suggested to be triggered by US thermal effect mainly.  

The explanation, first of all, is the procedure of transferring little volume of 420 

µL/well pre-heated carrier-DOX solution into 96-well plate has been implemented at 
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room temperature, in which, such a small volume of test solution is difficult to be 

maintained at pre-heated temperature of 37 °C. Nonetheless, DOX’s encapsulation 

efficiency was measured at room temperature before US exposure, whereas the 

sonicator water bath was maintained at 34 °C that warmed up test solution when the 

plate was in. Furthermore, sonication also generated minor heating. Therefore, lower 

encapsulation observed of carrier-DOX system after sonication was suggested to be 

carrier’s responsivity to thermal effect, according to ‘thermal-sensitive’ conclusion 

stated in Chapter 3. Moreover, no additional changes of encapsulation rate were 

observed in Table 5.3 when different MI were applied, either in the presence of 

different concentrations of MBs, which is the second explanation of this 

non-mechanical-sensitive carrier-drug system. Nonetheless, because very low US 

powers were employed and only 10 sec duration were applied for each single cell 

culture well, that are insufficient to induce drug release from the complex inclusion. 

5.4.5 Cell Viability in The Presence of MBs 

After temperature and carrier-responsivity investigation of selected sets of acoustic 

parameters, more in-vitro cell culture studies were performed to optimise applicable 

parameters in TDD drug delivery. Cell viability test in the presence of MBs was 

conducted firstly by inspection of both KB and HCT116 cell lines. 
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KB cells 

 

 

Figure 5.19 KB cells viability (% of control) 48 hr post sonication in the 

absence/presence of MBs. KB cells viability as a function of MBs’ concentration 

(A); KB cells viability as a function of US mechanical index (B). 

 

From Figure 5.19 A, KB cells expressed high viable rate (over 85%) when lowest 

MI of 0.24 was applied except in the presence of the highest MBs of 5% (62.61%). In 

parallel, under the same MI, viabilities of KB cells were high when MBs concentration 

≤ 0.1%. Along with either increased MI or concentrations of MBs, the viable KB cells 

decreased correspondingly.  

Figure 5.19 B presents cell viability in another way by different MIs, in which, 

clear observation of decreasing trend of viable cells with increasing MI and 

concentrations of MBs can been seen. 
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HCT116 cells 

 

 

Figure 5.20 HCT116 cells viability (% of control) 48 hr post sonication in the 

absence/presence of MBs. HCT116 cells viability as a function of MBs’ 

concentration (A); HCT116 cells viability as a function of US mechanical index 

(B). 

 

As can be seen from Figure 5.20, HCT116 cells behaved more sensitive to US 

exposure in the presence of MBs, viable HCT116 cells were lower than that of KB 

cells. The results were consistent with observation of HCT116 cells which exhibited 

less-stable adhesion property in Chapter 4, therefore, HCT116 cells were more 

vulnerable to US exposure. This is why the highest 5% of MBs was not applied for 

HCT116 cells. Again, except MI = 0.24, cell viability decreased when increased either 

MI or concentrations of MBs. 
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5.4.6 Cellular Drug Uptake 

To evaluate the efficiency of FUS as a drug uptake stimulant for encapsulated 

carrier-drug inclusion, drug cellular uptake experiments were performed on the basis of 

above results of temperature investigation, cavitations detection, carrier’s responsivity 

measurements and cell viability evaluation.  

KB cells 

 

Figure 5.21 DOX cellular update in KB cells after US exposure in the presence of 

drug carrier and MBs. 

 

Figure 5.21 shows drug cellular uptake (% of control) of KB cells post sonication 

in the presence of drug carrier without / with MBs. Bars highlighted by squares are 

data of cells exposed to no carriers containing DOX solutions, where, cellular drug 

uptake increased sharply (from ~ 100% up to ~ 280%) along with both increased MI 

and MBs concentrations. This suggested cell sonoporation occurred and the pore size 

of cell membrane was enlarged to induce more drug molecule intercalation.  

By looking at bars highlighted by circles in Figure 5.21, drug uptake of cell 

samples exposed to protected drug solutions are presented. In which, successful 
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protection of DOX by the carrier can be seen as very low drug uptake was obtained (~ 

15%), which supported those results achieved in Chapter 4. Besides, no significant 

increase of cellular uptake was recorded in cell samples exposed to carrier-drug 

solutions without MBs but with US treatment (bars in red circle) only. However, 

cellular DOX uptake increased when concentrations of MBs rose up. Detailed analysis 

of increased drug uptake shows in Table 5.3. 

 

Table 5.3 Increased fold of KB cells DOX cellular uptake of (DOX+C*+MBs+US) 

treatment compared to (DOX+C*+US) treatment at different MI 

 

Increased fold of DOX uptake 

[MBs] MI=0.24 MI=0.31 MI=0.53 

0.1% MBs 3.03 2.56 2.25 

1% MBs 3.17 3.89 3.78 

2.5% MBs 1.61 1.38 4.51 

5% MBs 1.34 1.69 5.49 

*C stands for carrier. 

Table 5.3 aims to express significant factors of increased drug uptake between cell 

samples subjected to protected drug solutions with MBs and without MBs. From this 

table, minimum 1.34-fold of DOX uptake was achieved by employing MI of 0.24 with 

5% MBs. While maximum of 5.49-fold drug uptake was obtained by using MI of 0.53 

with 5% MBs. However, when concentration of MBs was 1%, minimum 3.17-fold and 

maximum 3.78-fold were received. As well as sonication with 0.1% of MBs by MI of 

0.24, 3.03-fold drug uptake was get. The results suggested again sonoporation 

happened in the presence of MBs and MBs’ oscillation / collapse stimulated more drug 

uptake by KB cells, and, another possibility was drug released from the carrier by 

minor thermal effect, or by mechanical effect.  

HCT116 cells 

Similar experiments were performed for HCT116 cells. According to experience 

from its viability test, as significant cell loss was obtained with 5% of MBs, and less 

effective of 0.1% MBs, only two intermediate concentrations of 1% and 2.5% of MBs 

were employed to HCT116 cells. 
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Figure 5.22 DOX cellular update in HCT116 cells after US exposure in the 

presence of drug carrier and MBs. 

 

Table 5.4 Increased fold of HCT116 cells DOX cellular uptake of 

(DOX+C*+MB+US) treatment compared to (DOX+C*+US) treatment at 

different MI 

 

Increased fold of DOX uptake 

[MBs] MI=0.24 MI=0.31 MI=0.53 

1% MBs 1.40 2.38 2.33 

2.5% MBs 1.62 2.42 2.89 

*C stands for carrier. 

As expected, similar results were delivered and show in Figure 5.22 for drug 

uptake situation by HCT116 cells. No significant cellular drug uptake increased in US 

treatment without MBs for protected DOX (red circle area). Apparently, enhanced 

DOX uptake was observed in cell samples subjected to both DOX alone and protected 

DOX in the presence of MBs, and treated by sonications. Table 5.4 shows significant 

increased factors of DOX uptake between sonication with MBs and without MBs for 

cells were exposed to protected DOX solutions. Minimum of 1.4-fold was achieved of 

MI = 0.24 with 1% of MBs, while maximum of 2.89-fold was obtained when MI = 

0.53 with 2.5% of MBs.  

To summarise, mechanical insensitivity of the carrier-drug inclusion was 
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suggested in section 5.4.4 in this chapter. However, significant increased DOX cellular 

drug uptake by both KB and HCT116 cells occurred in the presence of MBs with US 

treatment illustrates important cell response to MBs-induced mechanical effects such 

as cavitations.  

5.4.7 AFM Measurement of Cell Sonoporation 

Short time membrane morphology and topography changes of KB cells were 

inspected by AFM post sonication with and without SonoVue
®
 MBs by various 

frequencies of FUS transducers.  

Transducer f = 1.467 MHz 

AFM images of KB cells sonicated 60 sec by f = 1.467 MHz in continuous FUS 

wave without MBs show in Figure 5.23. 

 

Figure 5.23 AFM cell surface morphology and topography of KB cells before and 

after f = 1.467 MHz sonication. Surface of cells before US treatment (A); 3D 

image of cells before US treatment (B); surface of cells after sonication (C); and 

3D image of cells after sonication (D). 

 

As can be seen from Figure 5.23, smoother cell membrane (Figure 5.23 A) and 

normal 3D sharp of cells (Figure 5.23 B) were observed before US treatment, while 

uneven cell membrane (Figure 5.23 C) and more protrusion shape of cells (Figure 5.23 
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D) can be seen after sonication treatment. The results indicate stress/strain response of 

cells to pressures came from acoustic wave.  

Transducer f = 1.142 MHz 

KB cells were sonicated 60 sec by f = 1.142 MHz in continuous FUS wave, where, 

5% MBs was added. 

 

Figure 5.24 AFM cell surface morphology and topography of KB cells before and 

after f = 1.142 MHz sonication. Surface of cells before US treatment (A); 3D 

image of cells before US treatment (B); surface of cells after sonication without 

MBs (C); 3D image of cells after sonication without MBs (D); surface of cells after 

sonication with 5% MBs (E); and 3D image of cells after sonication with MBs (F). 
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Figure 5.25 AFM cell surface morphology and sonoporation observation of KB 

cells after f = 1.142 MHz sonication with 5% MBs. Surface of KB cells after 

sonication with 5% MBs (A); and selected sonoporation plot depth and width of a 

defect (B). 

