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Abstract15

Field-based plant phenomics requires robust crop sensing platforms and data

analysis tools to successfully identify cultivars that exhibit phenotypes with

high agronomic and economic importance. Such efforts will lead to genetic

improvements that maintain high crop yield with concomitant tolerance to

environmental stresses. The objectives of this study were to investigate proxi-

mal hyperspectral sensing with a field spectroradiometer and to compare data

analysis approaches for estimating four cotton phenotypes: leaf water content

(Cw), specific leaf mass (Cm), leaf chlorophyll a + b content (Cab), and leaf

area index (LAI). Field studies tested 25 Pima cotton cultivars grown under

well-watered and water-limited conditions in central Arizona from 2010 to

2012. Several vegetation indices, including the normalized difference vegeta-
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tion index (NDVI), the normalized difference water index (NDWI), and the

physiological (or photochemical) reflectance index (PRI) were compared with

partial least squares regression (PLSR) approaches to estimate the four phe-

notypes. Additionally, inversion of the PROSAIL plant canopy reflectance

model was investigated to estimate phenotypes based on 3.68 billion PRO-

SAIL simulations on a supercomputer. Phenotypic estimates from each ap-

proach were compared with field measurements, and hierarchical linear mixed

modeling was used to identify differences in the estimates among the cultivars

and water levels. The PLSR approach performed best and estimated Cw, Cm,

Cab, and LAI with root mean squared errors (RMSEs) between measured and

modeled values of 6.8%, 10.9%, 13.1%, and 18.5%, respectively. Using linear

regression with the vegetation indices, no index estimated Cw, Cm, Cab, and

LAI with RMSEs better than 9.6%, 16.9%, 14.2%, and 28.8%, respectively.

PROSAIL model inversion could estimate Cab and LAI with RMSEs of about

16% and 29%, depending on the objective function. However, the RMSEs for

Cw and Cm from PROSAIL model inversion were greater than 30%. Com-

pared to PLSR, advantages to the physically-based PROSAIL model include

its ability to simulate the canopy’s bidirectional reflectance distribution func-

tion (BRDF) and to estimate phenotypes from canopy spectral reflectance

without a training data set. All proximal hyperspectral approaches were able

to identify differences in phenotypic estimates among the cultivars and irriga-

tion regimes tested during the field studies. Improvements to these proximal

hyperspectral sensing approaches could be realized with a high-throughput
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phenotyping platform able to rapidly collect canopy spectral reflectance data

from multiple view angles.
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1. Introduction20

To improve food security, adapt to climate change, and reduce resource21

requirements for crop production, scientists must better understand the con-22

nection between a plant’s observable characteristics (phenotype) and its ge-23

netic makeup (genotype). Unprecedented advances in DNA sequencing have24

unlocked the genetic code for many important food crops, including rice25

(Oryza sativa L.), sorghum (Sorghum bicolor L.), and maize (Zea mays L.)26

(Bolger et al., 2014). However, understanding how genes control complex27

plant traits, such as drought tolerance, time to anthesis, and harvestable28

yield, remains challenging. Field-based plant phenomics seeks to implement29

information technologies, including sensing and computing tools in combi-30

nation with genetic mapping approaches, to rapidly characterize the phys-31

iological responses of genetically diverse plant populations in the field and32

relate these responses to individual genes (Araus and Cairns, 2014; Furbank33

and Tester, 2011; Houle et al., 2010; Montes et al., 2007; White et al., 2012).34

When validated, crop improvement strategies based on targeted quantitative35
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trait loci and genomic selection can be used for efficient development of crop36

cultivars that are both high yielding and resilient to environmental stresses.37

A variety of electronic sensors have been deployed for field-based plant38

phenomics, mainly on ground-based vehicles. Andrade-Sanchez et al. (2014)39

developed a sensing platform on a high-clearance tractor that collected data40

over four Pima cotton (Gossypium barbadense L.) rows simultaneously. Ul-41

trasonic sensors, infrared radiometers, and active multispectral radiometers42

were used to measure canopy height, temperature, and reflectance, respec-43

tively. Scotford and Miller (2004) mounted passive two-band radiometers and44

ultrasonic sensors on a tractor boom and used the system to estimate tiller45

density and leaf area index (LAI) of winter wheat (Triticum aestivum L.).46

Other sensing systems have incorporated passive hyperspectral radiometers47

(spectroradiometers) for measuring crop canopy spectral reflectance contin-48

uously over a range of wavelengths, typically within the visible and near-49

infrared spectrum. For example, the phenotyping platform of Comar et al.50

(2012) incorporated four spectroradiometers sensitive between 400 and 100051

nm at 3 nm spectral resolution and two RGB digital cameras. Also, Montes52

et al. (2011) developed a system with light curtains for canopy profiling and53

spectroradiometers sensitive between 320 and 1140 nm at 10 nm spectral res-54

olution. Rundquist et al. (2004) compared machine-based versus hand-held55

deployment of a spectroradiometer and found reduced variability and higher56

reproducibility of sensor measurements when the instrument was positioned57

by a machine.58
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Following sensor platforms, the next challenge for field-based plant phe-59

nomics is the development of methodologies to extract meaningful informa-60

tion from the sensor data, with the ultimate goal to quantify specific crop61

phenotypes. However, the fundamental measurements of many sensors have62

little utility for crop phenotyping without additional post-processing and63

analysis. For simple, empirical processing of canopy spectral reflectance data,64

a multitude of vegetation indices have been developed (Bannari et al., 1995)65

and used to estimate several crop characteristics, including canopy cover,66

LAI, and biomass (Wanjura and Hatfield, 1987). The popular normalized67

difference vegetation index (NDVI) is traditionally calculated as68

NDVI =
ρ2 − ρ1
ρ2 + ρ1

(1)

where ρ2 is the spectral reflectance in the near-infrared waveband and ρ1 is69

the spectral reflectance in the red waveband. However, with the advent of70

hyperspectral sensors, other narrow-band indices have been developed us-71

ing the NDVI equation with reflectance data in different wavebands. For72

example, Gamon et al. (1992) developed the physiological (or photochemi-73

cal) reflectance index (PRI), a narrow-band index using reflectance at 53174

nm to track xanthophyll cycle pigments and estimate photosynthetic effi-75

ciency. Likewise, Gao (1996) developed the normalized difference water in-76

dex (NDWI) to estimate vegetation water content. Many other studies have77

identified optimum wavebands for a given application by calculating narrow-78

band NDVI for all possible waveband combinations for a given hyperspectral79
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sensor (Fu et al., 2014; Hansen and Schjoerring, 2003; Thenkabail et al.,80

