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ABSTRACT 
 
 
The molecular mechanisms underlying cutaneous squamous cell 

carcinoma are less well established than other common skin cancers, 

but recent evidence has highlighted a potentially critical role  for 

WNT signaling in  both the development and progression of  cSCC. 

WNT pathways are aberrantly regulated in multiple tumour types 

(albeit in a context-dependent manner) and this has stimulated the 

development of WNT inhibitory compounds for cancer treatment. In 

this review, we examine existing evidence for a role of WNT signaling 

in cSCC and discuss if WNT inhibition represents a realistic 

therapeutic strategy for the future. 
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INTRODUCTION 
 
 

Patients developing metastatic  cutaneous squamous cell carcinoma (cSCC; 5- 

10% of cases), have a poor outcome with 25-50% 5-year survival  (Epstein 

1984). Therapies targeted to immune checkpoint blockade or to pro- 

proliferative signaling pathways such as the mitogen-activated protein kinase 

pathway, are providing novel treatments for metastatic melanoma patients 

(Flaherty, et al. 2010; Wolchok, et al. 2013). Moreover, identification of 

Hedgehog signaling as a molecular hallmark of basal cell carcinoma (BCC) 

(Epstein 2008; Hahn, et al. 1996; Johnson, et al. 1996) led to the development of 

Hedgehog antagonists for locally advanced or metastatic BCC. It would be 

desirable to adopt a similar approach for cSCC, where targeted therapies could 

be used to treat the most invasive and aggressive tumours, based on in-depth 

molecular understanding of the disease. To progress this aim, expression array 

profiling of cSCC tumours by our group and others has been used to identify the 

most dysregulated molecular pathways. Such studies have identified WNT 

signaling as significantly altered in cSCC (Haider, et al. 2006; Ra, et al. 2011; 

Watt, et al. 2011). Functional evidence also exists for a role of WNT signaling in 

cSCC and here we discuss these findings. 

WNT signaling is composed of a group of signal transduction pathways, 

implicated in the development/progression of multiple cancers when aberrantly 

regulated. The role of WNT signaling in a number of non-melanoma skin cancers 

(NMSCs) including BCC (El-Bahrawy, et al. 2003; Salto-Tellez, et al. 2006; Yang, 

et al. 2008; Youssef, et al. 2012) is already defined, however evidence is also 

emerging for a role in the development and progression of cSCC too. Here we 

examine this evidence and investigate the possibility of WNT inhibitors as a 

novel therapeutic opportunity for disease management of cSCC. To do this we 

will first summarise what is known about WNT signaling in cancer, then briefly 

discuss the crucial role it plays in keratinocyte biology, before focusing on its 

activity in NMSCs and specifically cSCC. 

 
WNT SIGNALING IN CANCER 
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Wnt genes encode for secreted glycolipoproteins that activate intracellular 

signaling pathways, which can be subdivided into two categories based on 

whether or not they signal through β-catenin (encoded by ctnnb1; referred to as 

the WNT/β-catenin-dependent or -independent pathways, respectively; Figure 

1). There is significant crosstalk between the individual WNT signaling pathways 

(which is often antagonistic), leading researchers to view WNT pathways as a 

network of integrated signals, called the WNT signaling network (Kestler and 

Kuhl 2008; van Amerongen and Nusse 2009). 

For WNT/β-catenin signaling; in the absence of WNT, a cytoplasmic pool 

of β-catenin is continuously degraded by a multi-protein complex (termed the 

destruction complex; (Dale 1998), comprised of scaffold proteins (Axin and 

Adenomatous polyposis coli), and kinases (Glycogen Synthase Kinase-3β and 

Casein Kinase-1). These kinases phosphorylate the amino terminus of β-catenin 

to allow subsequent ubiquitination and proteasomal-mediated degradation. 

