WNT Signaling in Cutaneous Squamous Cell Carcinoma: A Future Treatment Strategy?
Sherwood, Victoria; Leigh, Irene

Published in:
Journal of Investigative Dermatology

Publication date:
2016

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

WNT Signaling in Cutaneous Squamous Cell Carcinoma: A Future Treatment Strategy?

Victoria Sherwood* and Irene M. Leigh

Division of Cancer Sciences, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.

*Correspondence should be addressed to; Tel: +44 (0) 1382 383295; Email: v.sherwood@dundee.ac.uk

Running title: WNT and cutaneous squamous cell carcinoma

Abbreviations: cSCC, cutaneous squamous cell carcinoma; NMSC, non-melanoma skin cancer; BCC, basal cell carcinoma; DVL, Dishevelled; HF, hair follicle; IFE, interfolicular epidermis; FZD, Frizzled; ROCK, Rho-associated protein kinase; EMT, epithelial-to-mesenchymal transition; TCF, T-cell factor; LEF, lymphoid enhancer factor; SC, stem cell; SFRP, secreted Frizzled-related protein.

ABSTRACT

The molecular mechanisms underlying cutaneous squamous cell carcinoma are less well established than other common skin cancers, but recent evidence has highlighted a potentially critical role for WNT signaling in both the development and progression of cSCC. WNT pathways are aberrantly regulated in multiple tumour types (albeit in a context-dependent manner) and this has stimulated the development of WNT inhibitory compounds for cancer treatment. In this review, we examine existing evidence for a role of WNT signaling in cSCC and discuss if WNT inhibition represents a realistic therapeutic strategy for the future.
INTRODUCTION

Patients developing metastatic cutaneous squamous cell carcinoma (cSCC; 5-10% of cases), have a poor outcome with 25-50% 5-year survival (Epstein 1984). Therapies targeted to immune checkpoint blockade or to pro-proliferative signaling pathways such as the mitogen-activated protein kinase pathway, are providing novel treatments for metastatic melanoma patients (Flaherty, et al. 2010; Wolchok, et al. 2013). Moreover, identification of Hedgehog signaling as a molecular hallmark of basal cell carcinoma (BCC) (Epstein 2008; Hahn, et al. 1996; Johnson, et al. 1996) led to the development of Hedgehog antagonists for locally advanced or metastatic BCC. It would be desirable to adopt a similar approach for cSCC, where targeted therapies could be used to treat the most invasive and aggressive tumours, based on in-depth molecular understanding of the disease. To progress this aim, expression array profiling of cSCC tumours by our group and others has been used to identify the most dysregulated molecular pathways. Such studies have identified WNT signaling as significantly altered in cSCC (Haider, et al. 2006; Ra, et al. 2011; Watt, et al. 2011). Functional evidence also exists for a role of WNT signaling in cSCC and here we discuss these findings.

WNT signaling is composed of a group of signal transduction pathways, implicated in the development/progression of multiple cancers when aberrantly regulated. The role of WNT signaling in a number of non-melanoma skin cancers (NMSCs) including BCC (El-Bahrawy, et al. 2003; Salto-Tellez, et al. 2006; Yang, et al. 2008; Youssef, et al. 2012) is already defined, however evidence is also emerging for a role in the development and progression of cSCC too. Here we examine this evidence and investigate the possibility of WNT inhibitors as a novel therapeutic opportunity for disease management of cSCC. To do this we will first summarise what is known about WNT signaling in cancer, then briefly discuss the crucial role it plays in keratinocyte biology, before focusing on its activity in NMSCs and specifically cSCC.

WNT SIGNALING IN CANCER
Wnt genes encode for secreted glycolipoproteins that activate intracellular signaling pathways, which can be subdivided into two categories based on whether or not they signal through β-catenin (encoded by ctnnb1; referred to as the WNT/β-catenin-dependent or -independent pathways, respectively; Figure 1). There is significant crosstalk between the individual WNT signaling pathways (which is often antagonistic), leading researchers to view WNT pathways as a network of integrated signals, called the WNT signaling network (Kestler and Kuhl 2008; van Amerongen and Nusse 2009).

