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Abstract 

 

The incretins glucagon-like peptide 1 (GLP-1) and glucose dependent insulinotropic 

polypeptide (GIP) are growth factors with neuroprotective properties. GLP-1 

mimetics are on the market as treatments for type 2 diabetes and are well tolerated. 

Both GLP-1 and GIP mimetics have shown neuroprotective properties in animal 

models of Parkinson’s and Alzheimer’s disease. In addition, the GLP-1 mimetic 

exendin-4 has shown protective effects in a clinical trial in Parkinson’s disease (PD) 

patients. Novel GLP-1/GIP dual-agonist peptides have been developed and are tested 

in diabetic patients. Here we demonstrate the neuroprotective effects of a novel dual 

agonist (DA-JC1) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse 

model of PD. MPTP was injected once-daily (20mg/kg i.p.) for 7 days, and the dual 

agonist was injected 30 min later i.p. (50nmol/kg bw). The PI3k inhibitor LY294002 

(0.6mg/kg i.v.) was co-injected in one group. DA-JC1 reduced or reversed most of the 

MPTP induced motor impairments in the rotarod and in a muscle strength test. The 

number of tyrosine hydroxylase (TH) positive neurons in the substantia nigra (SN) 

was reduced by MPTP and increased by DA-JC1. The ratio of anti-inflammatory 

Bcl-2 to pro-inflammatory BAX as well as the activation of the growth factor kinase 

Akt was reduced by MPTP and reversed by DA-JC1. The PI3k inhibitor had only 

limited effect on the DA-JC1 drug effect. Importantly, levels of the neuroprotective 

brain derived neurotropic factor (BDNF) were reduced by MPTP and enhanced by 

DA-JC1. The results demonstrate that DA-JC1 shows promise as a novel treatment for 

PD. 
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1. Introduction 

    Parkinson disease (PD) is the second most common neurodegenerative disease 

after Alzheimer disease, and current demographic trends indicate a life-time risk 

approaching 4% and predict a doubling of prevalence by 2030 (Schapira, 2013). It is 

characterized clinically by a variety of motor dysfunctions such as resting tremor, 

bradykinesia, rigidity and postural instability (Langston, 2002). These symptoms are 

attributed to the reduction in striatal dopamine (DA) level, which results from the 

selective and progressive degeneration of dopaminergic neurons in the substantia 

nigra pars compacta (SNpc) (Moore et al., 2005; Wakamatsu et al., 2008). Several 

risk factors have been identified, and type 2 diabetes is one of these (Hu et al., 2007; 

Schernhammer et al., 2011; Sun et al., 2012; Wahlqvist et al., 2012). Previous studies 

have documented the importance of insulin signaling in the brain (Freiherr et al., 2013; 

Ghasemi et al., 2013; van der Heide et al., 2006), and the fact that insulin signaling is 

compromised in the brains of patients with PD (Aviles-Olmos et al., 2013b; Moroo et 

al., 1994; Morris et al., 2011). In diabetes, analogues of incretin hormones have been 

developed to improve insulin signaling (Campbell and Drucker, 2013; Holst, 2004). 

The key incretin hormones are glucagon-like peptide-1 (GLP-1) and 

glucose-dependent insulinotropic polypeptide (GIP) (Baggio and Drucker, 2007; 

Campbell and Drucker, 2013). It has been confirmed that GLP-1 receptor agonists and 

GIP receptor agonists can pass through the blood brain barrier (Faivre and Holscher, 

2013b; Hunter and Holscher, 2012; McClean and Holscher, 2014), protect neurons 

under oxidative stress, inhibit apoptosis, promoting neuronal proliferation and 

neuronal cells to grow new projections (Holscher, 2014b; JI et al., 2015; Li et al., 

2010b; Li et al., 2015; Sharma et al., 2013). GLP-1 receptor agonists have shown 

protective effects in animal models of Alzheimer’s disease (Bomfim et al., 2012; Li et 

al., 2010a; McClean et al., 2011), and clinical trials have started (Holscher, 2014a) 

with first positive results having been published (Gejl et al., 2015). GIP analogues 

also have shown protective effects in animal models of Alzheimer’s disease (Duffy 

and Holscher, 2013; Faivre and Holscher, 2013a; Faivre and Holscher, 2013b). 



