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Imaging of nuclear fuel using radiation has been carried out for decades for a variety of reasons. Two
important reasons are Physical Invertory Verification (PIV) and Quality Assurance (QA). The work covered
in this review focuses on the imaging of nuclear fuel using ionising radiation. The fuels investigated are
both fresh and spent, composed of assorted materials, and in various physical forms. The radiations used
to characterise the nuclear fuel include g, a, b, muons, neutrons and X-rays. The research covered in this
review, spans the past four decades and show how the technology has developed over that time. The
advancement of computing technology has greatly helped with the progression of the images that are
produced. The field began with 2D images in black and white showing the density profiles of g rays from
within an object, culminating in 2013 when a pebble bed fuel element was reproduced in 3D showing
each 0.5 mm UO2 globule within it. With the ever increasing computing technology available to the
industry, this can only mean an increase in the rate of development of imaging technologies like those
covered in this review.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The imaging of items across a diverse range of industrial sectors,
using radiation is a widely established technique for Quality
Assurance (QA) and verification purposes.Within industry, imaging
is used extensively to help carry out tasks such as: flaw detection,
failure analysis, assembly analysis and tolerance checks. Imaging
can be undertaken using a range of radiations and the form of the
results can vary widely from black and white density images to full
3D recreations of whole objects and their internal parts.

Of specific relevance to the nuclear industry, ionising radiation
has been utilised for imaging during each stage of the fuel cycle for
a number of decades with various purposes [Sawicka et al. (1990);
Brenizer (2013)]. For example, currently each Pressurised Water
Reactor (PWR) fuel rod manufactured, has a record of the cladding
welds to prove that they were fully functional when the fuel rod
was assembled [Crossland (2012)]. As well as verification, radiog-
raphy can be utilised to calculate the enrichments of fuel rods,
which can be used for safeguarding purposes.

Imaging of Special Nuclear Material (SNM) can be accomplished
by various techniques. The two distinct techniques apparent are
passive and active interrogation. Passive detection is when an object
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has its intrinsic radioactivity measured. Active interrogation is
when an object is subjected to a source of external radiation in
order to stimulate a response; this is then measured using a de-
tector. Passive and active are interchangeable with emission and
transmission respectively, throughout this paper. Passive interro-
gation ismainly used for objects with high activity levels, and active
interrogation is generally used for materials which would struggle
to be detected passively because they have a lower intrinsic activity.

When carrying out active interrogation there are a number of
radiations that can be utilised to bombard the object being assayed.
These generally fall into one of the following categories: g-rays, a
particles, X-rays, muons and neutrons. Each stimulates a different
response, producing data and images that can be utilised in a
number of ways. There is also a wide variety of assay times
depending on the source material.

Below is a review of imaging techniques that have been used
specifically for nuclear fuel assay since its inception in the 1940's.
Following that is a discussion about the current state and a sum-
mary of future work that may be beneficial to the industry.

No new data were created during this study.

2. Safeguards

The Nuclear Non-Proliferation Treaty (NNPT) was introduced in
1968, the original aim of which was to stop commercial nuclear
material being turned into nuclear weapons, and therefore to
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Laboratory mock up of a BWR spent fuel assembly on the left showing the
swapped rod marked by an ‘X’ and the missing rod shown empty. The right image is
the corresponding g tomogram. Image reconstruction using only g attenuation infor-
mation was used here [Svard et al. (2006)].

H.M.O'D. Parker, M.J. Joyce / Progress in Nuclear Energy 85 (2015) 297e318298
reduce the amount of nuclear weapons being manufactured
worldwide. The original signatories were the USA, the UK, the So-
viet Union, France and China. Countries which declined to sign,
even though they had demonstrated nuclear prowess were Israel,
India, Pakistan, Brazil and Argentina. Since the treaty first began,
189 countries have signed up and North Korea is the only country to
have withdrawn their membership [Doyle (2011)].

The nuclear industry within the jurisdiction of the NNPT has to
conform to a number of safeguarding responsibilities. These ac-
tivities minimise the risk of nuclear proliferation in two ways; the
first is being able to detect the illicit diversion of SNM frompeaceful
activities to non-peaceful activities in a timely manner. The second
is the possibility that detection may occur, which dissuades po-
tential clandestine operators from trying to carry out proliferation
activities. As well as the responsibilities held by the nuclear in-
stitutions themselves, the International Atomic Energy Agency
(IAEA) are an example of a body who perform Physical Inventory
Verification (PIV) tasks to confirm that declared amounts and en-
richments of nuclear materials are correct. These data, as well as
that provided by the nuclear institutions, are used to provide
Continuity of Knowledge (COK). Essentially from mining to spent
fuel storage, all SNM should have a documented COK trail associ-
ated with it.

Nuclear institutions have to counter any credible diversion
strategy for SNM. Diversion strategies generally fall into two cate-
gories: the removal of nuclear material that is subject to safeguards
and the misuse of safeguarded facilities [Shea and Chitumbo
(1993)]. This review will only be concerned with the former. The
IAEA uses three definitions for the difference between declared
amounts of nuclear fuel and the material present, gross defect,
partial defect and bias defect. A gross defect is one inwhich most or
all of the material declared is missing from the object. A partial
defect is one in which some fraction of the declared material is
missing from the object and a bias defect is one in which only a
small fraction of the declared material is missing [IAEA (2002)].
Non-Destructive Assay (NDA) has been a staple method in safe-
guarding, both passively and actively, using various radiation types
and employing different methods by which to deduce information
about the assayed material [Hsue et al. (1978); Behrens et al.
(1979); Runkle et al. (2012); Levai (1982)]. Safeguarding work
pertaining to NDA image production are reviewed below.

2.1. Partial defect detection

The largest collection of work into safeguarding technologies
works towards the detection of a rod being diverted from an as-
sembly of spent fuel. This scenario is seen to be of particular in-
terest as the spent fuel would contain a potentially significant
amount of plutonium which could be used for a variety of clan-
destine operations. One of the methods by which to detect a partial
defect is to carry out a passive assay of the g radiation being emitted
from the spent fuel. This technique is described in Lee et al. (1997);
Jacobsson et al. (2000); Jacobsson (2000); Svard et al. (2006);
Lundqvist et al. (2007); Jacobsson Svaerd et al. (2008).

Both Lee et al. (1997) and Jacobsson et al. (2000) use an Alge-
braic Reconstruction Technique (ART) in order to analyse the data
gained during g assay [Gordon (1974)]. The results of their to-
mography of a spent fuel assembly were presented in graphical
form; this allows the reader to see clearly that a rod is missing or
replaced. In Lee et al. (1997), the graphs produced are two
dimensional and the reader may only observe one row of the fuel
bundle at a time, whereas Jacobsson et al. (2000) has managed to
assemble all of the cross section graphs from one plane together to
make a three dimensional graph which can more easily show the
diverted rod.
Svard et al. (2006) and Lundqvist et al. (2007) are able to show a
well resolved image of a reconstructed assembly.

Svard et al. (2006), compares three g tomogram techniques for
identifying partial defects in spent fuel. These are namely; Pool-
side tomography, a laboratory set-up and in-pool tomography.
The pool-side tomography is carried out through the spent fuel
cooling pond wall. The fuel bundle used is an 8 � 8 Boiling Water
Reactor (BWR) type that had been cooled for 8 years. 3240 detector
positions are recorded over thewhole assembly. The detectors used
in this set-up do not produce an image of the fuel element but a
graph is produced which shows the amount of activity at each
position within the fuel assembly. It can be seen that with the
correct g spectrum, a missing fuel rod can clearly be identified. In
the laboratory experiments mock ups of a fuel assembly are used.
These are recreated by filling titanium tubes with granulated cop-
per activated with 137Cs. The aim with this test is to be able to
identify a swapped rod and a missing rod. 2072 detector positions
are recorded with the time in each position equaling 10 s. Similar to
the pool-sidemeasurements, the lab tests also resulted in statistical
graphs of how similar each rod was to each other. It can be seen
from these graphs that the swapped rod is easier to identify than
the missing rod. However, statistically both rod changes are
detectable. The mock assembly and tomogram produced can be
seen in Fig. 1.

