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How to Increase Energy Efficiency in Cognitive
Radio Networks

Mohammad Robat Mili, Leila Musavian, Khairi Ashour Hamdi and Farokh Marvasti

Abstract—In this paper, we investigate the achievable energy
efficiency of cognitive radio networks where two main modes
are of interest namely; spectrum sharing (known as underlay
paradigm) and spectrum sensing (or interweave paradigm). In
order to improve the energy efficiency, we formulate a new multi-
objective optimization problem that jointly maximizes the ergodic
capacity and minimizes the average transmission power of the
secondary user network while limiting the average interference
power imposed on the primary user receiver. The multiobjective
optimization will be solved by first transferring it into a single
objective problem (SOP), namely, a power minimization problem,
by using ε-constraint method. The formulated SOP will be solved
using two different methods. Specifically, the minimum power
allocation at the secondary transmitter in a spectrum sharing
fading environment are obtained using iterative search based
solution and augmented Lagrangian approach for single and
multiple secondary links, respectively. The significance of having
extra side information and also imperfect side information of
cross channels at the secondary transmitter are investigated. The
minimum power allocations under perfect and imperfect sensing
schemes in interweave cognitive radio networks are also found.
Our numerical results provide guidelines for the design of future
cognitive radio networks.

Index Terms—Energy Efficiency, Spectrum Sharing, Spectrum
Sensing, Multiobjective Optimization, Power Allocation.

I. INTRODUCTION

In today’s wireless systems, there is an increased demand
for the radio spectrum access due to many new wireless
networks such as wireless sensor networks, wireless local area
networks, Bluetooth, and so on. The frequency allocation chart
of the Federal Communications Commission (FCC) shows that
a severe under-utilization of the licensed spectrum has been
observed. Cognitive radio networks have been proposed as an
efficient method to address the problem by opportunistically
accessing the spectrum across different networks of users [1]-
[4]. A cognitive radio network consists of primary users (PU)
and secondary users (SU). As described in [5], a PU has the
legacy priority access to the spectrum while an SU uses the
spectrum when the performance of the PUs is not harmfully
affected by the SU network operation. The utilization of
the spectrum in traditional wireless networks is improved by
cognitive radio technology such that it increases the number
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of application and services in wireless systems. A cognitive
radio network recognizes its communication environment and
changes the parameters of its communication scheme to in-
crease the quality of service (QoS) of SUs [6].

Cognitive radio technologies can be divided into two main
modes, namely; spectrum sensing and spectrum sharing. In
the latter, the SU is required to detect the spectrum oppor-
tunities and then transmit while the PU is absent [7]. In
the former, SUs employ spectrum sharing technique while
avoiding considerable interference to the primary receivers.
In such systems, a medium access control layer protocol with
ability to fairly allocate the spectrum between secondary users
is required [8].

In underlay cognitive radio networks, several approaches
have been considered in the literature to protect the primary
user performance from the operation of the co-existing sec-
ondary user networks. These include limiting the average or
peak values of the interference power imposed on the primary
receiver as a result of the secondary user network transmission,
or protecting the primary user rate from falling below a certain
threshold at all times (or for a certain percentage of the
time). The idea of limiting the imposed interference power
was originally motivated by the concept of the interference
power temperature [5] introduced by the FCC in 2003.While
considering the approach for limiting the capacity-fall of the
primary user may seem more protective for the primary user
performance, but there will be a challenge of not having the
information of the primary user channel (that is the channel
between the primary transmitter and the primary receiver) at
the secondary user network. In such cases, by considering a
certain capacity-outage allowance in the primary user network,
the constraint on the primary user capacity-fall can be formu-
lated as an interference power constraint, [9], [10]. Henceforth,
limiting the interference induced from secondary transmitter
on the primary receiver, given that the interference threshold is
chosen according to the capacity-outage constraint, could lead
to protecting the capacity of primary user not to fall below a
certain threshold with a close-to-one probability.

In recent years, the concept of energy efficiency has been
much discussed in several wireless systems, e.g., in wire-
less sensor networks. In such networks, sensor nodes are
typically powered by small limited-life batteries which are
very expensive and difficult to be replaced or recharged.
Therefore, wireless nodes must be operated without battery
replacement for many years. On the other hand, recently there
has been a focus on improving the energy efficiency in general
wireless communications due to environmental concerns. It
is known that the Information Communication Technologies
(ICT) already represents about 2% of the total world CO2 gas
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emission. Also, it is expected to increase from 0.53 billion ton
(Gt) CO2 in 2002 to 1.43 Gt in 2020. Mobile communication
consume 15-20 percent of entire ICT energy foot print [11],
[12].

As green radio (GR) becomes an inevitable trend, energy
efficiency is becoming increasingly important for wireless
and especially mobile systems due to the slow advances
in battery technology. Energy efficiency is investigated in
many recent publication. For example, the authors in [13]-[16]
maximized the energy efficiency for different emphases and
application scenarios. Spectrum access strategies in cognitive
radio, aiming at optimizing the average energy efficiency
were addressed in [13]. For better mathematical tractability,
continuous and convex relaxation to modify the problems has
been utilized in [13]. In [14], the maximization of energy
efficiency subject to different constraints is formulated and
also the fundamental trade-off between energy efficiency and
spectral efficiency in downlink communications is addressed.
In [16], energy efficient power adaptation in sensing-based
spectrum sharing cognitive radio networks has been investi-
gated by focusing on the maximization of the energy efficiency
subject to peak/average transmission power and average inter-
ference constraints. In addition, the authors in [17] discussed
the challenges of designing energy-efficient cognitive radio
networks by focusing on the fundamental trade-offs which are
identified as QoS, fairness, primary user interference, network
architecture, and security. Energy efficient non-cooperative
cognitive radio networks from the spectrum sensing and shar-
ing perspectives are overviewed in [18].

In contrast to these works, in this paper, we minimize
the power which brings energy efficiency enhancement to
the cognitive radio network. In high transmission powers,
the energy efficiency can be improved by decreasing the
transmission power in wireless systems. Power minimization
in cognitive radios has been studied in [19] where a group
of cognitive radios access the resources of a primary systems.
The authors in [19] developed an optimum resource allocation
strategy, using cooperative game theory which guarantees the
QoS in primary network and allocates an achievable rate for
secondary networks. Our contribution ties to the power control
schemes in cognitive radio networks by using the optimization
problem. The maximization of ergodic capacity of a secondary
link in dynamic spectrum sharing approach while ignoring the
interference from primary transmitter to secondary receiver has
been investigated in [20]-[22].

