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ABSTRACT: Although the electron-mediated spin—spin or J
coupling is conventionally viewed as transmitted via covalent
bonds, examples of ] couplings between atoms that are not
formally bonded but are in close proximity (termed “through-
space” ] couplings) have been reported. In this work, we
investigate the observation of homonuclear *'P J couplings in
organochalcogen heterocycles, which occur between *'P in two
separate molecules, confirming without doubt their through-
space nature. The presence of this interaction is even more
surprising for one compound, where it occurs between
crystallographically equivalent species. Although crystallo-
graphically equivalent species need not be magnetically

decouple 7’Se
—_—

3P J-resolved NMR

equivalent in the solid state, owing to the presence of anisotropic interactions, we demonstrate that it is not the shielding

anisotropy that lifts magnetic equivalence, in this case, but the presence of heteronuclear couplings to

7’Se. We support our

experimental observations with periodic scalar-relativistic density functional theory calculations and coupling density deformation

plots to visualize the mechanism of these interesting interactions.

B INTRODUCTION

Indirect spin—spin (J) couplings are invaluable for the
determination of chemical structure in solution-state NMR
spectroscopy.’ This electron-mediated coupling is classically
considered to be transmitted via a network of covalent bonds,
generally decreasing in magnitude as the number of bonds
increases. However, in some cases, J couplings are observed
between atoms that are not formally bonded but are in close
proximity (generally termed “through-space” J couplings in the
literature), suggesting that a more sophisticated description of
the interaction is required.””> The vast majority of these
observations, summarized recently in ref 2, involve atoms that
are held close in space by rigid molecular architectures, such as
H, C, and F in cyclic and organic molecules, and F, P, Se, and
Te in peri-substituted naphthalene, polyaromatic, or metal-
locene-based structural motifs.”~” Such couplings have been
used in structure solution, that is, to determine molecular
conformations in solution or to measure internuclear distances,
but have also been studied with a view to gaining a more
fundamental understanding of their exact nature and
mechanism.

The rapid tumbling motion and low concentration of
molecules present in a solution typically restricts the
observation of through-space couplings to those that exist
within the same molecule. In many cases, some uncertainty
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then remains over the relative magnitude of any through-bond
contribution to the interaction, unless a very large number of
bonds separate the species. In the solid state, however, it
should, in principle, be possible to see intermolecular through-
space ] couplings, that is, between different molecules, if they
are held in close proximity by the crystal packing. The existence
of these interactions, and their relative magnitude in simple
systems, has been studied computationally.>*~"°
there remain relatively few experimental reports of any through-
space J couplings in solids, either intermolecular or intra-
molecular, in the literature,'' ™' although some ] couplings
through intermolecular hydrogen bonding interactions have
been observed.'” Examples of intramolecular through-space
couplings observed in the solid state have included the
observation of "’Se—'*Te and *'P—'**Te couplings in peri-
substituted naphthalenes," "> "'B—3'P interactions in frustrated
Lewis pairs in alkenes,'” and 3P-3'P interactions in
ferrocenes.'' In general, J couplings can be more difficult to
resolve directly in the solid state, owing to the larger inherent
spectral line widths that are typically present and, while they are
still used for magnetization transfer in multidimensional
correlation experiments, it can then be difficult to distinguish

However,
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between cross peaks arising from J couplings and those from
residual dipolar (i.e., true through-space) interactions (which
have no isotropic component). In 2015, Sanz Camacho et al."®
observed an intermolecular J coupling in a P—Se heterocyclic
molecule. The multiplet structure in the 7’Se spectrum
suggested the presence of two distinct couplings to *'P, a
result confirmed by *'P decoupling. As there is only one P per
molecule, the second coupling has, by definition, to be to 3P in
an adjacent molecule, confirming the lack of any conventional
bonding pathway between the spins. This observation was
supported by periodic DFT calculations, which predicted two
3'P—""Se J couplings, one through space and one through bond,
with very similar magnitudes. A similar heteronuclear
("”Sn—*'P) intermolecular coupling has subsequently been
observed by Arras et al."”