 

Transducer f = 0.4868 MHz 

KB cells were sonicated 10sec by f = 0.4868 MHz in continuous FUS wave in the 

absence/presence (2.5%) MBs. 

 

Figure 5.26 AFM cell surface morphology comparison of KB cells before (A) and 

after (B) f = 0.4868 MHz sonication with 2.5% MBs. 
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Figure 5.27 AFM cell surface morphology of KB cells after f=0.4868MHz 

sonication with and without 2.5% MBs. Surface image of cells after sonication 

without MBs (A); selected sonoporation plot depth and width of defects in picture 

A (B); surface image of cells after sonication with MBs (C); and selected 

sonoporation plot depth and width of defects in picture C (D). 

 

From Figure 5.24 A and B, Figure 5.26 A, all non-treated cells possessed normal 

shape and size, with highly rich surface profiles observed, in terms of cell cytoskeleton 

structures (fibre structures), etc. After the US treatments, flatter cell membranes were 

documented by the AFM (with much less fibre structures observed). Small pits were 

found on the cell membranes with depth of 100 – 200 nm (Figure 5.25 and Figure 5.27 

A and B). These observations were speculated to be caused by US, which induced 

non-uniform pressure (or stress & strain) on the cells, resulting in the changes of cell 

topography (Figure 5.24 C and D). 

By adding the MBs to the US treatments, a significant difference in membrane 

structural topography was seen immediately when compared to the previous 

experimental groups. Cell membranes were covered with different kind of pore 

structures with very sharp edges (Figure 5.24 E and F, Figure 5.25 and Figure 5.27 C 

and D), which it is thought are the disrupted membranes, sonoporated by FUS+MBs 

treatment (Prentice, Cuschieri et al. 2005). It should be noted that these pore structures 
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were not observed on all the treated cells (Figure 26 B). 

AFM study was a complementary method in this thesis research for cell 

morphology and topography observation to further investigate cell membrane 

sonoporation situation in FUS-triggered TDD. The above AFM images illustrate potent 

sonoporation occurred in the presence of additional MBs, which is an explanation to 

increased drug uptake observed in section 5.4.6.  

5.5 Conclusions 

In this chapter, it was expected that the use of a standardised in vitro sonication 

device and experimental method would reduce instrument-related variability in reported 

results, reduce the time associated with the US exposure of a large number of wells of a 

96-well plate and thus increase the accuracy of exposure durations of cells to both 

encapsulated and non-encapsulated drugs.  

The carrier-DOX drug delivery system was validated to be mechanically (low 

acoustic power induced) stable, and, by adding additional ultrasound contrast agent of 

SonoVue
®
 MBs into the system, cell membrane sonoporation with exposure to FUS was 

confirmed through both cellular drug uptake and AFM studies.  

In spite of that, answers to some questions are still unclear, including the form of 

cavitation (stable / inertial), DOX release / uptake mechanism (such as whether the 

carrier-DOX complex penetrates the cell membrane intact before the DOX is released) 

and biochemistry response of cells (cell signalling pathway) to US exposure. Possible 

methodologies to clarify these will be discussed in Chapter 7.  



158 

Chapter 6  

Animal House Design and Experimental 

Planning for Clinical MR-guided FUS 

System  

6.1 Introduction 

An extensive cell culture study had been carried out to investigate 

thermal-responsivity and mechanical-responsivity of the carrier-DOX complex 

inclusion by thermo oven and FUS, respectively. The logical continuation of this work 

is the initiation of in vivo study to confirm the ability of ultrasound to locally release 

cytotoxic drug and increase cellular drug uptake by tumour tissues employing the 

combination of thermal and mechanical effects of FUS under MRI guidance. However, 

before starting experiments with live animal, setup configuration, MR and ultrasound 

parameters should be evaluated in a series of experiments that will simulate as close as 

possible real in vivo experiments conditions, but without complexity involved in 

treating anaesthetised live animals. The perfect model for this purpose is mice cadavers, 

since they provide same positioning challenges as live mice, same anatomical details 

and similar acoustic properties.  

Thus, this chapter aims to introduce the establishment and verification of 1) animal 

model: small rodents with and without tumours; 2) imaging and positioning of mice 

cadavers (with and without tumours); 3) sonication trials for optimisation of FUS 

sonication mode and acoustic parameters; 4) best MR imaging coils, and 5) procedure 

time frame. All experiments were carried out using clinical MR-guided FUS system - 

ExAblate 2000.  
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6.2 Animal Model and Clinical MR-guided FUS System 

6.2.1 Animal Model 

Small animal resource unit (RU) 

A standard RU for handling immune-compromised live mice with or without 

tumours during daily experiments was setup. It comprises an internally ventilated 

cages (IVC) rack with an air handling unit and a high-efficiency particulate absorption 

(HEPA) filter. For transfer of mice from IVC to other housing boxes and for other 

procedures a Class II Bio-safety cabinet is available.  

 

Figure 6.1 Mice housing system for internally ventilated cages (IVC) rack with a 

high-efficiency particulate absorption (HEPA) filter (A); Class II Bio-safety 

cabinet (B); MRI compatible anaesthetic device (C). 

 

Nude mice (Fogh and Giovanella 1978; Fogh and Giovanella 1982)  

Nude mouse is a laboratory mouse strain with genetic mutant (disruption of the 

FOXN1 gene) that has a deteriorated or removed thymus, resulting in an inhibited 

immune system due to a greatly reduced number of T cells. The main characteristic of 

nude mouse is lack of body hair, which gives this mutant strain the name of ‘nude’. 

Nude mice are valuable to oncology research because these are well-established as 

tumour xenografts recipients due to no rejection response. Such xenografts are often 

established in research to test new diagnostic and therapeutic methods. Hence, nude 

mice model is ideal for the current research reported here. Figure 6.2 shows a 

laboratory nude mouse model.  

http://en.wikipedia.org/wiki/Particulate
http://en.wikipedia.org/wiki/Particulate
http://en.wikipedia.org/wiki/FOXN1
http://en.wikipedia.org/wiki/Rejection
http://en.wikipedia.org/wiki/Xenografts
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Figure 6.2 A nude mouse (From http://en.wikipedia.org/wiki/Nude_mouse, 

created by Armin Kübelbeck). 

6.2.2 Clinical MR-guided FUS System-ExAblate 2000 for 

Animal 

1.5 Tesla MRI system 

MRI is a medical imaging technique used in radiology to investigate the anatomy 

and function of the body in both health and disease. MRI is potent at finding and 

pinpointing some cancers. Main application in cancer diagnosis contains: 1) an MRI 

with contrast agent is the best combination to see such as brain tumours; 2) by MRI, 

doctors can sometimes distinguish whether a tumour is benign or malignant; 3) MRI 

can also be used to look for signs that cancer may have metastasised from where it 

started to another part of the body; 4) MRI images can help to be as an efficient 

guidance in treatment such as surgery, radiation therapy or chemotherapy. MRI is the 

investigation of choice in the preoperative staging of cancers, and has a role in the 

diagnosis, staging, and follow-up of other tumours (Husband and Padhani 2006). 

Wider interest in solid tumour microenvironment has come from more and more 

exquisite data available by employing MRI (Gillies, Raghunand et al. 2002).  

In the thesis reports here, a 1.5 Tesla MR scanner was used for the guidance of 

treatment with FUS. The MR imaging was performed using either a single-channel 

surface coil or two versions of the 8-channel DUOFLEX interventional coil: a 10 

cm × 10 cm surface coil and 24 cm × 24 cm surface coil.  

http://en.wikipedia.org/wiki/Nude_mouse
http://en.wikipedia.org/wiki/Medical_imaging
http://en.wikipedia.org/wiki/Radiology
http://en.wikipedia.org/wiki/Anatomy
http://en.wikipedia.org/wiki/Physiology
http://en.wikipedia.org/wiki/Cancer_staging
http://en.wikipedia.org/wiki/Prostate_cancer
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ExAblate 2000 

ExAblate 2000 system deliveries FUS energy into human body in a 

minimal-invasive manner. In a matter of seconds, the tissue at the focal spot of the 

ultrasound beam is heated to the point of irreversible thermal coagulation, while 

nearby tissue remains unaffected.  

ExAblate 2000 (Figure 6.3) is a clinical approved FUS surgery system which 

consists of a bowl shaped transducer (Figure 6.3 D) with 208 transmitting ultrasonic 

elements. The system controls each element and has the ability for continuous power 

and phase modulation individually. Additional bowl shaped element (Figure 6.3 D, red 

circle) is acting as a receiver and it is located in the middle of the transducer. The 

element is used for the spectrum measurements.  

 

Figure 6.3 ExAblate 2000. Cradle (A); Operator console (B); Table components in 

degased water (C); Bowl shaped transducer (removed) (D). 

