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Abstract 21 

A variety of tools have emerged with the goal of mapping the current delivery of ecosystem services 22 

and quantifying the impact of environmental changes. An important and often overlooked question 23 

is how accurate the outputs of these models are in relation to empirical observations. In this paper 24 

we validate a hydrological ecosystem service model (InVEST Water Yield Model) using widely 25 

available data. We modelled annual water yield in 22 UK catchments with widely varying land cover, 26 

population and geology, and compared model outputs with gauged river flow data from the UK 27 

National River Flow Archive.  Values for input parameters were selected from existing literature to 28 

reflect conditions in the UK and were subjected to sensitivity analyses. We also compared model 29 

performance between precipitation and potential evapotranspiration data sourced from global- and 30 

UK-scale datasets.  We then tested the transferability of the results within the UK by additional 31 

validation in a further 20 catchments. 32 

Whilst the model performed only moderately with global-scale data (linear regression of modelled 33 

total water yield against empirical data; slope = 0.763, intercept = 54.45, R2 = 0.963) with wide 34 

variation in performance between catchments, the model performed much better when using UK-35 

scale input data, with closer fit to the observed data (slope = 1.07, intercept = 3.07, R2 = 0.990). With 36 

UK data the majority of catchments showed less than 10% difference between measured and 37 

modelled water yield but there was a minor but consistent overestimate per hectare (86 38 

m3/ha/year).  Additional validation on a further 20 UK catchments was similarly robust, indicating 39 

that these results are transferable within the UK.   These results suggest that relatively simple 40 

models can give accurate measures of ecosystem services. However, the choice of input data is 41 

critical and there is a need for further validation in other parts of the world.  42 

Keywords 43 

UK, mapping, rainfall, evapotranspiration, river flow, land cover 44 

 45 

1. Introduction 46 

Ecosystem services are increasingly used to assess likely impacts of environmental change in societal 47 

and economic terms and to provide a rationale for conservation or environmental management 48 

(Tallis et al. 2008; Braat & de Groot 2012).  However, to incorporate the ecosystem services concept 49 

into assessments and decision making, there is a requirement for accurate mapping and 50 

measurement of ecosystem services  (Malinga et al. 2015).  In some cases, this requirement has 51 

itself been incorporated into policy (European Commission 2011).  52 
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To meet this rising demand there has been a proliferation of methods and tools to map, quantify 53 

and value the provision of ecosystem services (Fisher, Turner & Morling 2009; Seppelt et al. 2011; 54 

Malinga et al. 2015). These vary in complexity from simple approaches based on maps and land use 55 

or habitat-based proxies to complex, process-based models (Seppelt et al. 2011).  Ecosystem service 56 

tools have been designed and applied at widely varying geographic locations and both spatial and 57 

temporal scales. Potential users must thus choose which tools are most appropriate for their 58 

particular situation, and be aware of the limitations of these tools (Willcock et al. 2016). Recent 59 

reviews have identified that one of the key obstacles to successful ecosystem service mapping and 60 

implementation into decision making processes is the comparative scarcity of validation or 61 

measurements of uncertainty in many applications of ecosystem service models (Seppelt et al. 2011; 62 

Maes et al. 2012; Schulp et al. 2014; Malinga et al. 2015). Whilst it is frequently acknowledged that 63 

ecosystem service models function at best as reliable proxies, and at worst as crude estimates, the 64 

validation of the results of ecosystem service models against empirical measurements is 65 

comparatively rare (Seppelt et al. 2011; Vigerstol & Aukema 2011; Schulp et al. 2014; Hamel & 66 

Guswa 2015).  Of those studies which do employ validation, many do so at a limited number of 67 

locations to check the performance of a model within their study region (e.g. Bai et al. 2013; Boithias 68 

et al. 2014; Terrado et al. 2014; Xiao et al. 2015). Whilst this is entirely sensible, the results of such 69 

local-scale validation are less likely to be transferrable to new locations and the regional or national 70 

scales at which ecosystem service models are most widely used (Martínez-Harms & Balvanera 2012) 71 

and most water resource planning takes place (Watts et al. 2015).  Several studies have compared 72 

different ecosystem service models (e.g. Vigerstol & Aukema 2011; Cheaib et al. 2012; Rosenzweig 73 

et al. 2014; Dennedy-Frank et al. 2016), which gives some insight into the uncertainty surrounding 74 

the modelling of the service in question (see Hou, Burkhard and Müller (2013) concerning 75 

uncertainty in ecosystem service modelling) and the utility of the different models, but does not 76 

provide insight into the accuracy of each model in estimating ecosystem service delivery or 77 

representing the biophysical process underpinning the service.  78 

This relative scarcity of large-scale validation means that, for many models, there is comparatively 79 

little information on either the accuracy of model outputs (Seppelt et al. 2011), or on the 80 

performance of models in different circumstances and locations, especially where the latter are in 81 

poorly-studied regions. There is also a lack of information on the requirements of the input data.  In 82 

many cases, the availability and spatial coverage of data is inversely correlated with its resolution 83 