In this work, we demonstrate the observation (in organo-
chalogen heterocycles) of some of the first, if not the first,
intermolecular homonuclear through-space ] couplings in
solids. In one compound the coupling can be observed directly
in the *'P spectrum, while in a second it is not directly resolved,
but can be measured using J-resolved spectroscopy. This latter
interaction is of particular note as it occurs between two
crystallographically equivalent species, and we show that
magnetic equivalence is lifted only by the presence of
heteronuclear ] couplings to "’Se, allowing experimental
measurement. Unlike the previously observed heteronuclear
interactions, it is not possible to easily remove homonuclear J
couplings using decoupling, and so we support our conclusions
using periodic relativistic density functional theory (DFT)
calculations and exploit coupling density deformation (CDD)*
plots to visualize the mechanism by which these interesting
interactions take place. These observations add to the rich
diversity of weak interactions that contribute to crystal packing
and are of particular importance for chalcogen-rich molecular
materials, which contain large and polarizable atoms. It is hoped
that the additional insight gained from this work can offer
further advances in the future design of solid-state structures.

B EXPERIMENTAL AND COMPUTATIONAL
METHODS

Nuclear Magnetic Resonance Spectroscopy. Solid-state >'P
NMR measurements were performed using Bruker Avance III
spectrometers equipped with either 9.4, 14.1, or 20.0 T wide-bore
superconducting magnets. Experiments were performed using conven-
tional 4 mm magic-angle spinning (MAS) probes, with MAS rates
between 5 and 12.5 kHz. *'P chemical shifts are quoted relative to 85%
H;PO, using BPO, at —29.6 ppm as a secondary reference. For 1,
spectra were acquired using cross-polarization (CP) from 'H with a
contact pulse (ramped for "H) of 1 ms and are the result of averaging
256 transients, with a typical recycle interval of 10 s. For 2 and 3,
spectra were acquired directly, averaging between 32 and 64 transients,
respectively, with a typical recycle interval of 30 s. Continuous wave
(cw) 'H decoupling (yB,/27 ~ 100 kHz) was applied during
acquisition for 1—3 but not for the variable-temperature experiments,
as no significant changes in resolution were observed. The positions of
the isotropic resonances within the spinning sideband manifold were
unambiguously determined by recording a second spectrum at a
different MAS rate. Chemical shift anisotropy (CSA) parameters were
determined by line shape analysis using the Bruker Topspin software.
Two-dimensional *'P homonuclear J-resolved spectra were acquired at
9.4, 14.1, and 20.0 T with a MAS rate of 5 kHz, using the pulse
sequence given in ref 21. Owing to the long *'P longitudinal relaxation
time for 1, CP from 'H was used with a 1 ms contact pulse (ramped
for 'H). For 2 and 3, transverse magnetization was created directly. In
each case, between 32 and 64 transients were averaged for each of

256—320 t, increments of 800 us. "H decoupling (cw, yB1/27 of ~100
kHz) was applied in both ¢, and t,. For 2, a spectrum was also acquired
at 14.1 T using rotor-synchronized Hahn-echo pulse train**
decoupling of ’Se (yB,/2m of ~62.5 kHz) during t;, and 'H
decoupling (cw, yB,/2x of ~100 kHz) was applied in both ¢, and t,. 64
transients were averaged for each of 256 t, increments of 800 ys. For
controlled-temperature experiments recorded at 9.4 and 14.1 T, the
sample temperature was maintained at 273, 298, or 323 K using a
Bruker BCU-II chiller and Bruker BVT/BVTB-3000 temperature
controller and heater booster. The sample temperature (including
frictional heating effects arising from sample spinning) was calibrated
using the isotropic *Rb shift of solid RbCL**

ABC (94T, 12.5 kHz) CP MAS NMR spectrum of 1 was acquired
with a contact pulse (ramped for 'H) duration of 8 ms. Signal
averaging was performed for 1072 transients, with a recycle interval of
10 s. 3C chemical shifts are quoted in parts per million relative to
(CH,),Si, using the CHj, resonance of L-alanine (6 = 20.5 ppm) as a
secondary reference.