 

ExAblate 2000’s FUS system operates inside a MRI scanner that used to provide 

images of the patient’s anatomy, and prepare an appropriate treatment plan. The MRI 

also measures temperature changes inside the body during FUS treatment. The system 

acquires MR images and runs dedicated sequences to display temperature maps. The 

temperature maps are used to calculate the extent of thermal ablation and to help 

ensure safety and efficacy. In terms of operating site, ExAblate operator has full 

control of all acoustic parameters, so system performance can be adjusted to do 
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hyperthermia instead of ablation and ‘irreversible tissue damage’. ExAblate 2000 was 

used as the sonication platform for the ex vivo study within this thesis report.  

6.3 Materials and Methods 

6.3.1 Materials 

Consumables, animals 

and equipment 

Manufacturer and place 

of origin 

Specification 

MycoAlertTM PLUS 

Mycoplasma Detection Kit 

Lonza, Rockland, ME USA  

High concentration 

Matrigel 

BD Biosciences, Two Oak 

Park, Bedford, MA USA 

 

McCoy's 5A (Modified) 

Medium 

Gibco® Invitrogen, UK [+] High Glucose 

[+] L-Glutamine 

[+] Bacto-peptone 

[+] Phenol Red 

[−] Sodium Pyruvate 

[−] HEPES 

Fetal Bovine Serum (FBS) Gibco Invitrogen, UK Origin: South America 

Gentamycin Gibco® Invitrogen, UK 10 mg/mL 

Nu/nu mice Clare Hall Laboratories, 

London, UK 

4 females 

1.5 Tesla MRI system General Electric, USA Signa HDX 

ExAblate 2000 InSightec LTD, Israel UF 

Single channel surface coil InSightec LTD, Israel 5GP breast 

8-channel DUOFLEX 

interventional coil 

MR Instruments ltd. 

Minneapolis, USA 

10 cm×10 cm 

24 cm×24 cm 

6.3.2 Methods  

6.3.2.1 Ex vivo MR imaging and FUS sonication 

Preliminary set up testing was done on nude mice cadavers (obtained from Animal 

Resource Unit of university) were used in this ex vivo study as a simulation for in vivo 

experiment. Lack of fur in these animals presents additional benefit for FUS 

experiments, since it is possible to create good acoustic coupling without shaving.  

MRgFUS procedures were performed on the hind leg muscle of 5 nude mice 
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cadavers, from same day culling. ExAblate 2000 (uterine fibroid, UF) system was used 

in the experiments. The system’s targeting accuracy was verified with tissue 

mimicking phantom on the day prior to beginning of experiment. 

During the procedure, the mouse was positioned above the ExAblate 2000 system 

therapy table, on its right side, on top of coupling gel-pad, so that right leg of the 

animal was entirely immersed in a small cut-out of the gel filled with degassed water 

(Figure 6.4 C). In the experiments the gel-pad with mouse cadaver was placed inside a 

rodent chamber (Figure 6.4 A and 6.4 B), especially designed for in vivo experiments 

to provide sterile and controlled environment for the anaesthetised animal during the 

experiment and to prevent animal’s escape in case anaesthesia level drops.. The 

chamber consists of Plexiglas box with Mylar surface on the bottom to allow access for 

the focused ultrasound.  

Two gloves filled with water were arranged around the mouse cadaver, so that its 

head was kept above water level and right and left legs were fully separated to avoid 

passage of ultrasound to non-targeted leg (in in vivo experiment it is proposed to use 

mice with tumours grown on both sides, but only one will be sonicated, leaving the 

second one for control). Another purpose of gloves was to simulate conditions for in 

vivo experiments in which a glove with warm water is planned be used as heating 

source to maintain animals’ body temperature during MR scanning and FUS 

sonication.    

 

Figure 6.4 Animal positioning on ExAblate 2000 table inside rodent chamber (A); 

mouse was protected by gloves filled with water (B); on top of coupling gel-pad 

with a small cut-out (C). 

 

Several imaging coils were evaluated in different experiments for best image 

quality including DUOFLEX Interventional 8-channel phased array coil 24 × 24 cm 
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and 10 × 10 cm, DUOFLEX interventional single channel coil and InSightec 5GP 

breast coil, respectively (Figure 6.5).  

 

Figure 6.5 DUOFLEX interventional 8-channel phased array coil 24 × 24 cm (A) 

and 10 × 10 cm (B); DUOFLEX interventional single channel coil (C); and 

InSightec 5GP breast coil (D). 

 

A short 3-plane localiser scan was performed to verify proper positioning, 

followed by Coronal and Sagittal T2-weighted FSE MR imaging sequences with the 

following parameters: TE = 84 msec, TR = 200 msec, flip angle 80 °, field of view 

16 × 16 cm, receiver bandwidth 10 kHz and 384 × 384 matrix. The treatment region 

was outlined using those MR images, see Figure 6.6. 

 

Figure 6.6 Planning of sonication. Coronal T2-weighted image, showing targeted 

treatment location (A); Sagittal T2-weighted image showing one of the performed 

sonication spots, blue area designates passage of ultrasound beam (B) and Axial 

T2-weighted image showing glove position around the animal (C). 

 

Following verification, several (6 – 8) sonications were performed, with a 

‘hyperthermia’ sonication mode, using acoustic power of 4 – 5W. Hyperthermia 
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sonication mode consisted in the first part of 20 sec long continuous sonication and in 

the second part of 54 sec long pulsed sonication with 1 sec power ON and 2.5 sec 

power OFF cycle. These parameters were evaluated in phantom session prior to the 

experiment. Highest available acoustic frequency (1.35 MHz) was selected to avoid 

deep penetration of US into tissue. Focal point of sonications was placed at the distal 

edge of the targeted muscle to increase distance to skin, which even with this measure 

was still smaller than ExAblate software recommends, but since sonications planned to 

be of very low power as compared to ablation levels, skin to focal distance was 

considered within safety limits. 

During the sonications, real time MR thermometry was used to monitor and 

control spot position and tissue temperature. Reference temperature for thermometry 

calculation was updated in ExAblate software to be 20 °C, as was room temperature on 

the day of experiment. ExAblate thermal imaging protocol was adjusted for imaging of 

small sample, providing good spatial resolution and reasonable Signal-to-Noise Ratio 

(SNR) on the same time. Resulting scan time, 10sec per thermal image, was longer 

than in clinical system, but since performed sonications were rather long (74 sec), 

temporal resolution did not suffer much.  

Immediately following the procedure, a set of high quality images was acquired to 

find any potential changes in tissue due to MRgFUS procedure; however since 

cadavers lack perfusion and the energies used were very low, no radiological findings 

were anticipated. After the imaging, the mice cadavers were examined for any 

evidence of skin damage or any other noticeable treatment effect. 

6.3.2.2 Ex vivo and in vivo MR imaging 

Followed the above nude mice cadavers’ MR imaging and ExAblate FUS 

sonication simulations, a human colorectal xenograft (HCT116) was implanted in live 

nude mice and tumour growth has been monitored regularly until tumours reached to 

certain sizes which were suitable (large enough) for in vivo MR imaging.  

Tumour injection, growth and monitoring 

HCT116 cell line has been introduced and employed in Chapter 4 for in vitro cell 
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culture study and they are tumourigenic in nude mice. For mice implantation, HCT116 

cells were grown in McCoys 5A (modified) growth medium containing 10% FBS and 

0.5% Gentamycin at 37 °C with 5% CO2. Cultured HCT116 cells were tested for 

mycoplasma prior to harvesting. Mycoplasma-free cells were trypsinised, harvested, 

rinsed, and then suspended at ratio of 1 : 1 (50 μl : 50 μl) McCoys 5A medium 

(modified) and high concentration matrigel. The suspension was kept below 4 °C at all 

times. Xenograft studies with HCT116 were carried out under project licence PPL 

60/4462 and personal licence PIL 60/14010 in accordance with the guidelines of the 

United Kingdom Coordinating Committee on Cancer Research (UKCCCR).  

Four female nude mice were obtained at age of 4 weeks and breed in cage No.27 

(C27), and they were weighed around 20 g and identified as C27.4, C27.6, C27.40 and 

C27. NM (No Mark) by ear mark positioning prior to tumour implantation. Mice were 

then injected subcutaneously in the right flank (Figure 6.7 D) with 100 μl of McCoys 

5A medium (modified) and matrigel (50 μl : 50 μl) suspension, containing 1×10
8
 

HCT116 cells. The mice were housed under aseptic conditions, in individually 

ventilated cages with full records in a temperature (24 °C) and light-controlled (12 

hr/day) environment (Kang, Oh et al. 2011).  

After injection, mice were checked daily and weighed weekly. Tumour 

measurements were carried out for monitoring. Tumour dimensions were measured 

twice a week using calliper. Tumour sizes were calculated according to spherical 

tumour volume (V) Equation 6.1(Tomayko and Reynolds 1989): 

 

V = 4/3[(d1 + d2)/4)]
3 

Equation 6.1 Tumour volume calculation 

 

Where, d1 and d2 are tumour’s horizontal and vertical diameters (mm), 

respectively.  