Extracellular WNT ligands activate the pathway by binding to seven-pass 

transmembrane-containing Frizzled (FZD) receptors, plus the LRP5/6 co- 

receptor, which leads to recruitment of an intracellular scaffold, Dishevelled 

(DVL). DVL antagonises destruction complex activity, causing β-catenin 

accumulation to allow nuclear translocation where in consort with the T-cell 

factor/lymphoid enhancer factor (TCF/LEF) transcription factors, β-catenin 

elicits activation of WNT target gene expression (Cadigan 2012). WNT/β- 

catenin-independent signaling commonly occurs through Ca2+ signaling in 

tumours, resulting in activation of Ca2+-dependent enzymes to elicit 

transcriptional changes and increase small GTPase activity, causing cytoskeletal 

rearrangements and alteration of cell polarity/migration (Jenei, et  al.  2009). 

WNT target genes direct a variety of fundamental cellular processes including 

cell proliferation, polarity, migration, angiogenesis and cellular metabolism in 

cancer cells (Brabletz, et al. 1999; He, et al. 1998; Sherwood 2015; Tetsu and 

McCormick 1999; Zhang, et al. 2001). 

WNT signaling has been associated with cancer since the early 1990s 

when Adenomatous polyposis coli mutations were found in the majority of 

colorectal cancers (Groden, et al. 1991). Mutations in a number of WNT pathway 

genes have now been associated with a variety of tumour types (e.g. Axin loss-of- 
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function and constitutively activating ctnnb1 mutations; (Herr, et al. 2012). 

Furthermore, epigenetic silencing of endogenous WNT inhibitors (Ekstrom, et al. 

2011; Fukui, et al. 2005; Lee, et al. 2004; Suzuki, et al. 2004; Zou, et al. 2005), 

increased WNT ligand expression (Wong, et al. 2002) and up-regulation of WNT 

downstream effectors, such as DVL (Okino, et al. 2003) have also been identified 

in tumours, demonstrating that hyper-activation of WNT signaling in cancer is 

achieved through a variety of mechanisms. This work has prompted the 

development of WNT signaling antagonists (Anastas and Moon 2013), as 

summarised in Figure 1. 

However, the concept that WNT signaling is always pro-oncogenic is too 

simplistic, as increased activity does not always necessarily correlate with worse 

prognosis. In melanoma for example, loss of nuclear β-catenin has (at least in 

some patient cohorts), been associated with poor survival (Chien, et al. 2009; 

Kageshita, et al. 2001; Maelandsmo, et al. 2003), raising the possibility that 

WNT/β-catenin signaling may also possess tumour suppressive functions in 

some contexts. Such findings highlight the potential hazards associated  with 

intervention using WNT antagonists, without prior in-depth understanding of 

the complex nature of the signaling network within specific tumours (Kahn 

2014). Here we review existing literature examining WNT signaling in cSCC and 

discuss its potential as a treatment target, but first we briefly review the well- 

defined role that the network plays in regulating keratinocyte biology. 

 

WNT IN SKIN DEVELOPMENT AND HOMEOSTASIS 
 
 

WNT signaling is fundamental in skin development; being involved in 

specification of the embryonic ectoderm to form the skin epithelium, through to 

blocking fibroblast growth factor signaling to induce keratin production in the 

nascent skin epithelia (keratinocyte specification), thereby forming the 

epidermis (Wilson, et al. 2001). WNT signaling is also necessary for the 

formation of skin appendages, in particular hair follicles (HFs), which involves 

crosstalk between the dermis and epidermis to form epidermal placodes at 

regularly spaced intervals in the skin. The initial signal to form these placodes is 

proposed  to  be  dermally-derived  WNT  ligands  (DasGupta  and  Fuchs  1999; 
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Huelsken, et al. 2001; Zhang, et al. 2009). Furthermore in response to this initial 

signal, WNT/β-catenin signaling is activated in the epidermis to promote placode 

fate (Zhang, et al. 2009) and is also required for signaling to the underlying 

mesenchymal cells to form dermal condensates that give rise to the dermal 

papillae (Huelsken, et al. 2001; Zhang, et al. 2009). The requirement of WNT/β- 

catenin signaling in HF development is further emphasised by the complete lack 

of placode formation in the presence of ectopic expression of the WNT/β- 

catenin-specific inhibitor, Dickkopf-1, in basal cells of developing murine 

epidermis (Andl, et al. 2002). WNT/β-catenin-independent signaling pathways 

are also involved in dermal development (Geetha-Loganathan, et al. 2006) and 

associated appendages (Bazzi, et al. 2007; Guo, et al. 2004). Hence the WNT 

signaling network is highly influential in integumentary system development. 

