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We investigate the photoluminescence (PL) properties of a hybrid type-I InAs/GaAs and type-II

GaSb/GaAs quantum dot (QD) structure grown in a GaAs matrix by molecular beam epitaxy. This

hybrid QD structure exhibits more intense PL with a broader spectral range, compared with control

samples that contain only InAs or GaSb QDs. This enhanced PL performance is attributed to addi-

tional electron and hole injection from the type-I InAs QDs into the adjacent type-II GaSb QDs.

We confirm this mechanism using time-resolved and power-dependent PL. These hybrid QD struc-

tures show potential for high efficiency QD solar cell applications. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4914895]

Semiconductor quantum dots (QDs) have provoked tre-

mendous research interest due to their unique characteristics

that stem from three dimensional quantum confinement.1 In

particular, type-I InAs/GaAs QDs have achieved great suc-

cess and have been adopted widely as the active region mate-

rial in various optoelectronic devices. Taking one example,

InAs/GaAs QDs can be used to extend the absorption range

of GaAs-based solar cells and increase their short-circuit cur-

rent.2 InAs/GaAs QD solar cells with one-sun efficiencies as

high as 18.7% have been demonstrated.3 However, due to

their short interband recombination time, type-I QDs them-

selves can act as recombination centers deteriorating solar

cell performance.4 As a result, it is not easy to achieve InAs/

GaAs QD solar cells with efficiencies exceeding that of a

GaAs reference cell.5 In recent years, type-II QDs have also

gained attention because of characteristics arising from their

specific band alignment.6,7 The spatial separation of elec-

trons and holes in type-II QDs reduces spontaneous recombi-

nation. Together with their broad spectral response, this

property means that GaSb/GaAs QDs8 and InAs/AlAsSb/InP

QDs9 are being investigated as highly promising active

region materials in QD solar cells. However, the spatial sepa-

ration of electrons and holes also reduces the photon absorp-

tion efficiency of type-II QDs compared with type-I InAs

QDs. It is, thus, difficult for type-II QD solar cells to com-

pete with type-I InAs/GaAs QD solar cells. Taking into

account these drawbacks of both type-I and type-II QDs, it

appears that using a single QD nanomaterial may not be the

best way to improve the efficiency of solar cells.

Recently, we combined type-II GaSb/GaAs QDs with a

type-I InGaAs quantum well (QW) in the fabrication of a

QD solar cell.10 As a complement to the GaSb QDs, the

InGaAs QW provides additional absorption beyond the

GaAs band edge, helping to enhance infrared photoresponse.

However, since InAs/GaAs QDs possess a longer emission

wavelength and wider spectral response than InGaAs, they

can be used to substitute for the QW and further extend the

absorption range of the type-II GaSb/GaAs QD solar cell. In

other words, we postulate that GaSb/GaAs QDs could be an

excellent addition to the InAs/GaAs QD solar cell.

Suzuki and Arakawa studied the optical properties of

coupled InAs/GaAs QDs and GaSb/GaAs QDs in 1999.11

However, the photoluminescence (PL) signal from their

GaSb QDs was found to be weak and it is difficult to see any

optical improvement from their measurements. Hospodkov�a
et al. investigated vertically correlated type-I InAs QDs and

type-II GaAsSb QDs separated by a GaAsSb barrier. By

changing the Sb composition and size of the GaAsSb QDs,

the band alignment could be tuned.12 Again, there was no de-

finitive evidence of optical improvement due to interaction

between the two types of QDs.

In this letter, we report a hybrid type-I InAs/GaAs and

type-II GaSb/GaAs QD structure that exhibits a clear enhance-

ment in optical performance. With a thin (5 nm) GaAs spacer

layer between the InAs and GaSb QDs, the hybrid structure

shows more intense PL with broader spectral range, compared

to either InAs or GaSb QD control samples. Using time-

resolved and power-dependent PL, we demonstrate that this

improvement is due to additional electron and hole injection

from the InAs QDs into the adjacent GaSb QDs.

The samples in this study are grown in a Veeco GEN930

solid-source molecular beam epitaxy system equipped with

As and Sb crackers. Figure 1(a) shows the schematic diagram

of the hybrid QD structure. After thermally removing the

native oxidation layer, a 200 nm GaAs buffer layer is first de-

posited on a semi-insulating GaAs(001) substrate at 580 �C.