DA is protective in the MPTP mouse model 

 4 

Importantly, previous investigations found that GLP-1 receptor agonists also showed 

good neuroprotective effects in animal models of PD (Bertilsson et al., 2008; 

Harkavyi et al., 2008; Li et al., 2009; Liu et al., 2015; Zhang et al., 2015) and showed 

good effects in a pilot study in PD patients (Aviles-Olmos et al., 2013a; Aviles-Olmos 

et al., 2014).  

   The new drug DA-JC1, which is a dual- GLP-1/GIP receptor agonist (see 

materials and methods for the peptide sequence), shows superior effects in animal 

models of diabetes compared with liraglutide. This dual incretin agonist has been 

engineered to activate both GLP-1 and GIP receptors with comparable affinity, and 

demonstrated enhanced insulinotropic efficacy relative to single GLP-1 agonists 

(Finan et al., 2013). Some of these dual agonist peptides are already in clinical trials 

in patients with diabetes, and first results show good effects with fewer side effects 

compared to GLP-1 mimetics (Finan et al., 2013). We therefore tested the effects of a 

potent GLP-1/GIP receptor agonists in the MPTP 

(1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine) mouse model of PD. MPTP can 

selectively damage neurons in the nigrostriatal dopaminergic pathway and cause 

Parkinsonism in humans, nonhuman primates, and mice, mice have therefore become 

well accepted as a model for PD (Bove and Perier, 2012; Glover et al., 1986; Morin et 

al., 2014). 

    In a previous study, we have confirmed that the DA-JC1 has neuroprotective 

effects in MPTP-induced mice by increasing the number of TH, reducing the 

activation of astroglia and microglia (Cao et al., manuscript submitted). To further 

analyse the drug effects on neurodegenerative biomarkers in the brain of c57bl mice, 

we analysed the expression levels of brain derived neurotrophic factor (BDNF), a key 

neuroprotective growth factor (Kuipers and Bramham, 2006; Nagahara et al., 2013), 

and the expression of apoptosis signaling proteins (BAX, Bcl-2) (Sharma et al., 2013) 

using immunohistochemical and western blot methods. Moreover, we sought to 

determine whether neuroprotection by DA-JC1 against MPTP is mediated by the 
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activation of the PI3K/Akt pathway, a key growth factor second messenger pathway 

(Holscher, 2014b; Talbot et al., 2012). 

 

 

 

2. Results 
 
2.1 DA-JC1 improved the MPTP-induced impairments in motor coordination 

and in muscle strength 

A One-way ANOVA found an overall difference between groups for Rotarod 

performance: (F=38.7; P<0.001) for muscle strength test: (F=10.9; P<0.001), 

followed by Fisher’s Least Significant Difference test (LSD) post-hoc tests. DA-JC1 

enhanced motor coordination of MPTP-treated animals as reflected in the time they 

were able to stay on the RotaRod and improved their muscle strength as see in a 

traction test (P< 0.05). Animals that had received treatment with MPTP showed 

significant impairments in motor coordination compared to the control animals that 

had received saline (P<0.05). Treatment of DA-JC1 significantly reversed the motor 

impairments induced by MPTP (P < 0.05). However, no significant difference was 

found between the MPTP + DA-JC1 and MPTP + DA-JC1 + LY294002 groups 

(P>0.05). Data are represented as mean ± SEM, n=10 per group. See Fig. 1.  

 

2.2 Immunohistochemistry 

2.2.1 DA-JC1 attenuated the loss of nigral TH-positive neurons induced by 

MPTP in the substantia nigra.  

The protective effects of DA-JC1 on the dopaminergic neurons in the SN of mice 

treated with MPTP are shown in Fig. 2. A One-way ANOVA showed an overall 

difference between groups (F=30.34; P<0.001) followed by LSD-t post-hoc tests.  

There were significant reductions in the number of TH-positive cells in the SNpc for 

the MPTP group compared with the control group (36.83±4.62, P < 0.05). With the 

treatment of DA-JC1, the number of TH-positive cells was significantly higher than 
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those in MPTP treated mice (48.50±5.32, P<0.05). Co-injecting the PI3k inhibitor 

LY294002 only reduced the DA-JC1 effect marginally (44.6±5, P<0.05 vs. controls) 

and did not reduce the neuroprotective effect of DA-JC1 on neurons in the substantia 

nigra. Data are represented as mean ± SEM, n=6 per group.  