For WNT/β-catenin signaling; in the absence of WNT, a cytoplasmic pool of β-catenin is continuously degraded by a multi-protein complex (termed the destruction complex; Dale 1998), comprised of scaffold proteins (Axin and Adenomatous polyposis coli), and kinases (Glycogen Synthase Kinase-3β and Casein Kinase-1). These kinases phosphorylate the amino terminus of β-catenin to allow subsequent ubiquitination and proteasomal-mediated degradation. Extracellular WNT ligands activate the pathway by binding to seven-pass transmembrane-containing Frizzled (FZD) receptors, plus the LRP5/6 co-receptor, which leads to recruitment of an intracellular scaffold, Dishevelled (DVL). DVL antagonises destruction complex activity, causing β-catenin accumulation to allow nuclear translocation where in consort with the T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors, β-catenin elicits activation of WNT target gene expression (Cadigan 2012). WNT/β-catenin-independent signaling commonly occurs through Ca2+ signaling in tumours, resulting in activation of Ca2+-dependent enzymes to elicit transcriptional changes and increase small GTPase activity, causing cytoskeletal rearrangements and alteration of cell polarity/migration (Jenei, et al. 2009).

WNT signaling has been associated with cancer since the early 1990s when Adenomatous polyposis coli mutations were found in the majority of colorectal cancers (Groden, et al. 1991). Mutations in a number of WNT pathway genes have now been associated with a variety of tumour types (e.g. Axin loss-of-
function and constitutively activating ctnnb1 mutations; (Herr, et al. 2012). Furthermore, epigenetic silencing of endogenous WNT inhibitors (Ekstrom, et al. 2011; Fukui, et al. 2005; Lee, et al. 2004; Suzuki, et al. 2004; Zou, et al. 2005), increased WNT ligand expression (Wong, et al. 2002) and up-regulation of WNT downstream effectors, such as DVL (Okino, et al. 2003) have also been identified in tumours, demonstrating that hyper-activation of WNT signaling in cancer is achieved through a variety of mechanisms. This work has prompted the development of WNT signaling antagonists (Anastas and Moon 2013), as summarised in Figure 1.

However, the concept that WNT signaling is always pro-oncogenic is too simplistic, as increased activity does not always necessarily correlate with worse prognosis. In melanoma for example, loss of nuclear β-catenin has (at least in some patient cohorts), been associated with poor survival (Chien, et al. 2009; Kageshita, et al. 2001; Maelandsmo, et al. 2003), raising the possibility that WNT/β-catenin signaling may also possess tumour suppressive functions in some contexts. Such findings highlight the potential hazards associated with intervention using WNT antagonists, without prior in-depth understanding of the complex nature of the signaling network within specific tumours (Kahn 2014). Here we review existing literature examining WNT signaling in cSCC and discuss its potential as a treatment target, but first we briefly review the well-defined role that the network plays in regulating keratinocyte biology.

WNT IN SKIN DEVELOPMENT AND HOMEOSTASIS

WNT signaling is fundamental in skin development; being involved in specification of the embryonic ectoderm to form the skin epithelium, through to blocking fibroblast growth factor signaling to induce keratin production in the nascent skin epithelia (keratinocyte specification), thereby forming the epidermis (Wilson, et al. 2001). WNT signaling is also necessary for the formation of skin appendages, in particular hair follicles (HFs), which involves crosstalk between the dermis and epidermis to form epidermal placodes at regularly spaced intervals in the skin. The initial signal to form these placodes is proposed to be dermally-derived WNT ligands (DasGupta and Fuchs 1999;
Huelsken, et al. 2001; Zhang, et al. 2009). Furthermore in response to this initial signal, WNT/β-catenin signaling is activated in the epidermis to promote placode fate (Zhang, et al. 2009) and is also required for signaling to the underlying mesenchymal cells to form dermal condensates that give rise to the dermal papillae (Huelsken, et al. 2001; Zhang, et al. 2009). The requirement of WNT/β-catenin signaling in HF development is further emphasised by the complete lack of placode formation in the presence of ectopic expression of the WNT/β-catenin-specific inhibitor, Dickkopf-1, in basal cells of developing murine epidermis (Andl, et al. 2002). WNT/β-catenin-independent signaling pathways are also involved in dermal development (Geetha-Loganathan, et al. 2006) and associated appendages (Bazzi, et al. 2007; Guo, et al. 2004). Hence the WNT signaling network is highly influential in integumentary system development.