The same signaling cues responsible for HF morphogenesis are also used 

for hair cycling in adult skin. In follicular stem cells (SCs) for example, β-catenin 

is restricted to nuclear/cytoplasmic expression during anagen (growth phase), 

but confined to the cell membrane during cycles of telogen (rest phase), 

suggesting that high levels of WNT/β-catenin signaling functions as an inducer of 

anagen onset (Greco, et al. 2009). In addition to regulating telogen-anagen 

transition, WNT signaling also controls cell fate determination in HFs, the 

direction of hair growth and sebocyte specification to form the pilosebaceous 

unit, as previously reviewed (Lim and Nusse 2013). 

The role of the WNT/β-catenin pathway in the interfollicular epidermis 

(IFE) is more complex. For a long time it was generally considered that (at least 

in mouse skin) the WNT/β-catenin pathway controls epidermal SC fate (toward 

a HF lineage) rather than effect self-renewal properties (Andl, et al. 2002; 

Beronja, et al. 2013; Gat, et al. 1998; Huelsken, et al. 2001). However, other 

recent lineage tracing work in the murine plantar epidermis has identified a 

population of Axin2+ basal cells, which represent IFE SCs continuously producing 

keratinocytes (Lim, et al. 2013). Interestingly, these Axin2+ cells are themselves 

the source of WNT ligands in the IFE, where a high level of secreted WNT 

inhibitors in the suprabasal layers of the epidermis creates a gradient that 

restricts autocrine WNT signaling to the basal layer (Lim, et al. 2013), in effect 

creating spatial self-organization within the epidermis (Clevers, et al. 2014). This 
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is supported by additional in vivo work showing that β-catenin is required for 

epidermal proliferation and SC maintenance in the IFE (Choi, et al. 2013; Jensen, 

et al. 2009). Furthermore, the WNT/β-catenin pathway also maintains human 

IFE SC populations in vitro (Zhu and Watt 1999). Inducible reduction of WNT/β- 

catenin signaling in murine IFE inhibited proliferation under homeostatic 

conditions, but is not required for long-term maintenance of the IFE, nor needed 

for inflammatory-induced hyper-proliferation (Choi, et al. 2013). This work 

suggests that WNT signaling has highly specialised functions in murine IFE, but 

the precise role of the network within specific regions and SC populations of 

human skin, still remains to be determined. What is known however is that 

aberrant regulation of WNT/β-catenin signaling during wound healing causes 

keratinocyte proliferation and epidermal thickening during keloid scarring in 

humans (Chua, et al. 2011; Sato 2006). 

 

WNT SIGNALING IN cSCC 
 
 

Given the large body of work highlighting a crucial role for WNT signaling in 

regulating skin development/homeostasis, it is hardly surprising that when 

perturbations in activity occur, so too does the development of skin diseases, 

including NMSCs. In the HF for example aberrant WNT signaling can lead to the 

development of pilomatricoma (Chan, et al. 1999), trichofolliculoma (Sun, et al. 

2014) and even sebaceous gland tumours (Takeda, et al. 2006). Unsurprisingly 

then, the WNT signaling network is also emerging as a dominant regulator in the 

development and progression of more common NMSCs too. In BCC, Hedgehog 

signaling up-regulates WNT/β-catenin activity (Yang, et al. 2008), particularly at 

the leading edge of invasive tumours (Youssef, et al. 2012) and stromally-derived 

WNT5A (signaling through the WNT/Ca2+ pathway) causes BCC tumours to 

differentiate and regress (Nitzki, et al. 2010). 

