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ABSTRACT Cell migration is vitally important in a wide variety of biological contexts ranging from embryonic development and
wound healing to malignant diseases such as cancer. It is a very complex process that is controlled by intracellular signaling
pathways as well as the cell’s microenvironment. Due to its importance and complexity, it has been studied for many years
in the biomedical sciences, and in the last 30 years it also received an increasing amount of interest from theoretical scientists
and mathematical modelers. Here we propose a force-based, individual-based modeling framework that links single-cell migra-
tion with matrix fibers and cell-matrix interactions through contact guidance and matrix remodelling. With this approach, we can
highlight the effect of the cell’s environment on its migration. We investigate the influence of matrix stiffness, matrix architecture,
and cell speed on migration using quantitative measures that allow us to compare the results to experiments.
INTRODUCTION
The migration of individual cells occurs in a wide variety of
biological contexts ranging from development and wound
healing to malignant diseases such as cancer (1–4). To
migrate, a cell first needs to acquire front-rear polarity,
which in itself is a very complex process (5,6). The direction
in which a cell polarizes can be determined by extracellu-
lar cues such as growth factors, chemical gradients, and
extracellular matrix (ECM) components, through spatially
limited activation of signaling complexes (7). The polarity
is stabilized and sustained during migration by multiple
feedback mechanisms, including integrins, which are cell-
matrix adhesion molecules that maintain the spatial molec-
ular asymmetry (1,7). Complexes at the front of the cell
interact with the actin cytoskeleton, leading to polymeriza-
tion and extended membrane protrusions (7,8). These lamel-
lipodia or filopodia then bind to the ECM through integrins
that cluster to form small, dot-like focal complexes (9). Over
a timescale of minutes (10), the focal complexes can then
develop into stable focal contacts that give the cell traction
(9,11). Cell contraction then leads to the generation of trac-
tion forces and hence the forward movement of the cell
body, releasing any cell-matrix bonds at the rear of the
cell (1,10,12,13). Cell migration in a three-dimensional
(3D) matrix additionally requires focalized proteolysis (12).

A key component of all cell migration is the interaction
with the individual fibers of the matrix, and experimental
studies have investigated the importance of remodeling of
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individual fibers, cell adhesion, and force generation on
2D surfaces (14–19). Images of actual individual cells
migrating through 2D matrices are shown in Fig. 1. These
images clearly show individual cells interacting with and re-
orienting single fibers (see Fig. 1), and such processes are
the focus of the modeling efforts in this work.

Theoretical modeling approaches in this area have
already provided insights into this complex process. Such
approaches include models at the level of intracellular actin
dynamics at the leading edge of motile cells (20,21), and
detailed models of single-cell mechanics during migration
(13,22), which were able to predict the speed of migrating
cells and the biphasic dependence on multiple factors,
such as receptor and ligand densities. Hybrid discrete-
continuum (23,24) and continuum (25–27) models of cell
migration in 2D and 3D matrices have elucidated the impact
of the ECM on cell migration. However, there is still a vast
area to explore concerning specific cell-matrix interactions
and the influence of individual matrix fibers on migration.
In this work, we propose a fully individual-based modeling
framework of cell migration. Whenever possible, we use
example parameter values from experimental literature. In
cases for which no data are available, we use estimates
and nondimensional values to arrive at biologically insight-
ful results. However, given data on specific cell types,
matrices, and cell-matrix interaction forces, the model can
easily be adapted and can give quantitative results for these
particular cases.
MODEL DESCRIPTION AND DATA ANALYSIS

We developed an individual-based model of cell migration
that is driven by forces acting on the cell. In addition, indi-
vidual matrix fibers are reoriented due to cell traction forces.
We focus on the migration of single cells on 2D substrates.
Our force-based modeling approach is similar to the one
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FIGURE 1 Experimental images of individual

cells interacting with collagen matrices with

different fiber alignments. (a) D-periodic fibers

(i.e., anisotropic). (b) Nonperiodic fibers (i.e.,

isotropic). (c) Glutaraldehyde-fixed D-periodic

fibers. Reproduced with copyright permission

from Friedrichs et al. (14).
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previously used to study epithelial cell populations (28),
cancer cell invasion (29), the process of intravasation (30),
and cell migration in 3D matrices without the explicit inclu-
sion of matrix elements (22).
Modeling the cell and the ECM