The in-pool measurements were carried out at Swedish Nuclear
Power Plant Forsmark 2. The equipment used is highly specialist
and is described in greater detail in Jansson et al. (2006). The fuel
assembly used was a BWR of the SVEA-96S variety and had only
been cooled for 1 year. With the cooling time being so short, it was
decided that the most suitable isotope for tomographic measure-
ments was 140Ba. The research utilised 10,200 detector positions,
but the article does not say how long this took overall or per de-
tector position. The bundle set up and the tomogram produced are
shown in Fig. 2. This test did not include the removal or swapping of
any of the pins, presumably due to the difficulties involved with
such a task. The image does however show a very clear likeness to
the assembly. In comparison to the laboratory measurements
provided above, this image has been made clearer by subtracting
the background noise and therefore minimising the impact of
contaminant g rays.

Similarly, Lundqvist et al. (2007) simulated an assembly and the
associated tomography (Fig. 3) to show very similar results to Svard
et al. (2006). Then another tomograph is produced from measured
data for comparison. However, this measured data does not contain
a partial defect. Instead it is a spent fuel assembly that had recently
been removed from service (Fig. 4). It appears on both the simu-
lated tomograph and the tomograph that uses measured data, that



Fig. 2. Schematic of a spent BWR SVEA-96S bundle assembly on the left and the g

tomogram produced on the right. Rod-activity reconstruction is used here, which
utilises prior knowledge of the geometry of the bundle. This allows for more accurate
reconstructions [Svard et al. (2006)].

Fig. 3. A g tomograph reconstructed from simulated data showing a missing rod from
a spent fuel assembly (top left) [Lundqvist et al. (2007)].

Fig. 4. A g tomograph reconstructed from measured data, showing all rods in place in
a spent fuel assembly [Lundqvist et al. (2007)].

Fig. 5. Assayed assembly (left) showing the DU pin marked by an ‘X’. The emitted fast
neutron tomograph (right), identifying the position of the DU pin. Deconvoluted using
maximum likelihood expectation maximization (MLEM) [Hausladen (2013)].
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the activity levels of the rods reduce with an increased proximity to
the centre of the assembly. This is due to the use of emitted g as the
measured variable. The g rays from the centre of the assembly are
attenuated and scattered before they reach the edge where they
may be detected. The g rays being emitted from the edge of the
assembly have a much clearer pathway and therefore have a better
chance of interaction with the detection equipment.

Exploiting neutrons emitted offers the potential to reduce the
effects of attenuation and scattering within the fuel bundle as they
are more penetrating through SNM. Hausladen (2013) utilises
emitted fast neutrons to produce an image of an assembly of fresh
Mixed Oxide (MOX) fuel (Fig. 5). The mock-up assembly used
contained 31 rodlets of fresh MOX fuel and one rodlet filled with
depleted uranium. The MOX rodlets contain 3.66 g of 240Pu which
produces roughly 3700 neutrons s�1 from spontaneous fission. The
work was carried out as a test run to verify that the collimation
setup would work equally well for spent fuel. If the systemwere to
be used on spent fuel, the detection equipment would need to be
modified by making it less susceptible to g radiation. Changing the
detector material from a liquid scintillator could have an effect on
measurement efficiency and also scattering, which could affect the
resolution of the image produced.

As well as passively assaying fuel bundles for diversion defects, a
radiation source can be used to stimulate a response from the fuel
bundle, that can then bemeasured. Steinbock (1990,1991), describe
a feasibility study for a portable tomography kit that could be used
during PIV. Both focus on using a variety of radiation sources to
produce tomograms of phantoms of spent fuel for safeguarding
purposes. The images produced do not show a partial defect sce-
nario specifically but the method would remain the same for PIV
tasks. The use of X-rays, betatron and thermal neutron sources are
all described within both papers. The abstracts both refer to im-
aging fresh fuel as well as spent fuel, but only spent fuel is eluded to
within the text of each paper. The setup used within the experi-
ments utilises two slit collimators in order to produce a fan beam
which is detected by a line scan camera. Firstly an X-ray sinogram
and tomogram have been produced of a BGS4 pin, withinwhich the
fuel had melted during an overpower test. The tomograph shows
the three concentric tubes of zircalloy, molybdenum and niobium



Fig. 7. Sinogram and tomogram showing a set of 6 phantom pins interrogated by a
0.025 eV neutron beam [Steinbock (1991)].

Fig. 8. Sinogram and tomogram showing a set of 19 phantom pins interrogated by a
0.025 eV neutron beam [Steinbock (1991)].
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and the fuel distribution with some cladding steel inside a pocket.
The image can be seen in Fig. 6.

Following the X-ray images are neutron images of both a 6-pin
and a 19-pin phantom assembly. The pins were made of steel tubes
filled with boron and epoxy resin. The neutron beam energy was
set to 0.025 eV (thermal neutrons). Steinbock attributes the noisi-
ness of the 6 pin image to the fact that neutron transmission was
reduced when the pins were aligned, however the 19 pin assembly
is not discussed in this regard. The images for both the 6 and the 19
pin assemblies can be seen in Fig. 7 and Fig. 8 respectively.

Finally the betatron sourcewas used to create images of hot cells
using phantoms. The betatron source was an 18 MV source. The
betatron intensity was manually controlled and so the sinograms
obtained contained variations. The phantoms were recreated using
21 pins in an assembly with one of the set-ups being a split be-
tween lead and lead/epoxy resin and another including amixture of
lead and aluminium. There was also a phantom made from two
tungsten prisms with ten tantalum sheets spanning the gap be-
tween. As can be seen in Fig. 9, it is difficult to differentiate between
both the lead and aluminium in Fig. 9(a) and lead and lead/epoxy in
Fig. 9(b). Similarly, the tantalum sheets in Fig. 9(c) can be identified
only when it is known that they are there a priori. In order to be able
to gain any confidence in differentiating between these materials,
the method would need to be improved, or the results would need
to be analysed computationally.

At the time this paper was published the methods described
could image down to a resolution of 0.3 mm, and screens had been
developed to go down to 0.1 mm in the future. The author also
described amethod, using 0.05mm thick scintillators, whichwould
be able to achieve a resolution of 0.1 mm if they were able to in-
crease scanning time ten-fold.

Similarly to their previous work in 1997, Lee et al. (2001) uses
tomography again to examine spent fuel bundles to reduce the
chance of diversion, however, this time an active interrogation
method is used. Neutrons between 0.1 eV and 1 keV were used to
stimulate fission to identify fissile material. The interrogating
neutrons induce fission in fissile materials, but not greatly in fertile
materials. These fission neutrons are then detected in an array of
238U threshold detectors. The results of the tomography are pre-
sented as graphs of the cell density. Fuel rods that are missing can
be seen on the corresponding graphs. This remains true even if the
material from the ‘diverted’ rod is moved into the surrounding rods,
i.e. if the total fissile mass remains constant.
2.2. Detecting nuclear fuel in storage containers

The detection of nuclear materials inside containers has been
researched in detail, however, this review only covers the imaging
of nuclear fuel. Jonkmans et al. (2010, 2013) look into the feasibility
of using muons to produce tomograms of spent fuel inside con-
tainers. Simulations are used to create images using Point of Closest
Approach (POCA), Maximum Likelihood Expected Maximisation
Fig. 6. Sinogram (left) and tomogram (right) of X-ray interrogation of a BGS4 pin
[Steinbock (1991)].
(MLEM)[Bruyant (2002)], and Scattering Density Estimation (SDE)
reconstructions. The images produced show the spent fuel in a
variety of containers from steel drums to Dry Storage Containers
(DSC) (Figs. 10e12 respectively).