Calculations. Calculations were performed using the CASTEP
DFT code (version 8.0), using the PBE* exchange-correlation
functional, with dispersion effects accounted for through the DFT-
D2 scheme of Grimme.*”*® Atomic positions and unit cell parameters
were optimized from crystallographically determined data. CASTEP
8.0 default on-the-fly ultrasoft pseudopotentials were used, with the
inclusion of scalar-relativistic effects through ZORA.*® A planewave
basis set with E_, of 50 Ry was used, and a Monkhurst—Pack grid with
spacing of 0.04 2 A™" was used to sample the Brillouin zone. E,,; and
k-point spacing were converged independently against total energy and
0y, for nuclei of interest, as described in the Supporting Information.
NMR calculations were performed using GIPAW after geometry
optimization (see the Supporting Information). PAW J-coupling
calculations are based upon 2 X 1 X 1 supercell geometries.
Calculations were performed on a local cluster, with the exception
of the supercell J-coupling calculations for 1, which were performed on
the ARCHER UK. National Supercomputing Service. Calculations
generate the absolute shielding tensor ¢ in the crystal frame.
Diagonalization of the symmetric part of ¢ yields three orthogonal
principal components, namely, 6y, 6,,, and 633, with 633 > 6, > 0.
The isotropic shielding value o, is given by (6}, + 6, + 033)/3. The
anisotropy is defined by the span, Q = 633 — 0y, and the skew k =
3(6io — 05,)/Q is a measure of the asymmetry of the tensor in the
Herzfeld—Berger convention. For further information see the
Supporting Information.

24,25

B RESULTS AND DISCUSSION

Scheme 1 shows the synthetic route for the preparation of the
organochalcogen heterocycles. Naphtho[1,8-cd]-1,2-dithiole

Scheme 1. General Synthesis Scheme for Compounds 1-3
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phenylphosphine (1) was prepared according to ref 30 and
characterized using IR spectroscopy, solution-state NMR
spectroscopy, mass spectrometry, and single-crystal X-ray
diffraction, as described in the Supporting Information.
Naphtho[1,8-cd]-1,2-diselenole tert-butylphosphine (2) and
naphtho([1,8-cd]-1,2-diselenole isopropylphosphine (3) were
prepared and characterized as described in recent work.'®
Naphthol1,8-cd]-1,2-dithiole phenylphosphine (1).
The *'P MAS NMR spectra of 1, acquired at two different
fields using CP from 'H (owing to the long *'P T, relaxation
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time), are shown in Figure la. A significant sideband manifold
is observed as a result of the CSA, with the position of the
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Figure 1. (a) *'P NMR spectra of 1 recorded at 9.4 T, 5 kHz CP MAS
(top), and 14.1 T, 7.5 kHz CP MAS (bottom). In both spectra, the
isotropic center bands are marked with * and expanded in the inset.
(b) The asymmetric unit of 1.

isotropic center bands (determined by acquiring a second
spectrum at a faster MAS rate) shown by *. Isotropic and
anisotropic shielding parameters are given in Table 1. Note that

Table 1. Experimental >'P Solid-State NMR Parameters” for
1-3

compound 810 (ppm) Q (ppm) K Jop, Hz
1 (P1) 0.6 (1) 197 (2) 025 (5) 86 (2)
1 (P2) -33 (1) 193 (2) 023 (5) 86 (2)
2 6.1 (1) 231 (3) 0.50 (5) 88 (2)
3 21 (2) 197 (3) 040 (5)

“Isotropic chemical shift, &, span, &, skew, &, and intermolecular J
coupling, Jpp. Measured at By = 14.1 T, MAS rate = 7.5 kHz, T = 298
K

the NMR parameters show a small temperature dependence
(ie, a change of 0.7 ppm in the isotropic shift per 25 K), as
shown in the Supporting Information, probably resulting from
motion of the phenyl group.