2000; Thorp et al., 2004). Babar et al. (2006) demonstrated several narrow-81

band spectral reflectance indices that explained genetic variability in wheat82

biomass. Mistele and Schmidhalter (2008) measured spectral reflectance of83

maize canopies from four view angles and found the spectral reflectance in-84

dices were strongly correlated (0.57 ≤ r2 ≤ 0.91) with total nitrogen uptake85

and dry biomass weight. In a study by Gutierrez et al. (2012), spectral re-86

flectance indices explained over 87% and 93% of the variability in biomass87

and LAI, respectively, for three upland cotton varieties. Seelig et al. (2008)88

correlated shortwave infrared spectral reflectance indices with relative water89

content and thickness of peace lily (Spathiphyllum lynise) leaves (r2 > 0.94).90

Other spectral data analysis approaches consider all the visible, near-91

infrared, and shortwave infrared wavebands collectively. Statistical proce-92

dures such as principal component regression (PCR) and partial least squares93

regression (PLSR) reduce dimensionality by decomposing the hyperspectral94

data into a set of independent factors, against which crop biophysical traits95

are regressed. For example, Thorp et al. (2008) used PCR to estimate maize96

stand density from aerial hyperspectral imagery (r2 = 0.79). Also, Thorp97

et al. (2011) used proximal spectral reflectance data with PLSR to estimate98

dry biomass weight, flower counts, and silique counts of lesquerella (Les-99

querella fendleri) with root mean squared errors of prediction equal to 2.1100

Mg ha−1, 251 flowers, and 1018 siliques, respectively. In another study,101

PLSR models developed from spectral reflectance of rice canopies explained102
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up to 71% of the variability in plant nitrogen (Bajwa, 2006). Hansen and103

Schjoerring (2003) compared estimates of wheat biophysical variables using104

1) linear regression on narrow-band NDVI with optimal wavebands and 2)105

PLSR with all wavebands from 400 to 900 nm. The NDVI approach bet-106

ter estimated LAI and chlorophyll concentration, while the PLSR approach107

better estimated green biomass weight and nitrogen concentration.108

Another potential solution for quantifying crop phenotypes involves com-109

bining measured spectral reflectance data with physical models of radiative110

transfer in the plant canopy. Input parameters for such models describe at-111

tributes (i.e., phenotypes) of the crop canopy, which are used to simulate112

canopy spectral reflectance. For example, with 14 input parameters that de-113

scribe plant characteristics and illumination conditions, the PROSAIL model114

(Jacquemoud et al., 2009) can simulate plant canopy spectral reflectance115

from 400 to 2500 nm in 1 nm wavebands. Using model inversion techniques,116

spectral reflectance measurements from spectroradiometers can be used to117

estimate PROSAIL input parameters. These estimates represent additional118

crop phenotypes that could be useful in subsequent genetic analyses. By119

linking crop phenotypes to sensor data through the theoretical knowledge120

contained in the simulation model, the approach is less empirical than the121

vegetation index and PLSR approaches.122

Literature provides examples of PROSAIL model inversion for vegetation123

characterization in diverse environments, but field-based plant phenomics124

is a novel application. Jacquemoud (1993) first investigated the practical125
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limitations of PROSAIL model inversion using synthetic spectra. A subse-126

quent study tested field spectroradiometer data with PROSAIL model in-127

version to retrieve sugar beet (Beta vulgaris) canopy characteristics, such as128

chlorophyll a + b concentration, leaf water thickness, LAI, and leaf inclina-129

tion angle (Jacquemoud et al., 1995). At coarser spatial and spectral scales,130

Zarco-Tejada et al. (2003) used data from the Moderate Resolution Imaging131

Spectroradiometer (MODIS) satellite to invert PROSAIL for estimation of132

chaparral vegetation water content in a central California shrub land. Yang133

and Ling (2004) estimated leaf water thickness of New Guinea impatiens134

(Impatiens hawkeri) in a controlled environment using PROSAIL model in-135

version from 1300 nm to 2500 nm, but spectral artifacts between 400 and136

1300 nm due to artificial lighting prevented the estimation of other plant137

characteristics. PROSAIL model inversion also provided estimates of LAI138

and chlorophyll a + b concentration for potato (Solanum tuberosum L.) and139

wheat managed with variable nitrogen fertilization rates (Botha et al., 2007,140

2010). Others have linked PROSAIL with dynamic models of crop growth141

and development for wheat (Thorp et al., 2012) and maize (Koetz et al.,142

2005), which permitted model inversion using time-series spectral reflectance143

measurements of the crop canopy.144

In many previous studies, iterative optimization was used to solve the145

PROSAIL model inversion problem (Botha et al., 2007, 2010; Jacquemoud146

et al., 1995; Thorp et al., 2012; Yang and Ling, 2004; Zarco-Tejada et al.,147

2003). Optimization aims to find solutions in a computationally efficient148

8



manner, but convergence to local minimums is a risk. Others have used149

lookup tables to solve the inversion problem (Combal et al., 2003; Darvishzadeh150

et al., 2012; Koetz et al., 2005). Lookup tables are a relatively simple way to151

characterize model responses, but the computational expense can be great152

if many simulations are required to adequately characterize the parameter153

space. High-performance computers increase the practicality of the lookup154

table approach.155

The goal of this study was to assess the utility of proximal hyperspectral156

data and related data analysis techniques for estimating crop phenotypes157

among Pima cotton cultivars grown in Arizona field studies. Specific objec-158

tives were 1) to compare NDVI, NDWI, PRI, PLSR, and PROSAIL model159

inversion methods to estimate leaf water thickness, specific leaf mass, chloro-160

phyll a + b concentration, and LAI in cotton and 2) to assess differences161

between phenotypic estimates among irrigation and cultivar treatments im-162

posed during the field studies.163

2. Materials and Methods164

2.1. Field experiments165

As described in detail by Andrade-Sanchez et al. (2014), field experiments166

were conducted during the summers of 2010, 2011, and 2012 at the Maricopa167

Agricultural Center (33.068◦ N, 111.971◦ W, 360 m above mean sea level)168

near Maricopa, Arizona. Twenty-five Pima cotton cultivars were grown under169

well-watered (WW) and water-limited (WL) conditions using a 5 × 5 lattice170

design with four replications per treatment. Experimental units were one171
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row with length of 8.8 m and row spacing of 1.02 m. A subset of four cotton172

cultivars in 2010 (Monseratt Sea Island, Pima 32, Pima S-6, and Pima S-7)173

and five cotton cultivars in 2011 and 2012 (89590, Monseratt Sea Island, P62,174

PSI425, and Pima S-6) were selected for intensive field measurements and175

proximal hyperspectral data collection. These cultivars were chosen based176

on their different release dates to increase the range of expected responses to177

heat and water deficit (Carmo-Silva et al., 2012). Subsurface drip irrigation178

methods were used with irrigation schedules determined from a daily soil179

water balance model based on FAO-56 methods (Allen et al., 1998). When180

50% of treatment plots had one visible flower, the WL treatment received181

one-half the irrigation rate of the WW treatment.182

2.2. Field data collection183

Intensive field data collection to characterize leaf water content and canopy184

spectral reflectance for the selected Pima cultivars occurred on five occasions185

during the three field experiments (Table 1). Measurements were collected186

in August during the cotton boll filling period. Collection times in 2011187

and 2012 were focused in the morning hours after the 2010 data analysis188

revealed larger differences in relative leaf water content between WW and189

WL treatments earlier in the day (Carmo-Silva et al., 2012).190

During each data collection outing, ground-based radiometric measure-191

ments were collected over the selected Pima cultivars using a hand-held field192

spectroradiometer (Fieldspec 3, Analytical Spectral Devices, Inc., Boulder,193

CO, USA). Radiometric information was reported in 2151 narrow wavebands194
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from 350 to 2500 nm in 1 nm intervals. The instrument was equipped with195

a 25◦ field-of-view fiber optic. To avoid soil background effects, a wand con-196