As there are only certain facilities licensed to receive and store
spent nuclear fuel, spent fuel must be transported either nationally
or internationally. Containers are necessary for activities such as
transport; being able to non-destructively ascertain SNM levels of
spent fuel within a container allows for a higher level of COK and
therefore safeguarding.
3. Quality assurance

During fabrication, use, and disposal of nuclear fuel, there must
be a very high level of QA to ensure the safety of people and assets.
NDA is used within the nuclear industry to ensure compliance with
strict QA rules [Mistry et al. (1996)]. QA can cover an abundance of
properties that the fuel must possess in order to be classed as
suitable for use in Nuclear Power Plants (NPPs). Parameters such as
geometry, enrichment, agglomerates, rod loading, and failure
modes will be covered here. There are obviously different param-
eters to be verified when the fuel is fresh, during irradiation, spent,
and during storage (particularly long term storage). The geometry
of fuel elements, from their size, to their intactness, has been the
subject of numerous works using radiation and imaging, for both
fresh and spent fuel [Levai (1982); Domanus (1984); Dande et al.
(1991); Kumar et al. (2000); Kuzelev and Yumashev (2001)].

A general overview of Non-Destructive Testing (NDT) methods
used can be found in Gozani (1981). With regards to nuclear fuel
the work does not cover imaging but it does cover all of the major
types of non-destructive assay of nuclear material. There is a whole
chapter on the g scanning of fuel rods. Bearing in mind that this
technology is still used to quantify fresh nuclear fuel today it shows
how little the field has progressed in over 30 years. Research has
continued into new techniques and methods [Ghosh et al. (1983a);
Panakkal (2013)] but the industry has yet to take them up in
earnest.

The following section is split broadly into fresh fuel QA, and
spent fuel QA.



Fig. 9. 18 MV betatron images of (a) 20 lead pins and one aluminium, (b) 12 lead pins and 9 lead/epoxy resin pins and (c) a tungsten tantalum phantom [Steinbock (1991)].

Fig. 10. A simulated result of a single UO2 fuel pin lay on its side tomographed using
muons and the MLEM reconstruction technique [Jonkmans et al. (2013)].

Fig. 11. A simulation of a single UO2 fuel pin lay on its side tomographed using muons
and the SDE reconstruction technique [Jonkmans et al. (2013)].

Fig. 12. The results of muon tomography on simulated fuel bundles within a Dry
Storage Container (DSC) [Jonkmans et al. (2013)].
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3.1. Fresh fuel QA

Fresh nuclear fuel is manufactured in stages and each stage has
the potential for the introduction of defects. In brief, fuel fabrication
of the most abundant types of fuel (assemblies of rods of nuclear
fuel pellets), can be split into three areas, powder production,
pelletisation and sintering, and rod assembly. For the purposes of
this review, only items at, or after the pelletisation stage will be
taken into account, as this is when the material becomes nuclear
fuel. During pelletisation and sintering, the powder mixture is
pressed into the required shape and then sintered. These ceramic
pellets are then passed through to the rod assembly area where
they are stacked into zirconium alloy rods. These rods are then
filled with helium and welded to completely seal the contents. The
welded rods are then pulled into assemblies of varying geometries
depending on the type of fuel.

At pelletisation and sintering the main defects considered are
agglomerates, inhomogeneity and chips or cracks within the pel-
lets. At rod assembly there is the possibility of loading the wrong
type of pellets, in terms of both compound, enrichment and shape.
There are also defects to be considered in the ancillary equipment
and rod itself.
3.1.1. Internal and external geometry
Firstly the problem of chips, cracks and pitting is reviewed.

Lekeaka-Takunju et al. (2009, 2010, 2011); Kim (2010) all simulate
the use of X-ray tomography in order to be able to see geometrical
defects in the periphery of fuel pellets. The point here being that
currently only a sample of fabricated pellets are tested for these
defects because the testing is destructive. When only testing



Fig. 14. A PuO2 agglomerate seen in an MOX pellet (a) photomicrograph image and (b)
an alpha autoradiograph image [Ghosh et al. (1984)].
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samples, it is impossible to guarantee 100% of pellets are within
specification. If NDT imaging or similar was used on the fabricated
pellets then 100% of the pellets could be verified. This would
require the test facility to be in-line with production and therefore
the number of projections (images produced from a single location
and angle) and the length of each projection needs to remain small.
A novel technique is suggested [Lekeaka-Takunju et al. (2010)] to
increase image resolution with fewer projections than previously
necessary.

In order to maintain good image quality with fewer projections
a convex interpolation was used with the mathematical Radon
transform [Svalbe and van der Spek (2001)]. The convex interpo-
lation method allows the Radon transform to be filled between the
obtained projections. It can be seen in Fig. 13 that the binary
threshold versions of the original and reconstructed image are
similar and that the crack can be seen clearly in the reconstructed
image despite fewer projections. This technique could be deployed
with other tomography techniques and allow for a reduction of
projections on the items being imaged.

Agglomerates in fuel (particularly MOX fuel) can cause hotspots
during the irradiation process. As plutonium agglomerate produc-
tion is statistical in nature, it can be argued that it is highly likely
that they will appear in the periphery of the pellet and be detect-
able by gamma autoradiography [Ghosh et al. (1984)]. Also, some
isotopes of plutonium are a emitters so plutonium agglomerates
can be detected by a autoradiography. An agglomerate in the region
of 125e2000 mm can be seen in a UO2e4% PuO2 MOX pellet in
Fig. 14. Methods of autoradiography are cheaper and more
straightforward than transmission neutron radiography or to-
mography; this would be a factor if these methods were to be
considered for use in industry.

Autoradiographs of fuel and its intrinsic agglomerates or
enrichment differences can be viewed by operators who could then
make a decision about whether what is seen is acceptable.
Fig. 13. Crack detection using X-ray tomography with only 30 projections. (a) The
optical image. (b) Binary threshold image of (a). (c) Reconstruction of (a) with convex
interpolation. (d) Binary threshold image of (c). Reconstructions were carried out using
a Radon transform [Lekeaka-Takunju et al. (2010)].
However, this method leaves room for discrepancies from human
error. This is particularly true for black and white images, for which
the human eye may struggle to separate image densities that are
similar. One way to combat this issue is to introduce a colour scale
by which the density of the image can be identified much more
clearly. This method can be seen in Figs. 15 and 16 [Panakkal and
Mukherjee. (2008)].

The original image is a Gamma Auto Radiograph (GAR), pro-
duced by keeping the fuel rod in contact with X-ray films in a
cassette. These images were then digitised and a colour segmen-
tation technique was applied. This allows contours of optical den-
sity levels to be seen clearly as shown in Fig. 16. The methods used
to produce the black and white images were routine by 2008 but
the digitising, and therefore colouring of the images is a newer
aspect. There is no detail describing the use or need of the pre-
sented technology, but it is possible to infer that it may be easier for
Fig. 15. Original g autoradiographs of (a) various enrichments of PuO2 in pellets, (b) a
medium enrichment pellet in a high enrichment rod and (c) a PuO2 agglomerate in the
outer layer of the pellet [Panakkal and Mukherjee. (2008)].



Fig. 16. Digitised g autoradiographs of (a) various enrichments of PuO2 pellets (b) a
PuO2 agglomerate in the outer layer of a fuel pellet and (c) pellets of mixed enrichment
in a pin [Panakkal and Mukherjee. (2008)].
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a human to differentiate between the different areas. Although it
could be argued that using a computerised optical densitometer
would remove all risk of human error.

When trying to obtain an assessment of agglomerate deposition
in a fuel pellet, gamma rays sometimes do not penetrate far enough
through the item. For instance, agglomerates within fuel can be
seen physically with gamma autoradiographs only if they are near
to the surface, but as shown in Fig. 17, neutron interrogation can be
used to identify agglomerates through the whole cross section of a
pellet [Ghosh et al. (1983b, 1984); Panakkal et al. (1992); Ghosh
et al. (1997)].