MR imaging procedure 

MR imaging procedures for mice cadaver with tumours and live mouse with 

tumour were the same as ex vivo MR imaging described in section 6.3.2.1. Several 
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MRI experiments were carried out to acquire magnetic resonance images of mice with 

tumours. Different rodent chambers and MR coils (Figure 6.7 B and D) were used to 

find the optimal set.  

 

Figure 6.7 Comparison between different rodent chambers and different MR 

imaging coils. Big Perspex chamber with DUOFLEX interventional phased array 

24 cm × 24 cm coil (A and B); small bucket chamber with InSightec 5GP breast 

coil (C and D). 

6.4 Results and Discussion  

6.4.1 Ex vivo Mice Cadaver MR Imaging and Sonications 

6.4.1.1 MR imaging parameters 

MR imaging parameters were optimised to provide the best image quality for the 

spatial resolution required to image such as small samples. The following imaging 

parameters were selected (Table 6.1): 
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Table 6.1 Selected MR imaging parameters 

 Planning images  Thermometry 

Field of View (FOV, cm) 16×16 16×16 

Matrix 256×256 256×128 

Slice thickness (mm) 3 3 

Bandwidth (kHz) 15.6 5.7 

TE (msec) 85 15 

TR (msec) 3600 28 

Number of averages 

(NEX) 
2 3 

Echo train length 15 N/A 

 

For the comparison among different MR imaging coils, the coil which provided 

the best image quality was the single-channel surface coil (InSightec’s Breast coil 5GP) 

(Figure 6.8 C and c), it provided best image quality both in treatment planning and in 

thermometry. The 8-channel DUOFLEX interventional coil also produced images of 

reasonable quality (Figure 6.8 B and b), although lower when compared to the 

single-channel surface coil. However, this coil currently cannot be used with rodent 

chamber, since its cable is too short and there is currently no opening in the rodent 

chamber to provide access for the coil. When DUOFLEX interventional phased array 

(24 × 24 cm and 10 × 10 cm) coil was used, no reliable thermometry could be 

measured, since the distance to the receiver element of the coil for such a small sample 

is too great to collect reliable data. Figure 6.8 illustrates difference in image quality of 

the scans performed with the same parameters, but with different imaging coils.  

 



169 

 

Figure 6.8 Comparison of MR scans with different imaging coils, Coronal 

T2-weighted planning images on the upper row (A, B and C) and Sagittal 

T2-weighted planning images on the lower row (a, b and c) acquired with 

DUOFLEX interventional phased array 10 cm × 10 cm coil (A and a); DUOFLEX 

interventional single channel coil (B and b); and InSightec’s Breast coil (5GP) (C 

and c). 

6.4.1.2 Sonication mode and acoustic parameters 

One of the goals of these experiments was to select sonication mode that will 

create sufficient temperature rise (8 – 10 °C) to cause hyperthermia (typically 40 – 

47 °C), but will still be below the level of ablation (higher than 57 °C). 

After thorough phantom tests the following sonication regime was selected: 20 sec 

continuous sonication, followed by pulsed sonication with 1 sec ON, 2.5 sec OFF cycle. 

This mode consistently created required heating pattern in phantom: rapid temperature 

rise of 8 – 10 °C in the beginning of sonication followed by temperature plateau till 

energy delivery stops. Continuous part of sonication is responsible for the initial 

temperature rise, while pulses maintain temperature at the same level. Power of 4 W 

was used for both parts of sonication.  

Hyperthermia sonications were then performed in 5 ex vivo mice treatments, 

targeting right leg of the animal, 6 – 8 sonications per treatment. Temperature pattern 
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observed in dead mice tissue was similar to one seen in phantom tests: temperature rise 

of 7 – 10 °C in the beginning of sonication followed by constant temperature till 

sonication is over. Temperature graph of the typical sonication is shown in Figure 6.9. 

Some sonications resulted in higher temperature rise of 10 – 12 °C (which is still 

below ablation level), probably due to the presence of bony structures in the acoustic 

pass zone. 

 

Figure 6.9 Thermal monitoring during the sonication. Coronal T2-weighted image 

showing planned spot location (A); Sagittal thermal image showing area of 

temperature rise (bright) around focal point (B); and Temperature graph showing 

temperature during the sonication (red line designates maximum temperature at 

the selected point and green line designates the average temperature over the 3 ×

 3 pixel area around the selected point) (C). 

 

Sonications with power of 5 W produced considerably higher thermal rise (12 – 

15 °C) than required and it was noticed that heating was less uniform (Figure 6.10). 

 

Figure 6.10 An example of sonications with power of 5 W and less uniformity of 

temperature rising. 

 

In most sonications, the heating occurred just below focal point, with a constant 

shift of 5 – 6 mm towards the transducer. After noticing this shift, focal point was 

moved up, increasing skin-to-focal distance, and thus the treatment safety. Each time, 
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the heated spot covered roughly a circular area with diameter of ~ 10 mm. Assuming 

maximal tumour diameter of 15 mm, a treatment of 6 to 8 sonications should cover the 

required volume (tumour + margins) with sufficient overlap.  

Post treatment mice cadavers were closely examined to find any skin damage or 

any other treatment effect. There were no signs on skin in any of the treated animals. 

No radiological findings were observed on post-treatment MR images.  

6.4.1.3 Evaluation of rodent chamber and experimental time frame 

Although the rodent chamber served its function well in above ex vivo experiments, 

several weak points were noted as MR images did not have the desired quality. Some 

modifications were required prior to initiation of live animals study.  

The weak points and necessary improvements include: 1) the box is too deep as it 

was designed to be suitable for rats and guinea pigs as well as mice, so working inside 

the chamber with both hands during the positioning for example, is very uncomfortable, 

which will be even more so in in vivo experiment when injections will have to be 

performed inside the chamber (for administration of contrast agent or MBs) and the 

environment must stay sterile during the entire procedure; 2) two openings for gloved 

hands from the opposite sides of the box would increase the level of comfort 

significantly; 3) another opening in the box should be created for the imaging coil, 

which should be placed around the animal; 4) alternatively, a smaller round box can be 

constructed especially for mice experiments, preferably with size that will fit inside the 

Breast coil. 

In terms of experiments time frame, the average treatment time (sonications time) 

was 30 min for 8 sonications, while imaging before and after treatment took additional 

20 min in average. Since in vivo experiments are planned to be performed using gas 

anaesthesia, the experiment time of up to 1 hr is considered acceptable. 
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6.4.2 Tumour Growth and Monitoring for ex vivo and in vivo 

Experiments 

Mice C27.4, C27.6 and C27.40 were subjected to HCT116 human colorectal 

cancer cells subcutaneous injection in the same day at the beginning as these three 

mice were proposed to be scanned by MR under terminal anaesthesia. Mouse C27.NM 

was injected HCT116 cells a week after, which was for conducting MR scanning under 

normal anaesthesia with full recovery.  

After subcutaneous injection of HCT116 colon cancer cells, tumour volumes were 

monitored and mice weights measurements were conducted regularly. Tumour 

monitoring progress is shown in Figures 6.13 – 6.16 for each mouse. The values for the 

volume of the tumours are shown in Table 6.2 and tumour growth evolution in time in 

Figure 6.17, respectively. The mice weights measurements are shown in Table 6.3. 
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Figure 6.11 Mouse C27.4 tumour growth and monitoring until sacrifice (33 days 

after injection HCT116 cells). 
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Figure 6.12 Mouse C27.6 tumour growth and monitoring until sacrifice (33 days 

after injection HCT116 cells). 
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Figure 6.13 Mouse C27.NM tumour growth and monitoring until sacrifice (24 

days after injection HCT116 cells, ulcerated). 

 

Tumour monitoring revealed that tumour implanted for mouse C27.NM (Figure 

6.13) was ulcerated after 24 days post injection, and it was suggested to euthanise the 

animal as soon as possible to minimise its suffering. Therefore, mouse C27.NM 

(exchanged with mouse C27.40) together with mouse C27.4 (Figure 6.11) and C27.6 

(Figure 6.12), whose tumours grew faster in comparison to mouse C27.40 (Figure 6.14), 
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were terminated by CO2 euthanasia after 24 days (mouse C27.NM) and 33 days (mouse 

C27.4 and C27.6) post injection of HCT116 cells. Right before termination, tumour 

volume of three mice was 332.98 mm
3
 (mouse C27.NM), 572.04 mm

3
 (mouse C27.4) 

and 1059.71 mm
3
 (mouse C27.6), respectively. Moreover, tumours of mouse C27.4 and 

C27.6 appeared as a multi-tumours shape.  

 

Figure 6.14 Mouse C27.40 tumour growth and monitoring until after injection 33 

days. 

 

On the contrary, mouse C27.40, which was supposed to be sacrificed and to 

undergo MR imaging as a cadaver, replaced mouse C27.NM and was scanned as live 

due to its relatively slower tumour growth rate and smaller tumour volume (Figure 

6.14).  