Two 3'P signals are observed for 1, in agreement with the
single-crystal diffraction structure, which shows two crystallo-
graphically distinct molecules in the asymmetric unit, as shown
in Figure 1b. A low-level (unknown) impurity phase is also
present. Shielding parameters calculated using a periodic
planewave DFT approach®®”’ are given in Table 2. The
calculations enable assignment of the two *'P resonances, with
that at higher shift (0.6 ppm) attributed to P1 and that at lower
shift (—3.3 ppm) to P2. The shift difference between the two is
overestimated by the calculations, as are the values of €,
although the two are predicted to be extremely similar, as is also

Table 2. Calculated 3!P Solid-State NMR Parameters® for 1—
3

o (ppm) Q% (ppm) S B He

1 (P1) 281 (281) 259 (259) 026 (027) 151 (144)

1 (P2) 290 (289) 259 (259) 0.26 (0.26) 151 (144)

2 244 (254) 311 (317) 0.39 (0.40) 159 (155)

3 251 (260) 267 (275) 0.17 (021) 11 (12)
“Isotropic chemical shielding, O'if;c, span, Q€ skew, k', and

intermolecular J coupling, J&i. Scalar relativistic and non-relativistic
values are given, with the latter in parentheses.

seen experimentally. Little difference is observed upon the
inclusion of scalar relativity (using the ZORA approach). The
difference between calculation and experiment probably results
from the neglect of motion in the DFT calculations, which are
performed on static structures at 0 K. The spectrum acquired at
9.4 T exhibits small splittings in each of the resonances,
possibly indicative of J couplings, although the presence of an
additional impurity phase (or polymorph), commonly observed
in these types of systems, cannot be ruled out at this stage.
Owing to the large inherent line widths in solid-state NMR
spectra, J couplings are often not observed directly and are
more typically measured using the modulation of the signal
intensity in a spin—echo experiment. Fourier transformation as
a function of the echo evolution period gives a so-called “J-
resolved” spectrum, where 1nhomogene1t1es are refocused. A
detailed theoretical study by Duma et al.*" investigated how the
homonuclear echo modulation was affected by experimental
conditions, including the magnetic field strength and MAS rate,
and by the magnitude and orientation of the spin interaction
tensors. Although this was shown to be a complex problem, for
most practical conditions, a simple modulation was predicted,
and the J coupling could easily be extracted from the spectral
splitting.

Figure 2 shows a two-dimensional *'P homonuclear J-
resolved spectrum (isotropic center bands only) of 1, along
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Figure 2. (a) Expansion (showing the isotropic center bands) from the
two-dimensional homonuclear *'P J-resolved spectrum of 1 (14.1 T, 5
kHz CP MAS). 'H decoupling (cw) was applied. (b) F, projections of
the isotropic center bands from the two-dimensional homonuclear *'P
J-resolved spectra of 1, recorded at the indicated temperatures.
Projections for P1 and P2 are shown in black and red, respectively.

with isotropic projections acquired at three temperatures. The
spectrum was acquired using the pulse sequence given in ref 21.
At 298 K, there is a clear splitting (of ~86 Hz) for both P1 and
P2, suggesting a homonuclear J coupling between the two. This
is in good agreement with the splitting observed for both
resonances in the >'P MAS spectrum at lower field. As there is
only one P within each molecule this interaction must be a
homonuclear intermolecular through-space coupling. This
conclusion is supported by the short internuclear distance
between the P sites (3.699 A) in the crystal structure (Figure
1b), close to the sum of their van der Waals radii.

The presence of a homonuclear intermolecular J coupling is
confirmed by periodic DFT calculations, given in Table 2. The
calculated coupling (i) is 144 Hz, rising to 151 Hz with the
inclusion of scalar relativity (implemented using the ZORA'’
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approach). The total J coupling is dominated by the Fermi-
contact contribution, of 150 Hz, at the scalar-relativistic level of
theory. The calculated coupling is significantly larger than the
value measured experimentally. However, given the through-
space nature of the interaction, the magnitude of this coupling
will be crucially dependent upon the distance between the
nuclear species.'®'” The difficulties of accurately reproducing
dispersion interactions in periodic DFT calculations may lead
to some variation in the exact distances between atoms and,
although the D2 dispersion correction scheme of Grimme”’
was employed in the DFT calculations, this could contribute to
the differences between experiment and calculation. It is
possible that differences between calculation and experiment
could also result from the choice of functional. However,
calculations to test the use of a hybrid functional (PBEO,
containing 25% Hartree—Fock exchange) using a cluster
approach show little change (3% between PBE and PBEO) in
the calculated ] couplings, which all remain larger than
experiment (see the Supporting Information). Furthermore,
Figure 2 shows that the experimental J coupling is temperature-
dependent, with an increase of 2—3 Hz per 25 K temperature
decrease. If this variation were linear over the whole
temperature range, the predicted coupling at 0 K for 1 would
be ~110 Hz, in slightly better agreement with calculation.
Figure 3a shows a plot of the calculated CDD”’ associated with

