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ABSTRACT 

The enzyme glucose-6-phosphate dehydrogenase from Trypanosoma cruzi (TcG6PDH) catalyses 

the first step of the pentose phosphate pathway and is considered a promising target for the 

discovery of a new drug against Chagas Diseases. In the present work, we describe the crystal 

structure of TcG6PDH obtained in a ternary complex with the substrate glucose-6-phosphate and 

the reduced 'catalytic' cofactor NADPH, which reveals the molecular basis of substrate and cofactor 

recognition. A comparison with the homologous human protein sheds light on differences in the 

cofactor-binding site that might be explored towards the design of new NADP+ competitive 

inhibitors targeting the parasite enzyme.  

Keywords: glucose-6-phosphate dehydrogenase; ternary-complex; Chagas disease; trypanosomatids; uncompetitive 

inhibitors; drug target. 
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1. Introduction

Glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) is a ubiquitous enzyme that 

catalyses the oxidation of β-D-glucose-6-phosphate (G6P) to 6-phosphoglucono-δ-lactone, with 

concomitant reduction of NADP+ to NADPH, in the first and rate limiting step of the pentose 

phosphate pathway (PPP). NADPH generated in the oxidative branch of the PPP is used as a 

reducing agent essential for redox balance maintenance and for lipid biosynthesis [1,2].  

Furthermore, the non-oxidative branch of the PPP produces a variety of metabolic intermediates 

that includes ribose-5-phosphate, used in nucleotide biogenesis, and erythrose 4-phosphate, a 

precursor of coenzymes and aromatic amino acids [3]. 

The enzyme G6PDH plays a key functional role [2,4] with implications in human diseases 

such as cancer [5], metabolic disorders [6,7], and cardiovascular diseases [8]. G6PDH is associated 

with the most common human enzymopathy, affecting more than 400 million people worldwide [9]. 

Individuals with G6PDH deficiency may develop hemolytic anemia under oxidative stress, which 

could can be triggered by factors like microbial infections, certain drugs or aspects of diet. In 

protozoan parasites, G6PDH has been shown to be essential for survival [10]. In bloodstream form 

Trypanosoma brucei, depletion of G6PDH levels by RNAi [11] or its inhibition by steroids, like 

dehydroepiandrosterone or epiandrosterone, kill parasites in vitro [12]. Additionally, steroids and 

quinazolinones were shown to inhibit the T. cruzi G6PDH and to kill the epimastigote forms of the 

parasite in vitro [13,14], suggesting that G6PDH is an attractive target for development of new 

trypanocidal drugs. Some efforts have already been made to develop G6PDH inhibitors with 

therapeutic utility against trypanosomiasis [11,13,14] and also cancer [15,16]. Steroids and 

quinazolinones represent the most potent G6PDH inhibitors known to date. These inhibitors act 

through an uncompetitive mechanism, but their binding site on G6PDH and the interactions relevant 

to inhibition are unknown. 

At present, G6PDH structures of Leuconostoc mesenteroides (LmG6PDH), Mycobacterium 

avium (MaG6PDH), human (HsG6PDH) and Trypanosoma cruzi (TcG6PDH) are available in the 

Protein Data Bank. However, most of the structural knowledge about G6PDHs was established in 

the studies of Lm- and HsG6PDH enzymes. Studies with recombinant LmG6PDH revealed that the 

bacterial enzyme assemblies as a homodimer and that each subunit is composed of an NAD(P)-

binding Rossmann-like domain and a β + α domain [17]. Site direct mutagenesis studies on 

LmG6PDH revealed the substrate and cofactor binding sites and informed on the mechanism of 

catalysis [18-20]. The crystal structure of HsG6PDH revealed an unprecedented tetrameric 

assembly and the binding of an additional NADP+ to the β + α domain, which became known as the 

structural NADP+ [21,22]. After a six-year gap, Ortíz and collaborators described the crystallization 
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of the short form of TcG6PDH (TcG6PDH-S; Met38 to Ala555) [23] and made available the 

coordinates of an apo and an enzyme-substrate complex (PDB entries: 4E9I and 4EM5, 

respectively). More recently the Seattle Structural Genomic Centre for Infectious Diseases 

deposited the structure of MaG6PDH at 2.3 Å resolution [24]. To date, no detailed discussion of the 

Ma- and Tc-G6PDH structures have been reported. 