Table 6.2 lists detailed information of tumours’ monitoring process and their sizes 

in different stages. Figure 6.15 shows by curves the overall trend of tumour growth of 

four mice.  
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Figure 6.15 Tumour growth curves of four mice. 
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Table 6.2 Tumour growth and volume (mm
3
) monitoring 

 

# Mouse Dates 29-04-13 02-05-13 06-05-13 12-05-13 13-05-13 16-05-13 20-05-13 23-05-13 28-05-13 

C27.4 

d1/d2 (mm) 2.96/3.1 4.1/3.8 3.38/3.7 4.8/5.4 5.2/5.5 5.6/6.4 7.9/7.8 8.1/9.1 10/10.6 

Tumour 

Volume(mm
3
) 

14.56 32.26 23.22 69.44 80.16 113.08 253.24 332.98 572.04 

C27.6 

d1/d2 (mm) 3.22/3.15 2.6/3.0 3.42/3.63 4.7/5.1 5.7/6.0 7.0/7.8 10.1/7.2 14.6/9.3 15.0/10.3 

Tumour 

Volume(mm
3
) 

16.91 11.49 22.93 61.59 104.81 212.13 338.82 893.35 1059.71 

C27.NM 

d1/d2 (mm)   2.64/2.61 3.1/2.8 4.2/3.3 4.5/6.0 7.3/5.1 6.6/8.4 7.1/10.1 

Tumour 

Volume(mm
3
) 

  9.47 13.44 27.61 75.75 124.76 220.85 332.98 

C27.40 

d1/d2 (mm) 3.31/3.39 4.0/3.3 3.3/3.82 3.5/3.8 4.4/4.0 4.6/4.7 5.5/6.0 6.3/6.2 5.5/5.4 

Tumour 

Volume(mm3) 
19.68 25.46 22.54 25.46 38.79 52.64 99.52 127.81 84.74 
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In parallel, all mice weights were measured once a week. Table 6.3 presents weights 

of four mice after tumour implantation. For mouse C27.4 and C27.NM, their weights 

were increasing every week due to tumours growth. In contrast, weights of mouse 

C27.6 and mouse C27.40 were decreasing after 3 weeks of tumour implantation; it 

might be because their body had relevant pathological response to the tumour 

xenografts such as loosing weights.  

Table 6.3 Mice weights monitoring 

         Dates  

Weight (g) 

#Mouse 

 

29-04-13 

 

02-05-13 

 

09-05-13 

 

13-05-13 

 

20-05-13 

  

28-05-13 

C27.4 18.5 20.1 22.1 22.9 22.5 23.2 

C27.6 19.7 22.0 24.4 24.1 23.3 22.7 

C27.NM 21.5 22.4 25.2 25.3 25.5 26.1 

C27.40 20.5 22.3 24.4 23.9 23.0 22.6 

6.4.3 Ex vivo Mice Cadaver Bearing Tumours MR Imaging 

The following tables (Table 6.4 – 6.6) list selected MR parameters for scanning 

three mice (C27.4, C27.6 and C27.NM) cadavers bearing tumours. 

Mouse C27.4 

Table 6.4 Mouse C27.4 MR imaging parameters 

 Mouse C27.4 

Coil DUOFLEX 

10×10 

DUOFLEX 

24×24 

5GP breast 

Sequence FRFSE-XL FRFSE-XL FSE-XL FRFSE-XL 

TR (ms) 5880 6480 580 3260 

TE (ms) 84.5 84.5 8.2 85 

Bandwidth (kHz) 10 10 31.2 10 

FOV (cm) 14×14 14×14 14×14 13×13 

Slice thickness 

(mm) 

2 2 2 2 

Number of averages 

(NEX) 

2 3 2 2 

 

Three groups of MR scans were conducted for the first mouse C27.4 by using MR 

parameters list in Table 6.4 and three different coils (DUOFLEX interventional phased 
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array 10 × 10 cm, 24 × 24 cm coil, and InSightec 5GP breast coil) were used under 

different set of MR parameters according to different coils’ property.  

 
Figure 6.16 MR images of mouse C27.4 placed inside big Perspex rodent chamber 

and scanned by DUOFLEX interventional phased array 10 × 10 cm coil. Axial (A); 

coronal (B); and sagittal (C) T2-weighted scans of the animal lying on a gel pad 

were taken to visualise the tumour. 

 

 

Figure 6.17 MR images of mouse C27.4 placed inside big Perspex rodent chamber 

and scanned by DUOFLEX interventional phased array 24 × 24 cm coil. Axial (A), 

coronal (B) and sagittal (C) T2-weighted scans of the mouse lying on a gel pad, 

were taken to visualise the tumour. 

 

 

Figure 6.18 MR images of mouse C27.4 placed inside small Bucket rodent 

chamber and scanned by InSightec 5GP breast coil. An axial T1-weighted MR 

image was first taken to plan the scan (A); axial T2-weighted; (B) and sagittal 

T2-weighted (C) images of the animal were taken to visualise the tumour. 
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Figure 6.16 shows MR images of mouse C27.4 scanned by DUOFLEX 

interventional phased array 10 × 10 cm coil. The image quality was not good enough 

to observe the exact location of tumour especially when the image orientations were 

coronal and sagittal. The reason was that the small mouse cadaver inside the big 

Perspex rodent chamber was located too far from the receiving elements of the coil. 

Similarly, images obtained by using DUOFLEX interventional phased array 24 × 24 

cm coil were not satisfactory either because big rodent chamber was still keeping the 

mouse cadaver too far from the coil. However, when using DUOFLEX 24 × 24 cm 

coil higher image quality was achieved (Figure 6.17 A) than DUOFLEX 10 10cm coil 

as can be seen from the clear tumour position in the axial image.  

In comparison to Figure 6.16 and 6.17, much clear MR anatomy images of the 

mouse were obtained by using InSightec 5GP breast coil which was set up around a 

small round Bucket chamber. As can be seen from Figure 6.18, both mouse anatomy 

and location of the tumour were clearly seen in both axial and sagittal orientations as 

opposed to Figure 6.16 and 6.17. This was because the scanned object (mouse) was 

nearer to the imaging coil.  

Mouse C27.6 

Based on scanning parameters for the above mouse C27.4, for the second mouse 

C27.6, only two coils (DUOFLEX interventional phased array 24 × 24 cm coil and 

InSightec 5GP breast coil) were used. Two sets of scans were conducted according to 

the parameters list in Table 6.5, respectively.  

Table 6.5 Mouse C27.6 MR imaging parameters 

 Mouse C27.6 

Coil DUOFLEX 24×24 5GP breast 

Sequence FRFSE-XL FSE-XL FRFSE-XL 

TR (ms) 3260 740 3600 

TE (ms) 85 8.2 85.2 

Bandwidth (kHz) 10 31.2 10 

FOV (cm) 13×13 14×14 14×14 

Slice thickness (mm) 3 2 2 

Number of averages 

(NEX) 

3 3 3 
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Figure 6.19 MR images of mouse C27.4 placed inside big Perspex rodent chamber 

and scanned by DUOFLEX interventional phased array 24 × 24 cm coil. Sagittal 

(A) and axial (B) T2-weighted scans of the mouse lying on a gel pad were taken to 

visualise the tumour. 

 

 

Figure 6.20 MR images of mouse C27.4 placed inside small Bucket rodent 

chamber and scanned by InSightec 5GP breast coil. A sagittal T1-weighted MR 

image was first taken to plan the scan (A); axial (B) and sagittal (C) images of the 

animal were taken to visualise the tumour. 

 

The MRI images obtained for mouse C27.6 were similar to the ones for C27.4. 

Images obtained by using DUOFLEX interventional phased array 24 × 24 cm coil 

were less clear (Figure 6.19). This was due to the mouse placing inside the big Perspex 

animal chamber which kept the mouse far away from the coil. 5GP breast coil gave 

better image quality (Figure 6.20) by fixed around the small bucket animal chamber 

where the coil was located nearer to the mouse cadaver. 

Mouse C27.NM 

For the last mouse cadaver C27.NM, only 5GP breast coil was used for MR 

scanning. Table 6.6 lists MR scanning parameters used for C27.NM. 
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Table 6.6 Mouse C27.NM MR imaging parameters 

 Mouse C27.NM 

Coil 5GP breast 

Sequence FSE-XL FRFSE-XL 

TR (ms) 580 2940 

TE (ms) 8.2 84.5 

Bandwidth (kHz) 31.2 10 

FOV (cm) 14×14 14×14 

Slice thickness (mm) 2 2 

Number of averages 

(NEX) 

3 2 

 

 

Figure 6.21 MR images of mouse C27.NM placed inside small Bucket rodent 

chamber and scanned by InSightec 5GP breast coil. An axial T1-weighted MR 

image was first taken to plan the scan (A); sagittal (B), coronal (C) and axial (D) 

images of the animal were taken to visualise the tumour. 

 

InSightec 5GP breast coil gave the best image quality among all the other coils, 

this coil and set up were further adopted for the next step: in vivo MR imaging. 
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6.4.4 In vivo Live Mice Bearing Tumours Anaesthesia and 

MR Imaging 

 

Mouse C27.40 

For anaesthesia procedure, it was administered 0.23 ml of the ketamine/xylazine 

mixture to mouse C27.40 according to its weight was 23 g by intra-peritoneal injection. 

The full surgical anaesthesia was achieved approximately 3 min later. The mouse was 

inspected according to MR imaging protocol shows in Table 6.6 in section 6.4.3, by 

employing InSightec 5GP breast coil. Coronal, axial and sagittal MR images were 

obtained for mouse C27.40 can be seen in Figure 6.22. 