The substrate is then cooled to 520 �C for the growth of InAs

QDs. 2.3 monolayers (ML) of InAs is deposited at 0.018 ML/s

with a V/III beam equivalent pressure (BEP) ratio of �200 to

form the QDs. A 5-nm-thick GaAs spacer layer is used to cap

the InAs QDs. Afterwards, the substrate is heated up to
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580 �C for 5 min of thermal annealing to smooth the GaAs

surface, and then the sample is cooled to 490 �C in preparation

for growth of the GaSb QDs. 3.4 ML GaSb is deposited at

0.2 ML/s with a V/III BEP ratio of �1 to form the GaSb QDs.

A 50 nm GaAs capping layer completes the sample. The for-

mation of both InAs and GaSb QDs is confirmed during

growth by the RHEED pattern transition from streaky to

spotty, as expected. For comparison, control samples contain-

ing only InAs QDs or only GaSb QDs are grown with the

same growth parameters used for the hybrid QD sample,

including the 50 nm GaAs cap layer. The control samples con-

tain one buried QD layer for PL and one surface QD layer for

morphology investigation. Atomic force microscopy is per-

formed on the surface InAs and GaSb QDs, as shown in Fig.

1(b). The InAs QDs have an areal density of 1.0� 1010 cm�2

and are �11 nm tall and �50 nm in diameter, while the GaSb

QDs have an areal density of 0.9� 1010cm�2 and are �15 nm

tall and�70 nm in diameter.

Room temperature (RT) PL measurements on all the

samples are performed via a standard lock-in technique

using a monochromator, a 532 nm diode pumped solid state

laser, and an InGaAs photomultiplier tube (PMT) detector

with a spectral response from 950 nm to 1700 nm. Figure

2(a) shows the as-measured RT PL spectra under 100% out-

put pumping power (�150 W/cm2). In order to compare the

peak positions effectively, we have normalized the PL in-

tensity as shown in Figure 2(b). The hybrid QD sample has

three peaks (centered at 1135 nm, 1345 nm, and 1445 nm),

while the InAs QD and GaSb QD control samples show

only one clear peak each. We can assign the 1135 nm PL

peak from the hybrid QD sample to emission from InAs

QDs, since the InAs QD control sample has a peak in the

same position. Similarly, the 1345 nm peak correlates well

with the peak position of the GaSb QD control sample. The

1445 nm peak in the hybrid QD structure bears some simi-

larities with the small, long-wavelength shoulder on the

peak from the GaSb QD control sample. These three fea-

tures combine to give the hybrid structure a significantly

broader spectrum than either the GaSb or InAs QD control

samples. The full width at half maximum (FWHM) of the

hybrid QD structure is 343 nm (217 meV), in comparison to

215 nm (145 meV) for the GaSb and 61 nm (58 meV) for

the InAs QD control samples, respectively. The spectrum

of the hybrid QD structure extends from 920 nm to 1710 nm

and may even extend to longer wavelengths, considering

the detector’s cut-off at 1700 nm. For the hybrid QD sam-

ple, the peak intensity at 1135 nm is only one third that for

the InAs QD control sample, though the peaks at 1345 nm

and 1445 nm are comparable in intensity to the emission

from the InAs QD control sample. The integrated PL inten-

sity of the hybrid QD sample is 4.1 times higher than the

GaSb QD sample and 4.6 times higher than the InAs QD

sample, respectively.

To aid further discussion, the 1135 nm, 1345 nm, and

1445 nm peaks in the hybrid QD sample spectrum in Fig.

2(b) are labeled (1), (2), and (3), respectively. In order to

understand the physical processes underlying these peaks in

the PL, a schematic diagram of the hybrid QD sample’s band

structure and recombination routes is shown in Fig. 2(c).

Labeling of the recombination routes in Fig. 2(c) is consist-

ent with the peak positions in Fig. 2(b). In the type-II GaSb/

GaAs QD structure, electrons are confined in the triangular

QW formed on each side of the QDs due to the bending of

GaAs conduction band at the GaSb/GaAs interface.13,14 Both

peaks (2) and (3) derive from radiative recombination

between electrons confined in these triangular QWs and

holes in the GaSb QDs. However, the difference is that the

electrons contributing to peak (3) are confined at the inter-

face between the GaSb wetting layer (WL) and GaAs spacer

layer (recombination route (3) in Fig. 2(c)); the electrons

contributing to peak (2) are confined at the interface between

the GaSb QDs and GaAs cap layer (recombination route (2)

in Fig. 2(c)). This conclusion is based on the following

evidence:

(i) The confinement of electrons on the WL side is

slightly weaker because of the lower potential barrier

of the WL. Thus, recombination route (3) should cor-

respond to PL emission at a longer wavelength.