In the present work, we describe the crystal structure of TcG6PDH obtained in a ternary 

complex with G6P and NADPH and compare it to previous available G6PDH structures. A detailed 

analysis of the NADP-binding Rossmann-like domain revealed unique features that might be 

explored to the design of specific inhibitors against the parasite enzyme. 

2. Methods

2.1. Truncated construct of G6PDH from T. cruzi 

Based on the T. cruzi (CL Brener) G6PDH sequence available at the NCBI (entry: 

XP_820060.1), a nucleotide sequence, codon optimized for bacterial expression, was designed to 

produce a fragment of TcG6PDH spanning from Asp58 to Thr545 (TcΔG6PDH). The synthetic 

gene was purchased (GenScript USA Inc., Piscataway, New Jersey, USA) and sub-cloned into a 

modified pET28 vector in which the sequence encoding a thrombin recognition site, to allow for 

removal of a histidine-tag, was changed to that for tobacco etch virus (TEV) protease (pET28-

TEV). The TcΔG6PDH gene was inserted within BamHI and XhoI sites of the pET28-TEV and the 

integrity of the pET28-TEV_TcΔG6PDH construct was confirmed by gene sequencing. 

2.2. Recombinant Protein Production and Purification 

Competent E. coli BL21 (DE3) cells were transformed with pET28-TEV_TcΔG6PDH and 

grown on auto-induction media ZYM-5052 (Studier, 2005) containing kanamycin 50 μg.mL-1, 

under 200 rpm agitation, at 37 oC for 3h and then at 20 oC for 21h. Cells were harvested by 

centrifugation at 3.500 g for 30 minutes at 4 oC and resuspended in Buffer A (50 mM Tris-HCl pH 

8.0, 0.5 M NaCl, 20 mM imidazole, 5% glycerol and 5 mM 2-mercaptoethanol). DNAse and 

EDTA-Free Protease Inhibitor Tablets (ThermoFisher) were added to the suspension and lysis 

performed with a cell disruptor (Pressure Cell Homogeneizer, Stansted) using a pressure of 20.000 

psi. The samples were centrifuged at 4 oC with a RCF equal to 40.000g for 30 min and the 

supernatant subjected to immobilized metal affinity chromatography (IMAC) using a 5 mL HisTrap 

HP (GE Healthcare). Buffer B (50 mM Tris-HCl pH 8.0, 0.5 M NaCl, 500 mM imidazole, 5% 
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glycerol and 5 mM 2-mercaptoethanol) was employed to generate an imidazole gradient and 

TcΔG6PDH eluted from the column with approximately 200 mM imidazole. Samples containing 

TcΔG6PDH were pooled and concentrated using an ultrafiltration unit (3.000 g at 4 oC, Vivaspin 20 

MWCO 30 kDa, Sartorius). As a final purification step, size exclusion chromatography was 

performed using a HiLoad Superdex 200 26/60 column (GE Healthcare) and GF buffer (20 mM 

Tris-HCl and 0.2 M NaCl). Then, TcΔG6PDH was concentrated again in GF buffer (20 mM Tris-

HCl and 0.2 M NaCl) containing 5 mM of 2-mercaptoethanol. 

The gene of TcG6PDH long form (TcG6PDH-L; Met1 to Ala555) was sub-cloned from the 

previous reported pET28_TcG6PDH-L construct [25] to a pET28-TEV vector between NheI and 

XhoI rectrictionrestriction sites. The integrity of the pET28-TEV_TcG6PDH-L construct was 

confirmed by gene sequencing. TcG6PDH-L harbouring an N-terminal His-tag was expressed in E. 

coli BL21 (DE3) cells transformed by pET28-TEV_TcG6PDH-L construct. The recombinant 

protein was purified by IMAC following the same procedure applied to the purification of 

TcΔG6PDH. 

 

 

2.4. Enzyme Kinetics 

 

TcΔG6PDH and TcG6PDH-L activities were measured following NADPH production in the 

forward reaction. NADPH fluorescence (λExc/Em: 340 nm / 460 nm) was monitored using the 

FLUOstar OPTIMA plate reader (BMG LABTECH). Enzyme activities were measured in a buffer 

containing 50 mM Tris-HCl pH 7.6, 0.5 M NaCl, 5% glycerol and 2 mM 2-mercaptoethanol. The 

reactions were performed in triplicate at 25 oC, using black 96 wells plates, with a final volume of 

120 µL per well. Apparent Michaelis-Menten constants (Km
app) and maximum velocity of reaction 

(Vmax
app) values were calculated by non-linear regression of the data using the equation v = 

(Vmax
app.[S])/(Km

app + [S]) in the software GraphPad Prism. The catalytic constant (kcat) were 

calculated using the equation kcat = Vmax/Et, where Et is the enzyme concentration used in the assay. 