 

Figure 6.22 MR images of live mouse C27.40 placed inside small Bucket rodent 

chamber and scanned by InSightec 5GP breast coil. An axial T1-weighted MR 

image was first taken to plan the scan (A); sagittal (B), axial (C) and coronal (D) 

images of the mouse were taken to visualise the tumour. 

 

From Figure 6.22, high resolution live mouse anatomy images were obtained by 

MR with clear localisation of the implanted tumour. During MR scanning, the mouse 

was surrounded by gloves filled with warm water (~ 50 °C) (Figure 6.22 D) for 

maintaining mouse’s normal body temperature. After 35 min MR scanning, it was 

Glove filled with warm water 
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noticed that the mouse was coming out of deep anaesthesia and was responding to 

painful stimuli, which confirmed the proper anaesthesia administration of ketamine / 

xylazine mixture for desired mouse recovery time frame at around 30 min. Warm water 

filled gloves successfully maintained mouse’s normal body temperature during the 

entire imaging procedure in the cold environment of MRI room.  

As the procedure was proposed to be conducted continually under terminal 

anaesthesia without recovery, a further dose of 0.1 ml of ketamine / xylazine mixture 

was given, which achieved full surgical anaesthesia again in approximately 1min. The 

warm water filled glove was then replaced with one filled with freshly heated water and 

it was resumed the imaging procedure for a last scan. This procedure lasted 

approximately 12 min and the mouse was found to be dead at the end.  

6.5 Conclusions 

In this study, the optimal experimental set-up and the MR imaging protocol that 

gives the best images for the tumour visualisation were found. The optimal set up for the 

MR imaging included the receive-only InSightec 5GP Breast coil and the small 

cylindrical mouse house. It was found during procedure that for optimal imaging 

results the mouse house and coil were best sited on some pads to raise them to (or as 

near to) the isocentre of the magnet. For ease of localisation and prescribing 

subsequent scans the animal should be placed either head or feet first into the scanner.  

The experimental arrangement was tested firstly in ex-vivo experiments in which 

mice cadavers were used prior to conducting the first experiments with live animals. 

These ex vivo experiments were successfully conducted and the parameters (sonication 

parameters as well as MR imaging parameters and imaging coil) for the future in-vivo 

experiments have been optimised, and such a protocol was considered as a general 

hands-on rehearsal for the research team before the first live animal experiments was 

carried out. 

HCT116 tumour xenografts were successfully implanted and grew well in the 

rodent mode of female nude mice. Tumour growth monitoring and tumour volume 
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measurement were conducted according to standard routines. The high resolution MR 

images of dead/live mice bearing tumour xenografts ensured the future in vivo 

sonication experiments will be conducted under precise imaging guidance. Together 

with the FUS parameters, these parameters form a set that will allow application of 

MRgFUS treatments to live mice bearing tumours under anesthesia with full recovery. 
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Chapter 7  

Discussions and Conclusions 

7.1 Discussions and Prospects  

This thesis has presented comprehensive research on a TDD vehicle for potential 

joint chemotherapy for cancer from the chemical design and synthesis of nanocarriers 

through in vitro work to in vivo trials. Many achievements were made but these are also 

accompanied with many future prospects.  

CDs’ deviation as TDD nanocarriers 

First of all, CDs are multi-functional agents that have attracted much attention and 

use in the pharmaceutical field. Research in both humans and animals has illustrated 

that CDs can be utilised to improve drug delivery for almost any type of drug 

formulation. The properties of bio-adaptability and multi-functionality make CDs 

capable of alleviating those undesirable characteristics of drug molecules in various 

routes of administration through the formation of CD-drug inclusion complexes.  

Knowledge of different impact factors which can influence complex formation to 

obtain clinically applicable CD-drug complexes with potently desirable properties is 

essential. However, adding CDs to existing drug molecules without further optimisation 

will seldom result in an acceptable outcome. Thus, the work for this thesis sought to 

explore chemical modification based on native CDs in the design of an innovative TDD 

system with existing anticancer drugs.  

Since CDs are capable of extending the function of pharmaceutical additives, the 

combination of molecular encapsulation with other possible materials will become 

effective and a valuable tool for the improvement of drug formulation in the manner of 

stability and circulation time in vivo. Moreover, the most desirable attribute for a drug 

carrier is the ability to deliver enough potency of a drug to a targeted site. For the novel 

synthesised carrier 3b discussed in this study, a hypothesised model of possible 
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conjugation with polymers or peptides to further improve its drug delivery properties, 

and rational tagging with a delivery ligand is presented in Figure 7.1. 

 

Figure 7.1 γ-CD based drug delivery vehicle. 

 

Here, the yellow part is γ-CD derivative monomers; several of them will capture a 

drug molecule (blue balls); the green chain could be a polymer or peptide to carry the 

monomer CD carriers and the red arrow molecule represents a targeting ligand that will 

recognise certain receptors of tumours. The targeting ligand could be a folate receptor 

(FR) acceptor which can recognise high FR-expressing tumour cells such as the KB 

cells discussed in this thesis. 

The conjugation of a drug with CD can be a versatile means to construct a new 

class of novel drug delivery systems like liposomes, microspheres, peptides, 

nanoparticles and site specific prodrugs. Thus, there is scope for a vibrant future in the 

research and development of CD based drug delivery systems (Arun, Ashok et al. 

2008).  

Establishment of in vitro human cancer cell models for FUS-mediated TDD 

Chemical modification, characterisation and analysis are very early stage 

investigations relating to the inclusion of CD-drug complexation; whether the same 

strong encapsulation affinity between modified CD and the drug will be observed in 

vivo or in further clinical studies, in vitro experiments are indispensable. A typical and 

reliable in vitro study for a novel exploited TDD system is performed by using cultured 

human cancer cells which usually express a unique surface marker specifically entrusted 

with the task of testing the targeted delivery strategy (Bae and Park 2011). Cytotoxicity 

and cellular drug uptake are commonly examined by exposure of drug delivery systems 
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directly to those cells grown as monolayers or in suspension under various 

environmental conditions.  

Two human cancer cell lines: KB and HCT116, were successfully tested in vitro, 

leading to the achievement of the objective of fast screening of the carriers’ 

encapsulation potency to different drug molecules, investigation of drug release factors 

and confirmation of sonoporation. A particularly interesting contribution was the 

establishment of a precise sonoporation protocol for cell monolayers in a 96-well plate.  

In terms of in vitro cell sonoporation reported in the current literatures, they are mostly 

carried out with cell suspensions (Ashush, Rozenszajn et al. 2000; Guzman, Nguyen et 

al. 2001; Sundaram, Mellein et al. 2003; Karshafian, Bevan et al. 2009) rather than 

adhesion cell monolayers, despite the fact that cell suspensions are believed to be far 

away from the real cell conditions in vivo. Secondly, sonications were commonly 

performed in physical environments such as an Opti-cell chamber (Yudina, de Smet et 

al. 2011) or a petri-dish (Liu, Cho et al. 2001), in which, cells are cultured in a unitary 

environment without the possibility of isolated control samples undergoing the same 

sonication conditions.  

Taking the above aspects into account, the sonicator device for cell monolayer 

sonication in a 96-well plate was established as a unique but standardised and precisely 

repeatable US applicator. A sonication protocol with cell monolayers in a single well 

achieved experimental conditions with the following features: 

1) the cell monolayer more closely resembles the conditions of cells in tissue;  

2) single wells are isolated from each other and can be treated and examined 

separately;  

3) sonication groups with various US parameters together with control groups can 

be easily arranged within a single 96-well plate.  

MBs-involved FUS-mediated TDD under non-thermal effects 

Through the application of the in vitro sonicator, another contribution was to 

prevent FUS induced thermal effects and thus to investigate cells’ response only to 

mechanical effects by employing very low acoustic power. It has been shown in the in 

vitro sonication results that MB-stimulated oscillation (e.g. microstreaming) or 
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cavitation involved in cell sonoporation occurred with negligible thermal effects 

detected and that sonoporation in human cancer cells is directly related to MB 

concentration (Ward, Wu et al. 2000). This indicated FUS-mediated drug delivery in 

the presence of MBs is effective; however, much more work needs to be carried out to 

demonstrate the precise mechanisms of this action.  

Although the acoustic pressure threshold of oscillation or cavitation from MBs is 

not fully understood, several parameters, including the abundance of cavitation nuclei 

in the exposed medium, affect the process (Han, Ikegami et al. 2007). Other factors 

affecting sonoporation include MI, acoustic pressure amplitude, exposure time, duty 

cycle and pulse repetition frequency (PRF). Sonoporation efficiency improved (as 

shown by enhanced cell permeability and cellular drug uptake) with increased values 

of MI, acoustic pressure amplitude and FUS exposure time in the present study. 