The shape of an individual cell is relatively flat and hemi-
spherical, and we assume a radius of the base of 15 mm
and a height of 2.6 mm, as previously measured for
Madin-Darby canine kidney (MDCK) cells by Schneider
et al. (31). We explicitly model individual matrix fibers,
which could represent fibronectin, collagen, laminin, or
other fibrous matrix components. These fibers are repre-
Biophysical Journal 103(6) 1141–1151
sented by thin cylinders with lengths that are normally
distributed with a mean of 75 mm and standard deviation
(SD) of 5 mm, and width of 200 nm (e.g., as measured for
collagen by Friedl et al. (32)). We consider a spatial domain
of size 1000 � 1000 mm in which we place 15,000 fibers,
one of the endpoints of which is randomly positioned
following a uniform distribution in space. For isotropic
matrices, the direction of each fiber is given by a normalized
vector with uniformly distributed x and y components (see
Fig. 2 a). Ordered matrices are also generated in which
the matrix fibers are either biased in the sense that they
form an angle between 90� and 180� with the x axis or are
fully aligned so that the direction of the fibers forms
a 135� angle with the x axis (see Fig. 2, b and c).
FIGURE 2 Computer-generated initial extracel-

lular matrices with (a) randomly distributed fibers,

(b) biased fibers, and (c) aligned fibers. The figure

shows a representative 150�150 mm square subdo-

main taken from the entire domain of size

1000�1000 mm.
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Modeling the cell movement

Cell movement is governed by the total forces acting on an
individual cell. By calculating all of the forces acting on
a cell and then applying Newton’s law of motion (ignoring
inertia terms (28,29)), we obtain an equation for the cell
velocity. Integrating this equation, we can then calculate
the displacement of an individual cell over time. The system
we are modeling consists of individual cells interacting with
individual matrix fibers, and so the forces on an individual
cell consist of a drag force that is balanced by the overall
force generated by an individual cell through contact with
the matrix fibers and a term accounting for underlying noise.
Therefore, the governing equation of motion has the general
form:

Fdrag ¼
X
f

Ffj þ f jðtÞ: (1)

The drag force Fdrag is calculated using a variation of
Stokes’ law for nonspherical objects as developed previ-
ously (33,34). This includes a shape factor that is based
on the assumption that the cell has a symmetric hemispher-
ical shape. Ffj is the force generated by an individual cell
through contact with an individual matrix fiber, with the
sum taken over the fibers that are in contact with the cell.
Thus,

P
fFfj is calculated from the directions and number

of matrix fibers with which a cell is in contact. fj(t) is the
term that accounts for noise that is uncorrelated and has
zero mean. All of these terms are explained and derived in
detail in the Supporting Material.
Modeling the matrix rearrangement due to cell
traction forces

Upon cell contraction during migration, traction forces are
transmitted to the substrate through the adhesion complexes,
and the pulling on the fibers realigns the matrix (1,12) (see
Fig. 1). These traction forces of a cell point toward its center
(35,36) and thus the fiber is pulled inward. We model the
fiber as a lever that is rotated about its moment of force.
With this assumption, the end of the fiber that is farthest
away from the cell acts as the fulcrum. We assume that the
realignment of the fiber is proportional to the integrin expres-
sion of the cell and is inversely proportional to the matrix
stiffness, which is a nondimensional value between zero
and one. The realignment becomes smaller the closer the
fiber is to the cell’s midpoint, as the traction forces become
smaller from the cell’s periphery inward (35,36). Under these
assumptions, the angle of rotation f of a fiber is given by

f ¼ Q� arcsin

�ð1� 0:1 � I , ð1� SÞÞ ,D
d

�
(2)

