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a b s t r a c t

A growing body of literature shows that the emotional content of verbal material affects reading, wherein
emotional words are given processing priority compared to neutral words. Human emotions can be
conceptualised within a two-dimensional model comprised of emotional valence and arousal (intensity).
These variables are at least in part distinct, but recent studies report interactive effects during implicit
emotion processing and relate these to stimulus-evoked approach-withdrawal tendencies.

The aim of the present study was to explore how valence and arousal interact at the neural level,
during implicit emotion word processing. The emotional attributes of written word stimuli were
orthogonally manipulated based on behavioural ratings from a corpus of emotion words. Stimuli were
presented during an fMRI experiment while 16 participants performed a lexical decision task, which did
not require explicit evaluation of a word0s emotional content.

Results showed greater neural activation within right insular cortex in response to stimuli evoking
conflicting approach-withdrawal tendencies (i.e., positive high-arousal and negative low-arousal words)
compared to stimuli evoking congruent approach vs. withdrawal tendencies (i.e., positive low-arousal
and negative high-arousal words). Further, a significant cluster of activation in the left extra-striate
cortex was found in response to emotional than neutral words, suggesting enhanced perceptual
processing of emotionally salient stimuli.

These findings support an interactive two-dimensional approach to the study of emotion word
recognition and suggest that the integration of valence and arousal dimensions recruits a brain region
associated with interoception, emotional awareness and sympathetic functions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A growing body of literature shows that the emotional content of
verbal material affects reading (Citron, 2012; Kissler, Assadollahi, &
Herbert, 2006). In particular, emotionally-laden words are processed
faster and more accurately than neutral words (Kousta, Vinson, &
Vigliocco, 2009; Larsen, Mercer, & Balota, 2006), they elicit larger
amplitudes of electrophysiological components associated with emo-
tion processing (Kissler, Herbert, Peyk, & Junghofer, 2007), and they
yield enhanced BOLD responses in limbic brain regions (Kuchinke
et al. 2005).

Several theoretical models of emotion have been proposed,
including amongst others, models which propose a small number
of universal underlying emotional states, i.e., discrete emotions such
as joy, fear, etc. (see Levenson, 2011 for a review), appraisal models,
which suggest that specific emotions are importantly influenced by
appraisal processes which integrate the situational context of an
event (see Ellsworth & Scherer, 2003), and dimensional models,
which may be particularly useful for investigating the emotional
processing of language.

Dimensional models suggest that emotion is best understood as
occurring within a dimensional space, most commonly a two-dimen-
sional space spanning valence and arousal. Emotional valence
describes the extent to which an emotion is positive or negative,
whereas arousal refers to its intensity, i.e., the strength of the
associated emotional state (Feldman Barrett & Russell, 1999; Lang,
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Bradley, & Cuthbert, 1997; Russell, 2003). These models typically
assume valence and arousal to be at least in part distinct dimensions
(Feldman Barrett & Russell, 1999; Reisenzein, 1994). However, beha-
vioural ratings of emotion word stimuli show that highly positive and
highly negative stimuli tend to be more arousing (Bradley & Lang,
1999) and negative stimuli are generally rated higher in arousal than
positive stimuli (e.g., Citron, Weekes, & Ferstl, 2012).

Support for a distinction between these two dimensions comes
from neuroimaging studies that demonstrate dissociable cortical
representations during processing of odours, tastes, and written
words. Specifically, the orbitofrontal and ventral anterior cingulate
cortices respond more to valence, whereas the amygdala and
anterior insular cortex respond more to arousal (Colibazzi et al.,
2010; Lewis, Critchley, Rotshtein, & Dolan, 2007; Posner et al., 2009;
Small et al., 2003; Winston, Gottfried, Kilner, & Dolan, 2005).

Despite this evidence, some empirical work shows that valence
and arousal affect processing of emotional stimuli in an interactive
way (Robinson, Storbeck, Meier, & Kirkeby, 2004). The authors
propose a model according to which stimuli with negative valence
(e.g., bitter taste) or with high arousal (e.g., a loud noise) elicit a
withdrawal tendency and corresponding mental set, because they
represent a possible threat; in contrast, stimuli with positive valence
(e.g., sweets) or with low arousal (e.g., a newsletter) elicit an
approach tendency because they are perceived as safe. According
to this account, these two tendencies are initiated independently at a
pre-attentive level and subsequently integrated in order to evaluate
the stimulus for further action (Robinson et al., 2004). Thus, positive
low-arousal and negative high-arousal stimuli will be easier to
process because they elicit congruent tendencies (approach and
withdrawal, respectively), whereas positive high-arousal and nega-
tive low-arousal stimuli will be more difficult to process because they
elicit conflicting approach-withdrawal tendencies. According to this
model, these opposite tendencies are integrated at an implicit
processing level, before explicit stimulus evaluation.