structed from PVC tubing was used to position the fiber optic at a nadir197

view angle approximately 0.25 m above the canopy. Because of the proxim-198

ity of the sensor to the target, the methods are termed “proximal sensing”199

as opposed to “remote sensing.” Frequent radiometric observations of a cal-200

ibrated, 0.6 m2, 99% Spectralon panel (Labsphere, Inc., North Sutton, New201

Hampshire) were used to characterize incoming solar radiation throughout202

the data collection period. Because atmospheric absorption led to insuffi-203

cient light in some wavebands, subsequent analyses of all spectral data used204

1703 wavebands from 400 to 1350 nm, 1450 to 1770 nm, and 1970 to 2400205

nm. Canopy reflectance factors in each waveband were computed as the ra-206

tio of the canopy radiance over the corresponding time-interpolated value for207

Spectralon panel radiance. Reflectance factors from six to twelve radiomet-208

ric measurements over each experimental plot were averaged to estimate the209

overall canopy spectral reflectance response. Variability in the number of210

scans per plot was dependent on manual triggering of the spectroradiometer211

while slowly walking through the field.212

Simultaneously with canopy spectral reflectance measurements, two leaf213

tissue samples were collected from two leaves in each plot with a 2 cm2
214

punch. Two leaf disks were collected per sample from one leaf at the top of215

the canopy, sealed in a 3 × 4 cm2 pre-weighed ziplock bag, and stored on216

ice in an insulated cooler. In the laboratory, the fresh weight of leaf samples217

11



(mf ) was measured on an electronic balance (AE 160, Mettler-Toledo, LLC,218

Columbus, OH, USA). Leaf disks were then removed from the bags and oven219

dried prior to dry weight (md) measurements. The leaf water thickness (Cw)220

was calculated as the depth of water per unit leaf area (cm):221

Cw = (mf −md)/(ρw × Als) (2)

where ρw is the density of water (1.0 g cm−3) and Als is the total area of the222

leaf sample. The specific leaf mass (Cm, g cm−2) was also calculated:223

Cm = md/Als (3)

Within two weeks of proximal hyperspectral measurements (Table 1),224

additional leaf samples were collected for measurements of chlorophyll a+ b225

concentration (Cab). Two 0.3 cm2 leaf disks were obtained from each exper-226

imental plot and stored at -80 ◦C. Using the method of Porra et al. (1989),227

100% methanol (1 mL) was added to each sample for pigment extraction in228

the dark at 4 ◦C for 48 h with mixing. A 200 µL sample of the supernatant229

was collected for absorbance measurements at 652 nm (A652) and 665 nm230

(A665), which were used to estimate Cab (µg cm−2):231

Cab = (22.12A652 + 2.71A665)/Als (4)

Within one day of proximal hyperspectral measurements (Table 1), the232

field-based high-throughput phenotyping system of Andrade-Sanchez et al.233
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(2014) was used to measure canopy reflectance, height, and temperature in234

each experimental plot. Sensors were deployed on an open rider sprayer235

(LeeAgro 3434 DL, LeeAgra, Lubbock, TX, USA) capable of sensing four236

cotton rows simultaneously. Canopy reflectance was measured in 10 nm wave-237

bands centered at 670, 720, and 820 nm using active multispectral radiome-238

ters (Crop Circle ACS-470, Holland Scientific, Lincoln, NE, USA). Equation239

1 was used to calculate NDVI from these data with ρ1 and ρ2 equal to re-240

flectance values at 670 and 820 nm, respectively. Although canopy height was241

measured by the phenotyping platform using sonar proximity sensors (Pul-242

sar dB3, Pulsar Process Measurement Ltd, Malvern, UK), this study used243

canopy height data measured manually using an electronic bar code scanner244

with a coded measurement stick. Using the approach of Scotford and Miller245

(2004), the NDVI from active radiometers and manual canopy height data246

were used to calculate a compound canopy index (CCI), from which LAI was247

estimated:248

LAI = β × CCI = β

(
c

cmax

)(
h

hmax

)
(5)

where β is a constant, c and h are respectively the instantaneous canopy249

cover and canopy height measurements, and cmax and hmax are respectively250

the maximum cover and height expected during the growing season. Co-251

located data to parameterize this calculation were collected during other252

upland cotton experiments conducted at MAC from 2009 to 2013. Analysis253

of these data led to values of 5.5, 87.9%, and 110.5 cm for β, cmax, and hmax,254
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respectively. The NDVI data from the active radiometers were used as a255

direct estimate of c in Equation 5. Compared with 75 measurements from a256

LAI meter (LAI-2200 Plant Canopy Analyzer, Li-Cor Biosciences, Lincoln,257

NE, USA) and with LAI calculated using 75 measurements of leaf area from258

biomass samples on an area meter (LAI-3100, Li-Cor Biosciences, Lincoln,259

NE, USA), the index estimated LAI with a root mean squared error of 0.48260

(15.9%).261

2.3. Vegetation indices262

Equation 1 was used to calculate three vegetation indices from the proxi-263

mal hyperspectral data. The indices were selected based on their relevance to264

monitor physiological stress in vegetation. A traditional broad-band NDVI265

was calculated with ρ1 and ρ2 equal to the average spectral reflectance in266

wavebands corresponding to the red (665 to 675 nm) and NIR (815 to 825267

nm) filters used with the Crop Circle reflectance sensors onboard the pheno-268

typing vehicle. The NDWI (Gao, 1996) was calculated with ρ1 and ρ2 equal269

to the average spectral reflectance in wavebands corresponding to MODIS270

Band 5 (1230 to 1250 nm) and Band 2 (841 to 876 nm), respectively. Fi-271

nally, the PRI (Gamon et al., 1992) was calculated with ρ1 and ρ2 equal272

to spectral reflectance at 531 nm and 570 nm, respectively. Linear regres-273

sion models were developed to estimate Cw, Cm, Cab, and LAI using each of274

these spectral indices. While these three indices were specifically highlighted,275

Equation 1 was also used to calculate NDVI for all possible combinations of276

the 1703 proximal hyperspectral wavebands.277
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2.4. PLSR modeling278

PLSR was used to assess the relationships between each of the four bio-279

physical variables and canopy spectral reflectance in 1703 wavebands. Thorp280

et al. (2011) provided the details on the PLSR methodology used in the281

present study. Briefly, if Y is an n × 1 vector of responses (measured crop282

phenotypes) and X is an n-observation by p-variable matrix of predictors283

(hyperspectral reflectance measurements in p wavebands), PLSR aims to de-284

compose X into a set of A orthogonal scores such that the covariance with285

corresponding Y scores is maximized. The X-weight and Y-loading vectors286

that result from the decomposition are used to estimate the vector of regres-287

sion coefficients, βPLS, such that288

Y = XβPLS + ε (6)

where ε is an n× 1 vector of error terms.289

The “pls” package (Mevik and Wehrens, 2007) within the R Project for290

Statistical Computing (http://www.r-project.org) was used for PLSR in this291

study. Four models were developed: one each for estimating Cw, Cm, Cab,292

and LAI from the canopy spectral reflectance data. To choose the appro-293

priate number of factors for each model (A from above), leave-one-out cross294

validation was used to test model predictions for independent data, and scree295

plots (not shown) provided the number of factors for which the root mean296

squared error of cross validation (RMSECV) was minimized. The PLSR297

models for Cw, Cm, Cab, and LAI were developed from the first five, eight,298
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eight, and ten factors, respectively.299

