Ultra-short, repetitively pulsed atmospheric-pressure microplasmas

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: WALSH, J.L. ... et al, 2012. Ultra-short, repetitively pulsed atmospheric-pressure microplasmas. Presented at: 13th International Conference on Plasma Surface Engineering, 10th-14th September 2012, Garmisch-Partenkirchen, Germany.

Additional Information:

- This paper was presented at PSE 2012 - the 13th International Conference on Plasma Surface Engineering.

Metadata Record: https://dspace.lboro.ac.uk/2134/16385

Version: Accepted for publication

Publisher: European Joint Committee on Plasma and Ion Surface Engineering.

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Ultra-short, repetitively pulsed atmospheric-pressure microplasmas

J.L. Walsh¹, F. Iza², Wen-Cong Chen³, X. Ming³, Y.K. Pu³

¹Department of Electrical Engineering and Electronics, University of Liverpool, L69 3GJ, UK.
²School of Electronic, Electrical and Systems Engineering, Loughborough University, LE11 3TU, UK.
³Department of Engineering Physics, Tsinghua University, Beijing, 100084, China.

Low-temperature atmospheric-pressure plasmas are of great importance in many emerging biomedical and materials processing applications; in recent years there has been a growing interest in short-pulsed excitation of such plasmas as a gateway to access highly non-equilibrium discharge chemistry. This contribution employs time-resolved electrical and optical diagnostics in combination with a time-hybrid computational model to uncover the physics behind repetitive short pulsed excitation of atmospheric pressure plasma. It is shown that during the applied voltage pulse the peak dissipated power can exceed $1 \text{GW/cm}^3$ resulting in electron densities approaching $10^{17} \text{cm}^{-3}$ (~6 orders of magnitude larger than conventional low-temperature atmospheric discharges) while the gas temperature remains close to room temperature.

Using discharges ignited in neon, helium and argon the temporal evolution of excited species in a nanosecond pulsed microplasma are examined experimentally. Over the applied voltage pulse the emission intensity of all excited states grow rapidly. After the applied voltage pulse, electrons rapidly cool below the excitation threshold suggesting emission from excited neutrals should also diminish rapidly. However, in all gases it is clear that emissions are observed for several microseconds after each applied pulse, far in excess of their radiative lifetimes. In addition, line ratio measurements indicate considerable reheating in discharges ignited in neon and helium; potential reheating mechanisms are explored.

Finally, the influence of pulse width on the discharge chemistry is considered. It is observed that as pulse duration is decreased from several hundred nanoseconds to less than ten nanoseconds the discharge chemistry changes considerably. This finding suggests that pulse width may be a route to tailor the discharge chemistry to suit a given application; a finding that could have far reaching consequences.