In a series of experiments, Robinson et al. (2004) asked participants
to judge the emotional valence (positive vs. negative) of pictures as
well as written words. The results showed consistent interactive
effects of valence and arousal, whereby reaction times (RTs) were
faster for stimuli eliciting congruent approach or withdrawal tenden-
cies compared to stimuli eliciting conflicting tendencies (Robinson
et al., 2004). In these studies, participants were asked to explicitly
evaluate the emotional connotation of the stimuli. Thus, it is difficult
to tease apart whether the interactive effects of valence and arousal
are caused by truly automatic processes, i.e., implicit integration of
approach-withdrawal tendencies, or instead by intentional stimulus
evaluation as well as strategic processes.

To this end, Eder and Rothermund (2010) devised a task to
assess the emotional evaluations of pictorial stimuli indirectly and
observed the same interaction reported by Robinson et al. (2004).
Further support for implicit interactive effects of valence and
arousal during reading of emotionally-laden words comes from
studies using a lexical decision task (LDT), i.e., decide whether a
letter string is a real word or a not. This task allows assessment of
the implicit processing of a word0s emotional connotation (Bayer,
Sommer, & Schacht, 2012; Citron, Weekes, & Ferstl, under review;
Hofmann, Kuchinke, Tamm, Võ, & Jacobs, 2009; Larsen, Mercer,
Balota, & Strube, 2008). Slower LD latencies are reported for words
eliciting conflicting approach-withdrawal tendencies compared to
words eliciting congruent tendencies.

Neural evidence for interactive effects of valence and arousal
comes from studies showing modulation of the amplitude of
emotion-related event-related potential (ERP) components during
the implicit processing of emotional pictures (Feng et al., 2012) as
well as words (Citron, Weekes, & Ferstl, 2013; Hofmann et al.,
2009) (but see Bayer et al., 2012 for distinct ERP effects of the two
emotional dimensions).

The aim of the present study is to test for interactive effects of
valence and arousal on regional neural activity, in order to identify
which brain regions are responsible for the implicit integration of
approach-withdrawal tendencies during reading of emotionally-
laden words. This is the first hemodynamic neuroimaging study to
explore the interaction rather than the dissociation of emotional
dimensions. In fact, previous functional magnetic resonance ima-
ging (fMRI) studies have tested for the dissociation of brain
activation between valence and arousal dimensions and employed
either tasks requiring explicit and deep processing of a word0s
emotional content (Colibazzi et al., 2010; Posner et al., 2009) or
self-referential processing, which tends to evoke a bias toward
“yes” responses to positively valenced words, which possibly
enhances the processing of these trials (Lewis et al., 2007). Such
studies support the multidimensional account of emotion proces-
sing, but do not speak to the interrelationship between valence
and arousal during implicit emotion processing in reading.

Typically, the reading of emotionally-laden words in studies
requiring implicit processing of their emotional content evokes
activity within a set of brain regions that include the amygdala
(Herbert et al., 2009; Kensinger & Schacter, 2006; Lewis et al.,
2007; Straube, Sauer, & Miltner, 2011), the anterior cingulate
cortex (ACC; Kuchinke et al., 2005; Lewis et al., 2007), the insula
(Lewis et al., 2007; Straube et al., 2011), the prefrontal cortex (PFC;
Compton et al., 2003; Kuchinke et al., 2005; Straube et al., 2011),
more specifically the orbito-frontal cortex (OFC; Kuchinke et al.,
2005; Lewis et al., 2007), the hippocampus, the parahippocampal
gyrus (Kuchinke et al., 2005) and extra-striate cortical areas
(Compton et al., 2003; Herbert et al., 2009).