(Hijmans et al. 2005) and, potentially, its accuracy. Thus it is uncertain whether the most widely 84 

available data, even when used in a model which performs well under ideal circumstances, will 85 

produce sufficiently accurate results.   Potential users are thus missing vital information on the 86 
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performance of models, which they need if they are to make informed decisions on which tools to 87 

use and how best to employ them to provide accurate assessments for decision makers (Willcock et 88 

al. 2016).  Validation also provides valuable feedback to ecosystem service model developers who 89 

are seeking to improve the accuracy, utility and efficiency of their models. 90 

Hydrological services are particularly well suited to empirical validation, as the ecosystem processes 91 

which underpin them (e.g. runoff of water, nutrients and sediment) have physical expressions which 92 

can be directly measured at appropriate spatial and temporal resolutions (river flow, nutrient 93 

concentration and sediment load, respectively).  In the UK, these measurements are undertaken by 94 

government bodies and are readily available for academic purposes (e.g. The National River Flow 95 

Archive, NRFA). 96 

This study aims to validate a hydrological ecosystem service tool at the national scale, using widely 97 

available spatial data (of the sort available to most potential users and decision makers) for both 98 

model inputs and validation.  We used a tool from a widely used, open-source ecosystem service 99 

modelling suite, InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs, Sharp et al. 100 

2015). Whilst InVEST tools have been widely used for a variety of research and planning applications 101 

(e.g. British Hydropower Association 2010; Bai et al. 2013; Bangash et al. 2013; Leh et al. 2013; 102 

Boithias et al. 2014; Terrado et al. 2014; Pessacg et al. 2015; Xiao et al. 2015), as with other 103 

ecosystem service models, comparatively few applications have employed an empirical validation of 104 

results at anything other than a local scale.  Therefore our objectives are 1) to examine the 105 

sensitivity of the model to variation in the values of input parameters in a UK context; 2) to compare 106 

the performance of the model using two points on the spectrum of data availability and spatial 107 

coverage (global climatic data and UK specific climate data) by validation against empirical 108 

measurements; 3) to examine whether our results are transferable within the UK.  109 

2. Methods 110 

2.1. THE INVEST WATER YIELD MODEL 111 

The InVEST suite of tools has been developed to enable decision makers to assess trade-offs among 112 

ecosystem services and to compare scenarios of change, for example in land use or climate (Sharp et 113 

al. 2015).  To this end, InVEST comprises a set of models covering a wide variety of ecosystem 114 

services.  The models are based on comparatively simple production functions, being intended to 115 

run quickly on a standard desktop computer and to take advantage of readily available data (Sharp 116 

et al. 2015). Although InVEST models are not designed to reproduce empirical observations, the 117 

water yield model is intended to quantify the relative yields of different catchments or sub-118 

catchments, and be sensitive to modelled changes in drivers such as land use change or climate 119 
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change. We would also suggest that, because the model produces figures of water yield which 120 

appear to have a high degree of numerical precision, and is freely available, it is important to test 121 

whether the results are accurate, as users may not always familiarise themselves with the intended 122 

use and limitations of the model before incorporating the results into the decision making process 123 

(see Willcock et al. 2016). 124 

The InVEST water yield model (Hydropower/Water Yield, InVEST v3.2.0, Sharp et al. 2015) calculates 125 

annual water yield from a catchment, with the intended end use of reservoir hydropower 126 

production (Sharp et al. 2015).  Although hydropower forms a relatively small contribution to the UK 127 

energy sector (DECC 2015), total annual water yield can be considered in the light of many potential 128 

services, including agricultural irrigation, provision of drinking water, hydropower and industrial 129 

abstraction.  The UK is densely populated and has a large proportion of its land area under 130 

anthropogenic land uses.  This leads to competition between demands for water, which is likely to 131 

intensify in the future due to population growth and climate change (Weatherhead & Knox 2000; 132 

Knox et al. 2009).  Validated models of current and predicted future water yield, with clear estimates 133 

of their accuracy and uncertainty, are thus of great importance in strategic water resource planning 134 

(Watts et al. 2015). Therefore, in this study we focused on the biophysical output of water yield. As 135 

the InVEST model is compartmentalised into water yield, water consumption and hydropower 136 

valuation, we used the first two components only.   137 

The model estimates the total annual water yield (Y) for each grid square (x) of the study catchment 138 

as total catchment annual rainfall (P) minus total catchment annual actual evapotranspiration (AET) 139 

(equation 1). The model assumes that, on an annual time step, all water falling as rainfall over a 140 

catchment, minus that which is evapotranspired, leaves the catchment.  No distinction is made 141 

between surface and sub-surface water flow. 142 

Eqn. 1 𝑌(𝑥) = (1 − 
𝐴𝐸𝑇(𝑥)

𝑃(𝑥)
) . 𝑃(𝑥) 

 

In practice, the measurement of annual actual evapotranspiration at the catchment scale is 143 

extremely difficult. Even plot scale evaluation requires highly specialised equipment, and plot and 144 

field scale methods to determine actual evapotranspiration are problematic to apply at the 145 

landscape scale (Evans et al. 2012). The InVEST approach relates AET to potential evapotranspiration 146 

(PET), which is easier to model, using the methodology developed by Budyko (1974) and later 147 

adapted by Fu (1981) and Zhang et al. (2004) (equation 2) where ω is an empirical parameter which  148 
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defines the shape of the curve relating potential to actual evapotranspiration. 149 