The same signaling cues responsible for HF morphogenesis are also used for hair cycling in adult skin. In follicular stem cells (SCs) for example, β-catenin is restricted to nuclear/cytoplasmic expression during anagen (growth phase), but confined to the cell membrane during cycles of telogen (rest phase), suggesting that high levels of WNT/β-catenin signaling functions as an inducer of anagen onset (Greco, et al. 2009). In addition to regulating telogen-anagen transition, WNT signaling also controls cell fate determination in HFs, the direction of hair growth and sebocyte specification to form the pilosebaceous unit, as previously reviewed (Lim and Nusse 2013).

The role of the WNT/β-catenin pathway in the interfollicular epidermis (IFE) is more complex. For a long time it was generally considered that (at least in mouse skin) the WNT/β-catenin pathway controls epidermal SC fate (toward a HF lineage) rather than affect self-renewal properties (Andl, et al. 2002; Beronja, et al. 2013; Gat, et al. 1998; Huelsken, et al. 2001). However, other recent lineage tracing work in the murine plantar epidermis has identified a population of Axin2+ basal cells, which represent IFE SCs continuously producing keratinocytes (Lim, et al. 2013). Interestingly, these Axin2+ cells are themselves the source of WNT ligands in the IFE, where a high level of secreted WNT inhibitors in the suprabasal layers of the epidermis creates a gradient that restricts autocrine WNT signaling to the basal layer (Lim, et al. 2013), in effect creating spatial self-organization within the epidermis (Clevers, et al. 2014). This
is supported by additional in vivo work showing that β-catenin is required for epidermal proliferation and SC maintenance in the IFE (Choi, et al. 2013; Jensen, et al. 2009). Furthermore, the WNT/β-catenin pathway also maintains human IFE SC populations in vitro (Zhu and Watt 1999). Inducible reduction of WNT/β-catenin signaling in murine IFE inhibited proliferation under homeostatic conditions, but is not required for long-term maintenance of the IFE, nor needed for inflammatory-induced hyper-proliferation (Choi, et al. 2013). This work suggests that WNT signaling has highly specialised functions in murine IFE, but the precise role of the network within specific regions and SC populations of human skin, still remains to be determined. What is known however is that aberrant regulation of WNT/β-catenin signaling during wound healing causes keratinocyte proliferation and epidermal thickening during keloid scarring in humans (Chua, et al. 2011; Sato 2006).

WNT SIGNALING IN cSCC

Given the large body of work highlighting a crucial role for WNT signaling in regulating skin development/homeostasis, it is hardly surprising that when perturbations in activity occur, so too does the development of skin diseases, including NMSCs. In the HF for example aberrant WNT signaling can lead to the development of pilomatricoma (Chan, et al. 1999), trichofolliculoma (Sun, et al. 2014) and even sebaceous gland tumours (Takeda, et al. 2006). Unsurprisingly then, the WNT signaling network is also emerging as a dominant regulator in the development and progression of more common NMSCs too. In BCC, Hedgehog signaling up-regulates WNT/β-catenin activity (Yang, et al. 2008), particularly at the leading edge of invasive tumours (Youssef, et al. 2012) and stromally-derived WNT5A (signaling through the WNT/Ca²⁺ pathway) causes BCC tumours to differentiate and regress (Nitzki, et al. 2010).