So far only cylindrical fuel pellets have been considered, how-
ever, other types of fuel also have agglomerate-type particles.
Spherical fuel for instance, has coated particles of UO2 dispersed
within a graphite matrix. Important parameters of this type of fuel
can be imaged using radiation: the thickness of the coating on each
individual fuel particle, the fuel free zone of the spherical element to
ensure it is in fact fuel free, and the homogeneity of the UO2
dispersal throughout the pebble [Tisseur et al. (2007)].

One of the more comprehensive images produced, showing a
fresh pebble fuel element was obtained using neutron imaging
[Lehmann et al. (2003)]. The image shows a full fuel pebble with
each individual fuel particle evident throughout (Fig. 18). Thermal
and cold neutrons were used to investigate various types of fuel and
some of the work is similar to work in other papers showing cracks
Fig. 17. PuO2 Agglomerates shown in (top) neutron radiograph and (bottom) g auto-
radiograph [Panakkal et al. (1992)].
in spent fuel, hydride lenses in the outer cladding layer of a tube
and hydrogen accumulation in the cladding material. The image
that seems to push the boundaries of the work is a full 3D recon-
struction of a fuel pebble.

A thermal neutron source with a flux of 8.1 x 106 n cm�2 s�1 and
a collimation ratio of L/D 350 was used to take 300 sequential
projections whilst the sample was rotated by 180�. The nominal
spatial resolution was obtained by using a 97 mm field of view. The
images were normalised and slices of the pebble perpendicular to
the rotation axis were reconstructed by filtered back-projection.
The slices were stacked to create a 3D image seen in Fig. 18, as a
threshold was introduced to determine whether the neutron
attenuation coefficient related to graphite or fissile material.

Similar to the images produced by Hausladen (2013) this image
shows specific items within an object. However Lehmann has
managed to stack the many 2D images to create a 3D representa-
tion. The ability to show a cut-away of the coating and graphite
matrix sets this image apart in the field of imaging nuclear fuel.
Again, comparing this image against the ones produced by Haus-
laden, this shows Low Enriched Uranium (LEU) fuel as opposed to
MOX fuel, so the images would be physically easier to obtain (fewer
health and safety risks). However, they would be harder to create
images of, due to the requirement of an interrogating neutron
source and the potential issues surrounding collimation and
geometry.

Measurement of the coatings of TRISO (LEU) particles has been
carried out successfully with X-ray radiography [Kim et al. (2006,
2008); Yang et al. (2013b)]. However, Phase Contrast Imaging
(PCI) was used as opposed to ordinary X-ray radiography, as con-
ventional X-ray radiography cannot discern between materials of
similar thickness and densities. PCI can be applied to detect phase
shift of X-rays at boundaries between two materials that have
different refractive indices. As shown in Fig. 19, the PCI X-ray image
can then be post processed to show and measure the thicknesses
between each layer. The technique uses the Sobel operator to find
boundaries and identify the co-ordinates of the peaks where
boundaries occur [Vairalkar and Nimbhorkar (2012)]. Then the
distances between these co-ordinates can be measured.

The fuel free zone of pebble type fuel is currently tested
destructively, in a batch of 20,540 spherical fuel elements, 99%were
deemed to meet the criteria for the fuel free zone. This means that
over 200 did not pass. When it is considered that around 27,000
pebbles were loaded into a reactor in China, it can be seen that the
rate of failed pebbles could have an effect on the safe running of the
reactor [Yang et al. (2013a)]. Again X-ray radiography can be utilised
to identify fuel particles in the fuel free zone and to remove the risk
of human error, the images can be automatically processed as
shown in Fig. 20 [Yang et al. (2014)].

As well as agglomerates and fuel particles, there are other as-
pects of the internals of fuel elements that can be investigated with
radiation [Lee et al. (2000)]. Neutrons can be used to discern a solid
pellet from an annular one. In Panakkal et al. (1992) neutrons from
the APSARA swimming pool type reactor were transmitted through
solid and annular pellets. The neutrons were detected directly on
gadolinium screens along with Agfa Structurix D2 film. The image
produced (Fig. 21) clearly shows the distinction between the two
types of pellet.

More recently work has been carried out with neutrons
[Tremsin et al. (2013)] to obtain images using more modern tech-
nology at Los Alamos. The work utilised a new Micro Channel Plate
detector, produced by Nova Scientific which is doped with 10B and
Gd. It converts neutrons into electrons at the nearest pore or
microchannel. Imaging was carried out with two different exciting
neutron energies; cold neutrons and thermal neutrons. Three pellet
assemblies were produced each with different aspects that were to



Fig. 18. Sphere type fuel element from the HTR program investigated with neutron tomography. Left: the outer graphite sphere, middle: partly separated particles, right: the 8500
LEU particles. Reconstructions were carried out by using FBP [Lehmann et al. (2003)].

Fig. 19. A PCI X-ray image of a 0.92 mm fuel particle (left). The Sobel operator applied
to the original image in order to identify boundaries between each coating layer (right)
[Kim et al. (2008)].
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be investigated during the testing. The first pellet assembly had
varying densities, the second and third had tungsten inclusions and
the third also had PMMA (plastic) included which burnt off during
the sintering process to leave voids within the pellets. The first
images were produced by summing the images around the 238U
resonance energies (6.41e6.9 eV, 20.51e21.28 eV and
36.22e37.67 eV). These images (Fig. 22) took several hours to
obtain to ensure that enough detected neutrons were available to
show the maps of various materials with sub millimetre spatial
resolution.

Following the 238U resonance energy images, analysis of the
tungsten absorption energy images allowed the images in Fig. 23 to
be produced. Thermal neutrons were then used to excite the fuel
assemblies. The difference here is that the images took only mi-
nutes to be produced, due to the higher detection efficiency for
thermal energies.

The images in Fig. 24 show the difference in density of the
material more clearly than the previous images and even show the
Kapton tape wrapped around the top of each of the assemblies. The
thermal resonance images are generally seen to be of better overall
quality for the following two reasons: firstly, the resonance energy
range used for isotope mapping is much narrower than the thermal
and cold neutron spectrum. Secondly, for the setup used in this
experiment the detection efficiency for thermal neutron trans-
mission is much higher at around the 40% level. Also contributing to
these factors is the high level of divergence of epithermal neutron
beams, which is more difficult to collimate in comparison to ther-
mal neutrons.
3.1.2. Validation of new fuels
Imaging of nuclear fuels can be used as a way of validating new

types of fuel, whilst still at the experimental phase. This will
become more and more important as the nuclear industry tries to
use higher burnups and temperatures at reactors, and also as new
fuel types become viable [Brown et al. (2014)].

[Baghra et al. (2013)] makes use of; amongst other things; alpha
autoradiography to compare a new impregnated agglomerate pel-
letisation (IAP) process to coated agglomerate pelletisation (CAP) and
the already established powder pellet process (POP) for (The3.75U)
O2 þ X nuclear fuel. The radiography was used to ascertain the
distribution of the uranium matrix. A CR-39 film was prepared for
radiography (including applying a layer of aluminiumMylar to limit
alphas from thorium) and then the pellet was radiographed for 4 h.
Following irradiation, the film was chemically and digitally pro-
cessed to produce a (Ua) track density profile.

From the images produced; in the right hand column of Fig. 25;
it is clear that the CAP process produced a less uniform Ua than the
IAP and POP processes. Once the images had been processed using
image processing software the (Ua) track density profiles were
obtained (left hand column). This confirms the non-uniformity of
the CAP pellet in comparison to the other two pellets. This tech-
nology is useful for quantising something that is qualitative to the
human eye. The outcome is very similar to the work described in
Section 3.1.1 by Panakkal and Mukherjee. (2008), however rather
than colouring in the black and white image, a graph is produced
which can be analysed. If these techniques were to be utilised in a
QA environment, it would depend upon the requirements of the
system as to whether a graphical output or colour image were best
for the task at hand.