Figure 3. (a) Isosurface and (b) contour representations of the CDD
of the ¥P—3'P through-space ] couplings (computed from non-
relativistic J-coupling calculations) for 1.

the P—P homonuclear J coupling in 1 (based on non-relativistic
J-coupling calculations; see the Supporting Information). This
supports the presence of a through-space interaction between
P1 and P2 and shows that the coupling proceeds via the P lone
pairs.

Naphtho[1,8-cd]-1,2-diselenole tert-butylphosphine
(2) and Naphthol[1,8-cd]-1,2-diselenole isopropylphos-
phine (3). The *'P MAS NMR spectra of 2 and 3, acquired at
14.1 T, are shown in Figure 4. In each case a single isotropic
resonance (shown by *) is observed, in agreement with the
presence of a single crystallographically distinct molecule in the
asymmetric unit. Values of the isotropic and anisotropic
shielding parameters extracted from the spectra are given in
Table 1. The change in the R group (from tert-butyl to
isopropyl) results in a small change in the *'P isotropic shift,
and a larger change (of ~34 ppm) in Q. As shown in the
Supporting Information, the isotropic shift for both compounds
is also temperature-dependent, with increases of ~1 and ~0.5

T
-200 ol

200 100 0 100
*'P 8 (ppm)
Figure 4. (3, ¢) *'P (9.4 T, 7.5 kHz MAS) NMR spectra of (a) 2 and

(c) 3, where * denotes the isotropic resonances (shown expanded in
the insets). (b, d) The asymmetric units of (b) 2 and (d) 3.

ppm per 25 K for 2 and 3, respectively, probably resulting from
motion of the alkyl groups.

DFT-calculated NMR parameters for each compound are
given in Table 2. As was observed for 1, the calculated Q is
overestimated for both 2 and 3 (although the relative
magnitude of the two values is well-reproduced), possibly as
a result of the neglect of any motion in the calculation. The
relative difference in isotropic shift is also in good agreement
with experiment, although it should be noted that there is a
significant discrepancy in the relative isotropic shieldings
predicted for the S-containing and the two Se-containing
compounds, perhaps suggesting a difference in accuracy
between the heavy-atom pseudopotentials. While ”’Se DFT
calculations have been shown to have good agreement with
experiment in similar naphthalene-based systems,’””” there has
been little experimental verification of any predicted **S NMR
parameters, owing to the difficulties associated with exper-
imental study of this low-y, low-abundance quadrupolar
nucleus.

Figure 5 shows two-dimensional *'P homonuclear J-resolved
spectra of 2 and 3, recorded at 14.1 T at 298 K. A clear splitting
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Figure S. Expansions showing the isotropic center bands from the
two-dimensional homonuclear *'P J-resolved spectra of 2 and 3 (14.1
T, 5 kHz MAS). 'H decoupling (cw) was applied.

is observed for 2, although an intense central signal at 0 Hz is
also observed. As for 1, there is only one P within each
molecule, and so this interaction must also be a homonuclear
intermolecular through-space coupling. Note that no splitting is
observed in the J-resolved spectrum of 3, despite the chemical
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similarity of the two molecules. However, this observation is
also supported by the DFT calculations (Table 2), where a
large J coupling is predicted for 2 (159 Hz), and a much smaller
one for 3 (11 Hz). The Fermi-contact term is again dominant,
at 160 and 11 Hz in 2 and 3, respectively. The predicted
coupling for 2 is again larger than that observed experimentally
(~88 Hz) but, as Figure 6a shows, the coupling is temperature-

a 91 Hz b 88 Hz
—_— —

88 Hz

85 Hz

T T T
100 50 0 -50 -100 100 50 0 -50 -100

F,/Hz F,/Hz

Figure 6. F, projections of the isotropic center bands from the two-
dimensional homonuclear *'P J-resolved spectra of 2, recorded at (a)
14.1 T at the temperatures indicated and (b) at room temperature at
the B, field indicated.