2.5. PROSAIL simulations300

The PROSAIL canopy reflectance model was developed by linking the301

PROSPECT leaf optical properties model and the SAIL canopy bidirectional302

reflectance model (Jacquemoud et al., 2009). PROSAIL uses 14 input param-303

eters to define leaf pigment content, leaf water content, canopy architecture,304

soil background reflectance, and illumination characteristics. Four of the305

PROSAIL input parameters are the four biophysical variables measured in306

this study: Cw, Cm, Cab, and LAI. In addition to Cab, other leaf pigment pa-307

rameters include the carotenoid content (µg cm−2) and the brown pigment308

content (unitless fraction from 0.0 to 1.0). Another leaf-scale parameter is309

the leaf structural coefficient (N ; unitless), defined as the number of leaf310

mesophyll layers. In addition to LAI, canopy architecture is defined by the311

average leaf inclination angle (θl; degrees). The background soil reflectance312

parameter ranges from 0.0 for wet soils to 1.0 for dry soils. Specular prop-313

erties of the canopy surface are characterized by the hot spot size parameter314

(s; unitless fraction from 0.0 to 1.0). The skylight parameter (%) defines315

the percentage of diffuse solar radiation. Illumination and viewer geometries316

are characterized by the solar zenith angle (degrees), viewer zenith angle317

(degrees), and relative solar and viewer azimuth angle (degrees). Based on318

these inputs, the model calculates canopy bidirectional reflectance from 400319

to 2500 nm in 1 nm increments.320

PROSAIL has been developed in several programming languages. Initial321
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simulations were conducted using the Fortran version, which was compiled322

using the “g95” Fortran compiler (http://www.g95.org) on a Linux operating323

system. Later, PROSAIL for Python was deemed better for the simulation324

analysis, because it encapsulated the Fortran code as an extension for the325

Python programming language (http://www.python.org). This permitted326

the model to be called from the Python command line and eliminated hard327

disk access requirements for model input and output.328

PROSAIL simulations were conducted on the “Stampede” supercomputer329

at the Texas Advanced Computing Center (TACC), located at the University330

of Texas in Austin. A single job submission was used to conduct 3.68 billion331

PROSAIL simulations to test the effects of multiple parameter combinations332

on simulated canopy spectral reflectance. Because proximal hyperspectral333

measurements were collected in a total of 184 plots over all the field experi-334

ments, 184 processing cores were requested such that the simulation analysis335

could be explicitly conducted for the conditions of each experimental unit.336

The maximum run time for a job submission on Stampede is 48 h. Thus, the337

design objective was to conduct as many PROSAIL evaluations as possible338

within the time limit.339

Seven parameters were adjusted during the PROSAIL simulation exercise340

(Table 2). A Sobol quasirandom sequence algorithm for Python was used to341

sample the parameter space. Although “less random” than a pseudorandom342

number sequence, the approach tends to sample the parameter space “more343

uniformly.” Another advantage is that the sequence is repeatable, so identi-344
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cal parameter combinations could be tested for each experimental unit. For345

Cw, Cm, Cab, and LAI, the lower and upper bounds were specified using the346

range of measured values. Ranges for N , θl, and s were specified using pub-347

lished values (Combal et al., 2003; Jacquemoud et al., 1995). Leaf carotenoid348

content and brown pigment content were less sensitive parameters and were349

fixed at 10.0 µg cm−2 and 0.0 (unitless), respectively. Because subsurface350

drip irrigation was used, the soil surface was normally dry. Thus, the soil351

reflectance parameter was fixed at 1.0 for all simulations. The fraction of dif-352

fuse skylight was fixed at 10% based on observations of a shaded versus sunlit353

Spectralon panel during the field study. By implementing the solar position354

algorithm of Reda and Andreas (2004), solar zenith angles were calculated355

from the timestamps of radiometric observations in the field. Observer zenith356

and relative azimuth angles were both fixed at 0◦. This approach provided357

an evaluation of 20 million combinations of seven PROSAIL parameters for358

each of the 184 experimental units monitored during the field studies.359

2.6. PROSAIL model inversion360

Available storage allocation on Stampede became the limiting factor when361

PROSAIL simulation results were initially written to the hard drive (i.e.,362

1703 simulated reflectance values for 3.68 billion simulations would have ex-363

ceeded the available storage allocation on Stampede). Thus, objective func-364

tion evaluations were incorporated into the simulation exercise to reduce stor-365

age requirements. Tested parameter sets were stored in a lookup table with366

their corresponding objective function evaluations, including the root mean367
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squared error (RMSE) and the spectral angle (α) (Kruse et al., 1993) between368

measured and simulated reflectance over all spectral wavebands (n = 1703):369

RMSE =

√√√√ n∑
i=1

(Si − PROSAIL(P,C)i)2 (7)

and370

α = cos−1

( ∑n
i=1 Si × PROSAIL(P,C)i

(
∑n

i=1 S
2
i )

0.5(
∑n

i=1 PROSAIL(P,C)2i )
0.5

)
(8)

where S is the vector of measured canopy spectral reflectance and PROSAIL(P,C)371

is the vector of simulated canopy spectral reflectance as a function of adjusted372

parameters, P, and constant parameters, C. The main advantage of α is its373

insensitivity to illumination, because Equation 8 incorporates only vector374

direction and not vector length. This was considered advantageous because375

proximal canopy spectral reflectance measurements were largely affected by376

the fraction of sunlit versus shaded leaves in the instrument’s field of view.377

Inversion of the PROSAIL model involved the identification of P that mini-378

mized each of these objective functions for each experimental unit.379

2.7. Statistics380

For proximal hyperspectral sensing to be useful in field-based plant phe-381

nomics, metrics obtained from the data must demonstrate differences among382

the treatments imposed and be repeatable (i.e., heritable). Different culti-383

vars can then be identified and selected as parents of breeding populations384

for development of improved cultivars. Hierarchical linear mixed modeling385

19



was used to assess differences among all data and metrics evaluated in this386

study: field measurements, measured spectra, vegetation indices, PLSR re-387

sults, and estimates from PROSAIL model inversion. Cultivar, water level,388

and their interaction were modeled as fixed effects. Measurement date (Ta-389

ble 1) and its interaction with both cultivar and water level were modeled390

as random effects. Replicate plot, nested within measurement date and wa-391

ter level, was also included as a random effect in the model. Hierarchical392

tests required fitting random effects with 1) cultivar fixed effects alone, 2)393

water level fixed effects alone, 3) both cultivar and water level fixed effects,394

and 4) cultivar and water level fixed effects and their interaction. Likelihood395

ratio tests were used to compare these hierarchical models, which showed396

whether a given data set was different among cultivars, water levels, or their397

interaction. Tukey’s multiple comparisons tests were also conducted to iden-398

tify specific cultivars that were different for a given measurement. Statistics399

were computed using the “lme4” package within the R Project for Statistical400

Computing software.401

3. Results402

3.1. Field measurements403

Measured values for Cw, Cm, Cab, and LAI ranged from 0.01 to 0.02 cm,404

0.003 to 0.009 g cm−2, 26.0 to 59.0 µg cm−2, and 1.7 to 8.3, respectively,405

over all measurements collected (Fig. 1). Hierarchical linear mixed modeling406

revealed differences in all four measured plant traits among cultivars (p <407

0.01, Table 3). Differences in measured Cm and LAI were found among408
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the water levels (p < 0.05). The interaction of cultivar and water level409

