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Lifelogging Data Validation Model for Internet
of Things enabled Personalized Healthcare

Po Yang, Danius Stankevicius, Vaidotas Marozas, Zhi kun Deng, Arunas Lukosevicius, Feng [
Enjie Liu, Dali Xu

Abstract—the rapid advance of the Internet of Things (l1oT)
technology offers opportunities to monitor lifelogging data by a
variety of 10T assets, like wear able sensors, mobile apps, etc. But
dueto heter ogeneity of connected devices and diver selife patterns
in an loT environment, lifelogging personal data contains much
uncertainty and are hardly used for healthcare studies. Effective
validation of lifelogging personal data for longitudinal health
assessment isdemanded. I n this paper, it takeslifelogging physical
activity as a target to explore the possibility of improving validity
of lifelogging datain an | oT based healthcar e environment. A rule
based adaptive lifelogging physical activity validation model,
LPAV-loT,isproposed for eliminatingirregular uncertaintiesand
estimating data reliability in 10T healthcare environments. In
LPAV-loT, a methodology specifying four layers and three
modulesis presented for analyzing key factorsimpacting validity
of lifedlogging physical activity. A series of validation rules are
designed with uncertainty threshold parameters and reliability
indicators and evaluated through experimental investigations.
Following LPAV-I 0T, acasestudy on an |oT enabled personalized
healthcare platform MHA [38] connecting three state-of-the-art
wear able devices and mobile apps are carried out. The results
reflect that the rules provided by LPAV-l10T enable efficiently
filtering at least 75% of irregular uncertainty and adaptively
indicating the reliability of lifelogging physical activity data on
certain condition of an |oT personalized environment.

Index Terms—Internet of things, physical activity, per sonalised
healthcar e, data validation.

. INTRODUCTION

he concept of “Internet of Things” (IoT) has become an

appears that the 10T enabled technology is transf@rmin
traditional hubs of healthcare, such as clinics and hospitals, to
personalized healthcare systems and especially mobile
environments. Continuing monitor patients’ conditions outside

the hospital environment enables future healthcare to be
delivered faster, safer and at lower cost, with enhanced
sustainability. Unfortunately though, using 10T enabled
technology in healthcare systems is challenging considering
non-standardized loT system architectures and lack of
interoperability, heterogeneity of connected wearable devices,
high volume of generated multi-dimensional personal health
data, and privacy and security issues. Also, these issues lead to
a great uncertainty in personal health information. Effective
validation of these high volume and multi-dimensional health
data becomes a major demand on loT based personalized
healthcare systems.

Technically and functionally sophisticated wearable
devices and mobile applications [29-31] enable recording
variety of lifelogging personal health information; including
physical activity, weight, sleep quality, heart rate, blood
pressure, etc. Among this data, physical activity is mostly well-
observed due to the maturity of microelectromechanical
systems (MEMS) based accelerometer technology as well as
easily and openly accessible Global Position System (GPS).
Numerous research works [21-28] and commercial products
[29-31][33] have attempted to accurately monitor physical
activity and access activity patterns and intensity level, by using
either dedicated wearable sens@%31] or advanced machine
learning algorithms [22-25]. But these studies mostly depend
on performance optimization of single sensor or a combination
of GPS and accelerometer by analyzing raw sensors’ signals. In
loT based personalized healthcare environments, physical

increasingly growing hot topic within both academia andctjvity data is discretely daily basis from globally

industry [1-6]. The fundamental idea of 10T is to build Up @eterogeneous third party devices. Traditional physical activity
gIoquIylnter_connected continuum ofavarlety_ofobj_gcts_m th&slidation methods hardly deal with these scattered and
physical environment. Today, with the pervasive utilization (ﬂeterogeneous data. Also, due to diversity and change of
heterogeneous sensors - such as accelerometers, gyroscqpesona| lifestyles and environmental impacts, lifelogging

altimeters, temperature, pressure, humidity, UV radiationyysical activity data in 10T enabled personalised healthcare
Radio-Frequency Identification (RFID) tags and other portablg stems has remarkable uncertainties. Effective validation of
low-cost devices, significant advancements in the 10T hayfese data from heterogeneous devices is an essential but highly
generated a large amount of opportunities in industrial areas B%manding task. The requirements of customization and
11], particularly in healthcare field.p-18]. , longitudinal study in an loT healthcare environment make this
Due to the exponential growth of commercial wearablg,sk ever harder. Our study in this paper attempts to take
devices [11-20] and mobile apps [23} it has become jite|ogging physical activity as a target to explore the possibility

increasingly possible? to remotely monitorapati.ent or ci‘.[izen’.s of improving validity of lifelogging data in an loT based
health by connecting heterogeneous medical devices into @, thcare environment.

loT platform [18-20]. A promising trend in healthcare fields



This paper investigates the problem of effectively validatini smar coding
lifelogging physical activity in a heterogeneous devices base [ |
loT enabled personalized healthcare environment. A rule bas : ‘ 3 i O
adaptive lifelogging physical activity validation model, LPAV- ("3%< .\ £ ~J¢ X7 1§ @uals b pum— .
IoT, is proposed for eliminating irregular uncertainties ant S5 B 7%
estimating physical activity data reliability in IoT enabled
personalized healthcare systems. It enables data validati
procedure in 10T environments to be a dynamic standardiz:

Y

Ontology-based \':

Doctor/

empirical analysis workflow with four layers including factors, =29 gmmy" i} =ML | o
methodologies, knowledge and actions. The factors impactil IoT-based rehabilitation system \ e ST kf;:;‘;y
the validity of physical activity are categorized into device N Exoskoleton W\ Hliovices
personal and geographic. Each factor defines a longitudinal d { Intelligent design -\] S s ——
analysis based investigation strategy. The validation rules & QL Beteuslogy ) o i

represented with a set of uncertainty threshold parameters & Subsystem of smart rehabilitation
reliability indicators, which can be initiated by historical data Fig. 1 10T personalized healthcare systems (adopted from
and adaptively updated regarding the needs of an 10T enabled [14])

personalized healthcare system. The effectiveness of LPAV-
loT is verified by carrying out a case study on an loT enablé€chnical and functional maturity of MEMS accelerometer
healthcare platform MHA [38] with statf-the-art wearable technology and GPS, physical activity is mostly well-observed.
devices and mobile apps are carried out. The results reflect thafs a major risk measure for chronic diseases, daily physical
the validation rules and action criteria delivered by LPAV-loTctivity recognition and monitoring with wearable sensors have
effectively improve the validity of lifelogging physical activity been investigated by a number of researchers [21-2834R9-
data in the MHA system. LPAV-IoT provides an efficient andn [22-23], authors carry out a study on recognizing and
adaptive solution for the validation of 10T environment basegassifying physical activity by analyzing signal features from
lifelogging physical activity datarhe main contributions are 3p (triaxial) accelerometers on hip and wrist and GPS data with
below: . ) ) . . ahybrid classifier of custom decision tree and neural networks.
1. A rule based adaptive lifelogging physical activityrne resylts are reported a classification accuracy up to 89% for

validation model, LPAV-IoT, is proposed for effectivelyyaacting 10 daily actions. ProeTex [24] project develops an
eliminating irregular uncertainties and estimating physic lgorithm that combines features of ECG and triaxial

activity data reliability in 10T enabled personalized healthcargCCeIerometer in smart garments for detecting nice classes of

systems. hysical activity with overall classification accuracy up to

2. A series of validation rules representing with uncertain 0 :
threshold parameters and reliability indicators are designed a 8%. In [27-28], researchers have integrated on-body sensors

evaluated through a set of experimental investigation. ThelSe? Wireless network for the purpose of activity recognition and
rules are capable of being adaptively and dynamically updatdigstyle monitoring. Authors in [27] utilize a network of five

regarding the needs of an loT enabled personalized healthca¢gelerometers to classify a sequence of 20 daily activities with
system. accuracy of 84%. The system in [28] that uses seven different