Energy efficiency as a measurement for the performance of
wireless communication systems is considered as the main aim
of this paper. Hence, the major contributions in this paper are
as follows:
• In order to increase the energy efficiency in cognitive

radio networks, this paper first provides a multiobjective
optimization problem (MOP) that jointly maximizes the
ergodic capacity and minimizes the average transmission
power. In order to solve the MOP, we convert it into
a single objective optimization (SOP) by using the ε-
constraint method. Specifically, the MOP is converted
into a SU power minimization problem with joint con-
straint on the ergodic capacity of the secondary link

Fig. 1. Cognitive radio with one primary and one secondary link

and the interference power on the primary receiver. An
iterative algorithm based on the sub-gradient method is
proposed to obtain the minimum transmit power in such
optimization problem.

• We then extend the model to a general model where
multiple secondary links share the spectrum with the
existing multiple primary links. We evaluate the mini-
mum transmission power while considering the impact
of other secondary links and primary transmitters. Due
to nonconvexity of optimization problem in the general
model, augmented Lagrange method for the inequality
constraints will be offered.

• Further, we investigate the significance of providing extra
channel side information (CSI) at the secondary transmit-
ters under spectrum sharing for single and multiple links.
Since, having the extra CSIs at the secondary transmitter
can be very difficult, we reduce these extra CSIs and
derive new expressions for corresponding transmission
power at the secondary transmitter. The imperfect side
information of cross channels for single secondary link
is also investigated.

• We finally provide a power minimization allocation ap-
proach in spectrum sensing cognitive radio systems with
perfect and imperfect sensing.

The rest of this paper is organized as follows. Section II
describes the system model of a cognitive radio. Sections III
and IV derive expressions for minimum transmission power
under spectrum sharing and sensing, respectively. In these
two sections, new closed form expressions for evaluating the
minimum power under single secondary link are derived.
Numerical results are presented in section V and finally next
section concludes the paper.

II. SYSTEM MODEL

In this paper, we consider a cognitive radio with the
primary and secondary links as shown in Fig. 1. A flat fading
channel with perfect channel side information (CSI) between
the secondary transmitter and the secondary receiver with
instantaneous channel power gain g1 and the additive white
Gaussian noise (AWGN) n1 has been assumed. Furthermore,
the additive noise n1 is an independent random variable with
the distribution CN(0;N0) (circularly symmetric complex
Gaussian variable with mean 0 and variance N0). We consider
ρ as the constant power for the primary transmitter and also
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the instantaneous power at the secondary transmitter can be
written as P1.

III. MINIMUM POWER UNDER SPECTRUM SHARING

Under spectrum sharing, we assume that two links, primary
and secondary links, use the same frequency band, therefore,
the secondary transmitter imposes interference on the primary
receiver, and also the primary transmitter affects the secondary
receiver. It is assumed that the interference channel with
full CSI between the primary transmitter and the secondary
receiver is a flat fading channel characterized by instantaneous
fading channel power gain h1. The instantaneous received
signal-to-interference-plus-noise ratio (SINR) at the secondary
receiver becomes

SINR =
P1g1

N0 + ρh1
(1)

where ρh1 represents the interference caused as a result of the
PU transmission, measured at the secondary receiver.

In the rest of this section, the average minimum power
for single and multiple secondary links over fading channels
to maximize the energy efficiency of the SU links will be
obtained.

A. Minimum Power for Single Secondary Link

Energy efficiency (EE) as a measurement for the perfor-
mance of wireless communication systems over fading chan-
nels can be defined by

Energy Efficiency =
E [ln (1 + SINR)]

E[P1] + pc
, (2)

where pc is a constant value of the circuit power consumption
and E [·] is the expectation operator. To increase the energy
efficiency given in (2), we formulate a MOP that jointly
maximizes the ergodic capacity of the secondary link (the
numerator of (2)) and minimizes the average power of sec-
ondary transmitter (the denominator of (2)) while satisfying a
target on the average received power constraint at the primary
receiver, as following

min
P1

E[P1 (g1, h1, f1)] (3a)

max
P1

E [ln (1 + SINR)] (3b)

s.t. E[P1 (g1, h1, f1) f1] ≤ Qaverage (3c)

where Qaverage is the maximum average interference on the pri-
mary receiver and f1 is the instantaneous channel power gain
between the secondary transmitter and the primary receiver.

The ε-constraint method is a well-known technique to solve
MOPs. In this approach, one of the objectives is minimized
while the others are used as constraints bound by some
allowable levels ε [23]. Hence, the above MOP can be changed
into an SOP according to

min
P1

E[P1 (g1, h1, f1)] (4a)

s.t. E [ln (1 + SINR)] ≥ Raverage (4b)
s.t. E[P1 (g1, h1, f1) f1] ≤ Qaverage (4c)

The lower limit of the capacity constraint in (4), referred to
by Raverage, is limited in between two extreme values. Raverage
is limited to a maximum value, referred to in the revised
manuscript by Rmax, which is a function of the maximum
transmit power of the secondary user. Raverage from the lower
side is to a minimum value, referred to by Rmin in the
revised manuscript, which reflects a minimum rate requirement
of the secondary user as a quality-of-service (QoS) metric.
The chosen value for Raverage affects the multiple objective
optimization optimal point. By swiping the Raverage from its
minimum to its maximum values, the Pareto Optimal Points of
the MOP can be obtained. It is worth noting that higher values
of Raverage gives more preference to maximizing the rate of the
secondary user link, whereas lower values of Raverage gives
more preference to minimizing the power of the secondary
user, in the multiple objective optimization problem considered
in (3).

We note that if the average power is used as a constraint
bound, the obtained single optimization problem will be
equivalent to maximizing the ergodic capacity of the SU link
and, henceforth, the existing water-filling power allocation
approach [20] gives the solution. Later, in the numerical results
section, we will compare the energy efficiency achieved by
the average power minimization problem (4) and the ergodic
capacity maximization problem.

The above optimization problem is equivalent to solving the
following Lagrangian approach [24]

L(P1, λ) = E[P1 (g1, h1, f1)]

− λs
(
E
[
ln

(
1 +

P1 (g1, h1, f1) g1
N0 + ρh1

)]
−Raverage

)
+ λp (E[P1 (g1, h1, f1) f1]−Qaverage) , (5)

where λs and λp are the nonnegative dual variables corre-
sponding to the constraints (4b) and (4c). Taking the derivative
of Lagrangian in (5) with respect to P1 and equalling it to zero
gives

∂L(P1, λ)

∂P1
= E

[
1− λsg1

N0 + ρh1 + P1g1
+ λpf1

]
= 0, (6)

which results into

P1 (g1, h1, f1) =
λs

1 + λpf1
− (N0 + ρh1)

g1
, (7)

where P1 is a function of direct channel gains g1 and f1, and
also cross channel gain h1. In (7), by considering the non-
negativity of the power, i.e., constraint P1 ≥ 0, we get

g1 ≥
(N0 + ρh1)

λs
(1 + λpf1) . (8)

We note that when (8) hold, the optimum power allocation
strategy follows (7). Otherwise, the transmission power should
be limited to zero. In order to account for the minimum
transmission power, the following iteration search based on the
sub-gradient method can be implemented while substituting
the obtained power (7) in constraints (4b) and (4c) as equation
(9) and (10) (shown at the beginning of next page) where
[.]

