
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 138.251.14.57

This content was downloaded on 26/07/2016 at 12:15

Please note that terms and conditions apply.

X-ray tomography characterization of density gradient aerogel in laser targets

View the table of contents for this issue, or go to the journal homepage for more

2016 J. Phys.: Conf. Ser. 713 012009

(http://iopscience.iop.org/1742-6596/713/1/012009)

Home Search Collections Journals About Contact us My IOPscience

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/42545469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/713/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


X-ray tomography characterization of density gradient 

aerogel in laser targets 

L Borisenko
1
, A Orekhov

1
, C Musgrave

2
, W Nazarov

2
, Yu Merkuliev

1
, 

N Borisenko
1, 3

  

1
 P.N. Lebedev Physical Institute of the RAS, 53 Leninskiy prospect, Moscow 119991 

GSP-1, Russia 
2
University of St Andrews School of Chemistry, Purdie building, North Haugh, 

St Andrews KY16 9ST, UK 
3
 National Research Nuclear University MEPhI, 31 Kashirskoe shosse, Moscow 

115409, Russia 

E-mail: borisenko.lidiya@physics.msu.ru 

Abstract. The low-density solid laser target characterization studies begun with the SkyScan 

1074 computer microtomograph (CMT) [1, 2] are now continued with higher resolution of 

SkyScan 1174. The research is particularly focused on the possibility to obtain, control and 

measure precisely the gradient density polymers for laser target production. Repeatability of 

the samples and possibility to obtain stable gradients are analysed. The measurements were 

performed on the mm-scale divinyl benzene (DVB) rods. 

1.  Introduction 

Low-density micro- and nanostructured polymers – foams and aerogels correspondingly, are widely 

used in high-power and high-intensity laser physics. However, structures with smooth and known 

density profile were not yet achieved as a stable technology and would be preferable, for example, for 

Rayleigh-Tailor instabilities mitigation, laser energy smoothing, laboratory astrophysics studies and as 

a substitute for step-density targets to generate plasma profile close to the one of the corona of 

compresses shock-ignition target [3].  

The inner structure of an aerogel consists of thin polymer fibres (or walls for foams) forming an 

open-cell quasiperiodic microstructure. The mean density understood as averaging the wall/fibre solid 

density multiplied by the solid elements volume then divided by the aerogel volume no less than 

several pore sizes. Experimentally the density of a solid low-density structure is mainly measured by 

weighting. This only provides the overall average density of the sample and gives no information on 

spatial changes. 

Wet gel structures with density gradients were examined in [4] and the X-ray microtomography 

diagnostics was applied for density profile analysis of semitransparent polymer materials. Here we 

propose and perform precise characterization of mm-size divinyl benzene (DVB) aerogel which is 

close to laser target scale and requirements.  

2.  Samples 

The low-density divinyl benzene (DVB) rods are chemically synthesized as gel structures inside 

capillary glass tubes then subjected to solvent exchange. Finally the samples are dried in the Polaron
®
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critical point dryer (CPD dryer). The height of the rods varied from 3 to 10 mm with the diameter of 

around 1 mm. Here chemical synthesis was fulfilled for a large bath of similar samples, so as to model 

gradient targets mass production. Then CMT measurements were performed to yield certain statistical 

data. Method of production of these density gradient foams is described in previous publication [1]. 

Self-standing DVB aerogel cylinders display the density gradient as visibly differing optical 

transparency in low- and in high-density regions. Inner microstructure and surface were examined by 

SEM in [1]. The material turns out to be homogeneous on the scale of several microns which increases 

precision of X-ray diagnostics with the voxel dimensions of around 10 um. 

Besides density-gradient samples which are the main goal of our work, we needed the constant-

density samples for calibration of density measurements. The procedures of chemical synthesis, 

solvent exchange and CPD drying for constant-density aerogels, excluding the conditions to produce 

gradient, remain strictly identical with gradient-density samples.  

3.  X-ray microtomography for density measurements 

X-ray tomography is a non-destructive penetrative method for volumetric visualization and material’s 

characterization based on the absorption properties of the material. Mathematically reconstructed flat 

X-ray images show absorption in each spatial point of the sample: 

                 
         

where        intensity is read from CCD as grayscale index,      – absorption coefficient for the 

specific material,   – optical path through the sample. 

3.1.  SkyScan 1174 

The microtomograph SkyScan 1174 used in this work allows the maximum resolution of 6.9 um per 

pixel. However for DVB rods scanning a 17.5 um resolution was chosen to fit the view window. 

Tungsten cathode of the X-ray tube provides broad-spectrum X-ray radiation in cone beam geometry. 

The sample is placed onto a rotating table B (Figure 1a) on the way of X-rays to form multiple flat 

absorption images (Figure 1b) by CCD camera. The rotation step could be as small as 0.6 degree. The 

set of images is reconstructed to 3D model using special software by Feldkamp [5] algorithm. The 

reconstruction gives a number of horizontal cross sections with absorption recalculated to internal 

computer tomography units (CT number) in each voxel of each cross section. The obtained CT 

number in each voxel corresponds to grayscale index of the 2D image and thus through X-ray 

absorption in voxel to the local density. 

