Use of Swarm gradient field data to improve lithospheric field models

Ciarán Beggan [ciar@bgs.ac.uk] and William Brown
British Geological Survey, Edinburgh, United Kingdom

The Swarm mission, launched in November 2013, consists of three identical satellites designed to measure the magnetic field to the highest resolution ever. One of the Swarm mission's unique aspects is the ability to measure the magnetic field at approximately the same location using two satellites (Swarm A and Swarm C) which travel close to one another at the same altitude.

Using measurements of the gradient of the field between the satellites (i.e. across-track) removes much of the external magnetic field's influence in the data, leaving the contribution from the steady internal field, each time the satellites pass over the same location [Ref. 1].

In combination with measurements of the satellites' along-track differences this adds a new capability that can be exploited to produce models of the crustal magnetic field with higher accuracy than ever before. As the mission accumulates more data at lower altitudes, our understanding of the Earth's magnetic field will continue to improve.

We apply a Slepian decomposition technique to the new BGS lithospheric field model to analyse the relative contributions to the magnetic field from the ocean and continents, which may be useful for geological applications.

What is Field Modelling?
To produce a model of the magnetic field, we collect data from Swarm (and other satellites) and remove the known contributions of the main field and the external magnetospheric field to leave just the lithospheric field. The data points are inverted to form a model of the magnetic field described using Spherical Harmonic coefficients. This method is useful for compactly describing the magnetic field across the globe in a small number of parameters.

However, there are still several issues in terms of noise within the directly-measured data:
- Ionospheric currents in the auroral regions
- Field-aligned currents in the polar regions
- Large-scale magnetospheric currents
- The polar gap from the satellite orbit

Some of these noise issues can be overcome by using the along-track gradient (the difference between measurements at two points in time) and the across-track gradient (east-west difference between two satellites). Swarm uniquely allows across-track gradients to be measured and used in lithospheric field models.

What are the Input Data?
The latest BGS lithospheric field model is defined for spherical harmonic degrees 16-133 (~300 km resolution). It is derived from CHAMP and Swarm vector and scalar magnetic field data which have had a core field and magnetospheric field model removed prior to inversion. (CHAOS-5v4 [Ref. 2]). We use an iterative residual re-weighting scheme from Tarantola [Ref. 3] to down-weight the influence of noisy data. Figure 1 shows the input data.

The model employs (a) 391,748 CHAMP data from altitudes below 300 km, along with (b) 380,978 along-track gradient measurements of (r, θ, φ) derived from the same CHAMP dataset. The Swarm data consist of (c) 36,720 across-track gradients from Swarm A and Swarm C, taken at altitudes of between 442 and 530 km and (d) 171,398 across-track measurements. For comparison, the model values from CHAOS-5 are shown in (e) and (f), which closely match. All data were selected geographically quiet-times from the night-side portions of the respective satellite orbits. Data cadence is 15 seconds.

Analysis using Slepian functions
Slepian functions are a type of mathematical basis function which can be used to optimally divide a spectro-spatial dataset into one or more parts [Ref. 5]. In this study, the crust has been divided into two regions, oceanic and continental, similar to the analysis of [Ref. 6], though this is the first time such a high degree model (N=16-133) has been analysed in this manner.

The oceanic crust has much lower energy than the continental crust at nearly all degrees (spatial wavelengths). A comparison of the spectra of the BGS lithospheric field model to that of MF7 shows differences mainly at the higher degrees in the continental region. The differences may be attributable to the use of the gradient method in the BGS model, particularly at higher degrees (> 120), though there will also be effects arising from the different methodologies used to make the models.

Future Improvements
The ESA Swarm mission is providing an unprecedented volume of quality magnetic field data to the community. This is allowing researchers to produce better and better models. Magnetic field data are collected, particularly, for short timescales, which may see the field change rapidly. The resolution of our field models, however, is substantially lower (e.g. 200 km resolution), than the resolution of the data.

The iterative nature of the modelling process means that as the characterisation of the other sources (core, external field) improves, the lithosphere will also improve. As the lower part of the Swarm constellation descends over the mission, the resolution of crustal field models should improve to degree 150 and beyond.

Acknowledgements and references
This research was supported by the European Space Agency. GFZ Potsdam provided the CHAMP data.


Figure 1: (a) CHAMP observed radial lithospheric field (with CHAOS-5 core and magnetosphere removed); (b) CHAMP along-track radial gradient data; (c) Swarm A and C across-track radial gradients (r) from Swarm A and Swarm C; (d) across-track gradients and (e) CHAOS-5v4 model along-track radial gradients are shown for comparison.