Likewise, the homogeneity of a possible new fuel, containing
PuO2 dispersed throughout UO2 has been investigated by use of X-
ray radiography and micro computed tomography [Devlin et al.
(2009)]. It is hoped that the new fuel would allow for easy sepa-
ration of actinides and fission products which would largely allow
for easier recycling of spent fuel. For the study, surrogates of PuO2
and UO2 are used along with a Xradia (Concord, CA, USA), and
scintillation detectors with a Charge Coupled Device (CCD) camera.
The image clearly shows the PuO2 surrogate particles equally
dispersed throughout the UO2 surrogate (Fig. 26).

Micro X-ray tomography has been undertaken [Lechelle et al.
(2004)] to validate a numerical model which describes the behav-
iour of sintered MOX fuel. The model would reduce the number of
laboratory tests if it was validated for use in the industry and as
such, it is compared against measured data in the paper. Fig. 27
shows one of the 3D tomograms produced of a UO2 grain. As can



Fig. 20. X-ray radiographs of TRISO (LEU) pebble; the original image and the results of using the automatic detection system at (a) 48� , (b) 96� and (c) 144� [Yang et al. (2014)].
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Fig. 21. Neutron radiograph of solid and annular MOX fuel pellets [Panakkal et al.
(1992)].

Fig. 22. Images produced from summing the images created at 238U resonance en-
ergies. Images are normalised by the open beam images acquired for the same range of
energies [Tremsin et al. (2013)].

Fig. 23. The addition of images around the absorption for tungsten showing tungsten
inclusions, particularly the wedge at the top of assembly 2 [Tremsin et al. (2013)].

Fig. 24. Assemblies at three angles of rotation showing transmission images using
thermal neutrons [Tremsin et al. (2013)].

Fig. 25. (Th-3.75% U) O2 þ X pellets Uranium alpha (Ua) track density profiles for (a)
Impregnated Agglomerate Pelletisation (IAP), (b) Powder Pellet Process (POP) and (c)
Coated Agglomerate Pelletisation (CAP) process [Baghra et al. (2013)].
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be seen on the figure, the resolution seen here is around 40 mm,
many orders of magnitude smaller than most other images dis-
cussed in this review. This is possible with the use of a FReLoN CCD
camera coupled with an optical microscope. This technology shows
promise for imaging sub millimetre artifacts in SNM.
3.2. Spent fuel QA

The Quality Assurance of spent fuel rods comes in various forms.
Failed rods and assemblies are problematic for NPPs and any in-
formation that can be gleaned from a failed rod may be valuable to
the nuclear industry. Post Irradiation Examination (PIE) using
radiography has been carried out on nuclear fuel extensively, for
both intact and failed rods [Richards et al. (1982); Davies et al.
(1986); Bakker et al. (1987); Kosarev et al. (1987); Tsupko-
Sitnikov (1991); Katsuyama et al. (2010); Ishimi et al. (2012)].
NDT of spent fuel greatly reduces the cost of examination in com-
parison to destructive testing, as there is much less need for
manipulation of the rod in expensive hot cells, and in a lot of cases
the rod can remain in tact, thus containing fission products and
radioactive isotopes.
3.2.1. Cladding investigations
Clad integrity is important to the running of NPPs as failures

release radioactive isotopes into the primary water circuit, thus
reducing working times in certain areas of plant. Therefore, clad-
ding failures need to be picked up urgently. It is in the primary
water circuit that detectors identify fission products and alert NPP's
operators to a cladding failure problem. Once a failure has been



Fig. 26. Micro X-ray computed tomograph of surrogate of PuO2 dispersed in UO2. FOV
is roughly 1 cm [Devlin et al. (2009)].

Fig. 27. Micro X-ray computed tomograph of UO2 grain, showing density across the
grain [Lechelle et al. (2004)].

Fig. 28. A 81 keV 133Xe emission simulation for a Light Water Reactor (LWR) assembly
containing a failed rod. Only the peripheral rods of the assembly can be seen due the
low energy of the assayed g rays. The reconstruction was carried out using FBP
[Holcombe et al. (2013)].

Fig. 29. A 250 keV 135Xe emission simulation for a LWR assembly containing a failed
rod, which is clearly visible to the right of the centre of the assembly. The recon-
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detected, the specific rod or rods need to be identified. One method
of identifying a leaking rod is to compare the fission product dis-
tribution in the suspected failed rods [Dobrin et al. (1997);
Holcombe et al. (2013)]. After a rod cladding failure, fission gases
that would usually be in the gas-plenum escape from the rod.
Therefore there is an opportunity to assay the plenums of suspected
failed rods to ascertain their g emission. The rod which has failed
would have a substantially lower g emission in this region. When
assaying the plenums, it is important to choose a fission-gas that
emits g rays of high enough energy to be detected. This is partic-
ularly relevant if a whole assembly is being assayed at the same
time. For example if the 81 keV 133Xe emission is chosen, then the
internal rods of the assembly may not be seen (Fig. 28). In com-
parison the 250 keV 135Xe emission can be utilised with 40
projections, however this method would need to be applied very
early on after the assembly was removed from service as the half
life of 135Xe is relatively short at 9.14 h (Fig. 29).

With cladding failures costing NPPs in terms of both profits and
safety, industry has endeavoured to improve cladding materials
and operating conditions to reduce the chance of failures in service.
As power stations continually try to increase efficiency, the options
of higher burnup and longer irradiation times are routes by which
to extract more power from their current fuel elements. The main
barrier to this action so far is the cladding material and its physical
properties. Research is ongoing into this area, usually on spent fuel,
in order to gain some understanding of the state of fuel claddings
struction was carried out using FBP [Holcombe et al. (2013)].



Fig. 31. A section of the X-ray radiograph in Fig. 30 after application of the image J
algorithm [Gras and Stanley (2008)].

Fig. 32. A 90 kV X-Ray with its associated Sobel edge enhancement result [Gras and
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after various burnup profiles [Bayon (1999); Groeschel et al.
(1999)]. In these works, neutrons are used to investigate cladding
instead of the usual destructive testing that has taken place in the
industry so far. It can be seen in Groeschel et al. (1999) that
hydrogen concentrations determined fromneutron radiographs are
in good agreement with the destructive LECO hydrogen analyser.

As with any heating element, the heat exchange surface, has to
be kept clean to allow for full heat transfer. When heat transfer
cannot occur, the risk of failure of the heating element (in this case
the fuel rod) increases greatly. As well as the risk of failure, there is
also the ever present issue of efficiency, and a rod that cannot
transfer its heat correctly is reducing the efficiency of the reactor. It
is carbon deposition on fuel rods, in particular, that is covered in
Gras and Stanley (2008). 2D X-ray images are produced using
varying X-ray energies in order to allow for visualisation of three
types of carbon deposit, thin, granular or columnar (Fig. 30). Post
processing enhancements such as the ImageJ algorithm (Fig. 31)
and the Sobel operator (Fig. 32) are applied to the radiographs to
show a more comprehensive image. For the case of carbon depo-
sition, the ImageJ algorithm seems to give the user more ability to
not only visualise but analyse quantitatively the amount of depo-
sition on the rod.
Stanley (2008)].

Fig. 33. b e g Autoradiographs of (a) outer, (b) intermediate and (c) central pin of a
high burnup up MOX bundle [Sah et al. (2008)].
3.2.2. Verification of spent fuels
Another reason for PIE of fuel is to verify that new types of fuel

have worked as expected. Different chemical compounds used for
fuel and different geometries need to be validated before they can
be used in real life situations [Porter and Tsai (2012)]. For example a
new MOX fuel was investigated using NDT, with the test suite
including: visual examination, axial gamma scanning, leak testing,
microstructural examination of fuel and cladding, fission gas
analysis, beg autoradiography and fuel central temperature esti-
mation from restructuring. This reviewwill only concentrate on the
beg autoradiography aspects [Sah et al. (2008)]. The autoradio-
graphs were undertaken in order to ascertain themacrostructure of
irradiated MOX pins. Samples from the centre, intermediary area
and outer areas of the assembly were metallographically polished
and then radiographed. There is no indication of the imaging ma-
terials used for the experiments or how they were processed. Re-
sults of these scans are shown in Fig. 33.