3. A case study on an loT enabled healthcare platform MHgensors embedded in a single node, including microphone,
[38] with heterogeneous devices is provided to evaluate tpgototransistor, 3D accelerometer, 2D compass, barometer,
proposed validation rules and action criteria. A discussion aagnbient light and digital humidity, to classify 12 movements
analysis on experimental results are given. with accuracy up to 90%. The outstanding achievement of all

The rest of the paper is structured as follows. Section dforementioned work on daily physical activity recognition is
reviews related workSection Il presents the description ofhigh classification accuracy of recognizing multiple daily
LPAV-IoT model. Section IV gives experimental investigatiomctivity actions. But all of these studies rely on a collection of
with LPAV-loT model. Section V reports a case study thglhysical activity data as a raw accelerometers’ signals. In loT
applies the proposed LPAV-loT model in MHA platform [38] hased personalized healthcare systems, physical activity data
Section VI provides the conclusions and future work. comes mostly from globally heterogeneous third party devices.

The traditional classification methods [21-28] are infeasible to
Il RELATED WORK handle these scattered and heterogeneous physical activity data.

The concept of 10T based personalized healthcare system&ecently, many commercial wearable products [29-30] and
[14] uses a set of interconnected devices to create an Imbbile applications [3132] [36] have been released for the long
network devoted to healthcare assessment, including patietstem record and collection of personal lifelogging physical
and automatically detecting situations. In Fig.1, the generattivity. The most famous mobile apps, suchMasres are
system collects personalized health information from differetased on smartphone 3D accelerometer data and GPS
wearable sensing devices through a middleware that providaformation which allows tracking user movement activities
interoperability and security needed in the context of 10T fancluding location, distance and speed. The wearable products,
healthcare. These wearable devices are capable of mgordiuch asFitbit Flex Nike+ Fuelband, Withings, are all
multiple type health data, including physical activity, weightwristband devices that record steps count, distance, and calories
sleep, heart rate and blood pressure. Among this data, due toldbmt. These wearable devices communicate with mobile phone



via Bluetooth employing relevant mobile applications. Whilalynamically changed and updated by feeding new historical
above products have been proven its popularity among genggrhysical activity data into the &Y/ -loT model. Also, LPAV-
users, their majority usages are limited in the fitness fields. ItigT model provides a configuration to register the information
due to diversity of life pattern and environmental impact®n person and devices dimensions. It adaptively supports the
personal physical activity data from individual wearable deviceeed from different users or groups.

exhibits remarkable uncertaintyThe validating of these Tpe concept of LPAV-loT model is to firstly identify the key
physical activity data in longitudinal healthcare cases is veffluencing factors with detailed issues causing uncertainty of
challenging. Also, as the exponential growth of mobil@ifelogging physical activity; and design a series of benchmarks
healthcare market, numerous similar wearable products hayed experimental study methods for qualitatively evaluating
been developed, which will significantly increase thehese influencing factors. Through these experiments, LPAV-
heterogeneity and diversity of devices connected in 10T baskd model enabledelivering a practically efficient validation
personalized healthcare systems. Effective validation efrategy containing a series of validation principles, rules and
physical activity data from heterogeneous devices in lodctions. Fig.3 shows a conceptual diagram of LPAV-loT model.
enabled personalized healthcare environments becomes mdPAV-loT model has three main objectives:

difficult. Uncertainty ReductianLPAV-loT offers methods, which

enables filtering errors and reducing uncertaaftiifelogging
. PAV-10T MODEL physical activity data

A LPAV-loT Ecosystem Reliability Estimation LPAV-lIoT provides an indicator to

The ecosystem for LPAV-IoT is the theoretical cornerstonestimate the reliability of lifelogging physical activity data on
of validating of physical activity in an loT environment, agertain loT condition.
shown in Fig.2. In terms of the concept of I0T, personal health
data are accumulated and measured as a cube in thgﬁ
dimensions (3D): Persons Devices and TimeLine. The
increment in any dimension results in an expansion of tHtéhhe
data grid. The products likeitbit or Moves[29] occur on a 2D
plane (Persons x TimeLine), which refer to scenarios that singleAdditionally, LPAV-I0oT is desirably extendible and scalable
device is used by increasing population over time. Similarljor supporting emerging technological possibilities of devices
physical activity recognition with sensor fusion [21-28] appeais an 10T healthcare environment. New unidentified influencing
on a 2D plane (Devices x TimeLine) for classifying individuafactors can be added in the LPAV-IoT model and investigated
person’s activities with historical health data. To distinct from  with a similar evaluation methodology.
the above two categories of studies, the target of LPAV-lIoT
model is a cube of rapid-growth lifelogging physical activity.

Adaptivity: LPAV-loT is a generic conceptual model for
ﬁporting a variety of heterogeneous devidé® validation

rules of this model have to be adapted to fit to the 0T healthcare
aapplication situations.

B. Uncertainty Classification

LPAV-loT model is built upon a theoretical classification of
Persons impacting factors leading to uncertainty of lifelogging physical
activity data by specifying four layers and three components in
an loT healthcare environment. The uncertainty of lifelogging
physical activity here is categorized into two types:

Bhysical Activity Recngaition Irregular uncertainty Irregular Uncertainty (IU) occurs
with Sensor Fusion <" randomly and accidently in lifelogging physical activity data
The causes of these uncertainties include device malfunctions
or faults, breakdown of third party server, misuse of mobile
TimeLine apps, sudden change of personal circumstance. The occurrence
of irregular uncertainty will appreciably impact the efficiency
and accuracy of assessing personal health.

d— Regular uncertainty Regular Uncertainty (RU) occurs
m—" , Valldated Heaith g frequently and persistently in lifelogging physical activity data.
NP I SR v The causes resulting in these uncertainties are mainly from
some regular influencing issues, like intrinsic sensors’ errors,
differentiation of personal physical fithess and changes of

Fig. 2 Concept of 10T personalized healthcare systems environment. The occurrence of regular uncertainty in physical

The workflow of LPAV-loT model for validating physical a(;ti\{ity data is inevitabl_e SO that it is impossible to completely
activity is a dynamic recurrence by duration along the timelingliminate these uncertainties.
The validation rules are initiated by feeding a set of historical LPAV-I0T model aims at delivering methods for eliminating
raw physical activity data in the LPAV-IoT model; and then arthe impact of irregular uncertainty and managing the impact of
used to validate the current physical activity. After a periodegular uncertainty.
historical raw physical activity data is expanded with more
users or devices over time. The validation rules have to be
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Fig. 3 Diagram of LPAV-IoT Model
C. Impacting Factors Analysis and Matrix have provided the third party APIs to assess the intensity of