FIG. 1. (a) Schematic diagram of hybrid InAs/GaAs and GaSb/GaAs QD

structure. (b) Atomic force microscope images of surface GaSb/GaAs QDs

and InAs /GaAs QDs grown for control samples.

FIG. 2. (a) Room temperature PL spectra of the hybrid QD, InAs QD con-

trol, and GaSb QD control samples; (b) PL spectra in (a) normalized to their

maximum intensities; and (c) schematic diagram of the band structure for

the hybrid QD structure and different radiative recombination routes.

Recombination routes (1)–(3) correspond to the peak labels in (b). Solid

(hollow) arrows indicate the carrier recombination (injection) processes.
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(ii) The wavelength of peak (2) is the same in the GaSb

QD control and hybrid QD samples. This peak, thus,

arises from electrons confined in the triangular QW at

the interface between the GaSb QDs and GaAs cap,

since the band structure here will be least affected by

the addition of the InAs QDs.

(iii) For the GaSb QD control sample, PL intensity at

wavelength position (3) is only 60% of the intensity

of peak (2). Relatively small overlap between the

electron and hole wavefunctions on the WL side of

the control QDs leads to reduced PL intensity at

wavelength position (3) in the PL spectrum with suffi-

cient carrier injection.

Peak (1) is related to inter-band recombination in the

InAs QDs. It should be noted that peak (1) from the hybrid

structure is broader than that from the InAs QD control sam-

ple. This broadening is attributed to radiative recombination

between electrons in the triangular QW on the GaSb WL

side and holes confined in the GaSb WL at a similar energy,

which is much more dominant below 200 K (data not shown

here).

In the hybrid QD structure, additional electrons are

injected from InAs QDs to the adjacent triangular QW on the

WL side (see curved hollow arrow in Fig. 2(c)), while the

holes are injected from the InAs QDs to the GaSb QDs (hol-

low arrow in Fig. 2(c)) by tunneling through the 5 nm GaAs

spacer. In addition, the WLs can be regarded as reservoirs of

carriers for the QDs. Since the distance between the InAs

WL and the GaSb WL is only 5 nm, it is possible that some

of the carriers can be injected into the GaSb QDs through the

GaSb WL. The electron and hole injection strengthen recom-

bination route (3) and results in peak (3) having almost the

same intensity as peak (2). PL intensities of peaks (2) and (3)

in the hybrid structure are 2.6 and 4.0 times higher, respec-

tively, than in the GaSb QD control sample. As noted above,

the intensity of peak (1) in the hybrid structure is only �33%

of the signal from the InAs QD control sample, which is con-

sistent with the loss of carriers in the InAs QDs via injection

into the GaSb QDs. To summarize this section, we conclude

that in the hybrid QD structure the PL performance of the

GaSb QDs is significantly improved at the expense of PL

performance of the InAs QDs.

Time-resolved PL (TRPL) measurements are performed

on the hybrid QD and GaSb QD control samples at room

temperature using time-correlated single-photon counting,15

as shown in Fig. 3. The signal is excited by a 650 nm laser

pulse (�20 ps pulse width) from a supercontinuum laser

operating at a 15.6 MHz repetition rate. The decay curves are

labeled (2) and (3) in accordance with peak positions (2) and

(3) in Fig. 2(b) as well as recombination routes (2) and (3) in

Fig. 2(c). A double exponential decay model IðtÞ ¼ A1

expð�t=s1Þ þ A2 expð�t=s2Þ is employed to fit the TRPL

curves in which A1 (A2) is the amplitude and s1 (s2) is the

decay time constant for the slow (fast) decay process. sav is the

intensity weighted average lifetime and w1 (w2) is the weight

of s1 (s2). The inset table in Fig. 3 shows the fitting results.