For the TcΔG6PDH, the Km
app of G6P was measured varying the substrate concentration from 2 

mM to 15.6 µM and keeping NADP+ at 1 mM. Likewise, Km
app of NADP+ was measured varying its 

concentration from 1 mM to 7.8 µM and keeping G6P at 2 mM. In both assays TcΔG6PDH 

concentration was 2 nM. Values of kinetic parameters for TcG6PDH-L were obtained varying the 

G6P concentration between 2 mM to 15.6 µM and NADP+ between 1 mM and 7.8 µM, while 

keeping the other substrate at saturating concentrations, 600 µM and 2 mM for NADP+ and G6P, 

respectively. TcG6PDH-L concentration was keept at 2 nM. 
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2.5. Protein Crystallization and Data Collection 

 

TcΔG6PDH crystallization screens used the sitting-drop vapor diffusion method. The 

protein samples had previously been filtered using a 0.1 µm Ultrafree-MC centrifugal filter 

(MiliporeMillipore). Crystallization plates were prepared using a Phoenix/RE liquid handler (Art 

Robbins Instruments) and the JCSG-plus (Molecular Dimensions), Classics Suite (Qiagen), PEGs 

(Qiagen), and AmSO4 (Qiagen) screens. The trial drops consisted of 100 nL of protein solution (10 

mg.mL-1 of His-tagged TcΔG6PDH, 2mM G6P, and 2 mM NADPH, 20 mM Tris-HCl pH 8.0, 0.2 

M NaCl) and an equivalent volume of reservoir, equilibrated against 50 µL of reservoir at 20 oC in a 

CrystalMation Plate Hotel system (Rigaku). 

Reproducible hits were obtained with condition G1 of the JCSG-plus screen (30% jeffamine 

ED-2003, 0.1 M HEPES pH 7.0) and this was optimized using hanging-drop vapor diffusion 

method at 18 oC. Suitable crystals of TcΔG6PDH were obtained when 2 µL of protein solution (10 

mg.mL-1 TcΔG6PDH, 5 mM G6P, 2 mM NADPH, 20 mM Tris-HCl pH 8.0, 0.2 M NaCl and 5 mM 

2-mercaptoethanol) was mixed with 1 µL of reservoir solution (27-32 % jeffamine ED2003 and 0.1 

M HEPES pH 6.8-7.2). Crystals were cryo-protected in 45% jeffamine ED2003 with 0.1 M HEPES 

pH 6.8, and then flash-cooled in liquid nitrogen before in-house screening using a Rigaku 

MicroMax-007 HF rotating-anode X-ray source equipped with a Saturn 944 HG+ CCD detector 

with sample maintained at about -170 oC. Several crystals were sent for full data collection at the 

Diamond Light Source, beamline I04-1 and the best dataset, as judged by data processing statistics 

(see below) was identified. 

 

2.6. X-ray Data Processing and TcΔG6PDH Structure Determination and Refinement 

 

Data were indexed and integrated using XDS [26] and scaled using AIMLESS [27]. The 

structure was solved by molecular replacement with PHASER [28] using chain A of the PDB entry 

4E9I as search model. The program COOT [29] was used for model manipulation and incorporation 

of solvent and ligands. REFMAC5 [30] was used to perform restrained refinements, using 

Translation/Libration/Screw [31] and non-crystallographic symmetry restraints. MOLPROBITY 

[32] was used to inspect model geometry in combination with the validation tools provided by 

COOT. Molecular figures were prepared in PyMOL v.1.8 (Schrödinger, LLC). Electrostatic 

potential surfaces were computed with PDB2PQR [33] and APBS [34]. Crystallographic statistics 

are presented in Table 1. 