+ denotes the projection onto the nonnegative area, α is
a positive gradient search stepsize, and λns and λnp are the
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λn+1
s =

[
λns − α

(
E
[
ln

(
g1

N0 + ρh1

λns
1 + λnpf1

)]
−Raverage

)]+
(9)

λn+1
p =

[
λnp − α

(
E
[(

λns
1 + λnpf1

− (N0 + ρh1)

g1

)
f1

]
−Qaverage

)]+
(10)

E[P1 (g1, h1, f1)] = E
[

λn+1
s

1 + λn+1
p f1

− (N0 + ρh1)

g1

]
=

∫ ∞
0

∫ ∞
0

∫ ∞
(N0+ρh1)

λ
n+1
s

(1+λn+1
p f1)

(
λn+1
s

1 + λn+1
p f1

− N0 + ρh1
g1

)
× e−f1−h1−g1dg1dh1df1

= (N0 + ρ) Ei

(
− N0

λn+1
s

)
− e−

N0
ρ ρEi

(
−
N0

(
ρ+ λn+1

s

)
ρλn+1

s

)
−
(
N0 + ρ+

λn+1
s

λn+1
p

)
e

1

λ
n+1
p

× Ei

(
−
N0λ

n+1
p + λn+1

s

λn+1
p λn+1

s

)
+ e

N0λ
n+1
p +λn+1

s

ρλ
n+1
p ρEi

(
−
(
ρ+ λn+1

s

) (
N0λ

n+1
p + λn+1

s

)
ρλn+1

s λn+1
p

)
(11)

value of λs and λp at stage n, respectively. In theory, when
the stepsize α is small enough this approach converges to a
definite number [25]. Then, we can get the minimum average
power of secondary transmitter under Rayleigh fading by (7)
and using [26, eqs. (3.351.5), (3.352.4), (6.455.1), (9.121.6),
(5.231.1), (9.131.1) and (4.337.1)] as equation (11) (shown
at the next page) where Ei (.) is the exponential integral
function defined as Ei (x) =

∫ x
−∞

et

t dt. The steps for the
power allocation algorithm is shown in Table 1, in which λn+1

s

and λn+1
p are updated to minimizing the power.

Table. 1: Power allocation algorithm
Algorithm
1) Initialization n = 0, α, λns and λnp
2) While not converged do
3) update λn+1

s by (9)
4) update λn+1

p by (10)
5) calculate the minimum power by (11)
6) n=n+1
7) End While

1) The Effect of Reducing CSI h1 at the Secondary Trans-
mitter: Since having indirect channel gain h1 at the secondary
transmitter is a very difficult task to achieve and can cause
major overhead on the system, we reduce the CSI h1 from
secondary transmitter, which in this case, P1 becomes a
function of g1 and f1. Hence, we modify the optimization
problem (4) as following

min
P1

E[P1 (g1, f1)] (12a)

s.t. E
[
ln

(
1 +

P1 (g1, f1) g1
N0 + E [ρh1]

)]
≥ Raverage (12b)

s.t. E[P1 (g1, f1) f1] ≤ Qaverage (12c)

Following the same procedure as found (7), we obtain the
following power allocation of secondary transmitter as

P1 (g1, f1) =
µs

1 + µpf1
− N0 + E [ρh1]

g1
(13)

where µs and µp are the nonnegative dual variables. It is
worthy to note that in (13) the transmission power is only a
function of g1 and f1 and is independent of h1 so only average
value of interference from primary transmitter is available at
the secondary transmitter. The similar iteration search based
on the sub-gradient method is implemented as equation (14)
and (15) (shown at the beginning of next page) where s
is a positive gradient search stepsize, and µns and µnp are
the value of µs and µp at stage n, respectively. Hence, the
minimum average power in this case under Rayleigh fading
can be straightforwardly derived by using the identity [26,
eqs. (3.351.5), (3.352.4), (6.455.1), (9.121.6) and (5.231.1)]
as equation (16) (shown at the next page).

2) Imperfect CSI: Here, the perfect knowledge of the chan-
nel between secondary transmitter and the secondary receiver
is assumed at secondary transmitter but only partial channel
knowledge of the cross channel gains are available at the
secondary transmitter.

With partial CSI of the cross channel gains at the secondary
transmitter, we exploit the following model for the complex
channel estimate of h and f at the secondary transmitter, i.e.

h =
√
σ2
h1
ĥ+

√
1− σ2

h1
h̃ (17)

f =
√
σ2
f1
f̂ +

√
1− σ2

f1
f̃ (18)

where h̃ and f̃ are the channel estimation errors which are
complex Gaussian random variable with zero means and unit
variances that are uncorrelated with ĥ and f̂ that denote the
channel estimations, respectively. Also, σh1 and σf1 as correla-
tion coefficients that are constant values between 0 and 1 give
the average quality of channel estimate over all channel states
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µn+1
s =

[
µns − s

(
E
[
ln

(
g1

N0 + E [ρh1]

µns
1 + µnpf1

)]
−Raverage

)]+
(14)

µn+1
p =

[
µnp − s

(
E
[(

µns
1 + µnpf1

− N0 + E [ρh1]

g1

)
f1

]
−Qaverage

)]+
(15)

E[P1 (g1, h1, f1)] = E
[

µn+1
s

1 + µn+1
p f1

− N0 + E [ρh1]

g1

]
=

∫ ∞
0

∫ ∞
(N0+E[ρh1])

µ
n+1
s

(1+µn+1
p f1)

(
λn+1
s

1 + λn+1
p f1

− N0 + E [ρh1]

g1

)
e−f1−g1dg1df1

= (N0 + ρ) Ei

(
−N0 + ρ

λn+1
s

)
− e
− 1

λ
n+1
p

(
N0 + ρ+

λn+1
s

λn+1
p

)
Ei

(
−
N0λ

n+1
p + λn+1

p ρ+ λn+1
s

λn+1
p λn+1

s

)
(16)

of h and f, respectively. In addition, it is assumed that the
secondary transmitter knows not only the imperfect channel
information, f̂ and ĥ, but also the correlation coefficient, σh1

and σf1 . Note that σh1
and σf1 which are function of the

Doppler frequency and delay parameters can be used to access
the impact of other factors on the CSI. This model which
focusses on the effects of imperfect CSI is well established in
the literature [22].