was significant for Cw and Cm (p < 0.05). Results for measured Cw and410

Cm corroborate the results of Carmo-Silva et al. (2012), who conducted an411

independent analysis using data from the 2010 season only. Typically, the412

lowest and highest Cw were found for the Monseratt Sea Island and P62413

cultivars, respectively (Fig. 1a), and Tukey tests confirmed Cw differences414

between P62 and both Monseratt Sea Island and Pima S-6 for both WW415

and WL treatments (p < 0.05). For WL conditions, Cm for Monseratt Sea416

Island was less than four other cultivars: P62, 89590, PSI425, and Pima S-6417

(p < 0.05). For WW conditions, Cm was lower for Monseratt Sea Island as418

compared to P62 (p < 0.01, Fig. 1b). The Cab for P62 was greater than419

both Monseratt Sea Island and 89590 (p < 0.05) for WW conditions, but no420

Cab differences were found among cultivars for the WL treatment (Fig. 1c).421

With WW conditions, LAI for P62 was less than that for five other cultivars:422

Monseratt Sea Island, Pima32, PSI425, Pima S-6, and Pima S-7 (p < 0.10,423

Fig. 1d). Also, LAI for 89590 was less than that for Monseratt Sea Island,424

Pima32, Pima S-6, and Pima S-7 (p < 0.05). With WL conditions, LAI for425

P62 was less than that for Monseratt Sea Island, Pima 32, and Pima S-6.426

Based on measurements from five data sets, these results highlight the main427

differences for measured traits among cultivars.428

Proximal hyperspectral measurements of the cotton canopy followed typ-429

ical patterns for spectral reflectance of vegetation (Fig. 2). Generally, scat-430

tering of near-infrared radiation led to greater variability in reflectance from431
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760 to 1350 nm as compared to the visible (400 to 700 nm) and shortwave432

infrared (1450 to 2400 nm) wavebands where chlorophyll and water, respec-433

tively, absorb radiation. Results from hierarchical linear mixed modeling434

demonstrated the wavebands with different reflectance values among water435

levels and cultivars (p < 0.05, Fig. 3). Among cultivars, spectral reflectance436

differences were found in wavebands from 400 to 725 nm, 1470 to 1800 nm,437

and 2000 to 2400 nm. Thus, reflectance in the entire visible portion of the438

spectrum was different among cultivars, likely due to effects of radiation ab-439

sorption by chlorophyll. Also, reflectance differences in two regions of the440

shortwave infrared suggest effects of Cw or total plant water status. A fewer441

number of wavebands demonstrated reflectance differences among water lev-442

els, and four main regions were identified: 528 to 569 nm, 667 to 736 nm,443

1681 to 1785 nm, and 2153 to 2353 nm. Wavebands around 550 nm sug-444

gested that water level affected greenness of the canopy, while reflectance in445

the far red and red edge bands were also affected. Reflectance differences446

in the shortwave infrared bands again suggest effects of water level on plant447

water status, as expected. Neither cultivar nor water level led to differences448

in near-infrared reflectance, suggesting that other factors contributed to the449

variability in those wavebands. There were also no significant cultivar by450

water level interaction effects on reflectance.451

3.2. Vegetation indices452

Differences in broad-band NDVI from the spectroradiometer were found453

for both the cultivar and water level treatments (Table 3), demonstrating454
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its robustness for proximal and remote sensing applications in agriculture.455

Differences in broad-band NDWI were also found among cultivar and water456

level treatments. Thus, the NDVI and NDWI could collectively provide es-457

timates of both crop growth and water status. No differences in PRI were458

found among cultivars or water levels. Also, unlike NDVI from the spectro-459

radiometer, no differences in NDVI from the Crop Circle sensors were found460

among cultivars. With a coefficient of determination (r2) of only 0.26 (not461

shown), the relationship between Fieldspec NDVI and Crop Circle NDVI was462

weak. This was likely related to different fields-of-view, measurement heights,463

and light sources among the two sensors. Effects of soil background in the464

instrument field-of-view was likely more of an issue for the tractor-mounted465

Crop Circle than for the hand-held spectroradiometer.466

Many of the narrow-band NDVI calculations were different among cul-467

tivars (p < 0.05, Fig. 4). When NDVI was computed using a waveband468

from 400 to 1350 nm and any other waveband, the values often varied among469

cultivars (p < 0.05). An exception was apparent when a red edge band was470

used with any band greater than 1450 nm. Also, as shown in Table 3, the471

wavebands used for PRI (i.e., 531 and 570 nm), which is itself a narrow-band472

NDVI, did not lead to differences. Fewer differences among cultivars were473

noted when NDVI was calculated using two wavebands greater than 1970 nm.474

Fewer waveband combinations led to narrow-band NDVI differences among475

water levels (Fig. 4). Notably, wavebands used for NDWI calculation (i.e.,476

approximately 1240 and 858 nm) led to different narrow-band NDVI among477
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water levels (p < 0.05). Narrow-band NDVIs often did not demonstrate sig-478

nificant cultivar by water level interactions, although significant interaction479

effects were more common when two wavebands in either the near-infrared480

(i.e., 730 to 1000 nm) or shortwave infrared (i.e., 1450 to 1770 nm) were used.481

Linear regression models to estimate the measured crop phenotypes from482

the vegetation indices were unfavorable compared to PLSR models, discussed483

in the next section. None of the indices could estimate Cw, Cm, Cab, and484

LAI with root mean squared errors better than 9.6%, 16.9%, 14.2%, and485

28.8%, respectively. Cross-validated estimates from PLSR were better than486

the estimates from linear relationships with vegetation indices. For LAI and487

Cab, this result differed from that of Hansen and Schjoerring (2003), but488

they compared narrow-band NDVI with PLSR and did not have spectral489

reflectance measurements beyond 900 nm. Due to the linear nature of the490

regression models, another concern is that the statistical results for traits491

estimated in this way (not shown) were identical to that for the vegetation492

index itself (Table 3). Thus, using linear regression to estimate traits from493

vegetation indices did not provide any new information for hierarchical linear494

mixed modeling.495

3.3. PLSR modeling496

The PLSR models developed from 1703 wavebands of canopy spectral497

reflectance estimated Cw, Cm, Cab, and LAI with RMSECV of 6.8%, 10.9%,498

13.1%, and 18.5%, respectively (Fig. 5). Full spectrum data reduced root499

mean squared errors between measured and modelled phenotypes as com-500
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pared to vegetation indices using reflectance in select wavebands. Addition-501

ally, the PLSR results were cross-validated, so the PLSR models have been502

properly tested with independent data.503

Although the PLSR models provided better trait estimates than other504

techniques, hierarchical linear mixed modeling results for PLSR estimates505

were somewhat different than that for the field measurements (Table 3).506

Whereas field-measured Cw, Cm, Cab, and LAI were all different among cul-507

tivars, the PLSR estimates were different only for Cw and Cm (p < 0.01).508

Also, whereas field measurements were different among water levels only for509

Cm and LAI, the PLSR estimates for all four traits were different among510

water levels (p < 0.05). Thus, the PLSR technique led to different trait511

estimates among cultivars and water levels, but the results did not always512

corroborate results for the field-measured traits.513

3.4. PROSAIL simulations514

Most biophysical models like PROSAIL were not originally designed with515

high-performance computing in mind. Thus, efforts to use such models on516

supercomputers demonstrate what is possible with modern computing re-517

sources. Using the Fortran-compiled PROSAIL model, which required hard518

disk access for model input and output, 40 million simulations were com-519

pleted in 40.4 h for an average of 275 simulations per second. However, when520

using the PROSAIL model compiled as a Python extension, 3.68 billion sim-521

ulations were completed in 37.3 h for an average of 27,395 simulations per522

second. Simulations could be multiplied 100 times by using a model that did523
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not require hard drive access.524