While irregular uncertainties occur accidently and are hardBfysical activity regarding walking speed. For instafdthit
quantified by impacting factors, their occurrence frequency faassifies the intensity of daily activities into Very Active,
relatively low over time. A statistical analysis in historical datd!oderately Active, Lightly Active and Sedentarjdoves
can detect threshold parameters to filter them. Daily physic&cords a series of walking segments containing duration,
activity is mainly measured as daily stepg)(Slaily walking distance and speed. Here, we classify the intensity of daily
distance () and daily average walking speeds) as it is Physical activity intoN levels in terms of the ranges of walking
shown in Table 1. It is believed that the majority of daily stepgP€€ds (¥, V2 ...Vn). The DAPS formula is created by
and daily average walking speed have to be in a specific ran§dmming these different level walking speeds:

Two threshold parameters{dnd T,) are defined to filter the N
irregular uncertainties regarding a probabilistic distribution DAPS=>"V (8]

For regular uncertainties, the impacting factors in LPAV-loT 1
are categorized into three mod_ules, which are devig:e 1E""CtorSFor understanding the impact of personal factors on measure
personal fa_ct(_)rs and geographic factor_s. In the de_wce fact%'i’sdrclily physical activity, we give two hypothesis tests that:
module, existing popular wearable devices or mobile apps arel) Person’s physical fitness has a strong relationship with his
classified by sensory technique into three types: GPS bas g ; S Physica e PV )
Accelerometer based, a combination of sensors based. lly physmal_actlwty. A person Wlth stron_g_physmal fitness

' . i Il have a high value of daily physical activity.
accuracy of these three sensory techniques for measuring ste

. i : E) For a group of population having similar lifestyle, regular
count and d'St"%”C.e are quant|f|ed by Mean of relative error aﬂfﬂcertainties raised by personal factors are supposed to follow
Standard Deviation of relative error though a series 9

. linear relationship with Daily Steps. A person walks more
experiments. L . steps or distances, regular errors will be increased linearly in
The personal factors module studies if the differences

. ; . ily steps. A proportional function (2) is defined for
human demographic, anthropometric and fitness data give ) . ; ; . . ;

L : = X representing their relationship, where f is a proportion ratio.
regular uncertainties to physical activity data. These difference
usually include the age, gender, height, weight and medical Errp =B XS, 2)
history, etc.The information relies on users’ efforts of manual
input, which maybe incomplete. There is a need for aIn order to testing our hypothesiBgarson’s correlation
benchmark to represent a person’s physical fitness from coefficient (r) is simply used in a group of persons to measure
completed data sources. Here a walking speed related scoréi@sstrength of the association between Bnd daily physical
defined to represent a person’s physical fitness, named as Daily ~ activity (& or Duw). If personal factor (physical fitness) has a
Activity in Physical Space (DAPS). This score is inspired froritrong impact on regular uncertainties] persons’ Pearson
work [34] that proposes a Movement and Activity in Physicdigure r will be closeo 1 or 4.

Space (MAPS) score as a functional outcome measurement folt is noteworthy that the motivation of LPAV-loT model
encompassing both physical activity and environment&@ims at providing an investigation approach for improving the
interaction. Currently, most of wearable devices or mobile appglidity of generic lifelogging physical activity in an loT



Table 1. Listing of Parameters and Indicators in LPAV-loT Model

Parameters Descriptions
S Daily walking steps
Raw Physical Activity Data | Daw Daily walking distance
Vdaw Average daily walking speed
C Confidence interval for filtering historical data distribution
Irregular Uncertainty Ts Threshold parameter for filtering incorrect daily steps data
Tv Threshold parameter for filtering incorrect average daily walking sj
ES_mean Mean of step count relative error
Devices ES_std Standard Deviation of step account relative error
Regular ED_mean Mean of measured distance relative error
Uncertainty ED_std Standard Deviation of measured distance relative error
Personal DAPS Daily Activity in Physical Space score
V1, V2...Vn Average Walking Speed regarding intensities of daily physical activ
Sh(morning, afternoon, night) | Daily steps range in morning, afternoon and night
Geographic | Dh( morning, afternoon, night ) Daily walking distance range in morning, afternoon and night
Swk(working, weekend) Daily steps range in working days and weekend
Dwk(working, weekend) Daily walking distance range in working days and weekend

Reliability Indicator

D

Reliability dependent on device factors

P

Reliability dependent on personal factors

E

Reliability dependent on geographic factors

R Reliability Indicator for estimating physical activity data

environment. It does not only aim at dealing with the intensit¢ngitudinal studies and experimental analysis approaches. The
of physical activities (IPA), and can be extended to apply intyorkflow _of Qata validation strategy is presented as 4-layers
more complex physical activity related subjects. But mosfructure in Fig.2.

available mobile apps or wearable devices only release API tolnvestigation Level provides analysis and classification of
access limited type of physical activity data, which is thdetailed influencing items in each impacting factor module, also
intensity of physical activity. Thus, LPAV-loT model aims atestablishes corresponding uncertainty measurement matrix. A
building up a set of investigation methods for some data, whiclotable feature of influencing items level is extendibility which
are able to be collected and evaluated by experiments. IP#ans that it may add more items into the LPAV-IoT for further
being improved by LPAV-IoT model may be not remarkable tmvestigation.

the index based representation for users. Methodology Leveldesigns a set of investigation approaches

The geographic factors module aims at investigating tHer each impacting factor module regarding identified items and
impacts of location specific information related contextual datstablished matrix. The investigation approaches include
on the accuracy of daily physical activity. This information castatistical longitudinal data analysis and experimental chase
include Time (time of day, life events, i.e.), Location (countryempirical analysis methods.

part of city, “at work™ etc.), Environmental factors (weather Knowledge Level conducts a series of validation rules and
recording completed user life anq environment profiles, wgnq principles aim at quantitative removal of irregular
only list three items in geographic factors: weather, hourlymcertainties, and qualitative exploration of the relationship
change of physical activity, and weekly-change of physic@letween impacting factors and regular uncertainty.

activity. The changes of daily physical activity over these three Action Level contains the options of executed actions on

issues are measured with statistical analysis in historical dat%. sical activity data reaarding validation rules. Three main
A few range and type of parameters are defined in Tabd 1Py Y 9 9 X

o L . types of actions are given in the model: to abandon data, to keep
reliability indicator (R) for estimating the overall impact of . :
above three impacting factors is formulated below: data and to revise data. The main purpose of LPAV-I0T model

is to validate and verify physical activity data, so the action of
R=DxPx E (3) revising data is not considered in this paper.

Following the four layers described above, the steps of data
validation strategy in the LPAV-lIoT model are described
below:

For removing irregular uncertainty:

Where:

D: Reliability of device factors on physical activity
P: Reliability of personal factors on physical activity

E: Reliability of geographic factors on physical activity 1 14 ¢onfigure the information related to impacting factors and

collect certain type of raw historical physical activity data.
.To calculate the parameterg Baw, V daw With raw data.

.To plot the data of §Daw, Vdawin line and calculate the value
f Tsand T, with eclipse filtering equation to cover data with
confidence interval of 95%.