 
 

3. Results and Discussion 
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We have significantly advanced the characterization of T. cruzi G6PDH. The new structural 

data on this validated target has potential to inform the development of new drugs with therapeutic 

utility. The truncated construct TcΔG6PDH, lacking 57 N-term and 10 C-terminal residues, was 

designed to improve the crystallizability of this protein. This approach was chosen taking in account 

the success attained in the crystallization the TcG6PDH-S, missing the first 37 residues [23]. His-

tagged TcΔG6PDH was produced in E. coli and purified to homogeneity in two steps using affinity 

and size exclusion chromatography (Figures S1.A and S1.B, Suppl. Material). The size exclusion 

chromatography result data indicates that TcΔG6PDH forms a tetramer, in agreement to with 

previous published datawork [23]. When TcG6PDH-L is expressed in E. coli cells, almost all the 

protein appeared informed inclusion bodies [25]. NonethelessNevertheless, the small amount of 

soluble TcG6PDH-L recovered by IMAC was enough to perform the intended kinetics 

studiesanalyses. In measuring the TcG6PDH activity, The NaCl and glycerol present in the 

reaction buffer showed to beproved essential to keep the enzyme stable. The Ccalculated Km
app 

values of G6P and NADP+ were 306.1 ± 20.3 and 80.1 ± 5.9 μM, respectively (Figure S2.A, Suppl. 

Material). The kcat values obtained when varying the concentrations of G6P and NADP+ were 53.6 

± 1.2 and 51.8 ± 1.1 s-1, respectively. The Km
app values obtained to for the TcG6PDH-L, using the 

same assay conditions, were 210.3 ± 21.6 and 47.4 ± 4.3 μM for G6P and NADP+, respectively 

(Figure S2.B, Suppl. Material). Additionally, kcat values for the long form of the enzyme were 61.6 

± 1.9 for G6P and 52.8 ± 1.3 s-1 for NADP+. Thus, despite a reduced stability, the truncated enzyme 

remains functional active and has an affinity for both substrate and cofactor that are only slightly 

higher (around 1.5 times) than those of the TcG6PDH-L. 

 

3.1. TcΔG6PDH Overall Structure 

 

Bipyramidal crystals of TcΔG6PDH obtained in the presence of both G6P and NADPH  

attained a maximum dimension of 0.3 mm within 15 days and diffracted to a resolution limit of 2.65 

Å using synchrotron radiation (Figure S3, Suppl. Material). Molecular replacement calculations 

positioned three polypeptide chains, labelled A, B and C, in the asymmetric unit. In the refined 

structure (PDB ID 5AQ1), each polypeptide chain comprises residues P62 to T545, plus one 

molecule of G6P and NADPH. There are no outliers in the Ramachandran plot, which returned 98% 

and 2% of the residues in favoured and allowed regions, respectively. Two solvent exposed loops 

found in the final model, spanning from residues R129 to H136 and A290 to Y295, showed to beare 

poorly ordered. Those loops do not participate in crystal contacts neither in ligands binding. The 

superposition of chains A, B and C did not reveal significant differences in the Cα trace (RMSD and 

Commented [WH1]: There are no data relating to 

“stability”. The lack of soluble material might be simply the 
folding process whihc is distinct from whether the protein is 

stabile or not. 
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number of atoms used in the alignment: AB, 0.10 Å and 434 Cα atoms; AC, 0.23 Å and 445 Cα 

atoms; BC, 0.17 Å and 448 Cα atoms). and no outliers were observed in Ramachandran analysis, 

which returned 98% and 2% of the residues in favoured and allowed regions, respectively. The 

topology of the TcΔG6PDH is very similar to the human and bacterial homologous enzymes 

[17,21], being composed by of an NAD(P)-binding Rossmann-like domain (residues P62 to I245) 

and a β + α domain (residues D246 to T545) (Figure 1A). The β + α domain has a large β-sheet with 

nine antiparallel strands that in HsG6PDH binds the a structural NADP+ in the HsG6PDH. In the 

present TcΔG6PDH structure tThere is no electron density to support the presence of a structural 

NADP+ in TcΔG6PDH. Although tThere are three polypeptide chains in the AU of TcΔG6PDH 

crystals and , the expected tetrameric biological unit can is be reconstructed by crystallographic 

symmetry operations. The TcΔG6PDH tetramer can beis formed by the packing of two B:C dimers 

or and by four A chains (Figure 1B). No significant differences were observed between those these 

tetramers. In the tetrameric assembly all inter-chain contacts are established by residues from the β 

+ α domains burying about 12 % of each subunit surface area (equivalent to an area of 

approximately 3250 Å2).  