where Q is the current angle between the straight line con-

necting the fulcrum and the cell’s midpoint and the fiber, I is
the percentage of integrins expressed by the cell, S is the
matrix stiffness, D is the shortest distance between the fiber
and the cell, and d is the distance of the fulcrum from the
cell’s midpoint. The other parameter used, the factor 0.1,
was estimated to give an appropriate reduction of the reor-
ientation per time step. However, a 10% or 20% change of
this parameter does not affect the results (see Fig. S7).
The change in f and Q over five simulation time steps for
different matrix stiffnesses can be seen in Fig. S3, a and b.
The matrix stiffness S can either be a constant value

throughout the domain or, more realistically, we can calcu-
late it for each fiber depending on the number of fibers with
which it has cross-links. For <15 cross-links, we assume
a matrix stiffness of the number of cross-links � 0.06.
For >15 cross-links, the fiber is assigned a stiffness of
0.95. This maximum of 15 cross-links was chosen under
the consideration of the number of cross-links the fibers
generally have. We found that only a fraction of fibers have
a higher number of intersections with other fibers. However,
we investigated the effect of a 10% or 20% change in this
parameter and found that it has little impact (see Fig. S8).
Computational simulation algorithm

Using a time step of 3 s in the simulation process, the proce-
dure between each time step can be summarized as follows:

Step 1: For each fiber, we determine whether a cell has
exerted a force on it during the last time step. The
fibers are reorientated as explained in Eq. 2.

Step 2: We find all of the fibers that are in contact with
a cell and establish whether the cell has front-rear
polarity. If this is the case, we calculate the polarity
axis using Eq. S5 of the Supporting Material.

Step 3: If the cell has front-rear polarity, we calculate the
net force from Eq. S6 that will lead to its movement on
the matrix.

Step 4: We move each cell according to the forces calcu-
lated in step 3 by solving Eq. 1, which is numerically
solved by using the forward Euler method.

This procedure is illustrated schematically in Fig. S1.
Data analysis

To compare our results with experimental data, we use the
cell speed and persistence time as measures, as is done in
many experimental setups (37–40). The persistence time
can be calculated by providing a fit of the experimentally
obtained mean-squared displacements to the mean-squared
displacements given by the persistent random walk model

�
dðtÞ2� ¼ 2s2P

�
t � P

�
1� e�t=P

�	
; (3)

where s is the cell speed, P is the persistence time, and dðtÞ2

is the mean-squared displacement. A derivation of this
Biophysical Journal 103(6) 1141–1151
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formula can be found elsewhere (41–43). The mean-squared
displacements are calculated from the cell track data of the
simulations using the method of nonoverlapping intervals as
described by Dickinson and Tranquillo (41) and Harms et al.
(37). Given N consecutive positions of the cell with constant
time interval Dt, according to this method, the mean-
squared displacement dðtiÞ2 during a time interval of length
ti ¼ iDt is calculated by

�
dðtiÞ2

� ¼ 1

ni

Xni
j¼ 1

�
dð1þiðj�1ÞÞDt/ð1þijÞDt

	2
; (4)

where i ¼ [1, 2,., N � 1] and n1 ¼ (N – 1)/i.

In our model, we study cell migration in an in vitro situ-

ation where no external chemical gradients and no growth
factors exist. However, in most published migration experi-
ments, the cells were kept in serum, which most likely influ-
enced the migratory behavior of the cells. Therefore, we
chose to use a specific set of experiments conducted by
Harms et al. (37) to compare the simulation results with
results obtained when the cells were serum-starved and re-
suspended in serum-free medium before migration assays
were done. During the migration assays, the cells were
tracked for 6 hr and imaged every 15 min. To obtain compa-
rable data, we also used a time interval Dt of 15 min.