In an event-related fMRI design, we presented participants with
written positive and negative words, high or low in arousal, and
neutral words. Stimuli were intermixed with non-words and
participants performed a LDT, thus evoking implicit emotion
processing. According to Robinson et al.0s model and the extant
supportive empirical evidence, we predicted slower LD latencies,
lower accuracy and enhanced BOLD signal response for words
eliciting conflicting approach-withdrawal tendencies (i.e., positive
high-arousal and negative low-arousal words) compared to words
eliciting congruent tendencies (i.e., positive low-arousal and nega-
tive high-arousal words). More specifically, we expected enhanced
BOLD responses in the insula and/or ACC. In fact, the former sub-
serves affective/interoceptive awareness, i.e., integration of bodily
sensations and cognitive, evaluative processes (Brooks, Zambreanu,
Godinez, Craig, & Tracey, 2005; Craig, 2009; Critchley, Wiens,
Rotshtein, Ohman, & Dolan, 2004), whereas the latter is associated
with error detection (Botvinick, Nystrom, Fissell, Cater, & Cohen,
1999) and conflict processing (Kanske & Kotz, 2011; Ullsperger,
Harsay, Wessel, & Ridderinkhof, 2010). Further, both insula and ACC
show activation when the task requires a minimum degree of
processing depth (as required by the LDT) (Phan, Wager, Taylor, &
Liberzon, 2002). We also more generally predicted better perfor-
mance and enhanced activation of emotion-related brain regions in
response to emotionally-laden words compared to neutral words.
Further, we predicted faster LD latencies, higher accuracy and
enhanced activation of the classical lexico-semantic neural network
in response to words compared to non-words (cf. Fiebach,
Friederici, Mueller, & von Cramon, 2002; Price, 2012).

2. Method

2.1. Participants

Nineteen native British English-speakers from the University of Sussex
(10 women, 9 men), aged between 18 and 37 years (mean7SD¼23.775.6 years)
took part in the experiment. They were all right-handed with normal or corrected-
to-normal vision, had no learning disabilities and took no medication for mood
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disorders. Participants either received course credits or were paid d10 for their
participation. They all gave written informed consent before participating. Three
participants were excluded from the fMRI analyses during image processing due to
head movement artefacts exceeding 3 mm. Due to failure to record behavioural
data from other two participants, only seventeen participants were included in RT
and accuracy analyses.

2.2. Materials

2.2.1. Word selection and manipulation
One-hundred and seventy-five words were selected from a corpus of English

words (Citron et al., 2012), containing subjective ratings for affective features –

emotional valence, arousal – and linguistic or more specifically lexico-semantic
characteristics – word familiarity, age of acquisition (AoA) and imageability. Seven-
point Likert scales were used to quantify the different variables and the extremes
were labelled as follows: valence ranged from �3 (very negative) to þ3 (very
positive); arousal, familiarity and imageability were scaled from 1 (not at all) to 7
(very high); for AoA, age ranges in years were given: 0–2, 2–4, 4–6, 6–9, 9–12, 12–
16, older than 16, subsequently recoded in 1-to-7 points. The absolute values of
emotional valence were used to form an additional variable called “emotionality”.
This variable gives a measure of valence that is independent of the direction of the
rating (positive versus negative) and thus provides an absolute measure of the
rated emotionality of a word. Length in letters, phonemes, syllables and frequency
(spoken and written) were taken from the web-based CELEX (Max Planck Institute
for Psycholinguistics, 2001). Written word neighbourhood size (N-size) and
frequency (N-frequency) values were taken from the ELP database (Balota et al.,
2007). N-size reflects the number of words generated by changing one letter of the
target word and N-frequency reflects the number of words that share letters with
the target word.

The two subjective ratings of interest to testing our hypotheses are emotional
valence and arousal. These ratings were used to select 35 positive high-arousal
(PH), 35 positive low-arousal (PL), 35 negative high-arousal (NH) and 35 negative
low-arousal words (NL). In addition, 35 neutral words were selected, whose arousal
level was comparable to the level of low-arousal valenced words.

Descriptive statistics for the 5 conditions are presented in Table 1. Words in all
5 conditions were matched for rated imageability, length in letters, phonemes and
syllables, logarithm of frequency of use, word N-size and also N-frequency (Fs
(4,170)o2.23, ns). Positive and negative high-arousal words were matched for
emotionality and for arousal ratings; similarly, positive and negative low-arousal
words were also matched (all ts(68)o2.02, ns). There was no linear correlation
between ratings of emotional valence and arousal (r¼�0.10, ns), but a strong
quadratic correlation (r2¼0.60, po0.0001), i.e., a correlation between emotionality
and arousal. Thus, valence and arousal were manipulated in an orthogonal design.

2.2.2. Pseudoword selection
One-hundred and seventy-five pseudowords were selected from the ARC non-

word database (Rastle, Harrington, & Coltheart, 2002). Pseudowords are non-
existent words in English that nevertheless follow the orthographic and phonolo-
gical rules of English. Length of pseudowords ranged between 3–10 letters and 2–8
phonemes. Pseudowords were matched with the 175 words for length in letters t
(316.11)¼0.28, ns and number of phonemes t(302.21)¼1.32, ns.