Storage requirements were also a concern for the PROSAIL simulation525

exercises. For trials with the Fortran-based PROSAIL model, the overall job526

size was small enough to write simulated reflectance data in 1703 wavebands527

to the hard disk. Using binary files to write reflectance data as 4-digit in-528

tegers, simulated data for 40 million PROSAIL runs required 136.4 GB of529

storage. Increasing the job size to 3.68 billion would thus increase storage530

requirements to several TB, which exceeded allocation limits on Stampede.531

Therefore, only the RMSE (Eq. 7) and α (Eq. 8) metrics were stored for the532

larger job, which required only 36 GB. Decisions like these are central to the533

design of supercomputing jobs for models like PROSAIL.534

3.5. PROSAIL model inversion535

For the PROSAIL model inversion with the objective to minimize RMSE536

between measured and simulated canopy spectral reflectance in 1703 wave-537

bands (Eq. 7), Cw, Cm, Cab, and LAI were estimated with RMSE of 37.6%,538

31.1%, 16.6%, and 29.5%, respectively (Fig. 6). When the objective was to539

minimize α between measured and simulated canopy spectral reflectance (Eq.540

8), Cw, Cm, Cab, and LAI were estimated with RMSE of 38.1%, 36.1%, 15.9%,541

and 28.2%, respectively. Clearly, results from both objective functions were542

inferior to that from PLSR models (Fig. 5). Discrepancies between measured543

and simulated Cw suggested problems in how PROSAIL simulated effects of544

leaf-level water content on canopy-level spectral reflectance (Fig. 6a). In-545

versions with both objective functions resulted in higher Cw than measured,546
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and many optimum Cw estimates were near the imposed upper bound of 0.02547

cm (Table 2). This effect did not occur when reflectance in 501 wavebands548

from 400 nm to 900 nm were used for PROSAIL model inversion. In this549

case, RMSE between measured and simulated values dropped from 38% to550

23% (not shown). Thus, discrepancies in the near-infrared wavebands above551

900 nm and the shortwave infrared wavebands (discussed below) likely drove552

the high error between simulated and measured Cw. This result highlights553

the potential for model inversion outcomes to be affected by methodological554

choices. Estimates of Cm based on minimum RMSE were often underesti-555

mated, while Cm based on minimum α were overestimated for all but a few556

cases (Fig. 6b). With high RMSE and low correlation between measured and557

simulated values, Cw and Cm were the most difficult parameters to estimate558

using PROSAIL model inversion.559

Estimates of Cab from PROSAIL model inversion were more reasonable560

(Fig. 6c), although the RMSEs between measured and simulated Cab were561

still approximately 3% higher than that for the PLSR model. Estimates of562

LAI were most problematic for values greater than 6.0 (Fig. 6d). Measure-563

ment error is likely partially responsible for this result, because LAI mea-564

surements were based on Crop Circle NDVI and canopy height according to565

Equation 5. Some cultivars reached over 1.5 m in height, but Equation 5 was566

parameterized using data from cotton with height less than 1.1 m. Thus,567

the higher LAI “measurements” suffered from extrapolation issues. When568

removing the LAI values above 6.0 from the calculation, the RMSE between569
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measured and simulated LAI was still above 22% which was 4% higher than570

that for the PLSR model with all data included.571

When the objective was to minimize RMSE between measured and simu-572

lated canopy spectral reflectance, the resulting deviation between PROSAIL-573

simulated and measured spectral reflectance was not greater than 0.05 at any574

wavelength (Fig. 7a). In fact, simulated reflectance could often be optimized575

to within 0.02 of measured reflectance for most wavelengths. This showed576

that the inversion approach worked appropriately to find parameter values577

that achieved the best fit between PROSAIL-simulated and measured canopy578

spectral reflectance. When measured values for Cw, Cm, Cab, and LAI were579

then substituted for the values obtained through PROSAIL model inversion,580

the resulting deviations between PROSAIL-simulated and measured canopy581

spectral reflectance (Fig. 7b) explain why PROSAIL model inversion had582

problems producing accurate values for these parameters. Foremost, there583

were greater positive deviations in reflectance from 1100 to 2400 nm. Thus,584

the model overestimated reflectance in these wavebands when measured pa-585

rameters were used. Also, there were greater deviations, up to 0.13, in the586

near-infrared wavebands from 750 to 1350 nm. These results could indicate587

errors in both measurement and modeling, and improvements could focus in588

the mentioned waveband intervals.589

Plotting the ranked RMSE and α statistics for the top 1% (200,000) of590

PROSAIL evaluations provided insights on equifinality effects (Fig. 8). Re-591

sults showed rapid departure from the minimum function evaluation within592
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the top 0.1% (20,000) of total model evaluations. Deviations from the min-593

imum function evaluation were less variable for evaluations ranked greater594

than 20,000, indicating greater equifinality effects with increasing evaluation595

rank. The results suggest that model inversion identified a relatively small596

fraction of parameter combinations with low RMSE and α statistics and that597

equifinality was more problematic for parameter combinations other than598

these. Parameter estimates for Cw, Cm, Cab, and LAI that better agree with599

measured values might be found within the top 20,000 evaluations. However,600

equifinality renders the model inversion less useful above 20,000 evaluations.601

Results also showed that the α statistic offered better separation from the602

minimum function evaluation as compared to the RMSE statistic. Thus,603

equifinality was less problematic for α than RMSE, but both statistics were604

able to identify 0.1% of evaluated parameter combinations as top candi-605

dates. Remaining issues include 1) understanding equifinality issues among606

these top candidates and 2) addressing measurement and modeling errors to607

insure estimated parameters are more accurate (Fig. 6).608

Although PROSAIL model inversion estimated phenotypes with less ac-609

curacy than other methods, many of the estimates differed among the water610

level and cultivar treatments imposed during the field studies (Table 3). Re-611

sults were often inconsistent between the objective functions used for model612

inversion, which further highlighted the sensitivity of the inversion approach613

to methodological choices. Generally, more traits were different when the614

objective was to minimize α rather than RMSE (p < 0.05). Overall results615
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from PROSAIL model inversion were less accurate than that for PLSR mod-616

els, but differences were nonetheless noted in parameter values estimated by617

PROSAIL.618

4. Discussion619

While the differences among the Cw, Cm, Cab, and LAI measurements620

were apparent and biologically meaningful (Table 3), the manual procedures621

used to quantify these crop phenotypes were labor intensive and time con-622

suming. Though practical here for 4 replications of 5 or even 25 cultivars,623

obtaining these measurements for 1000 or 10000 cultivars would amplify la-624

bor requirements greatly. Major bottlenecks include labor requirements for625

collecting and processing leaf samples as well as time required for chemical626

extraction of Cab and oven drying to obtain Cw and Cm. Thus, proximal or627

remote sensing metrics that are able to discriminate these crop phenotypes628

are essential for practical scaling of field-based plant phenomics experiments.629