PET is estimated as the product of the reference evapotranspiration and the crop coefficient for 150 

each grid square. ω is related to the plant available water content (AWC), precipitation and the 151 

constant Z which captures the local precipitation pattern and additional hydrogeological 152 

characteristics (equation 3) (Sharp et al. 2015).  153 

Eqn. 3 𝜔 = 𝑍 
𝐴𝑊𝐶(𝑥)

𝑃(𝑥)
+  1.25 

 

For a more detailed description of the water yield model see Sánchez-Canales et al. (2012); Bangash 154 

et al. (2013); Hamel and Guswa (2015); Pessacg et al. (2015); and Sharp et al. (2015). 155 

2.2. MODEL INPUT PARAMETERS 156 

The InVEST model requires five biophysical parameters as georeferenced rasters. These are root 157 

restricting layer depth (mm), plant available water content (AWC, as a proportion), average annual 158 

precipitation (mm), average annual potential evapotranspiration (PET, mm) and land use/land cover 159 

(LULC). We obtained these data from a variety of sources, with the aim of ensuring that the data 160 

were easily obtainable and free to license for at least academic use.  These are the kind of data 161 

which are likely to be most widely used in a freely available tool such as InVEST, in terms of 162 

precision, spatial resolution and spatial coverage.  163 

Root restricting layer depth and AWC were obtained from the European Soil Database (ESDB) 164 

version 2.0 (Panagos 2006; Panagos et al. 2012).  Annual precipitation and reference 165 

evapotranspiration were obtained from several alternative sources.  We used two pairings of these 166 

two variables, to compare model performance with data from two points on the spectrum of data 167 

availability and spatial coverage.  First, we used global scale precipitation data from WorldClim 168 

(Hijmans et al. 2005) and PET from the CGIAR-CSI Global-Aridity and Global-PET Database (Zomer et 169 

al. 2007; Zomer et al. 2008).  These are both freely available and have global coverage, at 170 

approximately 1km resolution.  Secondly, we used UK Met Office UKCP09 precipitation data at 5km 171 

resolution (Perry & Hollis 2005; Jenkins, Perry & Prior 2008) and Met Office Rainfall and Evaporation 172 

Calculation System (MORECS) evapotranspiration data.  These datasets are UK-specific and available 173 

to a wide variety of users under the UK’s open government license. Where necessary, data were 174 

geoprocessed to meet the data formatting requirements of the InVEST model in ArcMap (v10.1, 175 

ESRI, Redlands, CA).   176 

Eqn. 2 𝐴𝐸𝑇(𝑥)

𝑃(𝑥)
= 1 +  

𝑃𝐸𝑇(𝑥)

𝑃(𝑥)
−  [1 +  (

𝑃𝐸𝑇(𝑥)

𝑃(𝑥)
)

𝜔

]

1
𝜔⁄
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Where possible, all input data were limited to the same date range as the validation data (2000-177 

2010, see below) and averaged across years, giving average annual precipitation and average annual 178 

PET.  LULC data were obtained from the 25 m raster version of the UK Land Cover Map 2007 179 

(LCM2007, Morton et al. 2011).   180 

The InVEST model also requires several tabular values for each LULC class. These include whether 181 

the land cover class is vegetated or not, rooting depth and a plant evapotranspiration coefficient 182 

(Kc).  This last is used to obtain potential evapotranspiration by modifying the reference 183 

evapotranspiration, which is based on a 15cm tall surface of actively growing, well-watered grass. 184 

We estimated these coefficients for LCM2007 broad habitat classes by matching class descriptions 185 

with those in Canadell et al. (1996), Allen et al. (1998) and Sharp et al. (2015).   Further amendments 186 

were made to these values, to reflect the damp climate of the UK (Smethurst, Clarke & Powrie 187 

2012).  This generally resulted in raised crop coefficients and shallower rooting depths. The 188 

coefficients for urban and suburban areas were amended to reflect the approximate proportion of 189 

green space they typically contain (20% and 60% respectively).  Coefficients for Kc and rooting depth 190 

for each LCM2007 broad habitat are given in Supplementary Material, Table S1. For arable land uses, 191 

actual evapotranspiration varies over the course of a year as crops are sown, grow and are harvested 192 

before the land is then re-cultivated.  Evapotranspiration of growing crops also varies between crop 193 

plant species, crop condition and many other factors (Allen et al. 1998; Hulme, Rushton & Fletcher 194 

2001).  For UK crops and soil conditions, preliminary investigation and previous studies (Allen et al. 195 

1998; Hulme, Rushton & Fletcher 2001) suggested a value of Kc close to one to best represent 196 

annual evapotranspiration from arable land.   197 

The seasonality constant (Z) was estimated as 0.2*N, where N is the average number of rain days (> 198 

1mm) per year over the study period (Donohue, Roderick & McVicar 2012; Hamel & Guswa 2015).  N 199 

was estimated at approximately 150 from UK Met Office data 200 

(http://www.metoffice.gov.uk/climate/uk/datasets/), giving a value of 30 for Z.   201 

Because the validation data (i.e. gauged annual yield, see below) are affected by any consumptive 202 

water use, it was important to account for this.  The InVEST model uses a comparatively crude 203 

method of estimating consumptive water use, by assigning a value of annual consumption per 204 

hectare to each land cover class (Sharp et al. 2015).  Because abstraction varies widely across the UK 205 