The maximum cell speed is a parameter in the model, but
as in the previous data analysis (37), the actual cell speed is
calculated as an average speed by dividing the root mean-
squared displacement in the time interval for i ¼ 1 by
Dt ¼ 15 min. This speed is then substituted into the persis-
tent random walk model to fit the persistence time for each
cell’s data using an unconstrained nonlinear optimization
routine (see Supporting Material for full details).
RESULTS

In these single-cell migration simulations, we initially
ignored the added noise term. At the beginning of all simu-
lations, we placed a nonpolarized cell in the middle of
a 1000�1000 mm area of ECM. The cell was then left to
polarize and start migrating over a time of 3 hr, and was
then tracked over 6 hr of real time to make it comparable
to experiments that were run for the same length of time
(37). All parameter values used in the simulations are given
in Table S1.
Influence of matrix stiffness on persistence and
migration speed

First we investigated the effect of matrix stiffness on cell
migration. We ran 15 simulations for each of the following
cases in which we varied the matrix composition: 1), a very
loose matrix (S ¼ 0); 2), a medium-stiff matrix (S ¼ 0.5);
and 3), a very stiff matrix that cannot be reorientated
(S¼ 1). In addition, we ran 15 simulations in which the stiff-
Biophysical Journal 103(6) 1141–1151
ness was calculated individually for each fiber as explained
above. We did this for four different matrix architectures by
seeding the random number generator, which is used to
place the matrix fibers, with four different numbers. The
random number generator used for the noise terms in the
cell movement was given the same 15 seeds in the four
studies. The results are given in Fig. 3, with outliers denoted
by small circles.

It can be seen from Fig. 3 that the persistence times on
a stiff matrix have the largest variation over the four
different sets of simulations, which means that the tracks
of cells on a stiff matrix are the most dependent on the
matrix architecture. This is not unexpected. The least varia-
tion can be seen over the simulations in which the stiffness
of the matrix is calculated for each fiber independently. Here
we get persistence times between 3 and 109 min (apart from
one outlier, which has a persistence time of 245 min), with
the majority (the lower and upper quartiles) being between
20 and 60 min. In their experiments, Harms et al. (37)
measured a persistence time of roughly 8–20 min in Chinese
hamster ovary cells on fibronectin unstimulated by epi-
dermal growth factor (EGF), and a persistence time of
~19 to 50 min in cells stimulated by EGF (cf. Fig. 2 D in
Harms et al. (37)). Thus, although our simulations predict
a slightly higher persistence time than is observed in unsti-
mulated cells, we do get values of the right order of mag-
nitude. It is clear from the results, however, that the
reorientation of the matrix fibers is crucial for this. Similar
values as mentioned above were also found for a matrix
stiffness of 0.5 and a very loose matrix, but a stiff matrix
that allows no reorientation gives much more variation
and much higher persistence times than observed in the
experiments. A more detailed study of the persistence
time and mean actual speed of migration of an individual
cell on matrices of varying stiffness S between 0.5 and 1
can be found in the Supporting Material. Interestingly, in
all simulations we found that cells on a very stiff matrix
move significantly more slowly than cells on a matrix that
allows reorientation (Fig. 3, e–h, and Fig. S4 b). Presum-
ably, this is because the cells are in contact with fewer
matrix fibers in this case. This follows from the fact that
in soft matrices, the reorientation allows for the contacts
between the fiber and the cell to be preserved for a longer
time. Whether this will also be true in experiments remains
to be seen, although the results of Lo et al. (18) appear to
substantiate this.

We can also track the cells over longer time periods and
see that they exhibit a random walk behavior. We did this
over 3 days. For these simulations, we used the random
number generator seed for the stochasticity in the cell move-
ment that gave us the median persistence time for cells on
a very stiff matrix and also on a matrix where we calculated
the stiffness for each fiber independently (Fig. 4). Here
again, the difference becomes clear between the path of
a cell that reorients the matrix (Fig. 4 b) and that of a cell



FIGURE 3 Plots showing how the persistence time and mean actual speed of cell migration vary with different matrix stiffnesses in the four different

matrix architectures. Each matrix architecture is produced by using a different seed for the random number generator that gives rise to the position and orien-

tation of the matrix fibers. (a–d) Plots showing the persistence time in minutes for cells on loose (S¼ 0), medium-stiff (S¼ 0.5), and stiff (S¼ 1) matrices, as

well as for stiffness depending on matrix interconnectedness at a given point. In plot d two outliers exist outside of the y axis range for S ¼ 0, at 367.24 min

and 430.87 min, respectively. The four boxplots represent the results of cell migration on four different matrix architectures for 15 simulations for each stiff-