In this case, the channel power gains between primary
transmitter and secondary receiver and also between secondary
transmitter and primary receiver become

h1 = σ2
h1
ĥ1 +

(
1− σ2

h1

)
h̃1 (19)

f1 = σ2
f1 f̂1 +

(
1− σ2

f1

)
f̃1 (20)

where h1 = |h|2 , ĥ1 =
∣∣∣ĥ∣∣∣2 , h̃1 =

∣∣∣h̃∣∣∣2 , f1 = |f |2 , f̂1 =∣∣∣f̂ ∣∣∣2 , f̃1 =
∣∣∣f̃ ∣∣∣2. In this case, the optimization problem can

be updated as following

min
P1

E
[
P1(g1, ĥ1, f̂1)

]
(21)

s.t. E
[
ln

(
1 +

P1(g1,ĥ1,f̂1)g1

N0+ρ
(
σ2
h1
ĥ1+

(
1−σ2

h1

)
h̃1

))] ≥ Raverage

(22)

s.t. E
[
P1(g1, ĥ1, f̂1)

(
σ2
f1 f̂1 +

(
1− σ2

f1

)
f̃1

)]
≤ Qaverage.

(23)

Under Rayleigh fading, the above equation can change into
(24) subject to (25) and (26) (shown at the beginning of next
page) where the expectation is with respect to the channel
gains g1, ĥ1 and f̂1. Equation (24) subject to (25) and (26)
can be equivalent to the equation (27) subject to (28) and
(29) (shown at the next page) where E is respect to g1, ĥ1, h̃1
and f̂1. In (27) subject to (28) and (29), we have changed
the integration in (25) with respect to h̃1 as an expectation
with respect to a dummy random variable h̃1, which is
distributed with exponential distribution. Applying Lagrangian
approach, P

′
(g1, ĥ1, h̃1, f̂1) as a dummy power allocation is

given by

P
′

1(g1, ĥ1, h̃1, f̂1) =
νs

1 + νpf̂1

(
2σ2

f1
− 1
)

−
N0 + ρ

(
σ2
h1
ĥ1 +

(
1− σ2

h1

)
h̃1

)
g1

(30)

where νs and νp are the nonnegative dual variables. Therefore,
P1(g1, ĝ0, ĥ1) can be obtained as

P1(g1, ĥ1, f̂1) =

∫ ∞
0

 νs

1 + νpf̂1

(
2σ2

f1
− 1
)

−
N0 + ρ

(
σ2
h1
ĥ1 +

(
1− σ2

h1

)
h̃1

)
g1

 e−h̃1dh̃1

=
νs

1 + νpf̂1

(
2σ2

f1
− 1
) − N0 + ρ

(
σ2
h1
ĥ1 + 1− σ2

h1

)
g1

.

(31)

Equation (31) is an expression for power allocation of
the secondary transmitter when imperfect CSI of the cross
channels are available at the secondary transmitter. Again,
the similar iteration search based on the sub-gradient method
should be implemented to obtain minimum transmit power
where the minimum average power under Rayleigh fading
becomes equation (32) (shown at the next page) where Γ (0, .)
is the incomplete Gamma function.

As far as the computation complexity of (32) is concerned,
note that the double integral in (32) can be represented,
to any desire degree of accuracy, in terms of the weights
and abscissa of a Laguerre orthogonal polynomial [35, eq.
(25.4.45)] as shown in (33) where βn, αn are, respectively, the
sample points and weight factors of the N th order Laguerre
polynomial, tabulated in [35, Table 25.9] and RN is the
remainder. We observe that closed-form expressions is not
obtainable for (33), and hence, we need to solve the equation
numerically.
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min
P1

E
[
P1(g1, ĥ1, f̂1)

]
(24)

s.t. E

∫ ∞
0

1

σ2
h1

ln

1 +
P1(g1, ĥ1, f̂1)g1

N0 + ρ
(
σ2
h1
ĥ1 +

(
1− σ2

h1

)
h̃1

)
 e
− h̃1
σ2
h1 dh̃1

 ≥ Raverage (25)

s.t. σ2
f1E

[
P1(g1, ĥ1, f̂1)f̂1

]
+
(
1− σ2

f1

)
E
[
P1(g1, ĥ1, f̂1)f̂1

]
≤ Qaverage (26)

min
P1

E
[
P
′

1(g1, ĥ1, h̃1, f̂1)
]

(27)

s.t. E

ln

1 +
P
′

1(g1, ĥ1, h̃1, f̂1)g1

N0 + ρ
(
σ2
h1
ĥ1 +

(
1− σ2

h1

)
h̃1

)
 ≥ Raverage (28)

s.t. σ2
f1E

[
P
′

1(g1, ĥ1, h̃1, f̂1)f̂1

]
+
(
1− σ2

f1

)
E
[
P
′

1(g1, ĥ1, h̃1, f̂1)
]
≤ Qaverage (29)

E[P1(g1, ĥ1, f̂1)] = E

 νs

1 + νpf̂1

(
2σ2

f1
− 1
) − N0 + ρ

(
σ2
h1
ĥ1 +

(
1− σ2

h1

)
h̃1

)
g1


=

∫ ∞
0

∫ ∞
0

∫ ∞
(N0+ρ(σ2h1 ĥ1+1−σ2

h1
))(1+νpf̂1(2σ2

f1
−1))

νs

 νs

1 + νpf̂1

(
2σ2

f1
− 1
) − N0 + ρ

(
σ2
h1
ĥ1 +

(
1− σ2

h1

)
h̃1

)
g1


× e−f̂1−ĥ1−g1dg1dĥ1df̂1 =

∫ ∞
0

∫ ∞
0

νse− (N0+ρ+(ĥ1−1)ρσ2h1)(1+f̂1(2σ2f1
−1)νp)

νs

1 + f̂1

(
2σ2

f1
− 1
)
νp

−
(
N0 + ρ+

(
ĥ1 − 1

)
ρσ2

h1

)

×Γ

0,

(
N0 + ρ+

(
ĥ1 − 1

)
ρσ2

h1

)(
1 + f̂1

(
2σ2

f1
− 1
)
νp

)
νs

 e−f̂1−ĥ1dĥ1df̂1 (32)

.

E[P (g1, ĥ1, f̂1)] =

N∑
n=1

N∑
m=1

αnαm

νse− (N0+ρ+(βn−1)ρσ2h1
)(1+βm(2σ2f1

−1)νp)
νs

1 + βm

(
2σ2

f1
− 1
)
νp

−
(
N0 + ρ+ (βn−1) ρσ2

h1

)

×Γ

0,

(
N0 + ρ+ (βn−1) ρσ2

h1

) (
1 + βm

(
2σ2

f1
− 1
)
νp

)
νs

+RN (33)

min
P1,...PK

K∑
k=1

E[Pk] (34)

s.t.