(DEFRA 2015), we split the LULC raster based on administrative regions, such that each LULC class-206 

region combination had a unique value, allowing us to assign a suitable abstraction value from 207 

regional abstraction statistics (DEFRA 2015).  We used only the values for abstraction for agricultural 208 

purposes (assigned to the arable LULC class) and public and industrial water supply (assigned to the 209 

urban/suburban LULC class), as most other uses (e.g. hydropower) do not consume water but return 210 
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it to the catchment after use (Terrado et al. 2014).  Public and industrial water supply may also 211 

return water after use, but in many cases it may be returned further downstream from the point at 212 

which it was abstracted, or to a different catchment. 213 

2.3. SENSITIVITY ANALYSIS 214 

We investigated the sensitivity of the model to variations in precipitation, PET, rooting depth, AWC, 215 

Kc and Z following Sánchez-Canales et al. (2012) and Hamel and Guswa (2015).  The biophysical 216 

parameters, which are input as rasters, were varied by ± 10% and ± 20% applied uniformly across the 217 

raster.  Sensitivity to Kc was examined by varying its value for the two dominant LULC classes across 218 

all catchments (arable and improved grassland), by the same proportions as the biophysical 219 

parameters.  Sensitivity to Z was tested using values of zero, one, two, five and further increments of 220 

five up to 50. The model was run independently for each of these variations. 221 

2.4. VALIDATION DATA 222 

For initial validation of the model and comparison of the two sets of climate datasets we selected 22 223 

catchments in England, Scotland and Wales with widely varying land cover, rainfall, elevation, and 224 

geology (Fig. 1 and Supplementary Material, Table S2).  All of these factors are likely to affect actual 225 

water yield and, potentially, the performance of the InVEST water yield model.  Empirical 226 

measurements of gauged daily water flow were obtained from the National River Flow Archive 227 

(NRFA), which collates, quality controls, archives and disseminates hydrometric data from gauging 228 

station networks operated by government environmental bodies across the UK (Fry & Swain 2010 ).  229 

The catchments for each NRFA gauging station have been defined using the Centre for Ecology & 230 

Hydrology’s Integrated Hydrological Digital Terrain Model (Morris & Flavin 1990).  We calculated 231 

total gauged annual water yield for each catchment by summing gauged daily mean flow for each 232 

year from 2000 – 2010 and took the mean value across years.  We analysed how well the modelled 233 

data predicted the empirical data using linear regression. This was done using total annual yield, but 234 

also the per hectare yield, i.e. the total yield divided by the catchment area, to remove trivial 235 

correlation caused by the large variation in area among the catchments.  These calculations (and all 236 

subsequent data manipulation and statistics) were performed in R (v3.1.0, R Core Team 2014). 237 
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 238 

Fig. 1 Coastline of Great Britain overlain with the 22 trial catchments selected for testing the InVEST 239 

water yield model and the 20 additional catchments used for additional validation (grey shaded 240 

areas). See Supplementary Material, Table S2 for catchment characteristics. 241 

2.5. ADDITIONAL VALIDATION OF THE MODEL 242 

To ensure that our selected values of Kc, Z and input datasets for precipitation and PET did not 243 

simply ‘calibrate’ the model to the 22 trial catchments, (i.e. to check that the model performance 244 

obtained from the trial catchments was representative of UK catchments in general and thus that 245 

our results are transferable between UK catchments) we selected the climatic datasets and 246 

parameter values which resulted in the best fit to validation data for the original 22 catchments, and 247 

used these to run the model for a further 20 catchments (Fig. 1).  Catchments were again defined 248 

from NRFA gauging station locations and were chosen to show wide variation in area, land cover and 249 

geology (Supplementary Material, Table S2). 250 

3. Results  251 

3.1. SENSITIVITY ANALYSIS 252 

Modelled water yield was highly sensitive to changes in precipitation (Fig. 2A), with a 10% increase 253 

in precipitation resulting in an 11% -27% increase in water yield, and was somewhat less sensitive to 254 

variation in PET (Fig. 2B).  Sensitivity to both precipitation and PET was highly catchment specific. 255 

With PET, in some catchments a 10% increase in PET resulted in a 14% decrease in water yield, while 256 

the mean decrease was only 5%.  The model was relatively insensitive to rooting depth and AWC, 257 

with a 10% increase in either of these datasets resulting in a yield decrease of 0% - 3%.  Sensitivity to 258 
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Kc was roughly similar to that for PET, which is unsurprising since the effect of the former in the 259 

model is to modify the latter, and was likewise catchment specific.  In general, catchments were 260 

either ‘highly sensitive’, responding to variation in values of all input parameters with variation in 261 

water yield, or ‘less sensitive’, showing comparatively little variation in water yield with any variation 262 

in the values of model input parameters, although the latter still responded to percentage changes 263 

in precipitation with at least a corresponding percentage change in modelled yield. 264 

 265 

Fig. 2 Sensitivity of the InVEST water yield model to variation in the values of input parameters for 22 266 

test catchments. Variation shown as percentage change relative to a ‘baseline’ run with Z = 30 using 267 

UKCP09/MORECS data.  A coloured set of points with connecting line are shown for each catchment.  268 