A number of genomic and transcriptomic analyses have identified the WNT signaling network as being potentially aberrantly regulated in cSCC. One of the earliest studies using comparative genomic hybridization found frequent amplification of chromosomes 7q, 8q, 11q and 17q in cSCC lines, which all contain WNT and/or FZD genes, suggesting that expression of these genes may
be increased in cSCC (Popp, et al. 2002). Direct evidence of this has subsequently been found by a number of gene expression array analyses in cSCC samples, which have identified increases in the mRNA levels of WNT ligands and their receptors, and in some samples also the down-regulation of endogenous secreted WNT inhibitors such as secreted FZD-related proteins (SFRPs) that antagonise WNT-FZD interactions (Haider, et al. 2006; Ra, et al. 2011; Watt, et al. 2011). For example, Haider and colleagues found that WNT5A and FZD6 were both upregulated in cSCC (Haider, et al. 2006), whilst a study by Ra et al. identified the WNT signaling network as the most significantly enriched set of molecular pathways in gene expression comparisons between cSCC and normal skin (Ra, et al. 2011). Evidence for enhanced β-catenin signaling in cSCC comes from a number of immunohistochemical staining studies on cSCC tumors, looking at β-catenin levels in tumours. Depending on the particular study, anywhere from 20-90% of human (Doglioni, et al. 2003; Lan, et al. 2014; Malanchi, et al. 2008; Papadavid, et al. 2002) and other mammalian (Bhatia and Spiegelman 2005; Bongiovanni, et al. 2011) cSCC tumours express high levels of nuclear β-catenin, whilst the membrane-bound pool of β-catenin is often found to be reduced (Bongiovanni, et al. 2011; Brasanac, et al. 2005; Fukumaru, et al. 2007; Papadavid, et al. 2002), the latter of which is commonly associated with loss of differentiation in carcinomas. In addition, elevated nuclear β-catenin has been identified in lymphatic metastases of human cSCC, suggesting it may also be associated with advanced stage disease (Toll, et al. 2013). Collectively these ‘omic’ and immunohistochemical studies have identified potentially altered WNT signaling activity in cSCC (in particular the WNT/β-catenin pathway), but what causes it and what effect this signaling has on the behaviour of cSCC cells is still under investigation. However, in addition to this circumstantial evidence there is also a body of work that has functionally investigated the role of WNT signaling in cSCC and here we summarise what is currently known.

Early studies identified a link between loss of the cell-cell signaling receptor, Notch and stabilised β-catenin, which results in β-catenin-TCF/LEF signaling in cSCC. Conditional Notch1 deletion in murine keratinocytes increased susceptibility to chemically-induced skin carcinogenesis (including cSCC) and stabilised β-catenin (Nicolas, et al. 2003). In murine keratinocytes this Notch-
mediated repression of β-catenin was found to be (at least in part), dependent on p21-mediated transcriptional repression of WNT genes (Devgan, et al. 2005). Building on these findings, Parmacek and colleagues demonstrated that dominant negative repression of Notch signaling in mouse skin renders the animals susceptible to developing cSCC, with nuclear β-catenin accumulation and increased cyclinD1 expression, the latter of which is a common target of β-catenin signaling that drives tumour proliferation (Proweller, et al. 2006). p63 (a member of the p53 tumour suppressor gene family) has been found to be an upstream regulator of both the WNT/β-catenin and Notch signaling pathways modulating proliferation in immortalised human keratinocytes (Wu, et al. 2012).

Presenilin-1 is part of the γ-secretase protease complex, required for Notch processing, where loss of Presenilin-1 in keratinocytes leads to elevated β-catenin signaling, cyclinD1 expression and cell proliferation, causing epidermal hyperplasia and cSCC in mice (Xia, et al. 2001). However, Presenilin-1-mediated β-catenin regulation appears to be independent of Notch processing (Xia, et al. 2001), suggesting that Notch-independent mechanisms also regulate β-catenin signaling in cSCC.

The concept that β-catenin signaling leads to the increased proliferation of cSCC cells is supported by more recent work, showing that knockdown of β-catenin in human cSCC cells in xenotransplantation models, reduced tumour volume and increased tumour-free survival (Beronja, et al. 2013). This paper also showed that conditional oncogeneic HRas expression in murine skin induced β-catenin signaling and importantly, that short-hairpin knockdown of ctnnb1 was found to be a selective inhibitor for oncogenic yet not normal epidermal growth in the mouse (Beronja, et al. 2013).