A number of genomic and transcriptomic analyses have identified the 

WNT signaling network as being potentially aberrantly regulated in cSCC. One of 

the earliest studies using comparative genomic  hybridization found frequent 

amplification of chromosomes 7q, 8q, 11q and 17q in cSCC lines, which all 

contain WNT and/or FZD genes, suggesting that expression of these genes may 
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be increased in cSCC (Popp, et al. 2002). Direct evidence of this has subsequently 

been found by a number of gene expression array analyses in cSCC samples, 

which have identified increases in the mRNA levels of WNT ligands and their 

receptors, and in some samples also the down-regulation of endogenous 

secreted WNT inhibitors  such as secreted FZD-related proteins (SFRPs) that 

antagonise WNT-FZD interactions (Haider, et al. 2006; Ra, et al. 2011; Watt, et al. 

2011). For example, Haider and colleagues found that WNT5A and FZD6 were 

both upregulated in cSCC (Haider, et al. 2006), whilst a study by Ra et al. 

identified the WNT signaling network as the most significantly enriched set of 

molecular pathways in gene expression comparisons between cSCC and normal 

skin (Ra, et al. 2011). Evidence for enhanced β-catenin signaling in cSCC comes 

from a number of immunohistochemical staining studies on cSCC tumors, 

looking at β-catenin levels in tumours. Depending on the particular study, 

anywhere from 20-90% of human (Doglioni, et al. 2003; Lan, et al. 2014; 

Malanchi, et al. 2008; Papadavid, et al. 2002) and other mammalian (Bhatia and 

Spiegelman 2005; Bongiovanni, et al. 2011) cSCC tumours express high levels of 

nuclear β-catenin, whilst the membrane-bound pool of β-catenin is often found 

to be reduced (Bongiovanni, et al. 2011; Brasanac, et al. 2005; Fukumaru, et al. 

2007; Papadavid, et al. 2002), the latter of which is commonly associated with 

loss of differentiation in carcinomas. In addition, elevated nuclear β-catenin has 

been identified in lymphatic metastases of human cSCC, suggesting it may also be 

associated with  advanced stage disease (Toll, et al. 2013). Collectively these 

‘omic’ and immunohistochemical studies have identified potentially altered WNT 

signaling activity in cSCC (in particular the WNT/β-catenin pathway), but what 

causes it and what effect this signaling has on the behaviour of cSCC cells is still 

under investigation. However, in addition to this circumstancial evidence there is 

also a body of work that has functionally investigated the role of WNT signaling 

in cSCC and here we summarise what is currently known. 

Early studies identified a link between loss of the cell-cell signaling 

receptor, Notch  and stabilised β-catenin, which results  in β-catenin-TCF/LEF 

signaling in cSCC. Conditional Notch1 deletion in murine keratinocytes increased 

suceptibility to chemically-induced skin carcinogenesis (including cSCC) and 

stabilised β-catenin (Nicolas, et al. 2003). In murine keratinocytes this Notch- 
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meidated repression of β-catenin was found to be (at least in part), dependent on 

p21-mediated transcriptional repression of WNT genes (Devgan, et al. 2005). 

Building on these findings, Parmacek and colleagues demonstrated that 

dominant negative repression of Notch signaling in mouse skin renders the 

animials susecptible to developing cSCC, with nuclear β-catenin accumulation 

and increased cyclinD1 expression, the latter of which is a common target of β- 

catenin signaling that drives tumour proliferation (Proweller, et al. 2006). p63 (a 

member of the p53 tumour suppressor gene family) has been found to be an 

upstream regulator of both the WNT/β-catenin and Notch signaling pathways 

modulating proliferation in immortalised human keratinocytes (Wu, et al. 2012). 

Presenilin-1 is part of the γ-secretase protease complex, required for Notch 

processing, where loss of Presenilin-1 in keratinocytes leads to elevated β- 

catenin signaling, cyclinD1 expression and cell proliferation, causing epidermal 

hyperplasia and cSCC in mice (Xia, et al. 2001). However, Presenilin-1-mediated 

β-catenin regulation appears to be independent of Notch processing (Xia, et al. 