K∑
k=1

E

[
ln

(
1 +

Pkgk

N0 +
∑M
m=1 ρmhmk +

∑K
j=1,j 6=k Pjgjk

)]
≥ Raverage (35)

s.t.

K∑
k=1

E[Pkfkm] ≤ Qaverage m = 1, ...,M (36)
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B. Minimum Power for Multiple Primary and Secondary Links

Here, we assume that multiple secondary links (K links)
with multiple primary links (M Links) are present on the same
spectrum while in the previous results, it was assumed that the
licensed spectrum is being shared between one secondary link
and one primary link. The optimization problem is modified as
equation (34) subject to (35) and (36) (shown at the next page),
where Pk is the transmission power of the kth secondary
transmitter, gk denotes the channel gain between secondary
transmitter k and secondary receiver k, ρm is the transmission
power of the mth primary transmitter, hmk is the interference
channel gain from the mth primary transmitter to the kth
secondary receiver, gjk denotes an interference channel gain
for secondary receiver k from other secondary transmitters,
fkm is the channel gain from the kth secondary transmitter to
the mth primary receiver.

This optimization problem is a nonconvex problem due to
having nonconvex constraint (35), which was recently shown
to be NP-hard [27]. When a problem is not convex, duality
gaps may occur that prevent ordinary Lagrangian duality
from reaching the optimal solution. The authors in [28]-[31]
augmented the Lagrangian function in order to eliminating
duality gaps in nonconvex problems. The augmentation con-
sists of a penalty-like quadratic term being introduced into the
Lagrangian function to convexify the problem.

The approach, therefore, is to use augmented Lagrange
method for inequality constraints which convert inequality
constraints to equality constraints by using squared additional
variables. Indeed, for sufficiently large penalty parameter, [28]
shows that the augmented Lagrangian is locally convex.

We note that the augmented Lagrangian is different with
standard Lagrangian in the presence of the squared terms. It
is also different with the quadratic penalty function by the
presence of the summation term involving lagrangian multi-
pliers. In fact, the augmented Lagrangian method combines
the Lagrangian function and the quadratic penalty function. In
this method, the constraints are eliminated and added to the
cost function as a penalty term that prescribes a high cost to
infeasible points. A positive coefficient as a penalty parameter
multiplied by the penalty terms determines the severity of the
penalty, and therefore, the resulting unconstrained problem
approximates the original constrained problem. When the in-
troduced penalty parameter takes a higher value, the constraint
violations will be penalized more severely, and therefore, the
minimizer of the penalty function is forced closer to the
feasible region for the constrained problem.

The augmented Lagrangian function can be expressed as
equation (37) (shown at the beginning of next page) where µ1

and µm are Lagrangian dual variables and σ is an adjustable
penalty parameter. The equation (37) can be solved by an
iterative algorithm to update µ1, µm and σ until the conver-
gence criteria is met. In this method, the following iterations
for µ1 and µm are implemented as equation (38) and (39)
(shown at the next page) where P

(n)
k , µ

(n)
1 and µ

(n)
m are the

values of Pk, µ1 and µm at stage n, respectively. The steps
for the power control algorithm are shown in Table 2, in which
P

(n+1)
k , µ

(n+1)
1 and µ(n+1)

m are updated to obtain the minimum

transmission power.

Table. 2: Augmented Lagrange method
1) Choose tolerance ε = 10−3, initial value n = 0,
initial penalty parameter σ(n) = 1

starting points P (n)
k = 0, µ

(n)
1 = 0.1 and µ(n)

2 = 0.15
2) While

a) Perform unconstrained optimization
Lσ(Pk, µ1, µm) in (37) to get P (n+1)

k

b) Update µ(n+1)
1 by (38)

c) Update µ(n+1)
m by (39)

d) σ(n+1) = 2σ(n)

e) n = n+ 1

3) If |P (n+1)
k − P (n)

k | < ε then stop.
The convergence rate of the augmented Lagrangian method

depends heavily on the adjustable penalty parameter σ. In
general, large σ results in fast convergence rate. However,
large values of σ may introduce computational difficulty in
minimizing the augmented Lagrangian. It is recommended in
[28] to increase the adjustable penalty parameter gradually
until it reaches a certain threshold value.

The quadratic penalty function is the simplest penalty
function in which the penalty terms are the squares of the
constraint violations. A suitable choice of the initial guess on
σ(0) is necessary for the method to perform correctly. The
initial guess should not be too large to the point that ill-
conditioning results in the first unconstrained minimization.
Our numerical analysis suggest that σ(0) ∈ [1, 5] works well
in practice. In this case, the penalty parameter σ(n) is not
increased too fast to the point that high ill-conditioning is
forced upon the unconstrained minimization routine too early.
On the other hand, σ(n) is not increased too slowly so that
not to reduce the convergence rate. In fact, the subsequent
values of σ(n) will be monotonically increased via the equation
σ(n+1) = υσ(n) where υ is a scalar with υ > 1. Additional
guidelines for choosing these parameters can be found in [28,
Section 4.2].

In [30] and [31, Chapter 3], Bertsekas introduced an
important result on the linear rate of convergence of the
augmented Lagrangian method for nonconvex nonlinear op-
timization problems with inequality constraints. The rate of
convergence tends to a constant value which is proportional to
the ratio 1/σ where the penalty parameter σ is not less than a
threshold σ̄ > 0 [29] and [28]. The significance of Bertsekas’s
result resides in the fact that theoretically, subject to numerical
stability, a large σ can be selected to accelerate the conver-
gence, which also demonstrates high practical performance of
this method. The choice of a quadratic penalty function also
has a substantial effect on the convergence rate. If a different
penalty function is chosen, then the convergence rate can
become sublinear or superlinear. Linear convergence rate for
the augmented Lagrangian method with different conditions
have been derived in literature. 1.