It is noted that the central white regions indicate the migration
of radioactive fission products from the central region to the pe-
riphery of a fuel section. This would result in lower activity in the
central region. It can be seen that this is more prevalent in the outer
pin and least prevalent in the central pin. There is no further dis-
cussion about these images within the paper and when looked at
on an individual basis they do not allow for any specific conclusions
to be drawn about the fuel pins. However along with the other
extensive techniques applied during the work, several conclusions
about the fuel pins analysed in the paper, particularly about failure
modes, were made.
Fig. 30. 2D X-ray radiographs of coated Advanced Gas-cooled Reactor (AGR) fuel rods;
a high resolution, low energy image taken at 50 kV and 330 mA (top). Higher energy X-
rays, taken at 90 kV and 200 mA (bottom) [Gras and Stanley (2008)].
Further to verification investigations using emitted g rays and
transmission X-rays, neutron interrogation can be a valuable
method by which to investigate spent fuel elements. With varying
attenuation coefficients for similar Z materials, geometries of in-
terest can be witnessed as well as differing enrichments or fuel
materials. Neutron Imaging Plates (NIPs) were utilised in Yasuda
et al. (2005) to carry out neutron tomography of a fuel element.
In this case, workwas undertaken on a fresh rod, as a feasibility test
to allow a spent rod to be investigated in the near future. Fig. 34
shows the differences between an X-ray image and an NIP image.
The different types of pellets, in both geometry and elemental make
up, can be discerned in the neutron image, as well as greater detail
about the rod components.
Fig. 34. A comparison of X-ray radiography against neutron imaging plate radiography.
Hollows, and varying fuel materials can be discerned in the neutron image but not the
X-ray image [Yasuda et al. (2005)].
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In a similar vein, neutron radiography was undertaken in Sim
et al. (2013), however, here it is not the image in particular that is
the main point of the work. A powerful post processing tool is
employed to analyse the neutron radiograph for the gap size at the
fuel plug. A Horizontal/Verticle (HV) filter was utilised which
allowed sharper definitions of edges of the particular region of
interest. Fig. 35 shows the various stages of applying the HV filter
and the associated outcome. It allows for an almost automated
measurement of the gap size.
3.2.3. Accident scenarios
Accident scenarios can be seen as an extension of spent fuel

analysis. This can be because it was the fuel that failed, or because
the failure could have a profound effect on the fuel. Similar to the
work carried out in Jonkmans et al. (2010, 2013), described earlier,
muons can be used to visualise nuclear fuel materials [Sugita et al.
(2014)]. This method can be particularly useful for accident sce-
narios such as those found in Fukushima after the 2011 nuclear
disaster. In less severe accidents scenarios, damaged fuel rods can
be in various physical states, from the examples seen in previous
sections, where it is likely that the failures could have gone unde-
tected by external observation to failures that are far more obvious.
In this category, although investigation does not need to take place
to identify the correct rod/assembly that has failed, it can be useful
to glean information from the failed rod non destructively to see
how the failure came about. NDT including radiography can be used
to view the internals of failed rods and assemblies, whilst retaining
their failure geometry.

Hansche (1989) carried out computed tomography on a failed
assembly quite successfully, by digitising a number of radiographs
and reconstructing them using the BKFIL filtered back projection
routine with the HAN hanning window based filter, then BLL line
integral based back projection. The images produced are; in com-
parison to images created at a similar time; very comprehensive.
Fig. 35. Neutron radiographs at varying stages of post processing in order to calculate
the size of the ballooning gap. (a) Original image, (b) Noise reduced image created
using median filter, (c) Enhanced image created using histogram equalisation method,
(d) Image after Sobel operator using verticle filter-1, (e) Laplacian Gaussian image of
the three spent fuel rods with associated plugs [Sim et al. (2013)].
Various slices of the rod can be seen, and these slices have been
configured to show a 3D version of the assembly (Fig. 36).

Over 20 years later very similar research is still being carried out
[Biard (2013)]. Here emitted g ray measurements along with
transmission X-ray computed tomography allowed for fission
product distributions to be evaluated. In comparison to the work
done by Hansche (1989), there is no 3D reconstruction of the fuel
bundle, but there are various 2D reconstructions (Fig. 37), which
show different isotopes. It can be seen from these images, where
failure has occurred. This image shows all isotopes, which was the
first step of the work. Following this, data were extracted for each
isotope at a given location which allowed tomograms of each
isotope to be produced after self-attenuation correction had been
computed.

Again, it is not just geometries of fuel that can be ascertained
with radiography. Elements such as hydrogen can be viewed by
neutron interrogation. During a Loss Of Coolant Accident (LOCA)
hydrogen is produced when water is re-injected to the core, this is
then free to chemically react with items in the nuclear reactor. If it
reacts with the zircalloy cladding, it can cause embrittlement [Allen
et al. (2012)] which may lead to catastrophic failure of the rods.
Research has been undertaken to quantify hydrogen take up in
zircalloy after simulated LOCA conditions. Naturally, this was done
with neutrons due the differing attenuation of neutrons during
hydrogen and zircalloy interrogation [Grosse et al. (2008, 2011a,
2011b, 2012, 2013); Jenssen et al. (2014)]. In the cited work car-
ried out by Grosse, hydrogen uptake is calculated by measuring the
attenuation and using the H/Zr ratio. The ratios are calibrated in the
first instance and show good correlation to measured data. Fig. 38
shows varying H/Zr ratios, even ratios as close as 0.279 and 0.23
can be discerned. For the first time, the hydrogen concentration in
Zircalloy cladding can be determined in-situ. This could allow NPPs
to assess their fuel assemblies quantitatively to provide valuable
safety data about the state of the assemblies. It also allows for more
understanding of the effects of rod location on hydrogen uptake,
which would appear to vary according to the study.
4. Improvements to nuclear fuel

Improvements in safety and cost are always sought after in an
industry where great expense is required at every stage of the
process. Improving fuel use and efficiency could save NPP operators
Fig. 36. A 3D FBP reconstruction of a failed LWR assembly from digitised radiographs
[Hansche (1989)].



Fig. 37. Barium distribution throughout a failed FPT3 assembly. Reconstructed using FBP [Biard (2013)].

Fig. 38. A neutron tomograph showing various H/Zr ratio cladding tubes. 0.23 and
0.279H/Zr ratios can easily be differentiated [Grosse et al. (2013)].

Fig. 39. A 2D gamma scan for 103Ru (496.9 keV) of a fuel pin and the resulting
reconstructed 2D density plot [Barnes et al. (1979)].

Fig. 40. Diametral distribution of 140La (1596 keV) in a fuel pin. Reconstruction was
carried out using the Maximum Likelihood technique [Niculae et al. (1996)].
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a great deal of money and allow for either greater profit margins, or
a reduction in cost to the consumer. Most research in this area is
concerned with burnup and isotope distribution. As mentioned
earlier, longer burnup times and higher temperature burnups are
seen as a possible way of increasing efficiency. In the previous
section the main aim of the research work was to investigate the
cladding materials during high or long burnup. Investigations into
the fuel material itself is also an important parameter when it
comes to investigating burnup and the following section will pro-
vide an insight into research carried out to date in the field of im-
aging using radiation [Berzins et al. (1981); Lundqvist et al. (2010)].