dependent (increasing by 3 Hz per 25 K decrease in
temperature). If this change could be assumed to be linear
over the whole temperature range, the predicted 0 K coupling
for 2 would be ~125 Hz, in better agreement with the
calculation. Given the through-space nature of the interactions
observed, the difference in the coupling magnitude between 2
and 3 can be explained by the different intermolecular P—P
distances, which, from the single-crystal X-ray diffraction
structures (Figure 4b), vary from 3.58 A, for 2, to 4.90 A for
3."% The former is within the sum of the van der Waals radii,
while the latter is outside this range. The CDD plots, shown in
Figure 7, demonstrate that the J coupling in 2 is, again,
mediated by the P lone-pair electrons, while no clear interaction
between the two P atoms is present for 3.

The experimental observation of a *'P—3'P coupling for 2 is
particularly unexpected, as this interaction must occur between
crystallographically equivalent P species, that is, species with the
same isotropic chemical shift. It is well-known that it is not
possible to observe a J coupling between equivalent spins in a
solution-state NMR spectrum. Similarly, one would not expect
to see any splitting in a J-resolved spectrum, which should
consist of only a central (i.e,, unmodulated) signal. However, in
the solid state, crystallo%raphically equivalent spins need not be
magnetically equivalent.”* If anisotropic interactions are present
(e.g, a CSA), the magnitude and asymmetry of these will be the
same for crystallographically equivalent spins, but the relative
orientation of the tensors may be different, owing to the
different orientation of the molecules with respect to By. In this
case, the anisotropic shifts would be different for each molecule,
lifting any magnetic equivalence at any one instant during the

Se1gl%>

S P1b. OSeZ
(@) -
~0

Se2D @9}1 Se2
>

P1
O Set . Set
p
c ? : d :
Se1§ 2 - Se2

=

Se% Lo’
9Se2”, v -
P OV P1
.Se2

P11 ° P

‘,{; - se2Os QP
% ‘ "y

Figure 7. (a, c) Isosurfaces and (b, d) contour representations of the
CDD of the 3'P—3*'P through-space J couplings (computed from non-
relativistic J-coupling calculations) for (a, b) 2 and (c, d) 3.

rotor period, and a J coupling could then be measured.”’
Reference 31 discussed in detail the effects this would have on
the spin—echo modulation and, therefore, on a J-resolved
experiment, and demonstrated that this depends upon
magnitude of the anisotropy, the MAS rate, and the magnitude
of the J coupling. However, although there is a significant
anisotropic contribution to the *'P shielding for 2 (Q =~ 231
ppm), the two *'P species involved in the coupling (and,
therefore, their CSA tensors) are related via an inversion
center,'® resulting in both crystallographic and magnetic
equivalence. It should also be noted that, as shown in Figure
6b, there is no significant change in the J-resolved spectrum of
2 with varying magnetic field strength, which might be expected
if an anisotropic interaction were responsible for lifting
magnetic equivalence.

Although a homonuclear *'P—*'P coupling is observed for 2,
the explanation for the appearance of the J-resolved spectrum
may lie in the heteronuclear couplings between *'P and 7’Se. As
shown in Figure 8, the two P species are each bonded to two Se
nuclei. The natural abundance of the only NMR-active isotope
("Se, I = 1/2) is ~7.6%. If all four Se in the two molecules in
Figure 8 are NMR inactive, the two *'P species are magnetically
equivalent, and no splitting will be observed in a J-resolved
spectrum. However, if only one of the four were "’Se, there
would be a through-bond 7’Se—*'P coupling experienced by
one *'P (e.g, as shown in Figure 8) that is not present for the
second, resulting in magnetic inequivalence of the two P
species. When this coupling is present, the homonuclear
3p—3'P interaction then becomes observable. Simple statistics
predicts that the probability of magnetic equivalence (i.e.,, no
7Se bonded to either *'P) is ~73%, while ~27% of the pairs
will have one or more "’Se present (and, hence, result in
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Figure 8. (a) Expansion of the structure of 2, with a possible "’Se/>'P
heteronuclear J coupling highlighted. (b) Projections (indirect
dimension) of two-dimensional P (14.1 T, 5 kHz) homonuclear J-
resolved MAS NMR spectra of 2, acquired with (red) and without
(black) "’Se decoupling.