 

3.2. G6P binding site 

 

G6PDH catalyses the formation of a double bond between C1 and O1 of G6P to produce 6-

phosphoglucono-δ-lactone with concomitant reduction of NADP+, by the transfer of a hydride ion 

to C4 of the nicotinamide (Scheme 1). In the TcΔG6PDH structure, the β-anomer of G6P is found 

in a chair 4C1 conformation establishing H-bonds with side-chains of K217, D246, H247, Y248, 

K251, E285, D304, H309, K403, R408 and Q437 (Figure 2A). These residues are highly conserved 

in the human and L. mesenteroides enzymes [19,22]. The conformation of the G6P observed in the 

TcΔG6PDH orients its the C1 hydroxyl group towards the H309 Nε2, and in turn the H309 Nε1 H-

bonds to D246 Oδ1. These interactions are in agreement with the proposed mechanism of reaction 

for G6PDH [18,19], where a catalytic dyad, represented by H309 and D246 in the TcΔG6PDH, is 

responsible for proton abstraction of the substrate.  

A comparison between the ternary complex of TcΔG6PDH-G6P-NADPH and the binary 

complex of TcG6PDH-G6P (PDB ID 4EM5; Buschiazzo, A., Botti, H., Ortiz, C., Comini, M.A. 

unpublished) reveals a striking and unexpected difference in the conformation of G6P. In the binary 

complex there are four polypeptide chains in the AU and in three of them, the pyranose ring of G6P 

is inverted, with the C4 hydroxyl group participating in an H-bond to H309 Nε2 (Figure 2B). This 

misposition ofed G6P, which is not compatible with the proposed mechanism, is observed in chains 

A, B and C. In , but not in chain D, which presents the G6P in is in the expected orientation with the 

http://www.rcsb.org/pdb/search/smartSubquery.do?smartSearchSubtype=AdvancedAuthorQuery&exactMatch=false&searchType=All%20Authors&audit_author.name=Buschiazzo,%20A.
http://www.rcsb.org/pdb/search/smartSubquery.do?smartSearchSubtype=AdvancedAuthorQuery&exactMatch=false&searchType=All%20Authors&audit_author.name=Botti,%20H.
http://www.rcsb.org/pdb/search/smartSubquery.do?smartSearchSubtype=AdvancedAuthorQuery&exactMatch=false&searchType=All%20Authors&audit_author.name=Ortiz,%20C.
http://www.rcsb.org/pdb/search/smartSubquery.do?smartSearchSubtype=AdvancedAuthorQuery&exactMatch=false&searchType=All%20Authors&audit_author.name=Comini,%20M.A.
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C1 hydroxyl group pointing to the H309. The low resolution of the binary complex, 3.35 Å, might 

have led to a biased interpretation of the electron density and misorientation of the substratemay 

have complicated the analysis. In this wayrespect, we were fortunate to obtain much higher 

resolution diffraction data and therefore provide a more reliable model.our results represent a 

correction to the binary complex of the G6PDH from T. cruzi. 

 

3.3. Catalytic NADP(H) binding site 

 

At the catalytic site, NADPH binds to the Rossmann-like domain forming H-bonds with 

S77, D79, L80, R109, S110, Y151, L186, and K217; in addition to forming a cation-π interaction 

between R109 and the adenine moiety (Figure 3A). The nicotinamide moiety is oriented in the syn 

conformation and with C4 oriented towards G6P C1at a distance of 3.9 Å, compatible with hydride 

transfer (Figure S4, Suppl. Material). All of the residues involved in binding the catalytic NADPH 

are conserved in TcΔG6PDH and HsG6PDH structures, with one notable exception. In the human 

enzyme Y147 Oη donates its hydrogen to E170 carbonyl group forming an H-bond (Figure 3B). In 

TcΔG6PDH, Y147 is replaced by F191 with the χ1 angle rotated by almost 120°. This 

conformational difference, perhaps allowed by the loss of a restraining H-bond, leads to the 

formation of a cavity just below the nicotinamide riboside in TcΔG6PDH (Figures 3C). This cavity, 

with volume of about 220 Å3 calculated using the software KVFinder [35], would be large enough 

to accommodate cyclic substituents linked to a nicotinamide riboside (Figure S5, Suppl. Material). 