The conclusion that follows is that the method of in vitro cell cultivation and 

sonoporation is a very useful tool in FUS-mediated TDD, recognizing that certain 

methods cannot be examined with in vivo models directly before validation of their 

safety. However, it is generally believed that the most trustworthy preclinical 

experiments are animal studies. Nevertheless, methods to eliminate any pain or distress 

in trials involving live animals are continuously advocated. Hence there is a steady and 

increasing demand to replace animal studies by in vitro experiments in research, 

leading to the need for better understanding of the replacement of in vivo by in vitro 

methods. Many questions certainly can be answered by in vitro experiments, but these 

cannot cover the whole area of scientific research. Working with live animals means 

the examination of questions in their full complexity; whereas in vitro experiments 

may be able to answer only one special aspect of a question (Varga 2011). 

MRgFUS-ExAblate 2000: ex vivo and in vivo pre-clinical studies 

Although the in vitro cell sonicator has the potential to become a potent instrument 

for prolonged application and investigation in FUS-involved TDD, in practice, 

efficient monitoring tools for sonication parameters, cavitation detection and thermal 

isolation are still under development. The sonicator cannot be used in in vivo studies in 

its current state and it is not MR compatible; hence results could not be translated 
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directly into clinical use. Therefore, a clinically approved MRgFUS system–ExAblate 

2000 was adopted to perform in vivo trials by utilising a small rodent model to further 

evaluate the FUS-induced TDD systems developed in this study.  

Before exposure of any animals to either FUS or encapsulated drugs, post mortem 

and in vivo MRI scans and ExAblate sonications were performed and optimised MRI 

and FUS parameters were determined. In vivo carrier-drug distribution was also 

investigated by intravenous administration of encapsulated DOX and DOX alone to 

healthy mice. In the later studies, mice were sacrificed immediately and 0.5 min, 2 min, 

2 hr, 4 hr and 10 hr after drug / encapsulated drug administration, respectively. 

Necessary organs were extracted and homogenised.  

Following the results achieved with optimised MRI and FUS parameters, validated 

potency of drug protection in vivo and the significant drug release in the presence of 

hyperthermia and FUS with MBs, the in vivo release of encapsulated DOX from the 

carriers by application of MRgFUS on a targeted region was considered. The purpose 

of the experiment described next was to evaluate encapsulation and drug release by the 

use of MRgFUS in the quadriceps muscles of living healthy mice. A total of five mice 

were involved; four of these were treated with MRgFUS and one remained as a 

non-sonicated control.  

The applied acoustic power (4 W) and sonication duration (14 min) failed to 

produce the desired temperature increase of 6 – 8 °C, as was initially planned and seen 

ex vivo. Chemical analyses showed that although there was a fluorescent signal of 

DOX in the collected organs (blood, liver and kidney), there were no detectable signals 

in the quadriceps muscles samples. This indicated that there might be a problem with 

the length of exposure time to DOX. Previous in vivo experiments showed that the 

optimal time for encapsulated DOX absorption in the quadriceps muscles is about 

10 hr following injection, strongly suggesting that the short exposure time of 14 min 

would not be enough to produce a clear DOX signal from this tissue.  

Future experiments should consider the application of higher powers as well as the 

examination of different time points of DOX exposure both before and after MRgFUS 

application. The sonoporation stimulus of MB USCA should also be considered for 
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injection with encapsulated DOX. Still more specifically, the proof of efficacy of the 

drug delivery system developed in the work reported here requires in vivo experiments 

with xenografts of human cancer in mice, rabbits or rats in the near future. The 

experiments should be conducted following percutaneous or image guided orthotopic 

implantation of human tumour cell lines such as ultrasound monitored prostate 

orthotopic tumour reported by Saar et al. (Saar, Körbel et al. 2012) and orthotopic U87 

gliomas assessed by MRI present by Weidensteriner et al. (Weidensteiner, Reichardt et 

al. 2013). When the tumour size reaches 5 – 10 mm, the cytotoxic drug bound to the 

nano-carrier and/or MBs suspension should be injected intravenously. MRI guided 

insonation of the tumour should then be carried out using protocols established by 

previous in vitro and in vivo studies. 

7.2 Conclusions 

Overall, this thesis study concludes feasibiltiy of a MRgFUS mediated TDD vehicle 

from: 

1) rational design and synthesis of natural γ-CD as an encapsulation and transport 

nanocarrier for DOX;  

2) full chemical characterisation of desired carrier 3b;  

3) comprehensive inclusion affinity and drug release analysis of the carrier-DOX 

complex;  

4) successful establishment of in vitro human cancer cell models;  

5) validation of the encapsulation efficiency both in vitro and in vivo, as well as 

thermo-sensitivity of carrier-DOX inclusion in monolayers of cells; 

6) successful in vitro sonoporation application of a unique sonicator in combination 

with MBs; 

7) successful optimisation of clinical MRI and FUS parameters ex vivo and in vivo.  

The results from this study confirm the possibility of translation of the constructed 

γ-CD derived carrier into clinical use as a delivery vehicle of DOX for release with 

combined thermal and mechanical mechanisms by clinically applicable 
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MRgFUS-triggered TDD for cancer therapy. 

The Thesis provides better understanding of the mechanism of and potential for this 

novel delivery approach: MRI-guided, ultrasound-mediated, site-specific drug delivery 

assisted by MB contrast agents. It is likely that this novel technology will enter the 

clinical arena in the near future, based on the ever-increasing scientific contributions 

from researchers. The chemical modifications and in vitro, ex vivo and in vivo 

preclinical studies discussed here represent only a glimpse into the future of clinical 

application. 

Finally, to master MRgFUS-mediated therapeutic applications of the kind presented 

here and to translated them into the clinic still requires interdisciplinary collaborations. 

Much effort is being dedicated to technological advancement in all aspects of the drug 

delivery platform: hardware, software, and wetware (protocols and molecular devices 

used in molecular biology and synthetic biology) (Castle, Butts et al. 2013). Expertise in 

the fields of physical chemistry, cellular physiology, genetics, ultrasound physics and 

imaging must come together with shared goals. Following relationships formed in the 

Nanoporation project, it is conceivable that new strategic partnerships will be developed 

among the partners, to involve pharmaceutical companies, and clinical reseach to 

provide the necessary translation of MRgFUS-based TDD into cancer therapy . 
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Appendices 

1 Standardisation, Apparatus and Set-up of in vitro FUS 

Device for TDD 

In the current setup, the acoustic fields of four interchangeable custom transducers, 

built in-house, were simulated using a model created in MATLAB and the results were 

compared with output measurements from each transducer, taken with a needle 

hydrophone. Frequencies of desired transducers are 0.486 MHz, 1.142 MHz, 1.467 

MHz and 2.022 MHz, which can deliver maximum acoustic powers, 5 < Pac < 25 W, 

depending on the transducer and its efficiency. The range of frequencies was chosen to 

cover clinically available FUS system ExAblate in order to produce relevant guidance 

for pre-clinical studies (Chapter 6).  

The device (Figure A.1 A) consists of a Perspex box with several separate 

compartments including a larger one for the water bath in which the ultrasound sources 

and the 96-well plate are placed. Degassed water is circulated to prevent air bubble 

formation beneath the plate interfering with the FUS propagation and its temperature is 

kept close to physiological levels (37 °C) using an external heater. A smaller 

compartment inside the water bath (14 × 10.5 × 6 cm
3
) accommodates detachable 

nylon housing (Figure A.1 D) for the transducers. These are activated with a signal 

generator (Figure A.1 F) that can generate various wave-forms amplified with an A075 

RF power amplifier (Figure A.1 G). Alongside the water bath, a linear stage translates 

a Perspex transducer holder (Figure A.1 E) for a 96-well plate through the water above 

the transducers on two parallel aluminum tracks, using small linear bearing carriages.  
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Figure A.1 Photograph (A) and schematic drawing (B) of the sonicator; stepper 

motor (C) to move the plate holder; piezoceramic bowl transducers within nylon 

housing (D); Perspex transducer cases (E); signal generator (F); and RF power 

amplifier (G). 

 

The plate holder (Figure A.2 C) has two cutout adaptors (Figure A.2 A, B) for 

precise inverted (Figure A.2 D) or normal positioning (Figure A.2 E) of the 96-well 

plate and accurate horizontal location of the ultrasound focal point at the centre of each 

well (Figure A.2 F). Inverted plates allow FUS propagation within the wells, to 

minimise possible acoustic scattering or reflection from the bottom of the plate. The 

positions of the holes housing the transducers were chosen to allow sonication of all 

lines of a 96-well plate: lines A, B, D and F and then C, E, G and H after a manual 

rotation through 180° according to transducer positions 1, 2, 3 and 4 respectively, in 

the horizontal plane of the plate.  
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Figure A.2 Two cutout adaptors for plates (A, B); plate holder (C); inverted plate 

places in the adaptor (D); normal position plate places in the adaptor (E); and 

inverted plate in the adaptor fixed in the plate holder within the sonicator (F). 

 

The water in the bath is heated by an ETH200 heater (Figure A.3 A) using Positive 

Thermal Coefficient (PTC) of resistance technology and thus acting as its own 

thermostat. It is returned to the reservoir using a micro-pump. This system maintains 

the temperature (measured with a glass thermometer) at 34 °C (Figure A.3 B), a few 

degrees below human body temperature, to avoid critical overheating (> 43 °C) of the 

biological material on exposure to FUS. To avoid air bubble formation and to maintain 

the water temperature at a desired level, the pump drive voltage was reduced to 6 or 9 

V to lower the flow. 
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Figure A.3 The ETH200 heater system (A); water bath temperature maintain at ~ 

34 ºC constantly (B). 