Catchment sensitivity to variation in precipitation (and thus in other model parameter values) was 269 

significantly positively correlated with mean PET (Pearson’s r = 0.555, p = 0.011) and area of arable 270 

land (Pearson’s r = 0.759, p < 0.001), and significantly negatively correlated with altitude (Pearson’s r 271 

= -0.676, p = 0.001) and area of semi-natural habitat (Pearson’s r = -0.577, p < 0.008).  All of these 272 

catchment characteristics are significantly inter-correlated, such that catchments with higher mean 273 

altitude have a lower cover of arable land and a correspondingly higher cover of semi-natural habitat 274 

and a lower mean PET. 275 

The sensitivity of the model to changes in the value of Z was also strongly catchment specific (Fig. 276 

2F), as expected given the spatial variation in the biophysical variables which modulate the effect of 277 
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Z on water yield (Hamel & Guswa 2015).  Because it is difficult to translate the sensitivity of the 278 

model to Z into an appropriate value of Z to use, the outputs from models with varying values of Z 279 

were compared to the validation data to identify which value of Z resulted in the best fit to the 280 

validation data. The results of this analysis (Fig. 3) showed that model fit (R2) levelled off at Z ≈30 281 

(Fig. 3A), as did slope (Fig. 3B), whilst overestimation of per hectare water yield was also much 282 

reduced at values above 30 (Fig. 3C).  This supports the value of Z = 30 for the model runs detailed 283 

below and hence the estimation of Z from mean annual rain days. 284 

 285 

 286 

Fig. 3 Effects of varying the value of the seasonality constant (Z) on the relationship between 287 

modelled and gauged water yield for 22 test catchments, using the UKCP09/MORECS data. A) R2 of 288 

linear regression between modelled and gauged catchment yield; B) Slope of linear regression 289 

between modelled and gauged catchment yield; C) Intercept of linear regression between modelled 290 

and gauged yield per hectare. 291 

3.2. MODEL VALIDATION AND COMPARISON OF CLIMATIC DATASETS 292 

Both global- and UK-scale climate datasets resulted in estimated water yields which were strongly 293 

correlated with empirical yields obtained from NRFA gauged river flow (Fig 4, Table 1).  The 294 

WordClim and CGIAR-CSI data performed less well than the UKCP09/MORECS datasets.  Although R2 295 

values for models using the global input data were only slightly lower (e.g. 0.96 compared with 0.99; 296 

Table 1), the slope values for per hectare yield (including confidence intervals) were less than one 297 

(Table 1).  Hence the global data led to considerable under-estimates (up to 45%) of water yield for 298 

catchments where the yield per hectare was high and to overestimates of water yield for those 299 

where it was low (Fig. 4B), leading to the intercept of 1443.63 m3 per hectare per year. By contrast, 300 

the UKCP09/MORECS data led to more consistent and accurate estimates for total water yield when 301 

adjusted for consumptive abstraction (Table 1). When per hectare yield was considered, the 302 
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UKCP09/MORECS data gave good fits to the NRFA data (R2 = 0.949), with a slope not significantly 303 

different from one and the intercept indicating a consistent but minor overestimate of 86.3 m3 per 304 

hectare per year when adjusted for consumptive abstraction (Fig 4D).  305 

Table 1.  Results of linear regressions between InVEST modelled and empirical water yield for the 22 306 

original catchments, using two input datasets for the precipitation and reference evapotranspiration 307 

parameters.  Intercept, slope ± 95% confidence interval and R2 are given for total catchment yield in 308 

millions of cubic metres and yield per hectare in cubic metres, for both raw water yield (R) and yield 309 

adjusted for consumptive abstraction (A) 310 

 
 Total estimated yield  Estimated yield per hectare 

Input data Abstraction Intercept Slope R2   Intercept Slope R2 

WordClim/ 
CGIAR-CSI 

R 86.52 0.759 ± 0.072 0.958  1814.68 0.549 ± 0.131 0.781 

A 54.45 0.763 ± 0.068 0.963  1443.63 0.577 ± 0.127 0.810 

         

UKCP09/ 
MORECS 

R 35.13 1.066 ± 0.041 0.993  457.38 1.053 ± 0.115* 0.946 

A 3.07 1.069 ± 0.044 0.992  86.32 1.081± 0.114* 0.949 

* Confidence intervals of slope include one 

The mean percentage differences between gauged and modelled water yield were ± 23.36% (SE ± 311 

4.40) for the WordClim/CGIAR-CSI data and ± 18.55% (SE ± 4.94) for the UKCP09/MORECS data.  312 

However, in both cases one catchment (Welland, labelled 20 on Fig.1) showed a percentage 313 

difference of over 100%.  Although the difference between the mean percentage 314 

under/overestimates of the two datasets does not appear great, it is important to note that the 315 

mean is somewhat skewed by the few catchments for which the model performs particularly poorly, 316 

especially for the UKCP09/MORECS data.  Median values show that for the UKCP09/MORECS data 317 

the majority of catchments had percentage differences between gauged and modelled water yield of 318 

less than 10% (median = 9.74%) whilst for the WordClim/CGIAR-CSI data more catchments vary by 319 

up to 20% (median = 17.19%).   320 

Despite the significant correlations between catchment sensitivity to variation in the input 321 

parameter values and catchment characteristics, percentage under/overestimates of total water 322 

yield using the UKCP09/MORECS data did not show any significant correlations with catchment area, 323 

altitude, mean precipitation, mean PET, geology (i.e. base flow index) or land cover.  324 
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 325 