2001), suggesting that Notch-independent mechanisms also regulate β-catenin 

signaling in cSCC. 

The concept that β-catenin signaling leads to the increased proliferation 

of cSCC cells is supported by more recent work, showing that knockdown of β- 

catenin in human cSCC cells in xenotransplantation models, reduced tumour 

volume and increased tumour-free survival (Beronja, et al. 2013). This paper 

also showed that conditional oncogeneic HRas expression in murine skin 

induced β-catenin signaling and importantly, that short-hairpin knockdown of 

ctnnb1 was found to be a selective inhibitor for oncogenic yet not normal 

epidermal growth in the mouse (Beronja, et al. 2013). 

Additional signaling mechanisms have also been identified that stabilise 

β-catenin in cSCC. For example, Rho-associated protein kinase (ROCK) is 

activated in cSCC tumours, where the development of a genetically engineered 

mouse model of conditional ROCK over-expression in the skin was used to 

identify the mechanism of tumour development. This model showed that ROCK 

activity led to increased β-catenin signaling and subsequent 

hyperproliferation/thickening of the IFE (Samuel, et al. 2011). This was later 

found to involve a mechanotransduction pathway, triggered by ROCK-mediated 
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increased expression of extracellular matrix proteins (such as collagen and 

fibronectin) in invasive human cSCC, to elicit integrin signaling resulting in 

GSK3β inactivation, and subsequent stabilisation of β-catenin thereby initiating 

tumor progression, and invasion (Ibbetson, et al. 2013). Interestingly, ROCK1/2 

genes are negatively regulated by Notch in human keratinocytes (Lefort, et al. 

2007), which may potentially represent another mechanism by which loss of 

Notch can promote β-catenin signaling in the skin. 

Epithelial-to-mesenchymal transition (EMT) events have been suggested 

as another mechanism that can lead to the accumulation of nuclear β-catenin in 

cSCC, through loss of E-cadherin-β-catenin binding to facilitate increased β- 

catenin signaling (Margulis, et al. 2005), which is linked with metastatic spread 

in human cSCC (Toll, et al. 2013). More recently, the receptor tyrosine-kinase, 

Axl, which is over-expressed in cSCC biopsies (Green, et al. 2006), was shown to 

promote expression of EMT markers, nuclear β-catenin and stem-like properties 

that conferred increased sphere formation, tumor initiation, and drug resistance 

in human cSCC cells (Cichon, et al. 2014). Activation of EMT promotes cancer SC 

phenotypes (Mani, et al. 2008), so importantly active β-catenin signaling has not 

only been shown to be induced by EMT events, but crucially was also required to 

sustain cancer SC phenotypes in a murine cSCC model (Malanchi, et al. 2008). 

However, it remains to be determined if this is also true for tumor-inititating 

populations in human cSCC. 

From these studies it is reasonable to conclude that β-catenin signaling, 

can promote both the development and progression of cSCC, and although this 

can be initiated by several signaling pathways, WNT ligands that activate 

WNT/β-catenin signaling are also pro-oncogenic in cSCC. An important recent 

study has found that focal activation of WNT3-β-catenin signaling occurs in cSCC 

tumours, but not in normal human skin (Sobel, et al. 2015). Interesting this work 

also found that WNT3 expression is restricted to the tumour-stroma and that it 

signals in a paracrine fashion in the tumour microenvironment to increase 

epithelial cell proliferation and stromal remodelling, suggesting WNT signaling 

may also promote skin carcinogenesis in a paracrine manner (Sobel, et al. 2015). 