ness per architecture. (e–h) Plots showing the actual mean speed of the cells during the simulations that led to the boxplots above.
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that does not (Fig. 4 a). When matrix reorientation occurs, it
leads to very sharp, nonsmooth turns in the cell path (de-
noted with green asterisks in the image). For videos of these
simulations, see Movie S1 and Movie S2.
FIGURE 4 Plots showing the cell paths that developed over 3 days (a)

without and (b) with matrix reorientation (using matrix architecture 1

from Fig. 3). In case b, the matrix stiffness S is dependent on fiber connect-

edness. The plots show that without matrix reorientation, the cell path is

much smoother and does not contain any sharp turns by the cell (a). In

contrast, with matrix reorientation (b), the cell undertakes many more sharp

turns and changes of direction, denoted by asterisks. Each black square is an

area of 500�500 mm.
Is cell movement guided by substrate rigidity?

Experiments carried out by Lo et al. (18) showed that indi-
vidual cell movement can be guided solely by physical
interactions between the cells and the underlying substrate.
3T3 fibroblasts were placed in the middle of a collagen-
coated polyacrylamide substrate sheet, half of which was
soft and the other half of which was stiff. The results showed
that the cells either migrated onto the stiffer side when they
started on the soft side or stayed on the stiff side when they
started there (see Fig. 5), i.e., cells tend to prefer stiff
matrices to softer ones. This apparent preference for a stiff
substrate is termed durotaxis.

These experimental results provide us with a scenario to
test with our modeling approach. We created a 2D domain
similar to that used by Lo et al. (18) with a different stiff-
ness of matrix in each half, creating a transition of rigidity
across the middle. This configuration is shown in Fig. 6 a. A
single cell is placed close to the transition zone (indicated
by a red asterisk in Fig. 6, b–e). Initially we assigned the
left side of the matrix a stiffness of 0.25 and the right
side of the matrix a stiffness of 0.75, which meant that
the cell started out on the stiffer side. We then ran 15 simu-
lations over 3 days of real time using this configuration
and noted the final location of the cell in the domain. We
then switched the stiffness properties around, leading to
the cell starting on the softer side, as the right side of the
matrix was now assigned a stiffness value of 0.25 and the
left side a value of 0.75. The results are shown in Fig. 6,
b and c. It can be seen that there is a slight preference for
the stiffer side of the matrix, as the cell stays on the stiffer
Biophysical Journal 103(6) 1141–1151



FIGURE 5 Figure showing experiments by Lo

et al. (18) in which cells are placed close to the

gradient on a matrix with two different stiffnesses.

Panel a shows a cell that is placed on the softer side

of the matrix and then over time migrates onto the

stiffer side of the matrix. Panel b shows a cell that

is placed on the stiffer side of the matrix initially

and over time moves toward the gradient but then

stays on the stiffer side of the matrix. Reproduced

with copyright permission from Lo et al. (18).
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side in eight of the 15 simulations where it started on the
stiffer side and it moves to the stiffer side in nine of the
15 simulations where it started on the softer side. However,
when the discontinuity in rigidity is increased, the results
become much clearer, as can be seen in Fig. 6, d and e.
Here the soft side is given a stiffness of 0.05 and the stiff
side is given a value of 0.95. In the simulations where the
cell starts on this very stiff side, the cell stays on that side
in 12 out of the 15 simulations. In the set of simulations
where it starts on the soft side, it still ends up on the stiffer
side in 13 out of the 15 simulations. Qualitatively, these
results mirror those found by Lo et al. (18), i.e., there is
an apparent preference of cells for a stiff substrate. Our
simulation results indicate that the reorientation of the
matrix (or the lack thereof) on stiffer matrices may play
an important role in durotaxis.