 

2.2.2 DA-JC1 attenuated the reduced expression of BAX and increased the 

expression of BCL-2 induced by MPTP in the substantia nigra and striatum.  

A One-way ANOVA found significant differences for Bcl-2 numbers in the SN 

(F=27.91; P<0.001) and in the striatum (F=36.7; P<0.001) and for BAX in the SN 

(F=21.6; P<0.001) and in the striatum (F=19.43; P<0.001), followed by LSD post-hoc 

tests. The number of Bcl-2-positive cells for the MPTP group was reduced compared 

with the control group (P<0.05), and there was an increase in the number of 

BAX-positive cells for the MPTP group compared with the control group (P<0.05). 

After treatment with DA-JC1, the number of Bcl-2-positive cells was significantly 

higher than those in MPTP treated mice (P < 0.05) and the number of BAX-positive 

cells was significantly lower. Also, the Bcl-2-positive cells with the 

MPTP+DA-JC1+LY294002 treatment were significantly lower in number in the 

striatum than those in MPTP+DA-JC1 treated mice (P<0.05), but not in the s. nigra 

(though there was a trend). The BAX-positive cell numbers with the 

MPTP+DA-JC1+LY294002 treatment were significantly higher than those in 

MPTP+DA-JC1 treated mice (P < 0.05). Data are represented as mean ± SEM, n=6 

per group. See figs 3 and 4. 

 

2.2.3 DA-JC1 normalised the MPTP-induced reduction in brain derived 

neurotrophic factor (BDNF) positive neurons in the substantia nigra and 

striatum. 

The protective effects of DA-JC1 on the neurons in the SN and striatum of mice 

treated with MPTP are shown in Fig. 5. A one-way ANOVA found an overall 

difference in the SN (F=31.6; P<0.001) and striatum groups (F=25.3; P<0.001) with 

LSD post-hoc tests. There were reduced numbers of BDNF-positive cells in the 
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MPTP group compared with the control group (P<0.05). With the treatment of 

DA-JC1, the number of BDNF-positive cells was significantly higher than those in 

MPTP treated mice (P < 0.05). Data are represented as mean ± SEM, n=6 per group.  

 

2.3 Western blot analyses 

2.3.1 Decrease of BDNF levels by MPTP 
Western blot analysis was performed on protein levels from isolated midbrain (Fig. 6). 

MPTP treated mice had lower BDNF levels compared with the control group (P < 

0.05). DA-JC1 showed only a non-significant elevation of BDNF expression 

(P >0.05). N=4. 

 

2.3.2 DA-JC1 prevented the decrease of Akt (Ser473) phosphorylation induced 

by MPTP 

We studied whether DA-JC1-mediated neuroprotection in PD mice involves an 

Akt-dependent pathway. The levels of the phosphorylated Akt at serine residue 473 of 

Akt (pAkt) were measured and normalised for the total Akt levels. Striatal Akt levels 

remained unchanged after MPTP lesions or DA-JC1 treatments. Compared with the 

controls, the levels of phospho-Akt (Ser473) were markedly decreased in 

MPTP-treated mice (P < 0.05). In comparison, treatment with DA-JC1 reversed the 

decline of phosphor-Akt (Ser473) compared with the MPTP group (P<0.05). 

Futhermore, the level of p-Akt was lower after treatment with LY294002 compared to 

the MPTP+DA-JC1 group (P<0.05), but higher than the MPTP group (P<0.05). See 

Fig. 6. N=4. 

 

2.3.3 DA-JC1 reversed the decrease of the Bcl-2/BAX ratio induced by MPTP 

Bcl-2/BAX ratio provides an indication of the activation of apoptotic signaling, Bcl-2 

is an anti-apoptotic factor, whereas BAX is pro-apoptotic. The results show that 

MPTP treatment decreased this ratio, compared with the control group (P < 0.05). 

However, the decrease in Bcl-2/BAX ratio was reversed when treated with DA-JC1 (P 

< 0.01) compared with the MPTP group. Furthermore, the ratio was lower after 
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treatment with LY294002 compared to the MPTP+DA-JC1 group (P<0.05), but was 

higher than in the MPTP group (P<0.05), demonstrating an effect of the PI3k inhibitor. 