WNT/β-catenin-independent signaling also regulates cSCC cells, where WNT5A 

leads  to  chemotactic  migration  at  the  leading  edge  of  human  cSCC  tumours 
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(Pourreyron, et al. 2012). Furthermore, epigenetic profiling of metastatic cSCC 

compared to non-metastatic tumours, identified the FrzB gene, which encodes 

for the secreted WNT  inhibitor, SFRP3, as having the most hypermethylated 

promoter in human cSCC, suggesting that loss of SFRP3 expression and 

subsequent WNT activation is a critical step in the development of metastatic 

tumours (Darr, et al. 2015). Indeed, hypermethylation of a number of other SFRP 

genes (SFRP1, 2, 4 and 5) have also been identified in cSCC tumours compared to 

normal human skin (Liang, et al. 2015). Further work is needed to fully 

understand the effects of the WNT signaling network in the metastatic 

progression of cSCC. 

Overall this body of work provides evidence that (as in other NMSCs), 

aberrant regulation of the WNT signaling network is pro-tumourigenic in cSCC 

(Figure 2a), where the findings summarised have been obtained from functional 

studies in human tissues/cells and mouse models (Figure 2b). Currently 

however, a comprehensive list of WNT target genes is not available for human 

cSCC cells, which is needed to help delineate the mechanisms that facilitate these 

WNT-dependent oncogenic effects. 

Interestingly, mutations in WNT/β-catenin signaling components are 

generally rare in SCC tumours, including cSCC (Doglioni, et al. 2003; Li, et al. 

2015; Pickering, et al. 2014). For example in oesophageal SCC, the frequency of 

ctnnb1 mutations is only 1.1%, but yet 86.4% of oesophageal SCC tumours 

contain mutated WNT pathway genes (Song, et al. 2014), suggesting the 

mechanisms by which WNT signaling function is peterbed in SCC tumours, are 

potentially diverse. Epigenetic inactivation of WNT signaling antagonists such as 

the SFRP genes is not restricted to cSCC, but rather is detected in a variety of 

other types of SCC tumours, including oral (Paluszczak, et al. 2015; Pannone, et 

al. 2010; Sogabe, et al. 2008), oesphageal (Kishino, et al. 2016; Liu, et al. 2011; 

Meng, et al. 2011; Saito, et al. 2014; Yang, et al. 2012), cervical (Delmas, et al. 

2011; Siegel, et al. 2015) and head & neck (HN) SCCs (Marsit, et al. 2006), and 

thus could represent a universal mechanism of WNT activation in SCC tumours. 

 
TARGETING WNT SIGNALING IN cSCC; A THERAPEUTIC OPPORTUNITY? 
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The identification that WNT pathways are hyper-activated and pro-tumourigenic 

in cSCC, raises the distinct possibility that WNT targeting compounds may 

represent a pertinent therapeutic strategy. A number of compounds that 

antagonise WNT signaling are currently in oncology clinical trials (or are 

completed and awaiting study results; NCT trials; 02278133, 01351103, 

02413853,   01606579,   02521844,   01469975,   01764477   and   01608867). 

WNT/β-catenin inhibitors work to block extracellular WNT-receptor 

interactions, antagonise DVL signal transduction, stabilise the β-catenin 

destruction complex, interfere with β-catenin binding in the nucleus or inhibit 

Porcupine (a membrane bound O-acetyltransferase that is needed for the post- 

translational modification of WNT proteins to facilitate secretion; Figure 1). It is 

difficult without prior testing, to predict which (if any) of these inhbitors are 

likely to be effective in cSCC. However a small molecule Porcupine inhibitor, 

LGK974, is well-tollerated, potent and highly efficatious in human HNSCC cells 

(Liu, et al. 2013), suggesting it may prove a lead therapeutic in other SCCs where 

WNT/β-catenin signaling drives carcinogenesis. Consistent with this is the 

interesting finding that another Porcupine inhibitor, IWP2, can induce tumour 

regression in chemically induced murine keratoacanthomas (a HF-derived 

benign variant of cSCC), which highlights WNT/β-catenin signaling as a key 

regulator to sustain cutaneous tumour growth (Zito, et al. 2014). cSCC is one of 

the most heterogenous cancers (South, et al. 2014), meaning that patient 

stratification will likely prove important for intervening with effective therapies, 

particularly where drugs, such as WNT inhibitors, target context-dependent 

signaling pathways. For example, the identification that a loss of Notch in cSCC 

results in activation of β-catenin signaling, suggests that cSCC patients  with 

Notch loss-of-function mutations may benefit from intervention with WNT/β- 

catenin pathway inhibitors. Consistant with this hypothesis, is the finding that 

loss of Notch1 activity in HNSCC cells correlates with LGK974 responsiveness 

(Liu, et al. 2013). 