It is noteworthy that this cavity is absent in HsG6PDH (Figure 3D), and has not been found in other 

human proteins that, in accordance to CATH [36], also have possess an NAD(P)-binding 

Rossmann-like domain (Table S3, Suppl. Material). The cavity in the T. cruzi enzyme offers 

opportunities for a structure-based approach to develop novel G6PDH inhibitors and since this 

structural feature represents a difference with respect to the human enzyme then also might assist 

the discovery of inhibitors selective for the trypanosomal G6PDH over the human enzyme. 

 

3.4. Structural NADP+ binding site 

 

A structural NADP+ site, located on the β + α domain, has been reported for HsG6PDH 

(PDBs entries 1QKI and 2BH9) and postulated as important for protein stability [21,22]. In the 

HsG6PDH, the structural NADP+ participates in H-bonds to K238, K366, R370, R393, Y401, 

K403, D421, T423, and R487 (Figure 4A). Additionally, W509 and Y503 establish π-stacking 

interactions with the nicotinamide and adenine rings, respectively. The comparison of the structural 

NADP+ binding site between the Hs- and TcΔG6PDH shows that K366, R487, and Y503 (in 

Commented [WH2]: We need to be circumspect here. We 

are not comparing like with like! Binary vs ternary – so I’ve 

tried to keep this very simple. 
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HsG6PDH) are replaced by L409, C528, and T544 (in TcΔG6PDH), respectively (Figure 4B). L409 

and C528 in the TcΔG6PDH would not be able to H-bond the 2'-phosphate of an NADP(H) possible 

that might occupyying this site. Similarly, the T544 would not be able to make a π-stacking 

interaction with the adenine moiety. In addition to these natural occurring differences, the 

TcΔG6PDH C-terminus is artificially truncated. In the HsG6PDH, the C-terminus caps the 

structural NADP(H) providing an aromatic residue (W509) that stacks in on the adenine moiety. 

These changes differences might compromises the binding of a structural NADP(H) to TcΔG6PDH 

and so explain why it was not observed in the structure. Interestingly, in the kinetic assays 

performed with TcΔG6PDH an active enzyme requires the presence of NaCl and glycerol, additives 

that are known to improve proteins stability. 

The TcΔG6PDH structure is the first enzyme-substrate-cofactor complex of a eukaryotic 

G6PDH. Comparisons with other G6PDH structures resulted in several observations. Firstly, 

interactions made by G6P in TcΔG6PDH are in agreement with the proposed mechanism of 

reaction [18,19] and the substrate conformation is similar to those observed in complexes of the 

bacterial and human enzymes. In the binary TcG6PDH-G6P complex (PDB ID 4EM5), three (out of 

the four) chains of the asymmetric unit have the, the substrate is likely to be misoriented, with the 

pyranose ring of the substrate in an  flipped orientation incompatible with a mechanism that 

involves proton abstraction from the C1-hydroxyl group by of the catalytic H309. Secondly, in the 

cofactor- binding site, the presence of, and conformation adopted by a phenylalanine residue in the 

TcΔG6PDH  (F191) instead of a tyrosine residue as in HsG6PDH (Y147), results in the formation 

of a cavity unique to the parasite enzyme. We believe this cavity might be further explored for the 

development of NADP(H) competitive inhibitors with selectivity against TcG6PDH enzyme. 
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Figure Legends 
 

 

Figure 1: Carton representation of TcΔG6PDH. A) Structure of a subunit, showing the N-term 

NAD(P)-binding Rossmann-like domain (orange), C-term β + α domain (gray), NADPH (magenta 

spheres) and G6P (green spheres). Site for structural NADP is highlighted (red ellipse). B) 

TcΔG6PDH biological unit: interface residues involved in the tetrameric assembly are exclusively 

located in the β + α domains. Two unique tetramers could be generated from TcΔG6PDH subunits, 

one using chain A and its symmetry related neighbours (A', A'' and A''') and the other using the 

dimer of chains B and C and a symmetry related dimer (B' and C'). 

 

 

 

Figure 2: Different orientations of G6P (green sticks) observed in the ternary complex (A) obtained 

in the present work (PDB ID 5AQ1) and in the binary complex (B) (PDB ID 4EM5). H309 and 

D246 (both yellow sticks) form the catalytic dyad responsible for proton abstraction from the C1-

hydroxyl of the G6P pyranose ring. Residues in gray and yellow belong to the β + α domain, and 

K217 in orange is from the NAD(P)-binding Rossmann-like domain. Fo-Fc omit map for G6P 

contoured at 3.8 σ. Dashed lines represent H-bonds and distances observed in the TcΔG6PDH 

(present work) are reported in Table S1, Suppl. Material. Carbon atoms of the glucopyranose are 

numbered. Figure was prepared using chain A of both structures. 

