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Abstract  

 

Foamed concrete has proven to be an effective alternative to granular fills and is now widely used 

internationally.  There is also increasing demand for lightweight materials for buildings to improve 

sustainability and foamed concrete has also developed as an ideal material for this purpose and many 

countries utilise construction with precast foamed concrete blocks.  

 

However, at densities lower than current technology allows, typically < 500 kg/m3 foamed concretes are 

more prone to instability of the fresh mix.  Furthermore, at very low densities, ≤ 300 kg/m3, instability 

is almost inevitable, greatly limiting the potential of foamed concrete for applications where mass is 

critical, eg weak soils, backfilling damaged structure etc.  This paper aims to illustrate the mechanisms 

of stability and instability in foamed concretes and demonstrates how ultra-low density (down to plastic 

density of 150 kg/m³) mixes can be successfully produced.  

 

 

Keywords: Foamed Concrete, Stability, Bubble Structure, CSA cement 

 

 

Notations 

Fb  bubble buoyancy force 

Fc  bubble confinement force 

Fd  drainage force 

Fst  surface tension of bubbles 

Pi  internal bubble pressure 

r  bubble radius  

Ø bubble diameter  

γ  interfacial surface tension 

w/c  water to cement ratio   
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1 

1. Introduction and Background 

 

Foamed concrete is now widely used internationally, however, growing pressure for more sustainable 

construction technologies, such as lightening of structures, energy conservation, minimised use of 

primary resources, resource efficiency as well as reducing the impact of environmental noise underpin 

the need for developing ultra-low density foamed concrete, which current technology is unable to 

achieve. 

 

‘Conventional’ foamed concrete can be regarded as having plastic densities from 500 to 1600 kg/m³ 

and, in this case, ultra-low density foamed concrete has been defined as having a plastic density ≤ 500 

kg/m³.  However, it has previously been reported that mixes at these latter densities have greatly 

increased susceptibility to instability (Aldridge, 2005; Jones and McCarthy, 2005; Jones and McCarthy, 

2006).  Indeed, at ≤ 300 kg/m³ consistently achieving stable foamed concrete mixes is extremely 

difficult.   Instability of foamed concrete is the segregation of the fresh mix due to the separation of 

solids and air phases of the mix.  Generally, this segregation is catastrophic leading to a complete loss 

of the air phase leaving only the base mix.  There is no clear understanding of underlying mechanism of 

bubble stability in foamed concrete mixes or why ultra-low density mixes are more prone to becoming 

unstable.   

 

Working with industry, the authors are aware that this has led to an inability to deploy ultra-low density 

foamed concrete, even though there is a demand from many construction sectors.  Based on laboratory-

based studies carried out over a decade, the authors have attempted to develop an empirical 

understanding of the factors that have been identified as being critical to bubble stability, which are 

reported here and, thereby, develop a method for consistently producing ultra-low density mixes. 

 

2. Fundamental Issues and Observations of Foamed Concrete Stability  

 

2.1 Effect of plastic density on bubble size 

 

Figure 1 illustrates the typical appearance of instability in foamed concrete mixes, both in laboratory 

(Fig. 1a) and on site (Fig. 1b and c).  Figure 1b illustrates a transition point where a mix is becoming 

unstable and bubbles have risen to the surface.  This can happen from almost immediately to more 

typically after 10’s of minutes but has been noted up to 24 hours after placement.  Observationally, the 

lower the plastic density of the mix the shorter the time to the onset of instability. 

 
It has been previously noted that foamed concrete average bubble size increases with decreasing plastic 

density (Visagie and Kearsley, 1999; Nambiar and Ramamurthy, 2007; Jones and Zheng, 2013; She et 
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al, 2014).  This is initially a surprising observation, as the nature of the input foam is the same for all 

mixes and, thus, bubbles must change size once combined with the base mix.  It is not possible to say 

whether this is an immediate or more gradual process but it does underline that bubble formation is a 

dynamic process, rather than a simple incorporation of more or less foam into a base mix.  It is also not 

clear whether foamed concrete bubbles are either larger or smaller than the bubble size of the parent 

foam, as it is difficult to obtain bubble size metrics in wet foam.  However, once this dynamic stage is 

complete, the bubbles form a size essentially proportional to the plastic density of the fresh mix.  

   

Figure 2 gives a typical example of protein-based foamed concretes with plastic densities of (a) 1000 

and (b) 500 kg/m3.  This shows that the larger the bubble size also results in a thinner ‘wall’ separating 

adjacent bubbles.  In addition, these thinner walls tend to contain many more ‘small’ bubbles.  It is 

speculated that these bubbles are due to entrapped air in the base mix, which when constricted in the 

thin walls become more visible.  The potential effect of these is discussed below.   