A. Data Validation Strategy

Data validation strategy of the LPAV-IoT model aims a§
conducting a set of validation rules for eliminating irregula
uncertainties and reducing the impacts of regular uncertaintied
on lifelogging physical activity data. This strategy is designed &
by using a combination of statistical analysis methods on



4.To use Tand T, for removal of irregular uncertainty physical recorded in the platform, the reliability of estimating

activity data. personal factors on physical activity is formulated below:
5.To circulate the above process in another period with updated M
raw data. 2. DAPS,
The rules are concluded below: DAPS="T"=__ (5)
e Following eclipse filtering equation, we can get the value M
of Tsand T . Y
e For a daily physical activity data, if daily walking steps is p_1_ [DAPS - DAPSJ (©)
lower than T, or average daily walking speed is lower than DAPS

Ty, we will abandon this data.
Where:
P : overall reliability of personal factors for physical

1.To list and classify typical wearable devices and mobile gctjvity:

applications for physical activity data recording.
2.To design a set of evaluation experiments including daily .

activities, such as walking for measuring accuracy parameterd¥ : Total number of persons in the group.

of the devicesEs_meanEs_std Ed_meanandEd_std(see For geographic factors:

Table 1 for definitions). . o 1.To classify and categorize physical activity data regarding
3.To conduct the experimental findings as validation rules andyeather, hourly-change and weekly-change parameters.

establish the equation for device reliability indicator D. 2.To plot the data of &Daw, Vaawin line and calculate the range
4.To circulate the above process with new types of devices. yalye of parameters to cover a confidence interval of 95%.
The rules are concluded below: _ _ _ 3.To conduct the experimental findings as validation rules and
e Following designed experiments includiNgsubjects; we  establish the formula for personal reliability indicator E.

can get the device reliability indicatbr, for each subject 4 1o circulate the above process in another period with updated
e The overall reliability of the device can be formulated as a rgqw data.

combination of these separate reliability indicato)s (4  The rules are concluded below:

For devicefactors:

DAPS: Daily Activity in Physical Space Score

D= Z kD, (4) e The reliability of estimating geographic factors on physical
N activity can be measured by the difference between
individual daily steps and average daily steps in weekdays
Where: by devices. If it is assumed thit person wears one type
D : overall reliability of the device for physical activity; device, his / her steps data in weekdays are recorded as
D, : reliability of one subject; Swk (t =1,..,7), the reliability of estimating geographic

k : weight of each parameter reliability. factors on physical activity is formulated below:

For personal factors: % SWKtn(t =1,..,7)
1.To calculate the value of YV, ...Vy with raw historical Swk (t=1,...,7)=-1 @)
physical activity data by individual person. M
2.To calculate the value of DAPS by summing up W5 ... V. E
3.To calculate the value of Pearson Correlation r between E1 SwK (t=1,...,7)- SWK (t= 1,---,732
DAPS and gor Dyw by individual person. =1-,/C cotie_1 (8)
. HE I SwK (t=1,...,7)
4.To conduct the experimental findings as validation rules and
establish the formula for personal reliability indicator P.  \where:
5.To circulate the above process with more subjects.
The rules are concluded below: t : represents weekdays from Monday to Sunday.
e On the condition that we get every individual’s Pearson Swk: walking steps on certain day in a week.

Correlation. - L

e If the Pearson Correlationfrom individuals is diversefi ~ B- Adaptability and Extendibility
means that no strong impact of daily speed or MAPS on The design of LPAV-IoT model aims at generic utilization in
daily steps. Personal factors (for normal people) will nddT enabled personal healthcare systems. Configuration is
generate significant errors in physical activity data. defined here in the LPAV-IoT model for registering the

e If the Pearson Correlation from individuals is nearly information regarding devices factor, personal factor or
identical, it means that Personal Factors (for normal peop€pgraphic factor. By using this information, LPAV-loT model
will generate significant errors in physical activity data. is capable of adaptively adjusting the values of parameters in

e The reliability of estimating personal factors on physica\yalidation rules to account for different needs. LPAV-loT

activity can be measured by the difference of individudﬂOdel is able to adapt itself Eff|C|ent|y, it is fast in responding
person’s DAPS and a standard DAPS in a group M of t0 changed settings or needs in an loT enabled healthcare

populations. If it is assumed thdtsubjects’ DAPS datais ~ €nvironment. Also, more extended feature of LPA-IoT model
are discussed in section VI.



IV. EXPERIMENTAL INVESTIGATION Fig.4 demonstrates that:

In theory, LPAV-loT model aims at validating lifelogging®  Daily steps of individual bjovesare about 4000 7000,
physical activity in an loT healthcare environment with any  Flexor Withings give daily steps about 606013000.
population, for any devices and at any time periods. This pager Movesgave a lower measurement of daily steps fhiax
takes two EU healthcare projects: MHA [38] [35] and CARRE  or Withings on the same condition.

[37] as case studies to verify the effectiveness of LPAV-lo¥ Normal people should have a daily steps in the range-1000
model. This section presents the establishment of validation 20000.

rules with LPAV-loT model by MHA and CARRE projects.e FlexandWithingssometimes show daily steps below 1000.
The evaluation of device factors modules include 7 typici In order to measures@nd T, to remove irregular uncertainty
physical activity recorders used in CARRE projé&atbit Flex ~ physical activity data [30], we use an eclipse equation (9) to
Fitbit Ong iHealth AM3, Medisana Vifit ConnegtWithings cover 95% of data (C = 0.95).

Pulse 02 Jawbone UP24and Moves. The evaluation and ) 5

validation of irregular uncertainty, personal and geographic (x-h~ -k~ _, )

factors are based on MHA platform, which is an 10T enabled a2 b?

personal healthcare experiment platform connecMuyes

Fitbit andWithings. This platform enables user to transfer theiwhere: . .

physical activity data from these third party providers into h: Average da_|ly waIk_mg speed

MHA server, and then to be able to visualize and analyse thisk : Average daily walking steps

information for a better user understanding and experiences. a: Error range of average da!ly walk!ng speed
b : Error range of average daily walking steps

A 'Ir.regl.JIar.Uncertamty S , A noticeable issue here is that we only consider the lower
Eliminating irregular uncertainties is the primary step of datg.,its of walking steps and the upper limits of walking speeds
validation strategy in LPAV-IoT model. On MHA platform, we o< threshold parameters. On some days users might walk
initially collect daily physical activity $teps, Distance and gigtinctly more steps than usually, while the other days might