The fact that we are able to reproduce these results by
using our computational model suggests that the physical
structure of the ECM is a sufficient condition for a cell to
choose a particular location within the surrounding envi-
ronment. It is difficult to conclude this from biological
observations alone, because in experiments the internal
cell dynamics, internal cell biomechanics, cell phenotypic
properties, etc., are all factors that could possibly play
a role, and these cannot be ignored experimentally. In our
model, the location of the cell depends uniquely on the
physical structure of the matrix and on the cell movement,
Biophysical Journal 103(6) 1141–1151
and our findings suggest that these are sufficient to explain
the cells’ preference for stiffer matrices.
Nonlinear dependencies of persistence time and
cell speed on matrix composition and
architecture

To investigate the influence of cell speed and matrix charac-
teristics on the persistence time, we ran a number of simu-
lations of cells migrating on matrices, where the cells
were given different maximum cell speeds (denoted by
smax) and the composition of the matrices was varied in
terms of different fiber lengths and densities. In all of these
simulations we calculated the matrix stiffness independently
for each fiber as explained above, and used the first matrix
architecture from the previous simulations. In the first set
we increased smax from 10 mm/hr to 20 mm/hr in steps of
2.5 mm/hr. At the same time we varied the matrix fiber
length between 25 mm and 100 mm in steps of 12.5 mm,
whereby the number of matrix fibers was always increased
or decreased accordingly so that the overall density of
matrix fibers was not altered. For each combination, 10
simulations were run and the persistence times and mean
actual speed were calculated. The results are shown in
Fig. 7. The plots in Fig. 7 a show that in the case of slow
cells (maximum speeds of 10, 12.5, and 15 mm/hr), the cells
that migrate on shorter fibers are more persistent than those



FIGURE 6 (a) Matrix is divided into two sides of different stiffnesses on the left and right sides of the domain, with the cell being placed initially just on the

right side of the domain (different stiffnesses are denoted by different colors in the online version). The cell is always placed initially in the same position, but

the matrix properties are altered. We ran simulations with the left side of the matrix being soft and very soft, and the right side being stiff and very stiff, and

vice versa. (b–e) Simulation results. The squares are endpoints of the cells after 3 days, and the asterisks show the cells’ starting position. Panels b and c show

a slight preference for the stiffer matrix, whereas panels d and e show that with an increase in the discontinuity in rigidity, this preference increases dramat-

ically, with the cells ending on the stiffer substrate after most simulations independently of their starting position.
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that migrate on longer fibers. For maximum cell speeds of
17.5 and 20 mm/hr, fiber length becomes less important
and persistence times are more or less independent of fiber
length. However, from the plot in Fig. 7 b, it appears that the
mean actual speed of the cells depends in a bimodal manner
on the fiber length.

In the second set of simulations we again increased
the cell speed from 10 mm/hr to 20 mm/hr in steps of
2.5 mm/hr. However, this time we changed the matrix
density by varying the total number of fibers in the domain.
Specifically, we placed a number of fibers of length 75 mm,
ranging from a total of 7500 to 22,500 increased by steps
of 3750, in the domain of size 1000�1000 mm. We again
ran 10 simulations for each combination and calculated
the persistence times and the mean actual speed. The results
can be seen in Fig. 8. The plots in Fig. 8 a show that for cells
moving at low maximum speeds (10, 12.5, and 15 mm/hr),
there is an increase in persistence with the density before
there is a drop at the highest density (22,500 fibers in
the domain). For high maximum cell speeds (17.5 and
20 mm/hr), this effect is lost and the persistence times are
more or less independent of matrix density. In the plot
FIGURE 7 Plots showing how the persistence

time and actual mean speed of cell migration

vary with matrix fiber length and maximum cell

speed. (a) Boxplot of the persistence time in

minutes varying with maximum cell speed and

mean fiber length. (b) Plot of the mean actual

cell speed during the same simulations varying

with maximum cell speed and mean fiber length.

Biophysical Journal 103(6) 1141–1151



FIGURE 8 Plots showing how the persistence

time and mean actual speed of cell migration

vary with matrix density and maximum cell speed.

(a) Boxplot of the mean persistence time in

minutes varying with maximum cell speed and

matrix density (i.e., the number of matrix fibers).

(b) Plot of the mean actual cell speed during the

same simulations varying with maximum cell

speed and matrix density.
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shown in Fig. 8 b, the actual cell speed clearly shows
a biphasic dependence on the matrix density, as previously
observed in experiments (44).