Detection and spectroscopy of g rays is a well studied technique,
particularly for emitted g rays. The method of detecting emitted g

rays allows for the identification of specific isotopes present in the
fuel by narrowing the bandwithinwhich g rays are detected. When
tomography is used the full cross sectional distribution of certain
isotopes can be determined. One of the earliest images produced
using emitted g rays to show isotope distribution can be seen in
Barnes et al. (1979). The 2D scan is composed of two scans of the
same diametral portion of an itemwhich are reconstructed to show
a possible 2D distribution of the assayed item. Fig. 39 is the
reconstructed image of two 103Ru (496.9 keV) scans of the same
diametral section of irradiated fuel pin at 0� and 90� respectively.

This image has been reconstructed in a similar way to conven-
tional medical tomography. However, the algorithms used here
allow for a reduction from 200 measurements at 180 angular po-
sitions to just one measurement at two angular positions. Barnes
states that comparisons between these reconstructed density plots
and data retrieved from sectioned fuel pins show better spatial
resolution than medical tomography which, at the time, worked to
roughly 1 cm. The huge reduction in positions and measurements
would be a major advantage over the medical tomography that
Barnes uses as a comparison. The reduction relies heavily on the
general symmetry of fuel pins, however the paper does not contain
any images produced by medical tomography for comparison so it
difficult to judge how similar the images really would be.

Similar work has been carried out since [Ducros (1985);
Hofmann et al. (1988); Alexa et al. (1995); Niculae et al. (1996);
Pan and Tsao (1999); Svard et al. (2005)], mostly producing
tomographs of specific isotope distributions at distinct locations
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along a spent fuel pin. An example has been shown in Fig. 40 of the
distribution of 140La throughout a rod. From the raw data, ratios of
isotopes such as 134Cs and 137Cs which can be used to approximate
neutron distribution better than either isotope alone [Pan and Tsao
(1999)].

Extensive research into very high burnups has been carried out
at the Paul Scherer Institute in Switzerland. Ratios of 134Cs, 137Cs
and 154Eu were determined [Caruso et al. (2008a, 2009); Caruso
and Jatuff (2014)]. Previously investigations had concentrated on
lower burnup fuels. Alongside this work comparisons between fuel
density and burnup profiles were being carried out using trans-
mitted and emitted neutrons [Caruso et al. (2008b)]. The work
shows a linear relationship between burnup and density of the fuel,
even after the already understood densification period observed in
the early stages of irradiation. With more calibration, density pro-
files could be utilised for estimating burnup making use of g

transmission. Fig. 41 shows how the density of a rod changes with
increasing burnup.

It is interesting to note that in the works shown here, the
attenuation matrix used to create the tomographs has been derived
experimentally rather than by simulation. The matrix was pro-
duced using gamma transmission tomography and then utilised for
Single-Photon Emission Computed Tomography (SPECT) recon-
struction. This method can produce highly accurate results as the
morphology of the sample is taken into account within the matrix.

Reaction rates including fission rates and capture rates can be
useful to reduce the effect of self absorption during g emission
tomography. Fauchere et al. (2004) makes use of the total fission
rate (Ftot) and the capture rate in 238U (C8). These values are pro-
cessed to give a correction factor to be used in pin-integral mea-
surements. It is claimed in Oleinik et al. (2005) that tomography
during re-fuelling could glean far more information than the cur-
rent method of estimating burnup from measurements of g radi-
ation. If the technique could allow for better understanding of the
fuel's state, without a much greater cost or time then it may seem
like a very good idea. A facility to measure these types of data is
described in Kotiluoto et al. (2009), with the major theme of the
work centering around the detector response. A High-Purity
Germanium (HPGe) detector is simulated to ensure that sufficient
data are available after both emission and transmission tomogra-
phy. Facilities like this would vastly reduce the amount of
Fig. 41. Varying densities with increasing burnup scenarios [Caruso et al. (2008b)].
destructive testing that currently goes on in the nuclear industry,
thus working more safely and saving money.

Neutrons have also been investigated for use in determining
fission product distribution [Cason and Jackson (1971); Tanke et al.
(1991)]. The former using transmission neutrons and the later
detecting emitted neutrons from spent fuel. Cason uses an indium
foil and then converts the resultant radiograph into a density graph
using a densitometer. This method does not seem to lend itself well
to being able to identify fission product distribution, and in fact
there is no mention about how this would be done, just the
radiograph as the result. Using emitted neutrons on the other hand
allows for more information about fissile materials, particularly
those undergoing spontaneous fission.

5. Post processing techniques

In addition to the physical detection of radiation for imaging
purposes, there are numerous numerical and post processing
methods that are useful during imaging of nuclear fuels. These
range from mathematical models that can be used to help set up
imaging scenarios [Panakkal et al. (1986)] to assessing pebble-bed
reactor layouts to investigate flow [Auwerda et al. (2013)].

One of the most obvious differences between tomographic im-
ages in particular is the reconstruction technique. This issue is
addressed in Barton (1977); Honda et al. (1990) and Craciunescu
et al. (1995). Neutron interrogation is used in the two former arti-
cles, with Barton (1977) comparing differing numbers of angles and
projections in ART reconstruction in a feasibility study. Examples of
images produced are provided, but are unsuitable for reproducing
here. It is concluded that ART is better suited to high contrast ob-
jects than convolution methods which is in stark contrast to Honda
et al. (1990). The latter stating that Convolution Integral (CI) was
preferred in comparison to Fourier Transform (FT) [Lim (1990)],
Filtered Back Projection (FBP) [Bruyant (2002)] and Maximum
Entropy (ME) [Skilling and Bryan (1984)]. Neither paper provides
quantitative data uponwhich to base their arguments about which
technology is more suited to the problem. Unlike Craciunescu et al.
(1995), here four methods of gamma emission tomography are
compared in a simulator to ascertain which is more suited to
evaluating burn-up within the fuel. The work presented utilised
two phantoms and then simulated the scanning of these phantoms
using the following methods: Maximum Likelihood (ML),
Maximum Entropy (ME), ART, and Monte Carlo implementation of
the Back Projection Technique (MCBP).

The phantoms utilised are shown in Figs. 42 and 43.
Comparisons were made about the different techniques not just

by the quality of their output but also by the method itself i.e. the
computational equipment required or the length of time the
method takes in practice. All of these characteristics are pertinent
when choosing a scanning technique. Table 1 documents the re-
sults of the simulations carried out.

The discussion in the paper also presents the chi-squared and
correlation coefficient of each of the methods in order to quantify
each method. It shows that the ML method creates the closest
reconstruction with ME, ART and MCBP following respectively.
However, the ML method requires a large computing time due to
the mathematics involved, so if time is a factor in the requirements
the ME method would be more suitable. The results observed will
provide future researchers with a good starting point when
deciding what kind of tomography to use for differing projects.

Similar to work presented earlier, Caruso et al. (2009) compares
various reconstruction techniques to identify the fission product
profiles of UO2 fuel at varying levels of burnup. The reconstruction
techniques include: FBP, Penalised maximum-Likelihood expecta-
tion maximisation in the form of Space-Alternating GEneralised



Fig. 42. Phantom 1 used by Craciunescu to simulate various tomography techniques
[Craciunescu et al. (1995)].

Fig. 43. Phantom 2 used by Craciunescu to simulate various tomography techniques
[Craciunescu et al. (1995)].
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(PL-SAGE), ordered subset De Pierro (PL-DP), Penalised Weighted
Least Square (PWLS) and Paraboloidal Surrogates Coordinate
Ascent (PSCA). A phantom is used in the first instance to identify
the most suitable reconstruction technique. The reconstruction
techniques are simulated and the results produced can be seen in
Fig. 44.

A quantitative comparison is carried out using a figure of merit
which concludes that of these techniques PSCA produces the finest
image, followed by PL-DP, PWLS, PL-SAGE and FBP respectively. The
PSCA algorithm is then used to reconstruct experimental data for
the four burnt pellets. The image produced (Fig. 45) shows how the
concentration across the fuel cross section of 134Cs varies with
burnup. There are similar images produced of 137Cs and 154Eu.