WNT/β-catenin-independent signaling also promotes cSCC progression 

(Pourreyron, et al. 2012), suggesting that intervention at this arm of the WNT 

network also has therapeutic potential, albeit there are few inhibitors currently 

targeted to this pathway. However a WNT5A-derived hexapeptide, termed Box5, 
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developed to inhibit WNT/Ca2+ signaling in melanoma (Jenei, et al. 2009), has 

recently been shown to antagonise WNT5A/Ca2+ signaling in HNSCC (Prgomet, et 

al. 2015). Future efforts should be focused on identifying which WNT network 

inhibitors could provide potent therapeutic activity in cSCC. 

Mounting evidence is being generated that highlights a key role for the 

WNT signaling network in cSCC, providing a tantalising argument for the use of 

WNT antagonists as a novel therapeutic approach. Although caution should be 

exercised when intervening with WNT inhibitors (Kahn 2014), robust 

investigations using pre-clinical models of cSCC will help to identify if this 

represents a suitable treatment approach for patients in the future. 
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Figure Legends 
 

Figure 1 WNT signaling and associated inhibitors. WNT/β-catenin-dependent signaling 

(left); in the absence of WNT binding to the FZD/LRP5/6 receptors, the signaling pool of β- 

catenin is maintained at low levels, mediated by the multi-protein destruction complex 

(comprising; APC, Axin, GSK3β, CK1 and the multi-protein E3 ubiquitin ligase complex, SCF). 

Upon WNT-receptor interaction, DVL inactivates the destruction complex, stabilising β-catenin to 

promote TCF/LEF transcriptional activity. WNT/β-catenin-independent signaling (right; details 

not shown); this results in transcriptional changes, cytoskeletal rearrangement, changes in cell 

polarity/migration and Ca2+ signaling. Inhibitors (red) include; tankyrase inhibitors that stabilise 

the destruction complex through Axin degradation, DVL inhibitors, antagonists of β-catenin/TCF 

interactions, inhibitors that block Porcupine (required for WNT ligand secretion), FZD antibodies 

that block WNT binding, and the WNT5A (commonly a WNT/β-catenin-independent signaling 

ligand)-specific inhibitory peptide, Box5. 

 

Figure 2WNT signaling in cSCC. (a) WNT/β-catenin signaling is proposed to promote cell 

proliferation. Aside from WNT activation of β-catenin, ROCK-mediated inactivation of GSK3β has 

also been shown to increase β-catenin signaling. β-catenin also  binds cadherin at  adherens 

junctions, where reduced E-cadherin expression through EMT increases β-catenin signaling. Axl 

(a tyrosine-kinase) promotes β-catenin signaling by increasing expression of EMT drivers (not 

shown). Loss of Notch also promotes β-catenin signaling (by a currently undefined mechanism). 

Stromal paracrine WNT/β-catenin signaling is also proposed to increase proliferation. WNT/β- 

catenin-independent signaling, initiated by WNT5A, promotes pro-invasive behaviour in cSCC 

cells (through an undefined mechanism). Epigenetic loss of SFRP expression, results in increased 

WNT signaling, but it is currently unknown  whether this will affect both arms of the WNT 

network. (b) Summary of literature identifying how the WNT signaling network affects cSCC cells 

(as outlined in a). Mechanistic studies investigating the effects in human disease were used as a 

focus for this summary, but also highlighted is work generated from mouse models that supports 

the molecular functions identified in human tissue. See text for detailed discussion. 
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