The complexity order in augmented Lagrange method pro-
posed in Table. 2 to get minimum power in Steps 2b to 2e is

1For more on the augmented Lagrangian method for nonlinear program-
ming, readers are referred to [32] and [33] and the survey paper [34]
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Lσ(Pk, µ1, µm) =

K∑
k=1

E[Pk]

+
1

2σ


(max

{
0, µ1 + σ

(
K∑
k=1

E

[
ln

(
1 +

Pkgk

N0 +
∑M
m=1 ρmhmk +

∑K
j=1,j 6=k Pjgjk

)]
−Raverage

)})2

−µ2
1

)
+

M∑
m=1

(max

{
0, µm + σ

(
Qaverage −

K∑
k=1

E[Pkfkm]

)})2

− µ2
m

 (37)

µ
(n+1)
1 = max

{
0, µ

(n)
1 + σ

(
K∑
k=1

E

[
ln

(
1 +

Pkgk

N0 +
∑M
m=1 ρmhmk +

∑K
j=1,j 6=k Pjgjk

)]
−Raverage

)}
(38)

µ(n+1)
m = max

{
0, µ(n)

m + σ

(
Qaverage −

K∑
k=1

E[Pkfkm]

)}
m = 1, ...,M (39)

O(N) while in Step 2a the complexity order becomes O(N2),
supposing that we use an iterative algorithm with a small step
size [28] [29]. Therefore, the complexity of the augmented
Lagrange method is O(N2) + O(N)+ O(N) + O(N)+
O(N) = O(N2).

1) The Effect of Reducing Extra CSI at the Secondary
Transmitter: Under multiple primary and secondary links,
having extra CSI of interference channels, including from
primary transmitters and also other secondary transmitters,
at the secondary transmitter can be a strong assumption. So,
we here present the case where only average values of extra
CSI of interference channels are available at the secondary
transmitter and compare with the pervious case where all
CSIs are available at the secondary transmitter to study the
significance of having extra CSI at the secondary transmitter.

In this case, the optimization problem can be simplified
as equation (40) subject to (41) and (42) (shown at the
next page). This optimization problem changes into a convex
form. Following the same procedure as found (7), the power
allocation of secondary transmitter can be expressed as

Pk (gk, fk1, fk2, ..., fkM ) =
ηs

1 +
∑M
m=1 ηpmfkm

−

N0 + E
[∑M

m=1 ρmhmk

]
+ E

[∑K
j=1,j 6=k Pjgjk

]
gk

(43)

where ηs and (ηp1, ...., ηpM ) are the nonnegative dual vari-
ables. In this case, the transmission power Pk is only a function
of gk and (fk1, fk2, ..., fkM ) and also is independent of extra
CSI of interference channels.

We present the following iteration search based on the sub-
gradient method as equation (44) and (45) (shown at the next
page) where β is a positive gradient search stepsize, and ηns
and ηnpm are the value of ηs and ηpm at stage n, respectively.

IV. MINIMUM POWER UNDER SPECTRUM SENSING

In spectrum sensing, when the primary user is active, the
discrete received signal at the secondary user is expressed as

y(n) = hx(n) + u(n), (46)

for n = 1, 2, ..., N , where x(n) is the signal sent by the
primary transmitter, h represents the channel between the pri-
mary transmitter and the secondary transmitter, u(n) denotes
AWGN noise with zero mean and variance E[|u(n)|2] = σ2

u,
and N is the number of samples. This case is referred to
hypothesis H1 as the presence of the primary user. When the
primary user is inactive, the received signal at the secondary
user can be given by

y(n) = u(n), (47)

which is the output under hypothesis H0 as the hypotheses of
the absence of the primary user. We also assume that N = fsτ
where fs is the sampling frequency and τ is the sensing time.
Two probabilities are of interest in spectrum sensing known
as probability of detection and probability of false alarm.
Probability of detection (Pd) defines the probability of the
algorithm correctly detecting the presence of primary signal
under hypothesis H1 whereas probability of false alarm (Pf )
is referred to the probability of the algorithm falsely declaring
the presence of primary signal under hypothesis H0. Using
energy detecting scheme and based on the probability density
function (PDF) of the test static, Pd and Pf are expressed as

Pd(ε, τ) = Q

((
ε

σ2
u

− γ − 1

)√
τfs

2γ + 1

)

Pf (ε, τ) = Q

((
ε

σ2
u

− 1

)√
τfs

)
respectively, where ε denotes the detection threshold, γ is the
received signal-to-noise ratio (SNR) at the secondary transmit-
ter, and Q(·) represents the complementary distribution func-
tion of the standard Gaussian [7]. Each frame under cognitive
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min
P1,...PK

K∑
k=1

E[Pk] (40)

s.t.

K∑
k=1

E

ln

1 +
Pkgk

N0 + E
[∑M

m=1 ρmhmk

]
+ E

[∑K
j=1,j 6=k Pjgjk

]
 ≥ Raverage (41)

s.t.

K∑
k=1

E[Pkfkm] ≤ Qaverage m = 1, ...,M (42)

ηn+1
s =

ηns − β
 K∑
k=1

E

ln

 gk

N0 + E
[∑M

m=1 ρmhmk

]
+ E

[∑K
j=1,j 6=k Pjgjk

] ηns

1 + ηnpm
∑M
m=1 fkm

−Raverage

+

(44)

ηn+1
pm =

ηnpm − β
 K∑
k=1

E

 ηns

1 +
∑M
m=1 η

n
pmfkm

−
N0 + E

[∑M
m=1 ρmhmk

]
+ E

[∑K
j=1,j 6=k Pjgjk

]
gk

 fk

−Qaverage

+

m = 1, ...,M (45)

radio network with periodic spectrum sensing includes one
sensing slot and one data transmission slot. Denote τ as the
sensing duration time, T as the frame duration time and T −τ
as the data transmission slot duration. Secondary users can
operate at the frequency band of primary network under two
scenarios where in first scenario the primary user is not present
and no false alarm is generated by the secondary user while
in second, the primary user is active but it is not detected by
the secondary user.

In such scenario, the optimization problem for minimum
power can be formulated as

min
P1

E[P1] (48)

s.t. E
[
T − τ
T

(
P (H0) (1− Pf ) ln

(
1 +

P1g1
N0

)
+ P (H1)

× (1− Pd) ln

(
1 +

P1g1
N0 + ρh1

))]
≥ Ravg sense

(49)
s.t. P (H1) (1− Pd)E[P1f1] ≤ Qavg sense (50)

where Ravg sense denotes the minimum capacity required in
secondary network under spectrum sensing and Qavg sense
refers to the maximum average interference on the primary
user. The constraint (50) is added to the optimization problem
in order to consider the simultaneous transmission of primary
and secondary links. Secondary user causes interference to the
primary user only when the primary user is active but it is not
detected by the secondary user.

In what follows, we will obtain the minimum power under
perfect and imperfect sensing.