High-throughput approaches are needed for collection of field-based prox-630

imal hyperspectral data. Time was the main limiting factor for the manual631

approaches used in the present study. Six to twelve scans were collected in632

each of 40 experimental plots in roughly 1.75 h. This provided data for only633

one-fifth of the cotton cultivars grown in this relatively small study of 25634

Pima lines. For larger studies with thousands of lines, high-throughput ca-635

pability is a necessity. The averaged spectra for each experimental plot were636

also highly variable in the near-infrared wavebands (Fig. 2), indicating per-637
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haps that more scans per plot were needed to ensure that spectral reflectance638

of both sunlit and shaded portions of the canopy were adequately character-639

ized. This is important because of the bidirectional reflectance distribution640

function (BRDF) of the crop canopy, which defines how canopy reflectance641

properties change with solar and viewer geometry. Because passive spec-642

troradiometers use solar irradiance as the light source, a high-throughput643

platform for such sensors must also collect data rapidly. This ensures that644

BRDF effects on canopy spectral reflectance among experimental units are645

minimal for a given data set. Use of an active field spectroradiometer with646

its own light source could be another strategy for minimizing BRDF effects,647

but the authors know of no such instrument for field-based proximal sensing648

at this time. Finally, a high-throughput platform should enable canopy spec-649

tral reflectance measurements from multiple view angles. This would permit650

better characterization of BRDF effects and would provide more data to651

constrain PROSAIL model inversion. A high-throughput sensing platform652

capable of collecting much more than 12 spectral scans from a 8.8 m cotton653

row at multiple view angles in a few seconds would be ideal for field-based654

plant phenomics applications. To multiply efforts, sensing units with these655

characteristics could be distributed along a tractor boom or gantry system656

or perhaps mounted on a fleet of unmanned aerial systems.657

To minimize BRDF impacts on canopy reflectance measurements, passive658

reflectance sensing is often restricted to times near solar noon. In central Ari-659

zona in August, this strategy provides two hours from 11:30 to 13:30 when660
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the solar zenith angle does not change by more than 5◦. Another strategy661

is to maintain constant BRDF effects for spectral data collected over an en-662

tire growing season. For cotton in Arizona, spectral measurements around663

the time of a 45◦ solar zenith angle permits data collection with similar664

BRDF characteristics from April to September. In the present study, the665

goal was to collect spectral measurements concurrently with measurements666

of Cw. Because prior studies demonstrated the dynamic diurnal response of667

Cw and greater Cw variability among experimental treatments in the morn-668

ing (Carmo-Silva et al., 2012), canopy spectral reflectance measurements669

were primarily collected in the hours before and after solar noon (Table 1).670

Concurrent spectral measurements with dynamic Cw was deemed more im-671

portant than strict adherence to data collection at solar noon, although the672

average solar zenith during spectral measurements was 42◦, similar to the 45◦
673

angle required for constant BRDF effects over a cotton season. Crop pheno-674

types that undergo dynamic diurnal changes could require a departure from675

traditional passive reflectance sensing techniques that restrict data collection676

to solar noon. If the optimum time for monitoring a given phenotype occurs677

while canopy spectral reflectance changes more rapidly due to BRDF effects,678

efforts must focus on understanding these BRDF effects and on designing679

sensors and sensing protocols that either characterize or minimize them. For680

example, multiple view angles assist with BRDF characterization while rapid681

spectral data collection minimizes illumination changes among experimental682

units.683
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The PROSAIL model offers several advantages for field-based plant phe-684

nomics, including its ability 1) to simulate BRDF effects on canopy spectral685

reflectance and 2) to estimate phenotypes from canopy spectral reflectance686

data alone. This study was limited to spectral reflectance measurements from687

a nadir view angle, which likely limited efforts to estimate phenotypes using688

PROSAIL model inversion. Data from multiple view angles should provide689

more information to constrain PROSAIL, leading to better estimates. There690

were also many methodological choices that impacted the PROSAIL model691

inversion results, including the selected wavebands and the objective func-692

tion. Future efforts should explore these issues in greater detail. For example,693

with high-performance computing capabilities, a large database of PROSAIL694

simulations could be generated and permanently stored. Multiple measure-695

ment sets of a large mapping population over multiple years and locations696

could then be inverted using the same database. Also, the data could be697

used to develop confidence regions within the parameter space, which would698

assist with parameter identification and equifinality issues.699

As compared to PROSAIL model inversion, methods involving linear re-700

gression on vegetation indices and PLSR on canopy spectral reflectance were701

able to better quantify crop phenotypes. At this time, these methods remain702

the most practical approach for crop phenotyping based on canopy spec-703

tral reflectance. A main drawback of the regression approaches is that field704

measurements of each phenotype are required for model fitting. A practical705

approach for field phenomics may be to directly measure phenotypes for se-706
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lected experimental plots and to measure canopy spectral reflectance over all707

plots using a high-throughput sensing platform. Data from plots with both708

types of measurements could be used for building regression models, which709

would subsequently be applied to estimate phenotypes for all experimental710

units.711

5. Conclusions712

Proximal hyperspectral sensing offers a wealth of information for char-713

acterizing reflectance from crop canopies and should be a fundamental com-714

ponent of field-based plant phenomics programs. This study showed that715

PLSR modeling was the most robust method for estimating Cw, Cm, Cab,716

and LAI from canopy spectral reflectance data. Vegetation indices computed717

from selected wavebands, including NDVI, NDWI, and PRI, were informative718

but could not estimate phenotypes as well as PLSR. With improvements to719

the PROSAIL model and ability to rapidly collect spectral reflectance data720

from multiple view angles, model inversion for crop phenotyping may be-721

come more practical. In the meantime, further investigations are needed to722

improve PROSAIL model inversion strategies and to address related equifi-723

nality issues. High-performance computing offers much potential for these724

efforts and for overall advancements in the use of biophysical models for725

agricultural applications.726
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Table 1: Field measurement schedule for five cotton phenomics data sets: 2010A, 2010B, 2011, 2012A, and
2012B.1

Measurement 2010A 2010B 2011 2012A 2012B
Leaf punches for 04 Aug 2010 04 Aug 2010 18 Aug 2011 03 Aug 2012 31 Aug 2012
Cw and Cm 09:00-10:30 13:30-16:30 09:00-10:30 08:45-10:30 09:00-11:00

Leaf punches for 30 Jul 2010 30 Jul 2010 10 Aug 2011 09 Aug 2012 16 Aug 2012
Cab morning morning morning 08:30-10:45 7:45-11:00

Fieldspec canopy 04 Aug 2010 04 Aug 2010 18 Aug 2011 03 Aug 2012 31 Aug 2012
spectral reflectance 08:00-09:45 14:00-15:30 09:00-10:30 08:45-10:30 09:00-11:00

Crop Circle 05 Aug 2010 05 Aug 2010 18 Aug 2011 02 Aug 2012 31 Aug 2012
canopy reflectance 14:00-15:15 14:00-15:15 15:00-15:45 07:00-08:30 10:00-11:30

Manual 08 Aug 2010 08 Aug 2010 19 Aug 2011 02 Aug 2012 30 Aug 2012
canopy height morning morning morning morning morning

1 leaf chlorophyll a+ b content, Cab; leaf water thickness, Cw; specific leaf mass, Cm
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Table 2: Parameterization of the PROSAIL model.
Lower Upper