See Fig. 6. N=4. 

 

 

3. Discussion 

 

The results demonstrate that the protease-resistant dual GLP-1/GIP receptor analogue 

showed some protection from the impairments induced by 

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. MPTP is a 

commonly used chemical to induce a Parkinson-like state in rodents (Kopin and 

Markey, 1988; Morin et al., 2014; Nakamura and Vincent, 1986). Previously we have 

shown that the same GLP-1/GIP dual agonist has protective effects in a mouse model 

of stroke (Ling et al., manuscript submitted). Furthermore, in a study in the MPTP 

mouse model of PD, we showed that mice were clearly impaired in their spontaneous 

locomotion, sensory-motor coordination and muscle strength after MPTP treatment, 

and that treatment with the novel GLP-1/GIP dual agonist was able to prevent or 

reverse these effects to some degree. We also demonstrate a protection from a 

reduction in TH positive cells in the SN, a finding we could confirm in the present 

study. In our previous study, we also showed that the pro-inflammatory cytokine 

TNF-α was increased by MPTP and reduced by DA-JC1. Furthermore, the expression 

levels of synaptophysin, a marker for synapse numbers, was much reduced by the 

MPTP treatment, and DA-JC1 was able to partially prevent or reverse this effect (Cao 

et al., manuscript submitted). Here, we found that the expression of the dopamine 

synthetising enzyme tyrosine hydroxylase was much reduced by MPTP in the 

substantia nigra. This suggests that dopamine synthesis was compromised, which may 

be the cause for the observed motor impairments. We also show in the present study 

that levels of BDNF are much reduced by MPTP, and that DA-JC1 was able to reverse 

this reduction to some degree. BDNF is a key growth factor that has been shown to 

protect synapses from toxic influences (Cheng and Mattson, 1994). In a mouse model 
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of Alzheimer’s disease, BDNF protected synapses and kept them functional 

(Blurton-Jones et al., 2009; Nagahara et al., 2013). BDNF has also shown 

neuroprotective effects in models of PD (Stahl et al., 2011) and is beneficial in PD 

(Allen et al., 2013; Frazzitta et al., 2014; He et al., 2013). The observation that 

DA-JC1 increases BDNF in the substantia nigra could explain the protective effects 

on neurons and synapses. We also showed in this study that the activation of the 

growth factor signaling kinase Akt is involved in the neuroprotective effects shown 

here. Akt is a key kinase in second messenger cell signaling pathways that activate 

cell repair, cell proliferation and energy utilisation. Growth factors such as insulin, 

IGF-1 or BDNF activate Akt, and so does GLP-1 (Erdogdu et al., 2010; Kimura et al., 

2009; Li et al., 2010b; Racaniello et al., 2010). Impairments in Akt signaling is 

associated with an increased risk of developing PD (Xiromerisiou et al., 2008). 

Co-administration of the PI3k inhibitor LY294002 partly prevented the protective 

effect of DA-JC1 only to a small degree. This suggests that there are additional 

kinases or parallel cellular signaling pathways involved in the protective effects of 

DA-JC1. Other second messenger pathways have been shown to be involved, such as 

the Erk1/2 pathway (Sharma et al., 2013). Further research is required to identify 

additional kinases that play a role in the protective processes. Importantly, the growth 

factor signaling molecule Bcl-2 was enhanced by DA-JC1, and the apoptosis 

signaling molecule BAX was reduced. Previous studies have shown that GLP-1 

receptor activation modulates the expression of these key signaling molecules to 

reduce apoptosis and enhance cell proliferation (Li et al., 2010b; Sharma et al., 2013; 

Wang et al., 2012). We also demonstrated in the MPTP mouse model that activation of 

the GLP-1 receptor enhances Bcl-2 and reduces BAX signaling (Liu et al., 2015). 