Fig. 4 InVEST modelled water yield (corrected for estimated consumptive abstraction) vs gauged 326 

water yield, using two input datasets for the precipitation and reference evapotranspiration 327 

parameters.  A) Estimated total catchment yield in millions of cubic metres, using WordClim/CGIAR-328 

CSI data; B) Estimated yield per hectare in cubic metres, using WordClim/CGIAR-CSI data; C) 329 

Estimated total catchment yield using UKCP09/MORECS data; D) Estimated yield per hectare using 330 

UKCP09/MORECS data.  Grey, dashed line indicates a relationship with intercept = zero and slope = 331 

one. 332 

3.3. ADDITIONAL VALIDATION 333 

Comparing modelled and gauged data for a further 20 catchments (using the UKCP09/MORECS 334 

dataset because this gave the best results for the original 22 catchments) showed very similar results 335 

to the original 22 catchments (Figure 5). Confidence intervals for the linear regression slopes again 336 

overlapped with one, and R2 values were high for both total yield (intercept = 41.48, slope = 0.93 ± 337 

0.13, R2 = 0.92) and yield per hectare (intercept = 684.75, slope = 0.91 ± 0.23, R2 = 0.87), suggesting 338 

that the data and parameters used to obtain the best results on the original catchments are likely to 339 

be applicable across a wide range of catchments within the UK. 340 
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 341 

Fig. 5 InVEST modelled total water yield (millions of m3) (A) and per hectare water yield (m3/Ha) (B) 342 

against gauged water yield for the 22 original test catchments (grey symbols and line) and the 20 343 

additional catchments (black symbols and line).  Model run using UKCP09/MORECS dataset for 344 

precipitation and PET and corrected for estimated consumptive abstraction. 345 

4. Discussion 346 

Our results show that the InVEST water yield model can produce accurate estimates of water yield in 347 

UK river catchments.  However, this accuracy is dependent upon careful selection of appropriate 348 

model parameters and input data, especially precipitation and PET to which the model is most 349 

sensitive.  The input values used in this study are transferrable to other UK catchments (as seen by 350 

our additional validation using extra catchments). However, when the model is to be used 351 

elsewhere, we strongly advocate the trialling of different values for input parameters representing 352 

different environmental contexts and empirical validation wherever possible.  353 

The InVEST model was initially designed to assess water availability for hydropower production. 354 

Hydropower forms a relatively small contribution to the UK energy sector (DECC 2015) and the 355 

spatial distribution of hydropower generation is very uneven, with most large hydropower schemes 356 

in large, upland catchments with abundant space for reservoirs. Of course, accurate assessments of 357 

water yield are also important for examining the current delivery of, and impact of future 358 

environmental change on, other ecosystem services including, water quality in terms of nutrients 359 

and sediment, drinking water and crop production.  The demand for, and conflicts between, the 360 

latter two services are likely to increase with the effects of climate change both at a UK 361 

(Weatherhead & Knox 2000; Knox et al. 2009) and global scale (Döll 2002). As such, the InVEST water 362 

supply model has more general uses than for estimating hydropower. Although there is also the 363 

potential for ecosystem disservices from, for example, erosion and flooding, these are dependent on 364 

a wide range of additional factors (Brown & Damery 2002; CEH 2008). 365 
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4.1. THE IMPORTANCE OF VALIDATION  366 

Several studies have sought to address the issue of validating ecosystem service models. However, 367 

many of these have been limited by the availability of suitable validation data. For example,  Schulp 368 

et al. (2014) sought to undertake model validation for a variety of ecosystem services at a European 369 

scale, and whilst their results give an indication of the ability of different modelling approaches to 370 

predict spatial patterns of ecosystem service delivery, their need to use proxies in the absence of 371 

empirical ecosystem service measures prevented a quantitative assessment of model accuracy.  372 

Where data have been available, some studies at global or continental scales have compared results 373 

from the InVEST water yield model (Mendoza et al. 2011), or the Budyko modelling framework upon 374 

which it is based (Zhang et al. 2004; Zhou et al. 2012), to empirical observations.  Such studies are 375 

useful in comparing models in terms of their ability to respond to global patterns of precipitation but 376 

do not provide the information necessary for users to assess whether the model is accurate at a 377 

national or regional scale, despite these being the scales at which the majority of ecosystem service 378 

mapping exercises are performed (Martínez-Harms & Balvanera 2012) and at which most strategic 379 

water resource planning takes place (Watts et al. 2015).  380 

Other recent studies have used empirical validation data to assess the performance of the InVEST 381 

Water Yield model, but covering only single catchments or sub-catchments within a single river 382 

basin.  In contrast to the present study, several of these studies have had the primary aim of 383 

quantifying spatial variation and predicted changes in water yield, with validation at a small number 384 

of points to check the reliability of their results, rather than a more general validation of the model 385 

across catchments (e.g. Bai et al. 2013; Boithias et al. 2014; Terrado et al. 2014; Xiao et al. 2015).  386 