 

2.2 Forces acting on bubbles in fresh foamed concrete mixes  

 

Figure 3 is an attempt to provide a 2D schematic of the ‘forces’ acting on a single bubble when 

incorporated into fresh foamed concrete.  Based on this a stable, equilibrium state of the bubble is 

obtained when the bubble confinement force, Fc, drainage force, Fd, internal bubble pressure, Pi, 

surface tension of bubbles, Fst and bubble buoyancy force, Fb  are balanced. 

 

Fc is mainly due to the plastic density of the fresh mix but the type of constituent materials such as use 

of different fillers (e.g. sand or fly ash) and cement type also affect this force and can be related to the 

prevailing mix rheological characteristics of yield stress and plastic viscosity.  At densities ≤ 500 kg/m³, 

where fillers are generally not used, there likely to be a significant decrease in Fc due to a decrease in 

yield stress, which results in larger and more closely spaced bubbles.  To reach ultra-low densities both 

the cement and water contents of the mix have to be reduced and hence Fc.  On the other hand, there is 

evidence to support the use of finer cementitious materials (such as fly ash) providing enhanced particle 

packing around the bubbles and a greater confining force (Nambiar and Ramamurthy, 2007) and hence 

smaller bubbles given the same overall plastic density.   

 

The initial internal pressure, Pi, of the bubbles is assumed to be the same in the foam prior to 

incorporation into the base mix, given a particular surfactant type and foam generator pressure.  Once 

the foam is mixed with the cementitious matrix, bubbles change size, and, the internal pressure varies, 

in order to maintain the equilibrium with the surrounding matrix.  It is assumed that this process is 

elastic (Prins, 2006) and hence small bubbles have a higher internal pressure than larger bubbles.   
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3 

This gives a coherent explanation for the observed bubble size characteristics at different densities and 

water/cement ratios, cement and filler types.  Figure 4 provides a schematic illustration of end result of 

these force equilibration processes.  However, this explanation does not predict instability and thus, 

additional time dependent changes to these forces must occur in fresh mixes. 

 

2.3 Causes of Stability and Instability in Mixes of Conventional and Ultra-low Densities 

 

What is clear from the observation of unstable mixes is that at some point in time the bubble size 

becomes sufficiently large to cause them to be buoyant and, separate from the mix.  The following 

discussion attempts to describe the time dependent mechanics of buoyant, unstable bubbles and the 

comparative rate at which this happens with ‘conventional’ and ultra-low density foamed concrete 

mixes. 

 

A major time-dependent force is due to the effect of the surfactant, ie its control of the surface tension 

of the aqueous bubble, Fst (Myers, 1992, Weaire and Hutzler, 1999). For liquid foams, the time-

dependent effect of surface tension reducing and leading to liquid drainage due to the effects of gravity 

(Fd) is well understood.  As a result, the aqueous/surfactant liquid fraction of the foam changes, so does 

the surface tension, Fst of the bubbles. In turn, to maintain equilibrium the bubble size increases (Myers, 

1992; Weaire and Hutzler, 1999; Stevenson, 2011).   

 

However, unlike liquid foams, bubbles in a cementitious matrix are separated by the paste or mortar 

phase surrounding them.  In this case, drainage that occurs through thin films separating the bubbles 

and Plateau borders (ie channels formed where three neighbouring films meet; Stevenson, 2011) in 

liquid foams may change.  As a result, it is not possible to directly compare the situation to liquid 

foams.  Stevenson (2011) has reported a slower drainage rate in foams with smaller bubbles, suggesting 

that drainage occurs at a faster rate in lower density foamed concretes than high densities.  Furthermore, 

surface charges on bubbles and cement particles were reported to affect the mix stability (Jones and 

McCarthy, 2006).  Cement particles are attracted to bubbles making it more difficult for the liquid to 

drain.  