As mentioned above, decay curve (3) stems from elec-

trons confined in the triangular QW on the WL side, while

decay curve (2) comes from electrons confined on the other

side of the GaSb QDs. For the GaSb QD control sample,

recombination route (2) has a s1 of 18.6 ns and a s2 of 3.4 ns,

while recombination route (3) has a s1 of 26.8 ns and a s2 of

4.3 ns. s2 (fast decay process) is related to radiative recombi-

nation while s1 (slow decay process) is related to carrier

recapture.16,17 Due to the weak electron-hole overlap on the

GaSb WL side, both the slow and the fast decay processes of

recombination route (3) are slower than those of recombina-

tion route (2). This helps to explain the lower PL intensity of

peak (3) compared with peak (2) for the GaSb QD control

sample in Fig. 2(a). For the hybrid QD sample, extra hole

injection from adjacent InAs QDs to the GaSb QDs leads to

an increased w2 (from 17.0% to 32.3%) for recombination

route (2) and a decreased s2 (from 4.3 ns to 3.4 ns) for recom-

bination route (3). This agrees with the large enhancement in

PL intensity exhibited by the hybrid QD sample. Also, due

to the electron injection from InAs QDs, the electron recap-

ture (refill) process in the triangular QW on the GaSb WL

side is accelerated. As a result, s1 for recombination route

(3) undergoes a decrease from the GaSb QD control sample

(26.8 ns) to the hybrid QD sample (18.5 ns).

In order to investigate the optical performance of the

hybrid QD structure under different carrier injection levels,

the output pumping power is decreased from 100% to 1%.

Figure 4 shows normalized room temperature power-

dependent PL spectra for the hybrid QD and GaSb QD

FIG. 3. Room temperature time-resolved PL of (a) hybrid QD sample and

(b) GaSb QD sample. The decay curves are labeled (2) and (3) in accordance

with peak positions (2) and (3) in Fig. 2(b) as well as recombination routes

(2) and (3) in Fig. 2(c). The inset table shows the fitting results based on a

double exponential decay model. s1 (s2) is the decay time for the slow (fast)

decay process. sav is the intensity weighted average lifetime and w1 (w2) is

the weight of s1 (s2).
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control samples. Peak positions (1)–(3) correspond to recom-

bination routes (1)–(3) in Fig. 2(c). For the hybrid QD struc-

ture (Fig. 4(a)), recombination route (3) has much brighter

PL under both 1% and 10% pumping powers and similar in-

tensity to recombination route (2) even under 100% pumping

power. This is a result of the faster recombination rate of

route (3) due to the extra carrier injection from InAs QDs to

GaSb QDs. For the GaSb QD sample (Fig. 4(b)), recombina-

tion route (2) dominates under 100% pumping power while

recombination route (3) dominates under 1% pumping

power. For an intermediate 10% pumping power, recombina-

tion routes (2) and (3) have almost the same PL intensity.

This is because at low pumping power, electrons preferen-

tially occupy the lower energy levels in the triangular QW

on the WL side and so recombine via route (3). At high

pumping power both triangular QWs are readily filled, but

due to the lower recombination rate of route (3), most car-

riers combine via route (2). At intermediate (10%) pumping

power, higher electron density in the triangular QW on the

WL side compensates the lower recombination rate of route

(3), leading to nearly the same PL intensity for routes (2) and

(3). We also observe a large red-shift of the longest wave-

length peak in the hybrid QD structure as the pumping power

is decreased. However, this cannot be fully explained by the

well-known blue-shift in type-II GaSb/GaAs QDs that is pro-

portional to the cube root of the excitation density.14,18,19

We believe that an indirect radiative recombination process

exists between electrons confined in InAs QDs and holes

confined in GaSb QDs. This indirect process has a longer PL

wavelength and is more obvious under low pumping power

at low temperature due to its slower recombination rate (data

not shown here).

In recent years, the use of built-in charge from doping

InAs/GaAs QDs has been demonstrated as an efficient way

to improve solar cell performance.20–22 In the hybrid type-I

InAs/type-II GaSb QD structure presented in this letter, the

extra injection of carriers from the InAs QDs can be regarded

as providing a special kind of built-in charge in the GaSb

QDs. This process can simultaneously be thought of as hole

(electron) injection to the conduction (valence) band of the

InAs QDs. As a result, inter-band light absorption could be

enhanced and inter-band carrier recombination could be

inhibited in the InAs QDs. Furthermore, intra-band light

absorption could be strengthened in the GaSb QDs. This

hybrid type-I and type-II QD structure hence shows great

potential for improving the efficiency of QD solar cells.

In summary, we have investigated the PL properties of a

hybrid InAs/GaAs and GaSb/GaAs QD structure. The hybrid

QD structure exhibits a clear enhancement in optical per-

formance, which we have demonstrated derives from elec-

tron and hole injection from the type-I InAs QDs into the

type-II GaSb QDs. As a result, this hybrid QD structure

shows promise for creating high efficiency QD solar cells.
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