These techniques aremathematical in nature and inmore recent
years, computing has brought around a number of different ways of
logic manipulation. Craciunescu (2004) makes use of a neural
network to reconstruct fission product distribution. Neural net-
works are algorithms that dictate statistical learning. They can
handle a large number of inputs and are adaptive. Both of these
qualities make for a good reconstruction algorithm, particularly if
one is using a large number of projections, for example in the case
of a 3D image.

6. Discussion

A review of the imaging of nuclear fuel using ionising radiation
has been presented. The work has been categorised using the aims
presented by each author and broadly separates into Safeguarding,
Quality Assurance and improvements to nuclear fuel. Any com-
ments or discussions that are specific to a paper are included above,
and following will be a broad overview at imaging in the nuclear
industry moving forwards and future work that may prove useful.

The easiest parameters of imaging nuclear fuel with ionising
radiation to improve are; reduction in assay times and higher res-
olution images. Lower assay times may be achieved with higher
efficiency detectors, changes in collimation setup and better
counting statistics. Higher resolution may be achieved by obtaining
more projections and using more suitable reconstruction
techniques.

It can be seen from the results obtained over the majority of the
papers that black and white images that portray density of fissile
material are very well understood. There has been sporadic
improvement in this area, with developments such as those
described in Tamaki et al. (2005). The paper describes a new radi-
ography technology for dysprosium sheet imaging, whereby
transfer of the dysprosium film onto an x-ray film does not need to
occur. However, it can be argued that with the depth of knowledge
already available in the medical sector regarding tomography and
3D imaging, there is little advancement that can be made in the
nuclear sector in the short term. It is recommended that the two
types of technology are combined in order to continuework similar
to that of Hausladen (2013) and Lehmann et al. (2003).

Higher resolution and 3D images can be achieved with new or
improved reconstruction techniques. Previous works that are not
specific to nuclear fuel can be seen in Fessler (1994); Fessler and
Hero (1994); De Pierro (1995); Erdogan and Fessler (1999), and
Sotthivirat and Fessler (2002) to name but a few. Research con-
tinues in this field, for bothmedical imaging andmathematical data
processing. For example, a new method called compressed sensing
(CS) has recently been proven [Je et al. (2014)] which suggests that
far fewer projections can be used to create images of a resolution on
par with images produced by current methods. The CS method
works on the basis of optimising signals that are sparse using data
about how sparse the signal is. It is shown that if fewer images can
produce the same resolution, then the same amount of images used
in current reconstruction methods produce higher resolution im-
ages. Overall assay times for imaging could be reduced as the in-
formation produced becomes more useful. Reconstruction
techniques like this will allow images to be taken of nuclear fuel
and SNM in shorter times and therefore possibilities are intro-
duced, such as, in-line imaging during manufacture or 100% im-
aging of spent fuel assemblies at NPPs after irradiation.

The use of various reconstruction techniques in the papers
presented makes direct comparison between them difficult.
Further to the work carried out to identify the best reconstruction
algorithms [Craciunescu et al. (1995); Honda et al. (1990)] there is
room for a more indepth analysis of what type of reconstruction is
more ideal for certain situations.

As well as processing techniques, a number of new imaging
facilities are being designed and built [Gaillot et al. (2008); Cortesi
et al. (2012); Parrat et al. (2013); Wei et al. (2013)]. The ones
mentioned here are neutron imaging facilities, there are a few
possible reasons for this. Firstly, as can be seen in the images above,
neutrons can be used to produce a far more penetrative image of



Table 1
Comparison of Craciunescu's four methods of tomography simulating g rays on spent fuel [Craciunescu et al. (1995)].

Processor Phantom 1 Phantom 2

Maximum Likelihood (ML)

Maximum Entropy (ME)

Algebraic Reconstruction Technique (ART)

Monte Carlo Implementation of the Back Projection technique (MCBP)
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nuclear fuel than any of the other radiations discussed. Further
examples are provided in Ross (1977) and Domanus (1984). Sec-
ondly, as time progresses our understanding of neutron production
and detection is increasing, and has vastly been expanded in the
last five decades. With the introduction of CCD cameras and scin-
tillation detectors, neutrons can now be imaged much more easily
than they used to be. With an increase in neutron imaging facilities,
there will also be more opportunity to improve detection efficiency
of neutrons with new technology. It is also apparent that neutrons
are being used to interrogate non-nuclear items, and as the engi-
neering industry as a whole realises the benefits of neutron
imaging, there may be an increase inworkloads at neutron imaging
facilities [Pleinert et al. (1994)].

Neutron detection is an area that would benefit from improve-
ment. At the time of writing, neutrons cannot be detected directly.
They are usually detected indirectly by their interaction with
matter. In the case of scintillation detection, for example, they are
detected along with g rays, and post processing has to take place to
discern g rays from neutron incidents. There has been a body of
work which has improved this technique, and now the separation
of radiation events can be done almost instantaneously, but there is
still uncertainty surrounding the results as at lower amplitudes the
g ray and neutron data can overlap. Possible improvements in



Fig. 44. Reconstructions of a simulated phantom using various techniques. The phantom is shown in the top-left image, with the reconstructions following, and labelled as per their
reconstruction technique [Caruso et al. (2009)].
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neutron detection have been researched, such as Sanders et al.
(2002), which describes a system that utilises Gallium-Arsenide
(GaAs) detectors to carry out neutron computed tomography. The
GaAs detectors are smaller than conventional CCD detector set-ups
and according to Sanders et al., give better resolution of hard
components too. It would be highly beneficial for further research
into neutron imaging to continue, particularly to devise a method
to directly detect, or detect with much lower uncertainties, the
presence of neutrons.

One method that is under utilised thus far is the use of fission
neutrons, both as interrogating radiation, and as emitted radiation
to be measured. Bucherl et al. (2011) describes a new facility that
hopes to do just this using two plates of highly enriched uranium
(HEU) activated by a beam tube from the Forschungs Neu-
tronenquelle Heinz MaiereLeibnitz (FRM II). Fast neutron detection
can be carried out by modern detectors and thus, radiography and
tomography at this facility may produce some interesting results,
not seen before.

There is a lack of instrumentation verified for use to identify
partial and bias defects in both fresh and spent fuel Fritzell and
Kautsky (2010) so it would be advantageous to further research
in these areas. Also QAwill need updating as the nuclear industry is
potentially looking towards a more diverse set of fuel materials
[Crossland (2012)]. This could include more thorium based fuels,
higher burn-up fuels and hydride fuels. All of which would need a
level of reliability similar to those fuels already in use. Nuclear
imaging could provide a comparatively easy and cheap method of
assaying fabricated fuel. Automatic and continuous material
detection is likely to be a future step for nuclear fuel imaging, and
SNM in general. As more underground repositories are built, it is



Fig. 45. 3D g tomographs of the 134Cs within-rod distributions of four fuel rods with varying burnup profiles. The images are reconstructed using the 795 keV g peak [Caruso et al.
(2009)].
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likely that the entombed spent fuel will be increasingly monitored
as monitoring becomes more affordable. This may ensure COK of
SNM, and provide an extra level of safety too.

That said, there is a discussion to be had around material
accountancy and when enough is enough. For example, during fuel
manufacture there will be an amount of SNM that is lost or trapped
within the machinery. This is known in the nuclear industry as
Material Unaccounted For (MUF), and is an accepted inevitability.
To this end, the COK data will always have losses, and so, it may be
argued that a bias defect is something that could be accepted too. If
an person wanted to remove small amounts of SNM from the
production line, there are routes available and over time, lots of
small diversions could add up to a large amount of SNM being
diverted. Maybe it is here that more effort should be concentrated?
In principle, different and often greater challenges exist to remove
nuclear material from a rod or assembly, than those that must be
overcome to remove it from the pelletisation and sintering phase of
manufacture.

An improvement in imaging technology could greatly improve
fuel safety as well as PIV of nuclear fuel at various points within the
fuel cycle when utilised appropriately, thus the safety benefits of
advancement could be twofold.
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