The results presented here are encouraging and demonstrate the potential of 

simultaneously activating the GLP-1 and GIP incretin receptors to reduce 

neurodegenerative processes in PD. GLP-1 analogues have shown neuroprotective 

effects in various diseases, such as Alzheimer’s disease, Parkinson’s disease, head 

trauma or stroke (Darsalia et al., 2012; Holscher, 2013; McClean and Holscher, 2014; 

Perry and Greig, 2004; Sato et al., 2013; Tweedie et al., 2013). Furthermore, two 
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previous studies showed good protection of MPTP treated mice using the GLP-1 

agonist exendin-4 (Kim et al., 2009; Li et al., 2009). We also tested the novel GLP-1 

receptor agonists liraglutide, lixisenatide and (Val8)GLP-1gluPAL in this model with 

good effects (Liu et al., 2015; Zhang et al., 2015). These preclinical results are of 

great importance, as the GLP-1 receptor agonist Exendin-4 has been tested in a pilot 

study in Parkinson’s patients with promising first results (Aviles-Olmos et al., 2013a; 

Aviles-Olmos et al., 2014). A larger Phase II study is ongoing to verify the protective 

effect in PD patients. Exendin-4 and liraglutide are also currently tested in clinical 

trials in Alzheimer’s disease (Holscher, 2014a). A recently completed pilot study 

showed good effects of liraglutide in preventing the progressive deterioration in brain 

activity and energy utilisation (Gejl et al., 2015). 

GIP also has neuroprotective effects and protects cognition, synapse numbers, 

synaptic plasticity, and reduces inflammation in the brain (Duffy and Holscher, 2013; 

Faivre et al., 2011; Faivre and Holscher, 2013a; Faivre and Holscher, 2013b). We have 

previously shown good protective effects of the GIP analogue (dAla2)GIPgluPAL in 

the MPTP mouse model of PD (Li et al, manuscript submitted). It is therefore sensible 

to activate GLP-1 and GIP receptors simultaneously, which may show superior effects. 

Several dual agonists are being tested in diabetes, and first preclinical and clinical 

results show that GLP-1/GIP dual-agonists are superior in controlling diabetes 

compared to the GLP-1 analogue liraglutide (Finan et al., 2013). The present study is 

a proof of concept to demonstrate that these novel analogues also have great potential 

as a treatment for neurodegenerative disorders. However, the MPTP toxin induced 

animal model of PD has its limitations. The dual analogues will have to be tested in 

other animal models of PD that use different chemicals to induce PD- like symptoms 

such as 6-OHDA or LPS injection into the brain (Bertilsson et al., 2008; Harkavyi et 

al., 2008), and in transgenic mouse models that express human mutated genes that are 

known to induce Parkinson’s disease (Bobela et al., 2014; Giraldez-Perez et al., 2014). 

Another important test to be conducted is to treat animals after inducing the PD lesion 

in order to assess the regenerative effect of the novel drugs. Furthermore, a direct 

comparison with other incretin mimetics will have to be made to show superiority 
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over these older drugs, similar to the tests that demonstrated that the dual-agonists are 

superior to the GLP-1 analogue liraglutide (Finan et al., 2013). As some of the novel 

dual-agonists are already in clinical tests to be developed as a treatment for type 2 

diabetes (Finan et al., 2013), it would be straightforward to test these drugs in clinical 

trials in patients with PD. 

 

 

4. Materials and methods 

4.1. Reagents 

The dual agonist DA-JC1 (Peptide Purity: 95.77%) was obtained from the Shanghai 

Qiangyao Biological Technology (Shanghai, China). The purity of the peptide was 

confirmed by reversed-phase HPLC and characterised using matrix assisted laser 

desorption/ionisation time of flight (MALDI-TOF) mass spectrometry. MPTP was 

obtained from Sigma-Aldrich (St Louis, MO, USA). LY294002 and rabbit 

anti-Tyrosine Hydroxylase (TH) Polyclonal antibody, Rabbit anti-Akt (total) antibody 

were obtained from Cell Signal Technology (China). Rabbit anti-phospho-Akt 

(Ser473) antibody were bought from Sigma. Rabbit anti-BDNF antibody, Rabbit 

anti-Bcl-2, Rabbit anti-BAX were purchased from Bioworld (St Louis, MN, USA). 

Horseradish peroxidase (HRP)-conjugated anti-rabbit antibodies were obtained from 

the Boster Institute of Biotechnology (Wuhan, China).  