Calorieg of 7 users over 6 months by 3 types of wearablgs mqre sedentary. The threshold parameters are represented in
devices of recordersAfthings, One and MovegsAll these 7 equation 10):

users (1 female and 6 male) are researchers in university, and

their ages are in the range of 30-50 years old. The features of T,=h+a
this raw activity data are: 1) All 7 people udeves 2 of them T —k—b
additionally usewithings, and another 3 people ubéex 2) s
Missing d{:\ta occurs frequently inithings andFIex_ because The rules are concluded below:
users easily forget wearing them. 3) Some dafaléx shows _ )
lower steps, which is probably because users take off th&r Following equation 4, we can gei=68, and § = 0.56 for
wearable devices some time, or devices are out of battery. 4) Moves and &= 1329, and J= 1.67 forFlex _
Movesdata are more completed thlexor Withings, but with ~ ®  For a daily physical activity data recorded kpves if
relatively high errors. Following data validation strategy in  daily walking steps is lower than 68, or average daily
section V.D, we calculate iy, and plot $ and \baw in 2D walking speed is lower than 0.56, we will abandon this data.
diagram as in Fig.4. e Foradaily physical activity data recordedmisbit, if daily
walking steps is lower than 1329, or average daily walking
speed is lower than 1.67, we will abandon this data.
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The characteristic evaluation of device factors in LPAV-10T
model presents design and results of experimental investigation
that carried out in order to evaluate the accuracy of wearable
equipment. A total of 6 devices were included in this study:
Flex, One, iHealth, Vifit, Withings, Jawbonall these devices
are classified as an “accelerometer only” based physical activity

4 trackers. They were chosen from the market as the suitable
devices for long term physical activity monitoring due to low
price, long battery life, compatibility with Android and the most
importantly— API availability. TheMovesapp was included in

the evaluation as it is the only piece of equipment employing
both GPS and accelerometer technology with available API.
Two more apps were included in the study as the “GPS only”

15 2 25 3 equipment: Endomondo and Google MyTracks. The same main

Speed (mis) criterion — API availability- was applied when choosing the

GPS enabled apps.
) o ) The study was performed in two stages: the primary and final
Fig. 4 Distribution of Irregular Uncertainty investigations. In both parts, some of the physical activity
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parameters available from the selected devices were measwaad 7). The results from this primary evaluation are also divided
on healthy volunteers and compared to the refereng®@o two parts respectively. The error ranges for each type of
parameters. Some of the devices are suitable to wear on dlawices are presented in Table 2 and Table 3.

wrist, others- on the waist or in the pocket and some provide \yhjle Moves app output the distance information, it was not
the ability to choose how to wear them. The wrist wearing sitg.cyrately recorded by the operator. So this data was discarded
was preferred during the experimentation since it allows eagym the investigation. GPS devices data was not acquired
and unobtrusive non-stop physical activity tracking. In thfyring the less frequent exercises. These results present only the
primary investigation, three variables were measureleps preliminary error ranges of the devices, but they create some
taken, d|sta_nce travelled and calories burned. All accelleromeéqidance for further experimentation. The calories estimation
based devices output these three parameters, while MoYgsm the accelerometer devices shows the worst performance,
outputs only the step count and the distance and the “GPS only”  \yhjle accelerometer plus GPS devices do not output such
apps output only the distance and the calories. The refereRg@mation at all. Cosmed K4b2 calorimeter is also very
method for measuring the step count consisted of rayymplicated for the participants to work with. So the calories
accelerometer signals acquired by the custom physiological af¢timation comparison was excluded from the further
kinematical signal recorder KTU BMII Cardiologer V6 experimentation. On the other hand, the GPS devices showed
attached to the waist, and a semi-automatic peak detectipdty good performance in measuring distance. It was decided
algorithm implemented in Matlab. The reference method fqp replace the reference GPS device with the GPS enabled app
measuring calories was indirect calorimetry implemented {g the smartphone (Tracks). In order to simplify the exercises in
portable calorimeter Cosmed K4b2. Since this calorimeter j§e experimentation and due to some limitations (GPS not
enabled with a GPS module, it also was used as a referegggking inside the building), it was decided to exclude the less
method for measuring travelled distance. 4 healthy voluntegfgquent exercises from the experimentation. The reference
participated in this part. _ . method for counting steps remained the same as in the primary
The aim of this primary study was to define preliminarynyestigation. 6 healthy volunteers participated in the second

accuracy/error ranges for selected commercial devices. Tfigestigation.A new simplified experimentation protocol was
experimentation protocol was below for each participant:  established as the following:

1.A short walk within fixed distance of 160 m (80 meters bac

and forth with stopping) where only the step count wa .A short walk within fixed distance of 100 m (50 meters back

measured. “GPS only” devices were not included. %nedasflcj:tdh with stopping) where only the step count was
2.Calculation of the average step length using the distance an y . .
.Calculation of the average step length using the distance and
thedstep (;0# ntdfrom the riference Tetthd' hasb the step count from the rgeferer?ce n?ethod ’
3.Update of the devices with personal information, such as bir; . . : e .
date, height, weight, step length, running step length. éhUpdate of the devices with personal information, such as birth

date, height, weight, step length, running step length.

4.The approximate of 1000 meters long casual walking exerci . . .
via fixed rounded route. The participant was able to chooééer he approximate of 1000 meters long casual walking exercise

via fixed rounded route. The participant was able to choose

his/her own walking pace. his/her own walking pace. Step count and distance was

5.Jogging exercise of 200 m (100 m back and forth without measured
stopping). “GPS only” devices not included. |

6.Slow walking exercise of 200 meters (100 m back and fortgczgggft scgor:ut:)e(p;r]lcr::tenet Sizgév:;h:f abrllltgig;thaecgsi\fce(z to
without stopping). “GPS only” devices not included. y cap P phy y (e.9.

7.Stair climbing exercise (5 floors). “GPS only” devices not quklng in the office). The long walk experiment .ShOWS Fhe
: ability to accurately record the most frequent daily physical
included. o ; :
activity — casual walking (e.g. walking to/from work). The
results as a mean of error and the STD of error are presented in
Table 4 for each device and each measured variable separately.

Table4. The accuracy of the devices

Table 2. The error ranges for walking exercises

Error range (min — max), %

Devicetype Steps Distance Calories _
Acceler ometer 0,0-82,5| 0,1-68,1 0,2-93,3 Error insteps | Error in steps E_rror in
Accelerometer + 4-56,4 N/A N/A 100 m 1000 m distance
GPS Device 1000 m
GPS N/A 0-54 2,4-45,8 Mean | STD Mnea STD | Mean STD
Table 3. The error ranges for less frequent exercises R
9 a Flex -6,6% 17,7 14,2 -6,6% | 26,3%
Error range (min — max), % % 8,5% %

Device type Steps Distance | Calories One | 02% | 1,5% | 0,0% | 0,4% | -4,9% | 8,2%
Acceler ometer 0,0-746| 0,7-72,4 6,4— 80,6 : - 19,9 - o 210 0
Accelerometer + 6,9— 94,2 N/A N/A Health 114%| % 0,8% 2/4% | -81% | 6,4%
GPS - - 11,7 - o 0 90 o
GPS NIA NIA NIA Vifit 10.3% % 2.8% 5,6% 9,2% | 4,3%

2,0% | 51% 9,8%

The protocol includes two parts. One part includes the mg S\Nlt:mg -1,3% | 2,0%
frequent physical activity walking (exercises 1, 4 and 6). Th
other part includes less frequent physical activity (exercises 5

0,6%




Jawbon '7,8% 1(317 4’7% l(i]/-IB _712% 20’5% Jawbone 0,818 0,891 0,854
e 25° 5 0 M oves 0,826 0,846 0,836
Moves | -7,2% ' - 3,0% | -5,6% | 1,4%
L% 0,2% ° ° ° C. Personal Factor

These results show that devices based on the samdn terms of the definition of DAPS in LPAV-IoT model,
accelerometer technology perform differently and could not kperson’s physical fitness can be represented by a walking speed
used interchangeably. It may seem that the wrist wearing siglated score. Moves does not classify the intensity of physical
can cause problems as fhlex trackerhas lower accuracy than activity regarding the walking speed, so its DAPS is equal to
One On the other hand, we can see thathings performs the Average Daily Walking Speed. Fitbit Flex physical activity
similarly to theOne while also worn on the wrist. The errordata has been classified into the intensity of four types as so
ranges were updated according to the results of the fifAAPS and its related walking speeds are measured. Each
investigation and are presented in Table 5. person has different physical activity characteristics, such as
walking speed. The issue here is that individual physical

Table5. The updated error ranges for walking exercises .44 cteristics will impact the accuracy of collected raw data.