Additional signaling mechanisms have also been identified that stabilise β-catenin in cSCC. For example, Rho-associated protein kinase (ROCK) is activated in cSCC tumours, where the development of a genetically engineered mouse model of conditional ROCK over-expression in the skin was used to identify the mechanism of tumour development. This model showed that ROCK activity led to increased β-catenin signaling and subsequent hyperproliferation/thickening of the IFE (Samuel, et al. 2011). This was later found to involve a mechanotransduction pathway, triggered by ROCK-mediated
increased expression of extracellular matrix proteins (such as collagen and fibronectin) in invasive human cSCC, to elicit integrin signaling resulting in GSK3β inactivation, and subsequent stabilisation of β-catenin thereby initiating tumor progression, and invasion (Ibbetson, et al. 2013). Interestingly, ROCK1/2 genes are negatively regulated by Notch in human keratinocytes (Lefort, et al. 2007), which may potentially represent another mechanism by which loss of Notch can promote β-catenin signaling in the skin.

Epithelial-to-mesenchymal transition (EMT) events have been suggested as another mechanism that can lead to the accumulation of nuclear β-catenin in cSCC, through loss of E-cadherin-β-catenin binding to facilitate increased β-catenin signaling (Margulis, et al. 2005), which is linked with metastatic spread in human cSCC (Toll, et al. 2013). More recently, the receptor tyrosine-kinase, Axl, which is over-expressed in cSCC biopsies (Green, et al. 2006), was shown to promote expression of EMT markers, nuclear β-catenin and stem-like properties that conferred increased sphere formation, tumor initiation, and drug resistance in human cSCC cells (Gichon, et al. 2014). Activation of EMT promotes cancer SC phenotypes (Mani, et al. 2008), so importantly active β-catenin signaling has not only been shown to be induced by EMT events, but crucially was also required to sustain cancer SC phenotypes in a murine cSCC model (Malanchi, et al. 2008). However, it remains to be determined if this is also true for tumor-initiating populations in human cSCC.

From these studies it is reasonable to conclude that β-catenin signaling, can promote both the development and progression of cSCC, and although this can be initiated by several signaling pathways, WNT ligands that activate WNT/β-catenin signaling are also pro-oncogenic in cSCC. An important recent study has found that focal activation of WNT3-β-catenin signaling occurs in cSCC tumours, but not in normal human skin (Sobel, et al. 2015). Interestingly this work also found that WNT3 expression is restricted to the tumour-stroma and that it signals in a paracrine fashion in the tumour microenvironment to increase epithelial cell proliferation and stromal remodelling, suggesting WNT signaling may also promote skin carcinogenesis in a paracrine manner (Sobel, et al. 2015). WNT/β-catenin-independent signaling also regulates cSCC cells, where WNT5A leads to chemotactic migration at the leading edge of human cSCC tumours.
Furthermore, epigenetic profiling of metastatic cSCC compared to non-metastatic tumours, identified the FrzB gene, which encodes for the secreted WNT inhibitor, SFRP3, as having the most hypermethylated promoter in human cSCC, suggesting that loss of SFRP3 expression and subsequent WNT activation is a critical step in the development of metastatic tumours (Darr, et al. 2015). Indeed, hypermethylation of a number of other SFRP genes (SFRP1, 2, 4 and 5) have also been identified in cSCC tumours compared to normal human skin (Liang, et al. 2015). Further work is needed to fully understand the effects of the WNT signaling network in the metastatic progression of cSCC.

Overall this body of work provides evidence that (as in other NMSCs), aberrant regulation of the WNT signaling network is pro-tumourigenic in cSCC (Figure 2a), where the findings summarised have been obtained from functional studies in human tissues/cells and mouse models (Figure 2b). Currently however, a comprehensive list of WNT target genes is not available for human cSCC cells, which is needed to help delineate the mechanisms that facilitate these WNT-dependent oncogenic effects.