 

Peptide sequence of the GLP-1/GIP dual agonist DA-JC1 (Finan et al., 2013), 
peptide 18 in the Finan et al. paper: 
 
YXEGTFTSDYSIYLDKQAAXEFVNWLLAGGPSSGAPPPSK-NH2 
X = aminoisobutyric acid; K = Lys-γE-C16 acyl 
 
 
4.2 Animals and treatment protocol 

Male C57BL/6mice (20–22g) were bought from the Academy of Military Medical 

Sciences (AMMS China), and were group-housed on a 12:12-hour light-dark cycle at 

22°C with free access to food and water. The animals were divided into five groups 



DA is protective in the MPTP mouse model 

 12 

with 10 in each. The effects of DA-JC1 on MPTP-induced parkinsonism were studied 

in the following experimental groups:(A) Control (saline, i.p.); (B) DA-JC1 

(50nmol/kg/day i.p.); (C) MPTP (20 mg/kg/day i.p.) ; (D) MPTP (20 mg/kg/day i.p.) 

+ DA-JC1 (50nmol/kg/day i.p.); (E) MPTP (mg/kg i.p.) + DA-JC1 (50nmol/kg/day 

i.p.)+LY294002 (0.6mg/kg iv). Animals in groups B–E received DA-JC1 and/or 

MPTP daily for 7 consecutive days, DA-JC1 treatment was given 30min after the 

MPTP administration. In group E, LY294002 treatment was given 30min after the 

DA-JC1 injection. The work was approved by the ethics committee of Shanxi 

province. All animal procedures were performed in accordance to National Institute of 

Health (NIH) guideline (NIH publication NO. 85-23. Revised 1985). All efforts were 

made to minimise animal suffering and to reduce the number of animal used during 

experimental procedures.  

 

4.3 Behavioral Tests 

4.3.1 Rotarod performance 

The mouse was placed onto a rotating rod with auto acceleration smoothly from 5 to 

20 rpm over a period of 50s (YLS-4C, Academy of medical sciences in Shandong, 

China). The length of time the mouse was able to stay on the rotating rod was 

recorded. For this test, three trials were run for each mouse in a 30-min interval.  

 

4.3.2 Traction Test 

Muscle strength was assessed by a traction test as previously published (Luo et al., 

2011). Mice were lifted onto a horizontal wire, which the mouse gripped by its 

forepaws. The mouse was scored as 3 for gripping the wire with both hind paws, 2 for 

gripping the wire with one hind paw, and 1 for not gripping the wire with either hind 

paw. The experiment was repeated three times for each animal.  

 

4.4 Immunohistochemistry analysis 

Animals were perfused intracardially with saline followed by cold 4% 

paraformaldehyde. Brains were removed and fixed in 4% PFA overnight. Brains were 
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then embedded in paraffin, and coronal sections of 5µm thickness were cut using a 

Leica microtome. Immunostaining techniques were used to assess the TH (1:200, 

Abcam), BDNF (1:100; Bioworld), apoptosis protein (anti-bax, anti-bcl2 1:200) in the 

s. nigra and striatum. The DAB staining was analysed with an Axio Scope 1 (Zeiss, 

Germany) microscope and photographed with a digital camera. Images were analysed 

with Image-Pro Plus 6.0 (Media Cybernetics, USA). Sampling was according to 

stereological rules, starting the cutting of sections at a random location and taking 

every 4th section, and then analysing densities of staining using unbiased 2D 

dissectors that are superimposed on the images (Gengler et al., 2012). N=6 sections 

per brain were analysed, n=6 per group.  

 

4.5 Western blot 

  For Western blot analysis, isolated tissues from the ventral midbrain were rinsed 

twice with cold saline and homogenized in an ice cold RIPA buffer (containing 1% 

Triton X-100, 0.1% SDS, 1% deoxycholate) and phenyl-methylsulfonyl fluoride 

(PMSF). Lysates were cleared by centrifugation at 12,000 rpm at 4 ◦ C for 10 min, 

and the total protein content in the supernatant was determined using a BCA Protein 

Assay Kit. Samples were then added with loading buffer to the same concentration, 

boiled and centrifuged. Each sample was applied to a sodium dodecyl sulfate (SDS) 

polyacrylamide (12%) gel for electrophoresis. The gel was run at 80 V for 30min, and 