 

 

 

Figure 3: Comparison between the catalytic NADP(H) binding site of TcΔG6PDH (chain A; PDB 

ID 5AQ1) and HsG6PDH (chain A; PDB ID 2BH9) [22]. A) TcΔG6PDH residues (orange) making 

H-bonds (dashed lines) to the catalytic NADPH (magenta sticks). NADPH Fo-Fc omit map 

contoured at 2.5 σ. H-bond distances are reported in Table S2, Suppl. Material. B) HsG6PDH 

residues (cyan) making H-bonds (dashed lines) to the catalytic NADPH (yellow sticks). C) 

Electrostatic surface of TcΔG6PDH showing a cavity below the nicotinamide riboside. D) 

Electrostatic surface of the HsG6PDH displayed in the vicinity of NADP+.  

 

 

 

Figure 4: Structural NADP+ site from HsG6PDH (A) (PDB ID 2BH9) and comparison with 

TcΔG6PDH (B). Structural NADP+ (yellow sticks) binds to residues of the β + α domain from the 

human enzyme through H-bonds (dashed lines) or π-stacking interactions. Residues K366, R487 

and Y503 in HsG6PDH correspond to L409, C528 and T544 in TcΔG6PDH (labelled in red), 

respectively, and may compromises the binding of the structural NADP+. Figure prepared using 

chain A of both the human and T. cruzi enzyme structures. 
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Scheme 1 – Reaction catalysed by G6PDH.* 

 
* – H309 Nδ1 makes a hydrogen bond with D246 Oδ1, forming the catalytic dyad of the G6PDH. H309 Nδ2 is 

the general base that abstracts the a proton from the C1-OH of G6P, inducing the transfer of C1-hydride to 
C4 of the nicotinamide moiety of NADP+. 6-phosphoglucono-δ-lactone and NADPH are the reaction 

products. Only the nicotinamide moiety of NADP(H) is represented. 
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Table 1 – Crystallographic statistics for TcΔG6PDH-G6P-NADPH ternary complex. 

 

Data Collection  
 Resolution Range (Å) 49.13-2.65 (2.72-2.65)  

 Space group I4122 
 Unit cell axes and angles (Å, o) a = b = 154.95, c = 348.36 

α = β = γ = 90 

 Wavelength (Å) 0.91741 

 No. of Reflections 508422 (39534) 

 No. of Unique Reflections 58510 (4584) 

 Rmerge† (%) 12.9 (83.5) 

 Completeness (%) 95.4 (96.9) 

 <I/σ(I)> 11.1 (2.5) 

 Multiplicity 8.7 (8.6) 

 Solvent Content (%) 60 

 Subunits per asymmetric unit 3 

 Wilson B factor (A2) 39.6 

Refinement  
 Rwork§ (%) 19.99 

 Rfree¶ (%) 22.55 

 R.m.s.d., bonds (Å) 0.0048 

 R.m.s.d., angles (o) 1.0476 

 Total protein residues 1458 

 Total protein atoms 11571 

 No. of solvent atoms 253 

 Average B factors (Å2)  

    Protein – Chains A / B / C 43.0 / 46.9 / 54.2 

    BG6 – Chains A / B / C 29.2 / 32.7 / 37.1 

    NDP – Chains A / B / C 51.8 / 53.5 / 67.4 

    Waters 34.1 
 

a - Values in parentheses refer to the highest resolution bin of 2.72-2.65 Å.  
† Rmerge = Σhkl Σi | Ii(hkl) - <I(hkl)> | / Σhkl Σi Ii(hkl), where Ii(hkl) is the intensity of the ith measurement of 

reflection hkl and ‹I(hkl)› is the mean value of Ii(hkl) for all i measurements.  
§ Rwork =  Σhkl | |Fobs| - |Fcalc| | /  Σhkl |Fobs|, where Fobs is the observed structure-factor amplitude and the Fcalc is 
the structure-factor amplitude calculated from the model.  
¶ Rfree is the same as Rwork except calculated with a subset (5%) of data that were excluded from refinement 
calculations. 