Interestingly, mutations in WNT/β-catenin signaling components are generally rare in SCC tumours, including cSCC (Doglioni, et al. 2003; Li, et al. 2015; Pickering, et al. 2014). For example in oesophageal SCC, the frequency of ctnnb1 mutations is only 1.1%, but yet 86.4% of oesophageal SCC tumours contain mutated WNT pathway genes (Song, et al. 2014), suggesting the mechanisms by which WNT signaling function is pETERBED in SCC tumours, are potentially diverse. Epigenetic inactivation of WNT signaling antagonists such as the SFRP genes is not restricted to cSCC, but rather is detected in a variety of other types of SCC tumours, including oral (Paluszczak, et al. 2015; Pannone, et al. 2010; Sogabe, et al. 2008), oesophageal (Kishino, et al. 2016; Liu, et al. 2011; Meng, et al. 2011; Saito, et al. 2014; Yang, et al. 2012), cervical (Delmas, et al. 2011; Siegel, et al. 2015) and head & neck (HN) SCCs (Marsit, et al. 2006), and thus could represent a universal mechanism of WNT activation in SCC tumours.

TARGETING WNT SIGNALING IN cSCC; A THERAPEUTIC OPPORTUNITY?
The identification that WNT pathways are hyper-activated and pro-tumorigenic in cSCC, raises the distinct possibility that WNT targeting compounds may represent a pertinent therapeutic strategy. A number of compounds that antagonise WNT signaling are currently in oncology clinical trials (or are completed and awaiting study results; NCT trials; 02278133, 01351103, 02413853, 01606579, 02521844, 01469975, 01764477 and 01608867). WNT/β-catenin inhibitors work to block extracellular WNT-receptor interactions, antagonise DVL signal transduction, stabilise the β-catenin destruction complex, interfere with β-catenin binding in the nucleus or inhibit Porcupine (a membrane bound O-acetyltransferase that is needed for the post-translational modification of WNT proteins to facilitate secretion; Figure 1). It is difficult without prior testing, to predict which (if any) of these inhibitors are likely to be effective in cSCC. However a small molecule Porcupine inhibitor, LGK974, is well-tollerated, potent and highly efficatious in human HNSCC cells (Liu, et al. 2013), suggesting it may prove a lead therapeutic in other SCCs where WNT/β-catenin signaling drives carcinogenesis. Consistent with this is the interesting finding that another Porcupine inhibitor, IWP2, can induce tumour regression in chemically induced murine keratoacanthomas (a HF-derived benign variant of cSCC), which highlights WNT/β-catenin signaling as a key regulator to sustain cutaneous tumour growth (Zito, et al. 2014). cSCC is one of the most heterogenous cancers (South, et al. 2014), meaning that patient stratification will likely prove important for intervening with effective therapies, particularly where drugs, such as WNT inhibitors, target context-dependent signaling pathways. For example, the identification that a loss of Notch in cSCC results in activation of β-catenin signaling, suggests that cSCC patients with Notch loss-of-function mutations may benefit from intervention with WNT/β-catenin pathway inhibitors. Consistant with this hypothesis, is the finding that loss of Notch1 activity in HNSCC cells correlates with LGK974 responsiveness (Liu, et al. 2013).

WNT/β-catenin-independent signaling also promotes cSCC progression (Pourreyron, et al. 2012), suggesting that intervention at this arm of the WNT network also has therapeutic potential, albeit there are few inhibitors currently targeted to this pathway. However a WNT5A-derived hexapeptide, termed Box5,
developed to inhibit WNT/Ca2+ signaling in melanoma (Jenei, et al. 2009), has recently been shown to antagonise WNT5A/Ca2+ signaling in HNSCC (Prgomet, et al. 2015). Future efforts should be focused on identifying which WNT network inhibitors could provide potent therapeutic activity in cSCC.

Mounting evidence is being generated that highlights a key role for the WNT signaling network in cSCC, providing a tantalising argument for the use of WNT antagonists as a novel therapeutic approach. Although caution should be exercised when intervening with WNT inhibitors (Kahn 2014), robust investigations using pre-clinical models of cSCC will help to identify if this represents a suitable treatment approach for patients in the future.

ACKNOWLEDGEMENTS
This work was supported by Cancer Research UK and Tenovus Scotland.