Finally, we investigated the behavior of cells on matrices
of varying degrees of anisotropy. Specifically, we compared
the persistence of cells on a random matrix with that ob-
tained on a biased matrix and a fully aligned matrix (see
Fig. 2 for the initial conditions of each type of matrix).
We ran 15 simulations for each matrix type and examined
the cell tracks in each case. Representative plots are given
in Fig. 9. When one compares the cell tracks in each plot,
one can see that on average the cells persist in a given direc-
tion for a longer period of time on the aligned and biased
matrices than on the random (isotropic) matrices. These
results indicate that persistence in a given direction (unsur-
prisingly) decreases with matrix randomness. A formal
analysis using the persistence time calculated from Eq. 3
was not possible, because this equation can only be used
for motion on isotropic environments.
Sensitivity to the noise terms

The noise term in the calculation of the cell’s polarity axis,
as well as the noise term fj (t), could potentially have a big
influence on the persistence of the cell movement. There-
Biophysical Journal 103(6) 1141–1151
fore, we investigated these terms in more detail by running
multiple sets of simulations with varying SDs, and the
results showed that the influence was negligible. More
details on this can be found in the Supporting Material.
Modeling two cells migrating: following the leader

It is frequently observed in experiments that cells follow
each other when migrating across a matrix. In three dimen-
sions, this multicellular streaming (45) is well described,
and it is clear that it is a very efficient way for cells to
migrate along the tracks and tubes of individual leader cells.
However, to our knowledge, it also occurs in 2D migration,
and it appears naturally during simulations of our model. In
Fig. 10 a, we kept one cell stationary for a certain time while
the neighboring cell was allowed to polarize and start
migrating. As soon as the second cell could polarize, it
started to follow its former neighbor along the tracks the
neighboring cell had laid down (Fig. 10, b–i, and Movie S3).

The cell continued to do this until the two cells came into
contact, which made the following cell lose its polarized
state and repolarize in another direction due to contact inhi-
bition of locomotion, which is encoded in the model. A
more detailed analysis of the length of time that cells spend
following each other is given in the Supporting Material,
FIGURE 9 Plots of cell tracks over a period of

6 hr on extracellular matrices with (a) randomly

distributed fibers, (b) biased fibers, and (c) aligned

fibers.



FIGURE 10 Plots showing snapshots at times

t ¼ 50–210 min of two cells following each other

through the matrix. Lighter gray denotes a front-

rear polarized cell (green in the online version),

and dark gray denotes a nonpolarized cell (red in

the online version). The plots show that an initially

nonpolarized cell (t ¼ 50 min) becomes polarized

(t ¼ 70 min) and then follows the path of the

initially polarized cell.
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where we calculate the time that cells spend closer than two
cell radii together under different conditions. The results in,
Fig. S9 show that stiffer matrices allow for longer episodes
of this behavior than do softer ones.
DISCUSSION

We have presented a modeling framework for cell migration
on 2D matrices in which both the cell and the matrix fibers
are individual elements or agents. Using this approach, we
were able to investigate the influence of matrix stiffness
on cell migration. We found that the reorientation of the
matrix fibers due to cell traction forces may be an important
part of this process, because very stiff, nonreorientable
matrices led to very variable and occasionally very high
persistence times, which does not agree with experiments.
We also ran simulations to test whether our model could
reproduce experiments that showed a preference of cells
for stiffer matrices. The results agreed with those experi-
ments and suggest that matrix reorientation (or the lack
thereof) on stiff matrices may be an important factor in dur-
otaxis. Furthermore, we examined the relationships between
1), the persistence time and the maximum cell speed and
matrix fiber length or matrix density; and 2), the actual
cell speed and the maximum cell speed and matrix fiber
length or matrix density. In both cases, we found that there
is a nonlinear dependency of the persistence on the two
factors, especially at low cell speeds, as well as a biphasic
dependency of the actual cell speed on the fiber length
and matrix density. Additionally, we looked at the influence
of the matrix structure on the persistence time and found
that, unsurprisingly, a more ordered matrix leads to higher
persistence. We also investigated the stability of the results
depending on both noise terms that influence the movement
of the cell, and found that they do not have a significant
influence on the persistence times measured. Finally, we
studied the migration of two cells and found that, as in
experiments, cells tend to follow each other under certain
conditions. One factor that influences this behavior posi-
tively seems to be matrix stiffness.