 

An X-slide linear stage connected to a programmable VXM motor controller and a 

NEMA 17 stepper motor are the main components of the motion system. The 

LabVIEW software allows the user to choose between four starting positions 

corresponding to the lateral centers of the FUS sources and then sends commands to 

the VXM controller to activate the stepper motor. The motor advances the stage 0.5 ×

 10
-2

 mm/step for precise positioning of the focal regions at the centres of the wells. 

Once a sequence of sonications in the same line is completed, the plate can be 

re-positioned manually above different US sources. All 12 wells in a line on the 

96-well plate can be sonicated or only certain wells can be selected, as required. This is 

very useful to minimise the heat transfer from the site of sonication to adjacent wells, 

as discussed later.  

For FUS sources, four transducers were made with geometrically-focused 

piezoceramic bowls (Figure A.4) with dimensions and type of piezoceramic specified 

in Table A.1.  
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Figure A.4 Various frequencies geometrically-focused piezoceramic bowls. 

 

Table A.1 Dimensions of US focal zone at (-6 dB) for the four transducers, and 

measured values of efficiency and electrical impedance in water 

Frequency 

(MHz) 

Beam 

Diameter 

(calculated)   

(mm) 

Beam 

Diameter 

(from scan) 

(mm) 

Beam 

Length 

(calculated) 

(mm) 

Efficiency 

% 

Impedance in 

water at 24°C      

(Ω) 

Impedance in 

water at 34°C      

(Ω) 

0.4868 3.14 5.30 20.34 19 82.1 83.5 

1.142 1.34 3.04 9.70 28 46.4 46.7 

1.467 1.25 1.60 10.94 76 54.0 67.1 

2.022 1.16 1.60 12.81 50 20.2 20.7 

 

The outer diameters (ODs) of the piezoceramics were in the range 30 – 35 mm, the 

focal distances 30 – 50 mm, and the resonance frequencies are 0.4868 – 2.022 MHz. 

The transducers cases were made from Perspex tube (OD = 40 mm) with a bowl 

positioned at the top of each case. Adapted lengths were cut for the transducer cases, in 

the range 20 – 40 mm, to position the focus of the field exactly at the bottom of the 

96-well plate.  

The input commands for the linear stage as well as the sonication parameters 

defined by the waveform generator including exposure duration, duty cycle, voltage 

amplitude, frequency, and wave form type (sinusoidal, pulsed and other options) are 

provided through a user friendly interface (Figure A.5) implemented in LabVIEW.  
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Figure A.5 LabVIEW interface allows control of numerical values for acoustic 

parameters at the focal point through the amplitude of the applied voltage, wave 

form (pulsed, sinusoidal), frequency, US duty cycle and to a sequence of 

individually selected wells in the plate (out of 12 wells in each line) to be sonicated. 

 

Acoustic field characterisations (can be found in Appendices) of all transducers 

have been fully conducted and confirmed by needle hydrophone and MATLAB 

simulations to make an accurate assessment before performing sonoporation to cells.  
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2 The MATLAB Simulations and Real Acoustic Field Scan 

for 1W of Transducers 1.142MHz, 0.4868MHz, 1.467 MHz 

and 2.022MHz 

2.1 Transducer f = 0.4868MHz: 

 

 

 

Figure A.6 Simulation (A) and Hydrophone (B) scan of acoustic field for 0.4868 

MHz FUS transducer. 

A: Simulation of acoustic field 

B: Hydrophone scan of real field 
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2.2 Transducer f = 1.142MHz: 

 

Figure A.7 Simulation (A) and Hydrophone (B) scan of acoustic field for 1.142 

MHz FUS transducer. 

 

 

 

 

A: 

B: 
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2.3 Transducer f = 1.467MHz: 

 

 

 

Figure A.8 Simulation (A) and Hydrophone (B) scan of acoustic field for 1.467 

MHz FUS transducer. 

 

 

 

 

A: Simulation of acoustic field 

B: Hydrophone scan of real field 
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2.4 Transducer f = 2.022MHz: 

 

 

 

Figure A.9 Simulation (A) and Hydrophone (B) scan of acoustic field for 2.022 

MHz FUS transducer. 

 

 

 

A: Simulation of acoustic field 

B: Hydrophone scan of real field 
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3 Acoustic Intensity and Mechanical Index were Calculated 

for Various Acoustic Powers of Transducers 1.142MHz, 

0.4868MHz, 1.467 MHz and 2.022MHz  

3.1 Transducer f=0.4868MHz, Efficiency=19%: 

 

3.2 Transducer f=1.142MHz, Efficiency=28.75%: 
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3.3 Transducer f=1.467MHz, Efficiency= 76.4%: 

 

3.4 Transducer f=2.022MHz, Efficiency= 50.3%: 

 

4 The Maximum Temperature Achieved for Four 

Transducers  
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4.1 Maximum temperature achieved for four transducers (*T 

refers to thermocouples): 

Frequency 

(MHz) 

Power 

(W) 

Time 

(s) 

Maximum Temperature (°C) 

*T1 T2 T5 T3 T4 T6 T7 

0.4868 1 20 34.16 37.02 38.35 37.35 36.4 34.64 40.1 

40 34.19 37.83 39.06 38.64 38.03 35.02 41.01 

60 34.49 39.51 40.34 39.75 38.91 35.44 43.99 

2.5 20 34.28 39.31 43.69 41.56 41 35.22 45.14 

40 34.46 43.64 46.85 43.93 45.38 36.21 49.74 

60 34.68 46.09 50.78 45.21 46.38 36.98 51.66 

5 20 34.53 43.15 47.53 46.91 53.92 35.75 49.19 

40 35.08 49.4 64.02 53.29 65.49 38.86 55.29 

60 35.54 53.12 65.14 56.07 62.19 39.25 56.17 

1.142 1 20 33.84 35.46 35.21 36.06 34.62 34.26 36 

40 33.97 36.4 36.24 37.36 35.64 34.55 37.15 

60 33.94 36.51 36.71 37.89 36.15 34.87 37.73 

2.5 20 34.18 37.83 36.88 38.58 36.6 34.64 39.5 

40 34.35 40.02 38.71 41.59 48.8 35.41 42.5 

60 34.42 40.59 39.91 42.97 39.82 35.79 43.5 

5 20 34.34 41.32 38.96 42.32 39.59 35.42 46.11 

40 34.43 44.21 41.99 47.83 42.34 36.7 50.48 

60 34.67 45.2 44.17 49.5 44.27 37.55 52.47 

1.467 1 20 34.49 35.97 36.36 36.35 36.15 35.37 37.06 

40 34.07 36.55 36.55 36.96 36.48 35.33 37.74 

60 34.06 37.29 37.1 37.54 37.06 35.68 38.42 

2.5 20 34.06 36.53 36.23 36.56 36.22 35.12 38.37 

40 34.16 38.02 37.98 38.28 37.85 35.96 39.32 

60 34.27 39.37 38.78 39.49 38.54 36.68 39.85 

5 20 34.2 38.58 38.06 38.64 38.06 36.03 40.29 

40 34.27 41.69 40.96 41.55 40.3 37.63 41.95 

60 34.33 41.02 41.02 42.26 41.39 37.79 43.4 

2.022 1 20 33.97 35.77 39.08 35.8 36.26 34.17 37.82 

40 34.2 37.16 41.57 37.94 37.87 34.52 37.82 

60 34.29 37.86 42.71 38.81 38.62 34.42 40.07 

2.5 20 34.03 37.42 41.51 38.64 38.44 34.42 40.07 

40 33.93 37.67 37.81 37.89 37.43 35.98 39.4 

60 34.1 40.52 44.47 42.63 41.87 35.05 44.16 

5 20 33.98 40.15 44.54 42.79 40.87 34.73 43.47 

40 34.23 43.1 49.19 49.66 45.22 35.65 45.48 

60 34.29 44.94 49.62 52.39 46.93 36.25 50.02 
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4.2 Distribution of Thermocouples Inside the Wells of A 

96-well Plate: 

 

4.3 The Average Temperature of 1W, 2.5 W and 5W 

Power Time T1 T2 T5 T3 T4 T6 T7 

1W 20s 34.1 36.1 37.3 36.4 35.9 34.6 37.7 

40s 34.1 37.0 38.4 37.7 37.0 34.9 38.4 

60s 34.2 37.8 39.2 38.5 37.7 35.1 40.1 

2.5W 20s 34.1 37.8 39.6 38.8 38.1 34.9 40.8 

40s 34.2 39.8 40.3 40.4 42.4 35.9 42.7 

60s 34.4 41.6 43.5 42.6 41.7 36.1 44.8 

5W 20s 34.3 40.8 42.3 42.7 43.1 35.5 44.8 

40s 34.5 44.6 49.0 48.1 48.3 37.2 48.3 

60s 34.7 46.1 50.0 50.1 48.7 37.7 50.5 

Average  34.3 40.2 42.2 41.7 41.4 35.8 43.1 
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