Error range (min — max), % We measure the parameters like MAX, MIN, AVER and
Device type Steps Distance STDEV of users historical raw data. In order to ensure the
Accelerometer 0,0-47,5 1,0-412 diversity of data, we allow MHA platform to be used by 28
Accelerometer + GPS 0,0-37,1 38-74 users from4 project partners (2 universities, 2 companies)

ithin the EU. We collect daily physical activitySteps,
jstance and Calorig¢of these 28 users over 6 months by 3
dypes of wearable devices of recordevsitiiings, One and
Movesg). All these users are professionals with age in the range

_ o of 20-60 years old. Then we choose 2 persons physical activity
We propose that the device reliability factor should bata from each partner as representations, and in total 8 person

separately calculated for each of the measured parametersoiinestigation, as shown in Table.7. The features of these raw
this particular case with two parameters, the following tW%ctivity data are:

equations are introduced: e In Moves 8 people average walking speed is 0.69 m/s ~

We can see that the actual ranges are lower than in prim
investigation. Another observation is that Accelerometer + G
devices have slightly lower error range for step count a
significantly lower error range for distance estimation.

D, = 05-|1- ES,..000)- (1 ES,.eor 1.26 m/s 8 people average step speed is 1.18 step/s ~ 1.60
(0~ B o) (1~ ESearion] (11) step/s; the figure using Moves segment (mirhyteninute)
+05- [(1_ ESsmmo)' (l_ ESsTmooo)] data is slightly lower than Moves summary (daily).

e In Flex 4 people DAPS is 1.72 m/s ~ 2.07 m/s; active
Da = 0'5'1(1_ EDmeanlooo)J+ 0'5'1(1_ EDSTDlOOO)J (12) average step speed is 1.30 m/s ~ 1.50 m/s; moderate
Where: average step speed is 0.48 m/s ~ 5.07 m/s; slightly average
Ds : reliability of step counting for physical activity devices; step speed is 0.14 m/s ~ 0.16 riiach person has different

Dq : reliability of distance estimation for physical activity ~ Physical activity, but their daily speed or DAPS are in a
devices: similar range.

E Snean.106 Mean of error in step count in 100 m walk; Regarding the international st_and_ard of human walking_
E Shean,1000. Mean of error in step count in 1000 m walk; cadence and speed, female walking is roughly 1.95 steps/s in

EDmean1000; Mean of error in distance estimation in 1000 ng@dence and 1.85 m/s in speed; male waking is about 1.95
walk: steps/s in cadence, and his average speed is 1.43 m/s. It appears

ESsto.100: STD of error in step count in 100 m walk: that bothFlex andMovesunderestimate users’ walking speed.
ESSTDylooo: STD of error in step count in 1000 m wélk' Pearson Correlation Coefficient (r) is used for measuring the

EDsTo.1000: STD of error in distance estimation in 1000 m walkr€lationship _between DAPS or walking speeds &ng, as
shown in Table 3. The Pearson Correlation results reflect

Following the defined equation (3), the calculated reliability@iability among individual subjects, for instance, @me
factors (with the weighk = 0,5) are presented in Table 6. WePAPS Vs Err), the physical fitness of Subject P1 may have a
observe that One is the most reliable while Withings shows orfyfONd relationship with irregular errors, which gives a value up
slightly lower performance. The only GPS + Accelerometdf 0-73; but for subjects P2 and P3, this relationship has only a

equipment Moves performs similarly to Accelerometer only&lue lower to 0.12. Similarly, iMoves the value of Pearson
trackers worn on the wrist. orrelation differs among subjects in the range 0.173-0.589.

So, the findings indicate that differences in physical fithess of

Table6. The reliability factors of the devices personal factors will not generate significant regular errors in
Device Ds Da D physical activity data. The rules are concluded below:
Flex 0,781 0,879 0,830 e Pearson Correlation Coefficient (petween Daily Speed
One 0.990 0.968 0979 and Daily Steps for individual is diverse.
Health 0.830 0.860 0845 * No strong impact of daily _speed or MAPS on.d_ally steps.
— : : . While each subject has different physical activity ability,
Vifit 0,853 0,896 0874 but their speed or MAPs are within a range, amd n
Withings 0,971 0,964 0,968 correlation with daily steps was observed.




e Personal factors (for normal people) will not generate

significant errors in physical activity data.

10

Table 7. Personal Factors Investigation

Moves P1 P2 P3 P4 P5 P6 P7 P8
MAX 098] 1.19| 1.10]| 1.00] 150 1.58] 1.09| 1.15
Daily Walking Speed ( MIN 050 029] 0.69] 051 0.69] 0.82] 0.50| 0.68
Vaaw) (M/9) AVER 068| 100| 099| 08| 1.26| 1.09| 084 | 103
STDEV 0.14] 0.13| 0.10] 0.10] 0.16] 0.17] 0.19] 0.2
MAX 1.86| 1.85| 1.78] 1.44| 195| 1.84| 1.82| 1.01
Walking Cadence MIN 0.67| 1.13| 1.12| 0.82| 1.35| 1.13| 0.67| 1.15
(steps/s) AVER 1.24 154 150] 118 1.60] 153| 131[ 154
STDEV 0.29] 0.15| 0.16] 0.10] 0.14] 0.14] 027] 0.21
Fithit
MAX 217] 218] 2.40[ 1.93
DAPS (m/s) MIN 0.17] 055| 0.62] 1.82
AVER 1.72| 1.88| 207| 1.88
STDEV 0.62] 028| 0.40]| 0.08
MAX 1.42] 153 1.82] 1.30
Active Speed (m/s) MIN 122 1.10| 1.25| 1.22
AVER 130 127] 150 125
STDEV 0.05] 0.12| 0.13] 0.06
MAX 0.67] 065| 0.65] 0.50
M oder ate Speed (m/s) MIN 0.33 0.41 0.46 0.47
AVER 0.57 0.52 0.56 0.48
STDEV 0.08] 0.05| 0.05] 0.03
MAX 0.18] 0.7 o0.18]| 0.5
Slightly Speed (m/s) MIN 0.13| 0.13| 0.13]| 0.3
AVER 016 014 015] 014
STDEV 0.01] 0.01] 0.01] 0.001
Pearson Correlation
DAPS 0.74] 0.12] 0.380] 0.23
Fitbit Errp (regular Active -0.16| -0.16| -0.20| -0.14
error by personal M oderate -0.07| 047 009]| o021
factors) Slightly 0.17| -0.07| 007 o012
MovesErrp (regular DAPS (Daily Walking Speed) | o51| 017| 050| 0.38| 0.14| 0.03| 059| 0.23
error by personal Walking Cadence 0.19 0.12 0.09 0.19| 0.11| -0.07| 0.44| 0.11
factors)

step appears stable in weekdays but decreases dramatically
on weekend.