In this model, the focus is on the most fundamental
processes underlying cell migration at the level of cell-
matrix interactions. Naturally, certain simplifications are
therefore made. For example, we model the ECM as rigid
cylinders that are not connected. This means that the cell’s
application of force onto one fiber does not affect other
fibers in the closer environment. Similarly, there is no
counter force pulling the fibers back into their original place
after the cell has moved across them. These are clearly two
aspects that might have an impact on the results and
Biophysical Journal 103(6) 1141–1151



1150 Schlüter et al.
probably also explain why the results we obtained for very
loose, medium-stiff, and variably stiff matrices are very
similar. The inclusion of matrix elasticity would most likely
lead to less realignment in stiffer matrices and thus could
alter the results. Nevertheless, we can learn some things
from this model and develop some interesting hypotheses,
such as that matrix remodeling may play an important part
even in 2D migration. Our results also show the nonlinear
dependency of persistence time on cell speed and fiber
length or matrix density. Because our results are quantitative
and measurable in the laboratory, it would be very inter-
esting to see whether our predictions can be confirmed by
experiments. This is especially the case because persistence
time is often used to characterize and compare cellular
behaviors, and therefore it is important to understand all
of the factors that can influence it in an experimental setting.
However, we had to estimate a lot of the parameters used in
the model because we could find no such measurements in
the experimental literature, especially concerning the forces
involved in cell-matrix interactions. Therefore, although the
results are a first step toward gaining more insight into this
process, the model presented here should be seen mainly as
a framework that can lead to quantitative results given real
experimental input data.

Many studies in the last few years have focused on
modeling and understanding cell migration in 3D matrices
because such matrices are closer to an in vivo situation,
and it has been shown that migration in two dimensions
differs significantly from migration in 3D substrates (46).
We believe, however, that it is important to study the influ-
ence of individual fibers on cell migration in a 2D system
first, because effects such as proteolysis can be neglected
in this setting. Experimental results have already shown
that substrate rigidity (18), fiber alignment (14,19), and
cell adhesion and force generation (16) are all important
factors in controlling the migration of individual cells on
2D surfaces. Indeed, it is now clear that the biomechanical
properties of cells and their environment have as much influ-
ence on cell fate and function as do soluble molecular
factors. Nonetheless, much remains to be learned about
cell migration on 2D surfaces, and we believe that the indi-
vidual force-based modeling approach adopted here can
lead to some ideas about as-yet-unknown factors involved
in this process that might be of interest.

It would be very interesting to develop this approach
further to model cell migration in 3D matrices and investi-
gate whether modeling individual fibers in this setting can
add to our understanding of this process. The addition of
explicit external cues and matrix elasticity to the model
will help get us one step closer to an in vivo situation.
The model can further be extended to a multiscale model
by including signaling dynamics of integrins and other
receptor molecules. Such a model can then be used to model
single-cell as well as multicell migration in various biolog-
ical contexts. As mentioned in the Introduction, wound heal-
Biophysical Journal 103(6) 1141–1151
ing is partly driven by cell migration, and with this type of
model we could try to get a better understanding of this
process and what is missing or not functioning properly
in chronic wounds and other wound-healing disorders. In
future work, this model could also be applied to cancer
cell invasion and the formation of metastasis. Through this
quantitative modeling approach, we hope to be able to
predict the spread of cancer cells depending on their envi-
ronment and mutations.

Thus, in addition to providing interesting insights into
cell migration itself, this model has great potential for form-
ing the basis of models of varying complexity for different
biological applications.
SUPPORTING MATERIAL

More detail on the model description, the parameter values, the influence

of certain parameters on the simulation results and the behavior of two cells

following each other across the matrix, and reference (47) are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(12)00869-7.
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