2.3. Procedure

The experiment was conducted at the Clinical Imaging Sciences Centre (CISC) at
the University of Sussex. The experiment was programmed in Matlab using the
Cogent toolbox (Wellcome Laboratory of Neurobiology, http://www.vislab.ucl.ac.

uk/cogent.php). Stimulus order and timings were optimised to maximise the
statistical efficiency of the task design by using OPTSEQ2 (Dale, 1999) which
created a randomised sequence of experimental conditions and null events of
varying durations (i.e., jittered). Using this sequence template, 4 different string
(word or pseudoword) orders were implemented. The 385 experimental trials
lasted 3300–5000 ms, and additional 166 null events lasted 3315–24061 ms.

Participants gave informed consent for the fMRI procedure, following written
and oral instructions on how to perform the task. A structural image scan lasting
approximately 5 min was acquired before the main experiment. At the beginning of
the experiment, 3 filler letter strings were presented, that were later excluded from
the analysis. The experiment was divided into 3 sessions containing 196, 196 and
197 events each (fillers, strings, null events). In between sessions, the scanner was
stopped and participants had a few minutes to rest.

Each trial began with a central fixation cross, visible for 1300–2999 ms (jittered
interval length). Subsequently, a string appeared for 250 ms, followed by a 100-ms
blank screen, then by a question mark, which prompted a response and remained
present until a response was given. Participants were required to read the letter
strings and decide whether the stimulus was an English word or not, as accurately
and as quickly as possible. A response pad with two buttons corresponding to “yes/
no” answers was provided and the button configuration was counterbalanced
across participants. A fixed time interval of 1650 ms between the onset of the
question mark and presentation of the next trial was used to ensure that the trial
duration was at least 3300 ms (corresponding to the TR). The mean trial length was
3802 ms (SD¼288, range¼3300–4299 ms). Overall, the experiment lasted approxi-
mately 1 h and 40 min, including preparation, structural scanning, 55 min of
functional scanning time and debriefing. Approximately 1000 functional volumes
per participant were acquired.

2.4. MRI data acquisition and preprocessing

Hemodynamic responses were acquired by means of a 1.5 T scanner (Siemens
Avanto) with a standard head matrix coil. For each participant, full-brain,
T1-weighted structural scans were acquired: 192 slices, 0.9 mm thick with a 151
flip angle, 0.9 mm isotropic voxels without gap, MPRAGE, TR 11.6 s, TE 4.4 s, 300 ms
inversion time, 250�250 matrix per slice. For functional images, 36 slices were
acquired, 3 mm thick with 901 flip angle, 3�3�3.75 mm voxels with gap, TR
3300 ms, TE 50 ms, 64�64 mm matrix per slice.

Image processing and statistical analyses were performed using SPM5 (Well-
come Trust Centre, http://www.fil.ion.ucl.ac.uk/spm/), employing spatial realign-
ment and sequential coregistration (6-parameter rigid body spatial
transformation). Structural images were segmented into grey and white matter
and cerebrospinal fluid (CSF) and iteratively normalised to standard space (Mon-
treal Neurologic Institute, MNI). Transformation parameters for structural images
were then applied to functional images. Subsequently, functional volumes were
spatially smoothed with an 8-mm Gaussian kernel to adjust for between-
participants anatomical differences. The first 5 functional volumes were discarded
to allow for equilibration of net magnetisation. In order to detect further movement
artefacts after realignment, the software ArtRepair (http://cibsr.stanford.edu/pub
lications/publications.htm) was used (z threshold¼11, movement threshold¼3)
and additional movement regressors for outliers were created.

2.5. Statistical analysis

2.5.1. Behavioural data
Lexical decision latencies and accuracy were analysed by means of 3 different

designs: lexicality (words, pseudowords), emotionality (neutral, positive, negative)
and valence (positive, negative) by arousal (high, low). As a standard in psycho-
linguistic research (cf. Clark, 1973), we conducted analyses by participant

Table 1
Descriptive statistics for selected words. Means, minimum and maximum scores for each condition are reported. Emotionality refers to the absolute valence ratings. Freq_log
refers to the logarithm of word frequency, N-size and N-frequency to neighbourhood size and frequency, respectively.