D. Geographic Factors

Following validation strategy in Section IIl.D, the impact of
geographic factor on irregular uncertainties is estimated by
using empirical analysis methods on observed data of a small
group of daily physical activity. We analysed DafyWeek
differences in this dataset including all three deviEétbit One,
Moves and Withingsfor both groups and individual. Fig.5 and
Fig.6 respectively illustrate the distribution of DaffWeek
difference on group and individual daily physical activity. In
Fig.6, the lines of (P1_m,..,P7_m) represkloes users; the
lines of (P1_f,...,P3 f) represents Fitbit Oneusers; and the lines
of (P4_w, P5_w) represewtithingsusers. AlsolMovesprovide

e The trend line of individual physical activity is fluctuated
widely, but approximately follows the same trend of group
physical activity.

e For Time-of the Day difference, the highest intensity of

physical activity occurs from 7 am to 10 am. Then the

intensity of physical activity keeps stable and slightly
decreases in the Afternoon. At the night fromph312 pm,

the intensity of physical activity increases bit. But it may be

time based walking segments data, we conduct the distribution, o, se users use their smartphone before sleep.

of Time-of-Day difference on group based physical activity in

Fig.7. In Fig.7, the physical activity at certain time-slot in Fhe rules are concluded below:

group of 7 users is summed as Distance, Steps and Durations.
The features of this data are: °

e For Dayof-Week difference, a similar trend line of group,
physical activity occurs in three devices. It shows that daily

People normally have stable physical activity in working
day, but have much less physical activity on Sunday.
People normally have an intensive physical activity in the
morning session (7-10 am), and have moderate physical
activity in other time of the day.
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V. CASESTUDY AND PERFORMANCEEVALUATION

In this section, we discuss the performance evaluation of
LPAV-1oT model in a case study on MHA platform [38], which
is an loT based healthcare project. MHA platform enables users
to record, store and visualize their multi-dimensional health
data by connecting wearable devices or mobile appsk ltkét
Flex, Moves Withings Twitter and Facebook. The criteria of
verifying LPAV-IoT are based on their performance of using
its rules for: irregular uncertainties filteringreliability
estimation and model adaptivity. We collected the empirical
dataset by using MHA platform. The dataset includes 12
months long daily physical activity of 28 persons from 4 project
partners (2 universities, 2 companies) within EU acquired with
three devicesvloveswas used b8 users forl2 months;Flex
was used by0 users for 12 monthdjithings was used by
users for 6 months. These people are healthy in the age range of
20-60 years. The evaluation methodology for verifying the
efficiency of proposed model will interview the participants,
and collect feedbacks on reflecting users’ experiences on
physical activity uncertainties through different devices. The
feedbacks are used as a standard benchmark to compare the
correctness of model.

A. Filtering Irregular Uncertainties (Ul)

In order to validate the accuracy of identifying IU, we follow
equation (4) with a confidence interval of 95% to filter data
from three different devices. We use the values (130, 1784, 884)
of threshold parametefs respectively inMoves, Oneand
Withings, for filtering incorrect daily steps data. The results are
shown in Table 8.

Table 8. Removing irregular uncertainties (IU) by LPAV-loT

Moves | Flex | Withings
Ts Daily Steps 130 1784 1267
Ty DAPS Speed (m/s) 0.5 1.50 NA
Total number of People 14 5 3
Percentage of people with IU | 43% | 100% 100%
Number of U occurrence 40 17 8
1U confirmed by User 40 15 6
Average number of IlU occurrend 6.6 54 2.7
per person (User Feedback)
Accuracy of identifying IU 100% | 88.2% 75%
(95%)

Moves has much lower threshold parameters of Daily Steps
and DAPS speed thariex andWithings which are 130 and 0.5
m/s respectively (Table 8). This is becalseves has larger
device uncertainties thanithings andFlex as we observed in
section IV.C. Thus the GPS and smartphone internal sensors
based App is not as accurate as accelerometer only based wrist
wearable device. In terms of percentage of people having IU,
Moves is much lower thawithings and Flex It is probably
because most of uncertainties frtdoveshave been classified
into regular uncertainties, so its irregular uncertainties became
less than for other two devicééthingsandFlex However, for
average IU occurrence per subjedtjoves has higher
performance than other two devices (Table 8). The accuracy of
identifying 1U appears that on the condition with a confidence
interval of 95%, the related value of threshold paranitean
successfully filter irregular uncertainty iMoves So Moves
have the best IU identification accuracy up to 100%, which

11
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means that the incorrect daily steps detected by LPAV-IaEliability value up to 80.9%Flex s slightly less reliable than
model in Moves have been all approved by usefdex and Withings, it is mainly from the difference of device factors.
Withings have accuracy up to 88.2% and 62.5% respectivelftpove figures imply that the proposed reliability indicator of
which implies that some correct daily steps are eliminated hyAV-loT model can be used as a quantitative analysis tool to
LPAV-I0T model. estimate the reliability of personalized physical activity data
The increase of confidence interval will affect on filteringcollected from an IoT environment.
accuracy of IU in LPAV-IoT. If we increase the confidence Model Adapiivit
interval up to 98%, and recalculate threshold parameters, thg' ° ? .ap My o
accuracy of identifying IU of three devices would increase to For validating the adaptivity of LPAV-loT model, we
100%. But, a noticeable issue here is that if we increase #nsider the whole group of 14 subjects as one group due to the
confidence interval, some U might be ignored and put into ttféMmilar professions and backgrounds. We estimate the change
procedure of dealing with regular uncertainties in LPAV-lof daily steps Tand DAPS with different periods (from 1
model. Similarly, inMoves a high accuracy of identifying 1U month to 12 months) yvith a confidence interval of 95%. The
does not mean all the IU have been removed, probably somd@gults are shown in Fig.8 and 9. _ .
IUs are considered as regular uncertainties in LPAV-IoT model. Fig.8 shows the parameter Daily Steps as the function of time
period duration. The value of this parameter is lower for shorter
time periods than for longer time periods. The value of this
parameter also varies with different devices. Maves and
Moves | Flex | Withings Withings, the value of this parameter over different periods is

Table 9. Removing irregular uncertainties (IU) by LPAV-I0T with
increasing confidence interval

Total number of People 14 5 3 slightly growing, but forFitbit, this parameter dramatically
Percentage of people with IU | 43% | 100% | 100% increases after 6 months. This effect may be influenced by the
Number of IU occurrence 40 17 8 setting of confidence interval.
Average number of IU occurreng 6.6 5.4 2.7 Fig. 9 shows little variation of parameter DAPS in the LPAV-

per person (User Feedback)
Accuracy of identifying [U 100% | 88.2% 75%

(95%)
Accuracy of identifying IU 100% | 92.4% | 87.5%

loT model when time period duration is changed. There are
some mirror fluctuations of DAPS on bolfoves and Fitbit.
But in a long term, the value of DAPS is quite stable, which

(96%) indicates that personal physical fithess does not have significant
Accuracy of identifying U | 100% | 965%| 87.5% | Cchanges within this group of 14 people.