Whilst this is entirely sensible, and such studies have found the InVEST model to be a good predictor 387 

of measured water yield, the results of such studies are not necessarily transferable to other 388 

locations or scales, especially where model inputs have been ‘calibrated’ to match the empirical 389 

data.  390 

Comparatively few studies have had the explicit aim of investigating the model performance, 391 

uncertainty and sensitivity of the InVEST water yield model.  These have largely been conducted in 392 

sub-catchments within single river basins which vary widely in area, climate and land cover (e.g. 393 

4950 Km2 Llobregat River basin, Catalonia, Spain (Sánchez-Canales et al. 2012); 23 600 Km2 Cape Fear 394 

basin, North Carolina, USA (Hamel & Guswa 2015); 57 400 Km2 Chubut River basin, Patagonia, 395 

Argentina (Pessacg et al. 2015)).  However, their results are generally corroborated by our national 396 

scale analysis (UK land area = 241 930 km2).  These include high sensitivity to precipitation and, to a 397 

slightly lesser extent, to evapotranspiration data, as well as empirical support for setting Z from 398 

numbers of rain events per year (Hamel & Guswa 2015).  Our results also corroborate those of these 399 
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previous studies in demonstrating the substantial improvements in model performance which can 400 

be obtained by comparing alternative data sources, especially for those parameters which sensitivity 401 

analysis identifies as being major drivers of the model (Sánchez-Canales et al. 2012; Hamel & Guswa 402 

2015; Pessacg et al. 2015).  For example, Boithias et al. (2014) paid particular attention to obtaining 403 

precipitation and evapotranspiration data, because of the sensitivity analysis undertaken by 404 

Sánchez-Canales et al. (2012) in a similar catchment.  As a result, they were able to obtain a good fit 405 

to their gauged data by relatively minor (± 10%) calibration of Z, Kc and water demand values 406 

(Boithias et al. 2014). 407 

All of these studies using some form of validation, and the differences between them, support our 408 

suggestion that formal sensitivity analysis and, where empirical data are available, validation should 409 

be employed whenever the InVEST model is being used in new regions. Even a relatively small 410 

number of validation points from a range of locations can provide valuable insights into the accuracy 411 

of the model and the relative performance of different input datasets.    If there are no validation 412 

data, our results suggest that datasets of the appropriate spatial scale (e.g. national rather than 413 

global) may perform better. The observed differences between our two pairs of input precipitation 414 

and PET datasets are probably due to several causes.  The WorldClim and CGIAR-CSI data are annual 415 

averages calculated over the approximate period 1950-2010.  The fact that they do not span the 416 

same date range as the validation data may explain some of their poor performance, although 417 

annual mean precipitation over England and Wales has not changed significantly over the date range 418 

(Jenkins, Perry & Prior 2008). Furthermore , WorldClim and CGIAR-CSI data are interpolated from 419 

data which are not spatially uniform in distribution, and thus vary spatially in the uncertainty around 420 

the given value of precipitation (Hijmans et al. 2005; Hamel & Guswa 2015; Pessacg et al. 2015).  The 421 

UKCP09 data are also interpolated from a network of UK rain gauges, but at a much higher density of 422 

sampling points (Perry & Hollis 2005). Errors in the WorldClim precipitation data also tend to be 423 

highest in regions with high rainfall (Hijmans et al. 2005), such as the UK.  Global-scale datasets like 424 

WorldClim are both widely used and readily available, so their relatively inconsistent performance 425 

across catchments, and the much better performance of the UKCP09 and MORECS data highlights 426 

the need for validation to select the most appropriate input data, or at least to assess model 427 

performance and the resultant confidence in the results if no other data are available.  As might be 428 

expected, it appears that large improvements in model performance can be achieved simply by 429 

ensuring the input data are matched to the study region in terms of spatial and temporal scales. 430 

The apparent trend for catchments to be consistently ‘sensitive’ or ‘insensitive’ to variation in the 431 

values of all model input parameters suggests that catchment characteristics (e.g. soil and bedrock 432 

characteristics) can strongly influence the degree to which errors in the input parameter values will 433 



17 
 

affect the model outputs.  Our results suggested that, in the UK, ‘upland’ type catchments, with low 434 

PET and high cover of semi-natural habitats are less sensitive than ‘lowland’ catchments with high 435 

PET and a higher cover or arable land (which has a high Kc).  Pessacg et al. (2015) found that 436 

catchments with a higher cover of LULC classes with a high value of Kc were most sensitive, 437 

potentially giving a +150% change in modelled water yield in response to a +30% error in 438 

precipitation data, a response very similar to the most sensitive catchments in our results (see Fig. 439 

2A).  However, the good overall fit between modelled and measured data across catchments and the 440 

lack of significant correlation between model accuracy and catchment descriptors suggest that, 441 

when using UKCP09 and MORECS data, errors in the input datasets are comparatively minor, at least 442 

to the extent where they are not the major driver of differences between modelled and gauged 443 

water yield.  The remaining model error is therefore likely to be due to limitations of the model or 444 

the validation data (see section 4.2) or more complex interplay between catchment characteristics. 445 

A productive area for further research could be more detailed investigation into the drivers of 446 

varying sensitivity between catchments, with the aim of using catchment descriptors as predictive 447 

variables in determining the impact of driving data on change in water yield.  448 