CONFLICTS OF INTEREST
The authors state no conflict of interest.
Figure Legends

Figure 1 | WNT signaling and associated inhibitors. WNT/β-catenin-dependent signaling (left); in the absence of WNT binding to the FZD/LRP5/6 receptors, the signaling pool of β-catenin is maintained at low levels, mediated by the multi-protein destruction complex (comprising: APC, Axin, GSK3β, CK1 and the multi-protein E3 ubiquitin ligase complex, SCF). Upon WNT-receptor interaction, DVL inactivates the destruction complex, stabilising β-catenin to promote TCF/LEF transcriptional activity. WNT/β-catenin-independent signaling (right; details not shown); this results in transcriptional changes, cytoskeletal rearrangement, changes in cell polarity/migration and Ca^{2+} signaling. Inhibitors (red) include; tankyrase inhibitors that stabilise the destruction complex through Axin degradation, DVL inhibitors, antagonists of β-catenin/TCF interactions, inhibitors that block Porcupine (required for WNT ligand secretion), FZD antibodies that block WNT binding, and the WNT5A (commonly a WNT/β-catenin-independent signaling ligand)-specific inhibitory peptide, Box5.

Figure 2 | WNT signaling in cSCC. (a) WNT/β-catenin signaling is proposed to promote cell proliferation. Aside from WNT activation of β-catenin, ROCK-mediated inactivation of GSK3β has also been shown to increase β-catenin signaling. β-catenin also binds cadherin at adherens junctions, where reduced E-cadherin expression through EMT increases β-catenin signaling. Axl (a tyrosine-kinase) promotes β-catenin signaling by increasing expression of EMT drivers (not shown). Loss of Notch also promotes β-catenin signaling (by a currently undefined mechanism). Stromal paracrine WNT/β-catenin signaling is also proposed to increase proliferation. WNT/β-catenin-independent signaling, initiated by WNT5A, promotes pro-invasive behaviour in cSCC cells (through an undefined mechanism). Epigenetic loss of SFRP expression, results in increased WNT signaling, but it is currently unknown whether this will affect both arms of the WNT network. (b) Summary of literature identifying how the WNT signaling network affects cSCC cells (as outlined in a). Mechanistic studies investigating the effects in human disease were used as a focus for this summary, but also highlighted is work generated from mouse models that supports the molecular functions identified in human tissue. See text for detailed discussion.
REFERENCES

Anastas, J. N., and R. T. Moon

Andl, T., S. T. Reddy, T. Gaddapara, and S. E. Millar

Bazzi, H., K. A. Fantauzzo, G. D. Richardson, C. A. Jahoda, and A. M. Christiano

Bhatia, N., and V. S. Spiegelman

Bongiovanni, L., D. Malatesta, C. Brachelle, S. D’Egidio, and L. Della Salda

Brabletz, T., A. Jung, S. Dag, F. Hlubek, and T. Kirchner

Brasanac, D., I. Boricic, V. Todorovic, N. Tomanovic, and S. Radojevic

Cadigan, K. M.
2012 TCFs and Wnt/beta-catenin signaling: more than one way to throw the switch. Curr Top Dev Biol 98:1-34.

Chan, E. F., U. Gat, J. M. McNiff, and E. Fuchs

2009 Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proceedings of the National Academy of Sciences of the United States of America 106(4):1193-1198.

Choi, Y. S., Y. Zhang, M. Xu, Y. Yang, M. Ito, T. Peng, et al.

Chua, A. W., D. Ma, S. U. Gan, Z. Fu, H. C. Han, C. Song, et al.

Ibbetson, S. J., N. T. Pyne, A. N. Pollard, M. F. Olson, and M. S. Samuel

The negative regulators of Wnt pathway-DACH1, DKK1, and WIF1 are methylated in oral and oropharyngeal cancer and WIF1 methylation predicts shorter survival. Tumour Biol 36(4):2855-2861.

Sato, M.

Sherwood, V.

Song, Y., L. Li, Y. Ou, Z. Gao, E. Li, X. Li, et al.

Tetsu, O., and F. McCormick

2013 Epithelial to mesenchymal transition markers are associated with an increased metastatic risk in primary cutaneous squamous cell carcinomas but are attenuated in lymph node metastases. J Dermatol Sci 72(2):93-102.

van Amerongen, R., and R. Nusse

2011 Integrative mRNA profiling comparing cultured primary cells with clinical samples reveals PLK1 and C20orf20 as therapeutic targets in cutaneous squamous cell carcinoma. Oncogene 30(46):4666-4677.