 

  

Figure 1a. SkyScan 1174 inner view. A – X-ray tube window; B – rotating 

table with a DVB sample; C – Be filter of the CCD camera window. 

Figure 1b. Flat 

X-ray image of 

DVB rod. 
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3.2.  Absolute calibration 

The reconstruction with the built-in SkyScan 1174 software does not give information on absolute 

density of the sample. However one can only analyse comparatively the exposed density-gradients 

with the obtained statistics on CT numbers. This is not enough for purposes of laser target 

characterization. Therefore the absolute calibration of the CMT measurements was performed using 

the samples with initially known average densities. The average densities were calculated from the 

solution concentration and checked by weighting. 

For the calibration samples of pre-known density separate CMT scanning was done. Averaging 

over each horizontal cross section we got a distribution of CT numbers over the height of each sample 

(Figure 2). CMT-measured density variation via height for cylindrical samples of 4 constant nominal 

densities are plotted in solid line, average CT numbers of constant-density derived from real curves are 

plotted in dash lines.   

Averaging was carried out by the following method: the cross section was scanned for non-zero 

pixels and the remaining objects were eroded by several pixels to minimize the boundary artefacts. 

Then, the resulting group of pixels was used to calculate the average CT number.   

 

Figure 2. Density variations (in units of CT numbers) over height of the sample for the 

constant nominal density DVB rods. Dashed constants are calculated average values.  
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Absorbing properties of materials in X-rays strongly depend on the nuclei charge Z. Thus for each 

atomic composition the calibration is to be performed independently. 

The calibration curve for DVB aerogel is shown in Figure 3 and defines the conversion coefficient 

from CT numbers to density of 0.16 ±0.01 units/(mg/cc). The aerogels with density gradient are 

further analysed in terms of reconstructed and recalculated density. 
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Figure 3. CT numbers to density 

calibration curve. 

 

4.  Density gradient in DVB aerogel rods: realisation and measurements 

The density gradient DVB rods were examined on SkyScan 1174 with the same scanning parameters 

and resolution as the calibration samples. The data was reconstructed with the built-in software, 

averaged CT numbers were calculated over each cross section and then the obtained distribution was 

recalculated in terms of density in mg/cc. 

To diminish the noise and for stricter curve analysis the density function was plotted after 

application of moving average filter over 11 points (Figure 4a left, Figure 4b left). To visualize the 

density changes over the height 1
st
 derivative was calculated and is further referred to as gradient 

function or gradient. The gradient was plotted and analyzed with Fast Fourier Transform (FFT) filter 

over 15 points to cut off the high-frequency noise. 

 

Figure 4a. Density (left) and gradient (right) function via height for old samples. 
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Figure 4b. Density (left) and gradient (right)  function via over height for new samples. 

 

We used 2 batches of samples with almost two year gap in the time of fabrication. The Figure 4a 

refers to the earlier done samples, the same as described in [1]. After 2 years of storage they were 

measured once more, now together with newly fabricated samples of Figure 4b for comparison, 

production studies and more profound characterization with next-generation CT-scanner SkyScan 

1174. 

Comparing the old (Figure 4a) and the new (Figure 4b) samples we found no significant difference. 

The samples are stable in time and can be stored and transported. 

For previous results [1] we used practically manual calculations (averaging and part of filtering 

procedures). Thus the precision was less than possible but the route and algorithms for future standard 

measurements were justified. For example, the observed waves of density to some extend were due to 

calculation inconsistences. Larger pool of experimental data processed at present with higher accuracy 

for every gradient sample, provides reliable data and this is still comparable with previously measured 

results. 

On Figure 4 we observe the regions of almost constant average gradient of 10-20 mg/cc/mm on the 

samples N3.1 (from 2 to 5 mm from the bottom), N3.2 (from 3.5 to 7 mm), N3.3 (from 1.5 to 4 mm), 

N9 (from 6 to 7 mm) and N11 (from 4 to 7 mm). Hence such gradient is reproducible on the scale of 

up to 3 mm. 

The maximum gradients obtained (sample N2.1 on Figure 4b) are 150-200 mg/cc/mm and are 

realized within 1.5 mm length. 

5.  Results and discussion 

The microtomography technique was proposed and used in this work for study and characterization 

of density gradient plastic aerogels. Self-standing mm-scale aerogel rods are a good approach for 

further analysis of laser targets. Standard procedures are worked out for profound studying of separate 

samples during technological research and for routine monitoring of cylinder-shape samples.  

Obtained and precisely analyzed density and density gradient distributions over height of the DVB 

rods showed stable gradient regions of up to 4 mm. Maximum gradients of 150-200 mg/cc/mm were 

observed on 1.5 mm length interval. The average gradient was calculated 20 mg/cc/mm. The gradients 

are reproducible on the scale of 3 mm although no dependence of the gradient sharpness on the length 

of the sample was observed. 
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The DVB samples with density gradient are stable in time (years) and the technique of density 

gradient aerogel production is promising for laser target development. More importantly, it has been 

demonstrated that the production method for density gradient foams is reproducible and precise 

positioning of necessary gradient interval for further isolation is possible and easy with CMT.  
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