4.2. LIMITATIONS OF THE MODEL AND VALIDATION DATA 449 

Despite the good performance of the InVEST model when refined to account for water abstractions 450 

and using national input datasets, the accuracy of the modelled water yield values still varied to 451 

some extent between catchments (see Fig. 4C and 4D) and there was a slight but consistent 452 

overestimate of per hectare water yield.  The InVEST water yield model contains several 453 

acknowledged limitations and simplifications (Sharp et al. 2015).  These include the limited ability of 454 

the model to account for inter- or intra- annual variation in water supply.  Many ecosystem services 455 

(irrigation, hydropower) and disservices (flooding) linked to water yield will be affected by the timing 456 

of water availability and peak flows, not just total annual yield. A further simplification is the lack of 457 

consideration of lateral and groundwater flows, such that effects of complex land use patterns or 458 

underlying geology remain unaccounted for (Sharp et al. 2015). Finally, the model handles 459 

consumptive water use in a very simplistic fashion, by allocating a per hectare value to each LULC.   460 

Although including per hectare estimates of consumptive abstraction did reduce overestimation of 461 

water yield and slightly improved model performance (Table 1), consumptive use is likely to vary 462 

widely between catchments and between different areas of the same LULC.  In the UK (and in many 463 

other parts of the world), many large contributors to consumptive use are single point intakes.  The 464 

use of reservoirs and water transfer schemes to regulate river flows for abstraction or flood 465 

prevention is common (Gibbins et al. 2001), can involve very large volumes of water (Davies, Thoms 466 

& Meador 1992; Boithias et al. 2014) and is indicated (but not quantified) in the NRFA catchment 467 
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description metadata for several of the gauging stations used in this study (Fry & Swain 2010 ). 468 

Although the InVEST model structure does not directly account for point abstractions, where the 469 

locations of these are known, these can be represented as separate LULC classes, with 470 

corresponding consumptive water use values.  Alternatively, the model outputs can be adjusted on a 471 

per catchment basis to account for known point source abstractions.  However, such data can be 472 

hard to obtain due to regulatory restrictions in the UK water industry.  473 

It is also worth noting that the empirical validation data themselves are also affected by issues of 474 

accuracy, many of which are not captured by the model (e.g. the InVEST water yield model does not 475 

distinguish between surface and sub-surface water flow).  Measured river flows may be reduced by 476 

bypassing of the gauging station via flooding, canals or groundwater flow and either reduced or 477 

increased by catchment transfer, which may occur either consistently or only at times of particularly 478 

high or low flow.  These factors are likely to result in measurements which accurately record the 479 

flow of water in the gauged channel, but not the true total water yield from the catchment of the 480 

gauging station.  Catchments where a significant proportion of total water yield leaves via sub 481 

surface flow (or other routes) will show a considerable overestimate of total yield as gauged from 482 

stream flow.  These issues are likely to affect many individual stations. For example, the severe 483 

model overestimation in the Welland catchment might be explained by the fact that it is 484 

comparatively small (707 km2) and subject to high levels of abstraction to a reservoir. More 485 

seriously, gauging stations may be unable to record accurate readings of water flow over or under 486 

certain flow thresholds.  Whilst at least one of these factors was present in the majority of 487 

catchments in this study (Fry & Swain 2010 ), these issues are unlikely to cause systematic bias 488 

because they are not consistent across catchments.  For example, over half of the 42 catchments 489 

studied had factors affecting runoff documented by the NRFA which potentially offset one another 490 

(i.e. some factors likely to divert water flow from the river channel and others likely to increase it).  491 

The prevalence of these issues, along with the presence of outliers, does serve to illustrate the 492 

importance of incorporating local knowledge into decision making, alongside ecosystem service 493 

models and empirical validation, as stakeholders may often be able to provide information on 494 

processes not captured by the model which can help to explain or mitigate against poor model 495 

performance. Users of InVEST are strongly encouraged to involve stakeholders in scenario 496 

development and interpretation of model outputs (Sharp et al. 2015).   497 

4.3. CONCLUSIONS 498 

Ecosystem service models such as InVEST have the potential to provide a crucial underpinning to 499 

decision and policy making. However lack of robust testing limits their credibility. The work 500 
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presented here demonstrates that the relatively InVEST simple water yield modelling framework can 501 

perform well as long as input data and parameters are representative of the spatial and temporal 502 

scale concerned. Care should be taken with application of these tools using indicative datasets at the 503 

global scale, and in the absence of more local scale data, empirical validation of model outputs 504 

becomes even more important. However, the need for ecosystem service models is driven by the 505 

fact that many parts of the world lack relevant empirical data (Crossman et al. 2013). Therefore, we 506 

firstly recommend that, where empirical data are available, models should be validated for locations 507 

in the region of interest and the effect of alternative parameter values or input data should be 508 

explored. Secondly, we recommend the application of sensitivity analyses to understand how model 509 

outputs vary across the region of interest, either in tandem with validation or, if validation data are 510 

not available, to understand uncertainty in model predictions. Finally, if no validation data are 511 

available, we advise exercising caution when interpreting model output values. For example, our 512 

results suggest that the InVEST water yield model could still be used to assess the rank order of 513 

catchments in terms of water yield or the direction of change in relation to scenarios of 514 

environmental change (e.g. Willcock et al. 2016) even where absolute values are less reliable.  515 
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