 

As noted above, as the mix plastic density is decreased down to ultra-low levels, firstly the total solids 

content is decreased through the reduction and eventual elimination of the sand/filler (below 600 

kg/m³), and secondly, the cement and water contents have to be reduced.  Figure 4 is an idealised 

system in which bubbles have been considered to be of uniform size. However, in reality there are 

inevitably a range of actual bubble sizes in a mix, each of which has a slightly different internal 

pressure. 
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Varying bubble sizes vary within the mix gives rise to an internal pressure gradient.  In turn, this can 

result in gas diffusion, which is referred to as Ostwald ripening in liquid foams. For aqueous foams, this 

is defined by the Laplace pressure (Weaire and Hutzler, 1999; Stevenson, 2011), which is 2γ/r for 

spheres, where γ is the interfacial surface tension and r the bubble radius.  In this case, γ is the surface 

tension.  Thus, due to this differential pressure gas contained in smaller bubbles diffuses into larger 

bubbles, which further increase in size and further increase pressure differentials.  The process 

continues until the bubbles are sufficiently buoyant to float to the surface and burst releasing the gas 

contained to the environment.  Ultimately, all foamed concretes are destroyed by this process.  In mixes 

where the bubbles are closer together and inter-bubble walls are thinner, i.e. lower densities, this 

process is easier and the process happens more quickly as shown in Figure 5.  As noted in Figure 2, 

SEM micrographs of low density foamed concrete mixes show the increased presence of ‘small’ 

bubbles within the inter-bubble separating walls.  It is speculated that these could further aid inter-

bubble gas transfer and hence reduce the time at which bubble would become buoyant. 

 

As a result of the increase in bubble diameter, Ø, the bubble buoyancy force, Fb, increases.  Once Fb is 

high enough to overcome the surrounding Fc, the bubbles rise towards the surface of the mix, displacing 

the surrounding solids and eventually reaching the surface (Fig. 1b) and causes instability (Fig. 1c).  

This dynamic environment exists until the equilibrium is reached or the mix hardens.  When the mix 

hardens, no more changes to the bubbles can occur.  However, once the non-equilibrium state; (Fb > Fc) 

is reached, the process of phase separation is irreversible. 

 

3. Production of Stable Ultra-low Density Foamed Concrete 

 

The discussion above, if correct, shows that the only way to prevent instability is for the mix to 

‘solidify’ prior to bubbles becoming large enough to be buoyant.  For denser foamed concretes this is 

easily achieved within the typical initial set times of Portland cement.  However, for ultra-low density 

foamed concrete this is not fast enough.  The authors have experimented in the laboratory with a range 

of high early strength PCs, increased mix temperatures and accelerating admixtures but none were 

found to be consistently successful.  Thus, further series of laboratory trials were undertaken using a 

blend of PC with a compatible calcium sulfoaluminate (CSA) cement, the results of which are described 

below.  

 

3.1 Constituent materials, mix proportions and production of foamed concrete 

   

The following constituent materials were used to produce foamed concrete mixes for testing. 

 CEM I 52,5N (Portland cement) conforming to BS EN 197-1. 
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5 

 Commercially available calcium sulfoaluminate (CSA) cement compatible with Portland 

cement as an additive to provide rapid setting. 

 Fine aggregate, natural siliceous sand conforming to BS EN 12620 Category GF85. 

 Surfactant (commercially available protein-based foaming agent), used in a 6% aqueous 

solution and foamed to a density of 50±5 kg/m³. 

 Methods used for designing, producing and curing foamed concrete were as described by Jones 

and McCarthy (2005), except that a tolerance of ± 25 kg/m³ of the target plastic density was 

used rather than the more typical ± 50 kg/m³, as the latter could represent 25 to 50% of the 

target plastic density. 

 

3.2 Test methodologies 

 

Setting time 

The initial setting time of the paste fraction was measured with an automatic Vicat apparatus in 

accordance with BS EN 196-3:2005+A1:2008 using a w/c ratio of 0.5.  

 

Stability 

Stability was measured by pouring fresh foamed concrete mixes into 500 mm deep and 75 mm diameter  

polycarbonate cylinders (see Fig. 1-a) lined with polythene film.  The mix was further observed over 24 

hours for any reduction in height, to measure any longer-term instability.  

 

Bubble size analysis 

Bubble size analysis was carried out using optical microscopy and automated image analysis software.   

Test samples were obtained from 500 mm high cylindrical specimens after 28 days of sealed curing.  

The cylinders were split longitudinally, and then sections from the top, middle and bottom (in the 

direction of cast) of the cylinder were taken and the average of these used to give mean bubble 

diameters.  Broken surfaces were cleared from dust and sprayed with fluorescent paint to improve 

image contrast under UV illumination.  A microscope-mounted digital camera was used to capture a 

100 mm2 image (with resolution of ≈ 2000 x 2000 pixels) and 2D image analysis was carried out by 

using Image J software, using a similar approach described in (Visagie and Kearsley, 1999; Nambiar 

and Ramamurthy, 2007).   
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4. Results and Discussions 

 

4.1 Stability  

For mixes with plastic densities from 1000 down to 400 kg/m³, 100% PC consistently produced stable 

foamed concretes.  Then, on a trial and error basis, lower density mixes were made stable by 

incorporating CSA cement to partially replace PC.  Firstly, 5% of PC (by mass of cement) was replaced 

with CSA, producing stable 300 and 200 kg/m³ foamed concrete mixes.  The CSA content was 

increased to 10% (by mass of PC) to produce stable 150 kg/m³ density mixes consistently, as 

summarised in Table 1.  Table 2 shows the relationship between collapse and base mix setting times.  