A. Perfect Sensing

Under perfect sensing, we can assume that secondary trans-
mitter perfectly detects the presence of the signal of the
primary transmitter without false alarm, i.e., Pd = 1 and
Pf = 0. So, the constraint in the above optimization problem
can be modified as

E
[
T − τ
T

(
P (H0) ln

(
1 +

P1g1
N0

))]
≥ Ravg sense (51)

After applying the Lagrangian approach, we can find P1 as

P1 = λP (H0)
T − τ
T
− N0

g1
(52)

The parameter λ that minimizes (48) can be obtained by
substituting (52) in (49) as

Ravg sense = E
[
P (H0)

T − τ
T

ln

(
g1
N0

λP (H0)
T − τ
T

)]
(53)

which under Rayleigh fading, by using the definition of the
Incomplete Gamma function, according to:∫ ∞

a

ln
(x
a

)
e−xdx = Γ (0, a) if a > 0

and using [26, eq. (4.331.2) and eq. (8.359.1)], we get

Ravg sense = P (H0)
T − τ
T

×
∫ ∞

N0T

λP (H0)(T−τ)

ln

(
λP (H0) (T − τ)

N0T
g1

)
e−g1dg1

(54)

= P (H0)

(
T − τ
T

)
Γ

(
0,

N0T

λP (H0) (T − τ)

)
(55)
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We finally find the minimum power by using [26, eq. (3.351.5)
and eq. (8.359.1)] as

minE[P1] =

∫ ∞
N0T

λP (H0)(T−τ)

(
λP (H0)

T − τ
T
− N0

g1

)
e−g1dg

(56)

= e
− N0T

λP (H0)(T−τ)λP (H0)
T − τ
T

−N0Γ

(
0,

N0T

λP (H0) (T − τ)

)
(57)

B. Imperfect Sensing

Here, in the case of imperfect sensing as a more realistic
model, where Pd is less than one and Pf is bigger than zero,
we obtain the minimum transmission power.

Similarly, by employing the Lagrangian approach over the
optimization problem (48) subject to (49) and (50), the power
allocation of the secondary transmitter can be expressed as

P1 =
1

2g21AT
(−g1C − g1A (2N0 + h1ρ)T

+

√
g21

(
C2B2 − 2h1ACDρ+ (h1AρT )

2
))

(58)

where A = f1λp (Pd − 1)P (H1) − 1, B =
P (H1) (Pd − 1) + P (H0) (Pf − 1), C = g1λsT (t− T ) and
D = (Pf − 1)P (H0)+P (H1) (1− Pd) . In a manner similar
to the perfect sensing, we find the minimum transmission
power under imperfect sensing.

C. Multiple Secondary Links

Here, we extend the model to multiple secondary links
which in this case the optimization problem for the minimum
power under spectrum sensing can be modified as equation
(59) subject to (60) and (61). This optimization problem under
perfect sensing (Pd = 1 and Pf = 0) gives the similar results
as problem (48) subject to (49) and (50), while under imperfect
sensing requires the augmented Lagrange method offered in
the previous section.

V. NUMERICAL RESULTS

In this section, we present the numerical results to illustrate
the energy efficiency, minimum power and achievable rate of
the secondary network over Rayleigh fading channels under
spectrum sharing and sensing schemes.

A. Spectrum Sharing

Fig. 2 shows the behavior of minimum transmission power
of secondary transmitter over single secondary link scenario
versus the number of iterations in power control algorithm
proposed in Table 1 for ρ = 5dB. The convergence of the
proposed algorithm can be observed in this figure. From
this figure, we can further observe that the minimum power
monotonically increases by increasing the number of iterations
which itself depends on the chosen initial values for λ0s and
λ0p. Iteration should be applied until the difference between
two consecutive steps becomes less than a small value.
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Fig. 2. The minimum power of the secondary transmitter versus the number
of iterations for single secondary link scenario in power control algorithm
proposed in Table 1.
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min
P1,...PK

K∑
k=1

E[Pk] (59)

s.t. E
[
T − τ
T

(
P (H0) (1− Pf ) ln

(
1 +

P1g1
N0

)
+ P (H1)

× (1− Pd)
K∑
k=1

ln

1 +
Pkgk

N0 + E [ρhk] + E
[∑K

j=1,j 6=k Pjgjk

]
 ≥ Ravg sense (60)

s.t. P (H1) (1− Pd)
K∑
k=1

E[Pkfk] ≤ Qavg sense (61)
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Fig. 5. Energy efficiency for average power minimization problem and the
ergodic capacity maximization problem

Fig. 3 displays the energy efficiency against transmit power
in single secondary link scenario when there is no constraint
on Qaverage with ρ = 5dB. For comparison, we also plot
the energy efficiency results for AWGN channel. As we can
see, the energy efficiency in all cases exponentially decreases
with increasing the power, at high transmission powers. This
figure includes the results for two different values of the circuit
power with one case with Pc = −5dB and another case with
no circuit power consideration, i.e., Pc = 0 watts. The figure
shows that when Pc = −5dB, in AWGN channels, the EE first
increases slowly and then decreases. When no circuit power is
considered, the EE decreases monotonically with the minimum
power. These results are expected from EE formula as the
minimum power increases. The figure further reveals that the
EE decreases rapidly at lower values of the minimum power,
whereas the slope of the EE curve is slower at higher values
of the minimum power. Also, the figure shows that the AWGN
channel’s EE performance is not necessarily higher than that
of the Rayleigh fading channel. This is in contrast to the
point-to-point channels for which fading causes performance
degradation in wireless systems. This is due to the fact that
in Rayleigh fading channels, the SU can benefit from the
case when the interference channel is in deep fading, but, its

direct channel is in good condition. This result is in line with
achieving higher capacity in Rayleigh fading channel when
compared to AWGN channels in spectrum sharing scenarios
[36]. In addition to the above, we note that at each moment,
with high probability, a user with the best joint channel
condition is available which also can improve the performance
of the secondary user network due to multiuser diversity gain.

Fig. 4 shows the effect of varying Qaverage on the energy ef-
ficiency of cognitive network with different minimum transmit
powers. This figure reveals that Qaverage can limit the energy
efficiency of cognitive network as a dominant constraint. We
also include in Fig. 3 and Fig. 4 the energy efficiency results
with a reduced side information on h1 (where h1 is not made
available at the secondary transmitter). This is used to gain
insight into the significance of having extra side information
on the channel gain h1 at the secondary transmitter. One
important observation is that the energy efficiency when the
power is a function of g1, h1 and f1 is always higher than that
when the power depends on g1 and f1. Examining Fig. 3, we
can see that the difference between the energy efficiency with
a reduced CSI h1 and energy efficiency with no reduced CSI
h1 decreases as the transmit power increases. For instance,
as the minimum power increases from 3dB to 18dB, the
difference between the energy efficiencies decreases from 0.07
nat/Joule/Hz to nearly zero nat/Joule/Hz. Flooring in the case
of 10dB and 15dB minimum powers, and in general, occurs
because the minimum power becomes the dominant constraint
in the MOP. In this case, the operational power does not
increase further and the EE remains constant.