(97%)
Accuracy of identifying U 100% 100% 100% :(t:ups W Ts_group_Moves ™ Ts_group_Fitbit Ts_group_Withings

(98%) 1800 1784

B. Reliability Estimation 1600 - 2 7
For validating reliability indicator of regular RU, we follow *** 167 = 2 um
the strategies of LPAV-loT model and equations in Section | *** ' o [
to process the above dataset for getting average figures of **°
group of 14 people. Then we choose the data of one person  **
in Table 7) who has three devices for estimating reliabilit *®
indictor. The feedback from this person will assess tt *°- T m w [ T
efficiency of our proposed reliability indictor. ) d J 133 130

The criteria of interpreting the feedbacks contain five leve  ° s ‘
of agreement (Almost perfect, Substantial, Moderate, Fa LD RIGHR SN GEELE MEENE RN
Slight). The results are shown in Table.10 o g el

Table 10. Regular uncertainties Indicator by LPAV-loT Fig. 8 Average of dally steps _ as the function of time period

duration
Reh?blh'[y M oves Flex Withings Spesd [mlsl
I ndicator m DAPS_Mean_group_Moves (m/s) ®m DAPS_Mean_group_Fitbit (m/s)
D 83.6% 83.0% 96.8% 25
P 87.6% 96.7% 95.6%

E 78.6% 83.4% 87.4%

2 1.98 194 193 = — =
R 57.5% 66.7% 80.9%
User Feedback Moderate | Substantial | Almost perfect -
Table 9 reflects that using the regular reliability indicator ¢ - - 107 -
LPAV-IoT model, the reliability estimation of collected
physical activity data by three devices were approximate
following the users’ feedback. The data from Moves is o
estimated as reliability of 57.7%, and user believes this data :
[} T

moderately accurate. The data fretexandWithingsare both

. . 5 . 1month 2Months 3 Months 6 Months 9 Months 12 months
more reliable thaMovesregarding user’s feedback. Especially, Time period {months)
Withingsis recognized by user as “almost perfect”, which has a Fig. 9 DAPS as the function of time period duration

12
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VI. DISCUSSION ANDFUTURE WORK collection, also include other medical data, such as ECG or
blood pressure, etc. While LPAV-lIoT model can be extended

on effectively validating lifelogging physical activity data foriNt@ improving accurate measures of physical activity related

loT enabled personalized health systems, it has several issgg&lth data, like calories estimation, the practical efficiency on
to discuss and consider in future multi-type health data in a long term collection needs a further

evaluation. Second, the evaluation of data validation effigienc
A Extendibility and regular uncertainty indicator for LPAV-loT model is
Current LPAV-loT model has mainly considered the impac[ﬁs;lbject to only few users’ feedbacks. The standardized criteria
of personal, device and geographic factors on the validity 6f judging correctness and efficiency of LPAV-loT model on
lifelogging physical activity. But in a practical loT ecosystemjemoving and estimating uncertainties requires more users’
there are other issues influencing the measures of lifeloggifégdbacks. Also, for different targeted groups, the adaptability
physical activity, e.g. social events in calendar, diverse subje®fsLPAV-IoT model needs to be verified by more users.
of daily activities. LPAV-IoT model is capable to be extended

. . . o . -~ D. Practical Value
by either detailing a key impacting issue into several specific , . , o
items or adding new representative blocks for rising issues, fgrAV-10T model provides a pioneered investigation approach

supporting the quantified investigations of their impacts. F4PT improving the validity of lifelogging physical activity in an
instance, social events in calendar like bank holiday in the URT environment. While lifelogging techniques have been seen
is treated as a specific item in Timeline dimension; longitudin&® @ Not topic in research in the last twenties years, it recently

data analysis methodology in Fig.3 is directly applied into thikecomes more accessibl_e and _practically s_igni_ficant with the
item for conducting validation rules. The diverse subjects §FCe€Nt prevalence of mobile devices connecting in IoT systems.

daily activities requires adding a new block “activity subject” In thg healthcare field, due to significant p(_)pulatio_n aging in the
into LPAV-IoT model. The data analysis methodology in thi oming decacjes, 10T enabled technology is evol\{mg healthcare
block will include typical classification approaches in activity)’0M conventional hub based system to personalised healthcare
recognition, e.g. decision tree. The conducted validation rul¥Stem. The successful utilization of LPAV-loT model into
from new blocks may be not directly useable in the reliabilitpractical will enable more accurate measure and monitoring of
equations in LPAV-IoT model, but will be benefit to users foF@ily Physical activity with low cost devices, further lead to
removing uncertainties of physical activities on specific case@Ster and safer preventive care for chronic diseases

Similarly, other new considerable factors can be extended into'While LPAV-IoT model has above further future work, we

While LPAV-IoT model addresses a pioneginvestigatio

our proposed LPAV-loT model. believe that the benefit of L&Y-IoT model outweighs its
. limitations. LPAV-loT model has provided a new approach to
B. Humanin-the-loop validate physical activity data in an IoT environment, also has

LPAV-IoT model is designed as Humamthe-loop since the been verified by a rich set of personal health data in real
validation rules is supposed to be adaptively altered regardiegperiments. The research outcome is extremely valuable and
the properties of its human factor, like age, gender, group loenefit.
interaction, etc. For instance, section V.C gives a performance
comparison of individual and group population (14 persons VII. CONCLUSIONS
with similar professions and backgrounds) on removing | this paper, a rule based adaptive physical activity
irregular uncgrtair)ties. We egtimate the change of daily steps L igation model, LPAV-IoT, is proposed for eliminating
and DAPS with different periods (from 1 month to 12 monthS}yeqyar uncertainties and estimating data reliability in an 10T
with a confidence interval of 95%. The results shown in Fig.&apjed personalized healthcare environment. It specifies four
and 9 indicate that the rules of LPAV-loT model will be alteregh, o5 and three modules for evaluating the factors impacting
in terms of different setting of human factors. However, thig,e \3iigity of physical activity. The validation rules are
experiment only deals with a nature increment of life-1oggingynresented by defining a set of uncertainty threshold
physical activity on timeline and population dimensions. It i§5ameters and reliability indicators, which are initiated by
not a strict performance evaluation of humaithe-loop in the  higiorical raw data and adaptively updated regarding the needs
proposed model by considering a human interaction with moggl.a, 10T enabled personalized healthcare system. Following
The involvement of collecting user feedbacks as a step of s model, a case study on an loT enabled healthcare platform
validation algorithm is not hard to be implemented in the modglyy o [38] connecting three statst-the-art wearable devices
but requires a long period of time on re-designing experimentaly mopile apps was carried out. The results reflect that LPAV-
strategies and collecting relevant life-logging data. Thus, it Wiflt model provides an efficient, adaptive and extendable

be put as one of key future works in LPAV-10T model, whicly, ion for the validation of 10T environment based physical
is to continue a formal humadn-the-loop validation of the activity data.

model by involving users’ feedbacks for updating validation
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