  

It was not possible to produce mixes with plastic densities below 150 kg/m³, as the CSA content had to 

be increased above 10%.  This caused the base mix to set within 2 minutes and there was insufficient 

time to incorporate foam and place the foamed concrete.  However, with the use of CSA set controllers 

producing stable foamed concrete below 150 kg/m³ could be possible.   

 

4.2 Bubble size analysis  

 

Figure 6 summarises the bubble size analysis carried out by 2D image analysis in relation to stability.  

As expected, bubbles increased in diameter at ultra-low density foamed concretes.  The average bubble 

diameter increased 2.6 times from the highest to lowest density.  The 150 kg/m³ density samples did not 

split cleanly and fractured into multiple pieces, thus, it was not possible to carry out an analysis on these 

samples. 

 

Figure 6 also gives the calculated bubble to solid area ratio obtained from the 2D image analysis.  As 

the plastic density decreases the ratio increases due to the increased air content and at 300 kg/m³ 

density, where stability issues commence with utilisation of 100% PC, the bubble to solid area is around 

1. As discussed above, the buoyancy forces of the bubble, Fb will tend to be similar to the 

‘confinement’ force, Fc and shows that such mixes will be on the borderline between being stable or 

going unstable with typical PC set times. 

 

5. Conclusions 

 

By considering the internal forces likely to be affecting the bubbles and surrounding paste/mortar 

fractions of foamed concrete, it is possible to present a coherent reasoning and mechanism to explain 

instability in fresh foamed concrete mixes.  The underlying cause of instability is the buoyancy force of 

bubbles, allowing them to float out of a fresh mix, and ultimately causing complete separation of the 

gas and solid phases.  The buoyancy force is directly related to bubble size and this gets significantly 
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larger at lower densities and are consequently much more buoyant and hence the mixes more prone to 

instability. 

 

This is explained by the observations and as the air content fraction is increased in lower density mixes, 

the ‘confinement’ force due to the solids is reduced.  In addition, larger bubbles and a smaller solids 

fraction results in bubbles being closer and the separating walls to be thinner.  Established theory 

predicts that this makes it easier for gas to diffuse from smaller (high internal pressure) to larger (low 

internal pressure) bubbles.  Hence with time bubbles become more buoyant.  At a critical time, related 

to the bubble buoyancy, separation of solid and gas phases occur, ie instability, and fresh mix collapses.  

Following extensive laboratory trials, the only method of overcoming this was found to be the blending 

of rapid setting CSA cement with the PC. 

   

The practical issues of placing ultra-low density foamed concretes that have base mixes produced with a 

cement with an initial setting time of 20-25 minutes are problematic and further research is needed to 

develop methods to retard the initial setting times for transportation and mixing then activate it 

immediately when rapid hardening is needed after placement. 
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Table 1. Test mix constituent proportions 

Plastic 

density, 

kg/m³ 

Cement 

content,  

kg/m³ 

% of 

CSA 

(by mass 

of 

cement) 

Water
†
 

content, 

kg/m³ 

Sand 

content, 

kg/m³ 

Air 

volume, 

% 
PC CSA 

1000 300 - - 150 550 55 

600 300 - - 150 150 70 

500 335
*
 - - 165 - 73 

400 267 - - 133 - 78 

300 190 10 5 100 - 84 

200 126 7 5 66 - 89 

150 90 10 10 50 - 92 

 †  w/c ratio of 0.5 was used for all mixes 

                           -  Material was not used in the specific mix 

                           *  Cement content increased to increase ‘fines’ content as sand was not used below 

600 kg/m
3
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Table 2. Collapse and initial setting times 

Cement type 

(% by mass) 

 Base mix 

initial setting 

time* 

(hh:mm) 

 Foamed concrete 

collapse time in the 

absence of CSA 

(hh:mm) 

 

Stable () / Unstable (x) 

 

CEM I CSA       †D150 D200   D300    D150 D200 D300 >D300 

100 -  03:25  01:10 01:40 01:55  x x x /x 

95 5  01:30  n.m n.a n.a  x /x   

90 10  00:20  n.a n.a n.a      

n.a: not applicable; n.m: not measured; * w/c ratio = 0.5; † D: plastic density (kg/m
3
) 
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