120 V for 1 h, and then electrophoretically transferred to polyvinylidene difluoride 

(PVDF) membranes at 150 V for 1 h. The membranes were blocked for 2 h with 5% 

BSA or 5%milk in Tris-buffered saline (TBS) containing 0.05% Tween-20 (TBST) at 

room temperature. They were then incubated at 4 ◦ C overnight with the respective 

primary antibodies: Rabbit anti-Akt (1:2000 Abcam), Rabbit anti-p-Akt (1:1000 CST), 

Rabbit anti-BDNF (1:500 Bioworld), Rabbit BCL-2 (1:500 Bioworld), Rabbit BAX 

(1:500 Bioworld). After washing three times in TBST for 5 min, membranes were 

incubated for 1 h at home temperature with anti-rabbit IgG-peroxidase conjugated 

(1:2000 Boster). Immunoreactivity was visualised by an Enhanced 

ChemiLuminescence (ECL) fluorescence detection system.  
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4.6 Statistical analysis 

All values were displayed as means standard error (SEM). For statistical analysis, 

SPSS 17.0 was used. Repeated measures analysis of variance and one-way analysis of 

variance (ANOVA) with LSD tests were used for post-hoc analysis of the 

experimental data. A probability value of less than 0.05 was considered to be 

statistically significant.  
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Figure captions 
 
 
Fig. 1: Performance of mice in the RotaRod for 180 sec max. and muscle strength 
assessment is shown. *=P<0.05. A One-way ANOVA found an overall difference 
between groups for the Rotarod: (F=38.7; P<0.001) for muscle strength test: (F=10.9; 
P<0.001), followed by LSD-t post-hoc tests. Data are represented as mean ± SEM, 
n=10 per group. 
 
Fig. 2: Quantification of TH- positive neurons in the substantia nigra pars compacta. A 
One-way ANOVA showed an overall difference between groups (F=30.34; P<0.001) 
followed by LSD-t post-hoc tests; *=P<0.05. Data are represented as mean ± SEM, 
n=6 per group. Representative images are shown. A=control; B=MPTP group; 
C=DA-JC1 group; D=MPTP+ DA-JC1 group; E=MPTP+ DA-JC1+Ly group. Scale 
bar = 250µm. 
 
Fig. 3: Quantification of Bcl-2 positive neurons in the substantia nigra pars compacta 
and the striatum. A One-way ANOVA showed an overall difference between groups 
(P<0.001) followed by LSD-t post-hoc tests; *=P<0.05. Data are represented as mean 
± SEM, n=6 per group. Representative images are shown. A, F=control; B, G=MPTP 
group; C, H=DA-JC1 group; D, I=MPTP+ DA-JC1 group; E, J= MPTP+ DA-JC1+ 
LY294002 group. Scale bar = 60µm. 
 
Fig. 4: Quantification of BAX positive neurons in the substantia nigra pars compacta 
and the striatum. A One-way ANOVA showed an overall difference between groups 
(P<0.001) followed by LSD-t post-hoc tests; *=P<0.05. Data are represented as mean 
± SEM, n=6 per group. Representative images are shown. A, F=control; B, G=MPTP 
group; C, H=DA-JC1 group; D, I=MPTP+ DA-JC1 group; E, J= MPTP+ DA-JC1+ 
LY294002 group. Scale bar = 60µm. 
 
Fig. 5: Quantification of BDNF positive neurons in the substantia nigra pars compacta 
and the striatum. A One-way ANOVA showed an overall difference between groups 
(P<0.001) followed by LSD-t post-hoc tests; *=P<0.05. Data are represented as mean 
± SEM, n=6 per group. Representative images are shown. A, E=control; B, F=MPTP 
group; C, G=DA-JC1 group; D, H=MPTP+ DA-JC1 group. Scale bar = 60µm. 
 
Fig. 6: Western blot quantification of protein levels of Bcl-2, BAX, Akt, pAkt, and 
BDNF. A One-way ANOVA showed an overall difference between groups (P<0.001) 
followed by LSD-t post-hoc tests; *=P<0.05. Data are represented as mean ± SEM, 
Data are averages of 4 repetitions of blotting. 
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Fig. 6 
 
 


	Parkinson disease (PD) is the second most common neurodegenerative disease after Alzheimer disease, and current demographic trends indicate a life-time risk approaching 4% and predict a doubling of prevalence by 2030 (Schapira, 2013). It is charac...