Fig. 5 shows the energy efficiency versus the ergodic ca-
pacity. This figure compares the energy efficiency obtained by
the average power minimization problem (4) and the following
ergodic capacity maximization problem

max
P1

E
[
ln

(
1 +

P1g1
N0 + ρh1

)]
(62a)

s.t. E[P1 (g1, h1, f1) f1] ≤ Qaverage (62b)
s.t. E[P1 (g1, h1, f1)] ≤ Paverage (62c)

From Fig. 5, it can be seen that the difference between these
two obtained results is considerable which indicates the effect
of power minimization on the improving of energy efficiency.
From this figure, we can observe that Qaverage can prevent the
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Fig. 6. The impact of varying σh1
and σf1 on the energy efficiency with

ρ = 5dB and Qaverage = 12dB

energy efficiency reduction. This is because the constraint on
Qaverage limits the transmit power. This threshold, defines a
maximum on the operational power that optimizes the power
minimization problem. Henceforth, after a certain value of
Raverage flooring occurs and increasing the value of Raverage
beyond this point does not change the system performance. In
other words, for lower values of Raverage, the constraint on the
Raverage is the dominant constraint and limits the performance
of the secondary user and increasing its maximum value
reduces the system EE performance. On the other hand, at
higher values of Raverage, the constraint on the Qaverage will
be the dominant constraint and increasing Raverage does not
change the system performance, henceforth, flooring occurs.

Under imperfect CSI, the behavior of the energy effi-
ciency versus minimum transmit power with different values
of σf1and σh1

are shown in Fig. 6. In this figure, four different
cases are studied, wherein the two first cases σh1

is fixed and
σf1 takes two different values of σf1 = 0.8 and σf1 = 0.3. In
the remaining cases, σf1 is fixed and σh1 is changed between
σh1

= 0.8 and σh1
= 0.3. This figure indicates that by

decreasing σf1 energy efficiency decreases whereas by varying
σh1

from 0.3 to 0.8 energy efficiency decreases.
In Fig. 7, the behavior of total minimum transmission power

versus the number of iterations in augmented Lagrange method
proposed in Table 2 for ρ = 5dB is discussed. This figure
indicates the convergence of the proposed algorithm.

Fig. 8 shows the energy efficiency versus transmit power un-
der ergodic capacity and average interference power constraint
for different values of K, ρ = 5dB and Qaverage = 15dB. As
we can see in this figure, for a constant transmit power, energy
efficiency decreases when the number of secondary links (K)
increases. In addition, the energy efficiency result with reduced
extra side information at the secondary transmitter is also
plotted in Fig. 8. This figure shows that the energy efficiency
when the extra CSIs are available at the secondary transmitter
always higher than that when extra CSIs at the secondary
transmitter are reduced. The figure further shows that for a
fixed K, the different between the achievable EE in two cases
of full CSI and reduced CSI decreases as the minimum power
increases. The plots for with full CSI and with reducing extra
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Fig. 7. The sum of minimum power of secondary transmitters versus the
number of iterations for multiple secondary links in power control algorithm
proposed in Table 2.

−4 −2 0 2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

0.3

Minimum Power [dB]

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 [
n

a
t/
J
o

u
le

/H
z
]

 

 

K=2
K=3

No Reducing Extra CSI

Reducing Extra CSI

Fig. 8. Energy efficiency versus minimum power for multiple secondary links

CSI have the same behavior when the value of K is constant.

B. Spectrum Sensing

Fig. 9 and Fig. 10 show the effect of τ and P (H0)
on the energy efficiency under perfect sensing, respectively.
For comparison, we also plot the energy efficiency results
over AWGN channels in these figures. These two figures
indicate that increasing τ reduces the energy efficiency while
increasing P (H0) improves the energy efficiency. These re-
sults can be expected from equation (55). In addition, since
ergodic capacity under fading channels is lower than that under
AWGN channels and due to assuming constant transmit power
in plotting Fig. 9, energy efficiency under fading channels
becomes lower than that under AWGN channels.
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Fig. 9. Energy efficiency under perfect sensing versus τ for fixed transmit
power and P (H0) = 0.7.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P(H
0
)

En
er

gy
 E

ffi
ci

en
cy

 [n
at

/J
ou

le
/H

z]

 

 

Rayleigh Fading

AWGN Channel

Fig. 10. Energy efficiency under perfect sensing versus P (H0) for fixed rate
of secondary transmitter and τ = 2.

The behavior of ρ under imperfect sensing is shown in Fig.
11 for P (H0) = 0.6, and fixed transmit power. From Fig. 11,
it can be seen that the difference between energy efficiencies
under AWGN channels and Rayleigh fading channels increases
by increasing ρ.

Fig. 12 displays the energy efficiency against the ergodic
capacity under perfect spectrum sensing with P (H0) = 0.7
and τ = 1. Similar to the result obtained for spectrum sharing,
this figure also shows the significant impact of the power
minimization on increasing the energy efficiency compared
to ergodic capacity maximization. In this figure, for very low
ergodic capacity, the transmit power of the proposed solution
and the AWGN case are very low, giving energy efficiency
close to each other. But for very high ergodic capacity, with
increasing transmit power from a threshold point, ergodic
capacities under proposed solution and AWGN case are con-
stant, resulting in same energy efficiency. The ergodic capacity
maximization case does not show improvement in energy
efficiency with increasing ergodic capacity. This is because
with increasing ergodic capacity, the transmit power should be
simultaneously increased leading to decrease energy efficiency.
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Fig. 11. Energy efficiency under imperfect sensing versus ρ for fixed transmit
power.
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Fig. 12. Energy efficiency for average power minimization problem and the
ergodic capacity maximization problem under perfect spectrum sensing

Also, in energy efficiency equation, the transmit power in
denominator directly affects the energy efficiency.

VI. CONCLUSION

This paper considered spectrum sharing and sensing systems
in time varying channels motivated by the concept of cognitive
radio networks. In this paper, we evaluate the energy efficiency
by minimizing the transmission power at the secondary trans-
mitter for both schemes of spectrum sharing and sensing over
fading environments. Under spectrum sharing, the effects of
extra CSI which can be available at the secondary transmitter
are analyzed and closed-form expressions for corresponding
transmission power are obtained. We also discussed the imper-
fect side information of cross channels when licensed spectrum
is being shared between one secondary link and one primary
link. In the case of spectrum sensing, the power allocation over
perfect and imperfect sensing is minimized. Numerical results
shows that minimizing power allocation at the secondary
transmitter in the case of spectrum sharing improves the energy
efficiency over Rayleigh fading channels even higher than that
over AWGN channels, for some values of transmission power.
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Numerical results also reveals that power minimization sig-
nificantly increases the energy efficiency compared to ergodic
capacity maximization.
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