magnetic inequivalence). This should result in a combination of
signals in the J-resolved spectrum from 73% of molecules,
where no coupling is observed (and a central signal is expected
to be present), and 27%, where a splitting is seen, in good
agreement with the experimental spectra in Figures Sa and 6.
Note, however, that for a single ’Se, there are two possible Se
sites to consider. If Se2 is 7’Se, in addition to the "/Se2—3'P1
through-bond coupling (estimated in previous work to be ~270
Hz), there is a significant through-space intermolecular
heteronuclear 7’Se2—*'P1 coupling (estimated previously to
be ~340 Hz)."* However, if Sel is "’Se, the through-space
coupling to *'P in the neighboring molecule is much smaller
(not observed experimentally). Despite the similarity in the
magnitude of the through-bond and through-space 7’Se2—*'P1
couplings,'® the J coupling tensors have different orientations,
and the two *'P remain inequivalent even if these additional
couplings are considered. Note that the "Se—*'P couplings are
not resolved in the *'P MAS spectrum in Figure 4, owing to the
large inherent line width (~350 Hz) and the low natural
abundance of ”’Se.

To ascertain whether the magnetic inequivalence that must
be present for the J coupling to be observable does arise from
heteronuclear couplings, 77Se decoupling was implemented in
the indirect dimension of the J-resolved experiment for 2. The
large 7’Se CSA observed for 2 in previous work'® suggests that
high-power decoupling would be required. However, owing to
the hardware available, it was not possible to use high-power cw
decoupling for the long evolution periods required, and a
pulsed decoupling approach® was used (see the Experimental
Section). Figure 8b shows the center band projections of two-
dimensional *'P homonuclear J-resolved spectra of 2, acquired
with and without "’Se decoupling. "H cw decoupling was also
applied in both cases. It can be seen that the homonuclear
3P /3P J coupling is not observed when the J coupling to ’Se
is removed by decoupling, with only the unmodulated central
signal present, confirming it is this heteronuclear interaction
that lifts the magnetic equivalence of the two P sites.

One final consideration is the temperature dependence of the
NMR parameters observed for 2. There is clearly significant
molecular motion in the compound, potentially of both the tert-
butyl and CH; groups. In principle, unless this motion is
concerted (or very rapid), this could also break the inversion
symmetry and lift the equivalence of the two *'P species. This
could lead to differences in isotropic or anisotropic shielding
parameters for the two coupled P species and might result in
the observation of a splitting in a J-resolved spectrum, even for
molecules where no couplings to ’Se are present. However,
both the loss of the splitting upon ”’Se decoupling in Figure 8

and the lack of any field dependence of the J-resolved spectrum
in Figure 6b suggest that motion is not the primary cause of the
inequivalence observed at the temperatures considered.

B CONCLUSIONS

We have demonstrated the observation of unusual intermo-
lecular homonuclear through-space J couplings between P
species in different molecules in the solid state. Although
through-space couplings have been seen in the literature
previously, most of these have been in solution-state NMR
spectra, between atoms that are forced into close proximity by a
rigid molecular backbone. The rapid molecular tumbling in
solution restricts the observation of such couplings to those
between atoms within a molecule, while the solid-state crystal
packing enables couplings to be observed between different
molecules. The presence of only one P species per organo-
chalcogen molecule validates unambiguously the through-space,
rather than conventional through-bond, nature of these
interactions. For 1, the coupling is observed between
crystallographically distinct P species, but the observation is
more unexpected for 2, where the two P species are
crystallographically equivalent. However, we have demonstra-
ted that the presence of heteronuclear J couplings to "’Se (7.6%
abundance) lifts magnetic equivalence in some molecules,
enabling a direct observation of the coupling. The increased
observation of through-space couplings in molecular solids
perhaps suggests that these interactions need to be considered
in the context of the factors that affect crystal packing and also
offer further insight both into understanding the origin of J
couplings and into the future design of solid-state structures.
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