Parameter Unit State Bound Bound
Leaf water thickness (Cw) cm free 0.01 0.02
Specific leaf mass (Cm) g cm−2 free 0.003 0.008
Chlorophyll a+ b (Cab) µg cm−2 free 25.0 60.0
Leaf area index (LAI) unitless free 1.25 8.75
Leaf structure parameter (N) unitless free 1.4 2.4
Average leaf angle (θl) degrees free 10.0 70.0
Hot spot size (s) unitless free 0.001 1.0
Leaf carotenoid content µg cm−2 fixed 10.0 10.0
Brown pigment content unitless fixed 0.0 0.0
Soil reflectance parameter unitless fixed 1.0 1.0
Diffuse radiation fraction % fixed 10.0 10.0
Solar zenith angle degrees fixed 27.3 60.3
Viewer zenith angle degrees fixed 0.0 0.0
Relative azimuth angle degrees fixed 0.0 0.0
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Table 3: Results of hierarchical linear mixed modeling for measured plant traits, vegetation
indices, and plant trait estimates from PLSR models and PROSAIL model inversion.1 Significance
codes are “***” (p < 0.001), “**” (p < 0.01), and “*” (p < 0.05).

Trait Cultivar Water Level Interaction
χ2 P χ2 P χ2 P

Measured Cw 21.5 0.0015 ** 1.5 0.2176 15.2 0.0185 *
Measured Cm 27.2 0.0001 *** 4.7 0.0298 * 20.0 0.0028 **
Measured Cab 17.2 0.0085 ** 2.3 0.1269 12.0 0.0625
Measured LAI 22.2 0.0011 ** 6.7 0.0097 ** 7.1 0.3131
Fieldspec NDVI 21.0 0.0019 ** 6.3 0.0118 * 4.4 0.6287
Fieldspec NDWI 22.5 0.0010 *** 4.2 0.0410 * 8.5 0.2011
Fieldspec PRI 10.9 0.0930 0.6 0.4343 3.9 0.6959
Crop Circle NDVI 12.0 0.0613 4.4 0.0350 * 5.5 0.4782
PLSR Cw 33.9 0.0000 *** 5.5 0.0190 * 6.5 0.3729
PLSR Cm 27.3 0.0001 *** 7.1 0.0078 ** 6.3 0.3871
PLSR Cab 12.2 0.0575 13.2 0.0003 *** 2.0 0.9167
PLSR LAI 11.4 0.0779 6.6 0.0103 * 11.8 0.0661
PS RMSE Cw 3.8 0.6978 1.1 0.2996 6.1 0.4154
PS RMSE Cm 24.7 0.0004 *** 0.8 0.3664 11.1 0.0846
PS RMSE Cab 10.9 0.0902 7.3 0.0067 ** 7.9 0.2487
PS RMSE LAI 10.3 0.1118 2.2 0.1385 7.5 0.2739
PS RMSE N 33.9 0.0000 *** 3.6 0.0576 2.4 0.8786
PS RMSE θl 10.3 0.1145 0.3 0.5744 6.3 0.3869
PS RMSE s 8.0 0.2410 3.4 0.0666 1.7 0.9457
PS α Cw 11.5 0.0746 0.6 0.4240 5.3 0.5013
PS α Cm 5.4 0.4925 6.9 0.0086 ** 6.8 0.3439
PS α Cab 14.7 0.0226 * 4.0 0.0460 * 11.8 0.0669
PS α LAI 15.1 0.0191 * 4.0 0.0451 * 6.8 0.3415
PS α N 16.6 0.0111 * 0.0 0.9072 12.9 0.0444 *
PS α θl 22.5 0.0010 *** 0.3 0.6145 5.0 0.5386
PS α s 22.3 0.0011 ** 7.3 0.0070 ** 4.6 0.5909
1 Chi square statistic, χ2; hot spot size, s; leaf area index, LAI; leaf chlorophyll
a + b content, Cab; leaf inclination angle, θl; leaf structural coefficient, N; leaf
water thickness, Cw; normalized difference vegetation index, NDVI; normalized
difference water index, NDWI; partial least squares regression, PLSR; physiolog-
ical (or photochemical) reflectance index, PRI; probability value, P ; PROSAIL
canopy reflectance model, PS; root mean squared error, RMSE; specific leaf
mass, Cm; spectral angle, α
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Figure 1: Box plots for a) leaf water content (Cw), b) specific leaf mass (Cm), c) leaf chloro-
phyll a+ b content (Cab), and d) leaf area index (LAI) for all measurements collected for
the 2010A, 2010B, 2011, 2012A, and 2012B data sets. Measurements were collected under
well-watered (WW) and water-limited (WL) conditions for seven Pima cotton cultivars:
A) Monseratt Sea Island, B) P62, C) 89590, D) Pima32, E) PSI425, F) Pima S-6, and G)
Pima S-7.
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Figure 2: Cotton canopy spectral reflectance measurements for the 2010A, 2010B, 2011,
2012A, and 2012B data sets.
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Figure 3: Results of hierarchical linear mixed modeling for canopy spectral reflectance
from 400 to 2400 nm in 1 nm wavebands. Dark bands indicate different reflectance values
among cultivars or water levels (p < 0.05). There were no significant interaction effects.
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Figure 4: Results of hierarchical linear mixed modeling for narrow-band NDVI calculated
using all possible combinations of canopy spectral reflectance in 1 nm wavebands from
400 to 1350 nm, 1450 to 1770 nm, and 1970 to 2400 nm. Dark areas indicate different
NDVI values (p < 0.05) for the specified wavelengths among cultivars (left), water levels
(middle), and their interaction (right).
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Figure 5: Modeled versus measured a) leaf water content (Cw), b) specific leaf mass (Cm),
c) leaf chlorophyll a + b content (Cab), and d) leaf area index (LAI). Modeled estimates
are from partial least squares regression (PLSR) models developed from measured canopy
spectral reflectance data collected for the 2010A, 2010B, 2011, 2012A, and 2012B data
sets. The root mean squared errors of cross validation (RMSECV) between measured and
modeled values are provided.
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Figure 6: PROSAIL-simulated versus measured a) leaf water content (Cw), b) specific
leaf mass (Cm), c) leaf chlorophyll a + b content (Cab), and d) leaf area index (LAI).
Simulated estimates minimized the root mean squared error (O) or the spectral angle (X)
between measured and PROSAIL-simulated canopy spectral reflectance for the 2010A,
2010B, 2011, 2012A, and 2012B data sets. Root mean squared errors between simulated
and measured values are provided for both objective functions (RMSE-O and RMSE-X).
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Figure 7: Minimum, lower quartile, median, upper quartile, and maximum deviations be-
tween PROSAIL-simulated and measured canopy spectral reflectance for a) the PROSAIL
model inversion that minimized RMSE and b) subsequently replacing the optimum values
for leaf water content (Cw), specific leaf mass (Cm), leaf chlorophyll a+ b content (Cab),
and leaf area index (LAI) with measured values.
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Figure 8: Deviation from the minimum value for ranked objective function evaluations of
root mean squared error (RMSE) and spectral angle (α) between measured and PROSAIL-
simulated canopy spectral reflectance. Results are shown for the median value among
model inversion exercises for 184 experimental units (all plots for all five data sets).
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