Positive, high arousal Negative, high arousal Positive, low arousal Negative, low arousal Neutral, low arousal

Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max

Emotionality 1.92 1.01 2.52 1.77 1.17 2.61 1.46 1.04 1.90 1.33 0.89 2.02 0.57 0.04 0.85
Em. Valence 1.92 1.01 2.52 �1.77 �2.61 �1.17 1.46 1.04 1.90 �1.33 �2.02 �0.89 0.19 �0.85 0.85
Arousal 4.45 4.00 5.35 4.60 4.06 5.41 3.41 2.59 3.88 3.52 2.24 4.42 3.32 2.79 4.15
Imageability 4.31 2.51 6.37 3.88 2.20 6.51 3.73 2.07 6.71 3.44 1.96 6.48 3.84 2.05 6.44
Letters 7 4 12 7 3 11 7 3 11 7 3 13 6 3 12
Phonemes 6 3 13 5 2 10 5 2 10 6 3 12 5 2 12
Syllables 2 1 5 2 1 4 2 1 5 2 1 4 2 1 4
Frequency 42 0 172 33 2 148 49 1 272 44 1 267 85 1 996
Freq_log 3.01 0.00 5.15 2.78 0.69 5.00 3.15 0.00 5.61 2.91 0.00 5.59 3.59 0.00 6.90
N-size 2 0 12 3 0 18 3 0 21 5 0 23 4 0 34
N-freq 6 3 9 6 0 9 6 1 8 6 0 9 6 1 9
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(1 subscripted), in which the raw data are averaged within each experimental
condition and compared in a within-subjects design, as well as analyses by item (2
subscripted), in which the data points for each single stimulus are averaged across
participants and the words belonging to each condition are compared in a
between-subjects design. More specifically, we used t-tests or ANOVAs depending
on the number of levels for each factor. For the lexicality design, we used one-
directional t-tests. If the main emotionality effect and the valence by arousal
interaction were significant, one-directional planned contrasts between neutral vs.
emotionally-valenced words and between words eliciting conflicting vs. congruent
tendencies were performed. In case of violation of the sphericity assumption, we
used the Greenhouse-Geiser correction and in case of inhomogeneity of variances,
we used Welch statistics. Only correctly-responded trials were included in RT
analyses and, for each participant, outlier correction of RTs73 SDs was applied.
A significance level of Po0.05 was used.

2.5.2. Neuroimaging data
A general linear model was used in an event-related design. Hemodynamic

responses were time-locked to the stimulus onset and convolved with the
canonical hemodynamic response function of SPM5. Six separate regressors were
used to model each condition: pseudowords, PH, PL, NH, NL and neutral words. In
order to account for signal changes not related to the conditions of interest, six
head movement regressors were added as covariates. For some participants,
additional artefact regressors, created with the ArtRepair toolbox, were added to
the model.

As with the behavioural analyses, lexicality, emotionality and valence by
arousal factorial designs were employed for the imaging data, by defining
T-contrasts for each participant. For the lexicality design, words were contrasted

with pseudowords. For the emotionality design, valenced words were contrasted
with neutral words; in addition, positive and negative words were separately
contrasted with neutral words. For the valence by arousal design, main effects were
tested by contrasting positive and negative words, as well as high- and low-arousal
words. The interaction between factors was tested by contrasting PH and NL words
with PL and NH words. Further pair-wise comparisons were also performed. At the
second (group) level analysis, one-sample t-tests in both directions were per-
formed using the contrast images created at the first (single-participant) level. For
significance levels, a voxel-level threshold of Po0.001 uncorrected was chosen,
along with a cluster-level threshold of Po0.05, corrected for family-wise
error (FWE).

3. Results

3.1. Behavioural results

Mean accuracy overall was 97%. Descriptive statistics are
reported in Table 2 and displayed in Fig. 1a.

3.1.1. Lexicality
Words were responded to significantly faster (t1(16)¼3.33,

po0.01; t2(335.36)¼15.36, po0.0001) and more accurately
(t1(16)¼3.58, po0.01; t2(373.60)¼2.49, po0.01) than pseudo-
words (see Table 2).

Table 2
Descriptive statistics of the behavioural results for lexicality and emotionality designs, analyses by item. RT¼reaction time; SE¼standard error of the mean.

Design Condition Sussex sample, inside the scanner Berlin sample, outside the scanner

Mean RT in ms (SE) Mean accuracy % (SE) Mean RT in ms (SE) Mean accuracy % (SE)

Lexicality Words 744.07 (3.72) 98 (0.3) 586.29 (3.07) 98 (0.4)
Pseudowords 833.02 (4.44) 96 (0.5) 643.48 (3.45) 96 (0.5)

Emotionality Neutral 740.02 (11.46) 96 (1.4) 593.79 (9.03) 96 (1.5)
Positive 735.16 (6.14) 99 (0.3) 573.90 (4.79) 98 (0.4)
Negative 754.18 (6.01) 98 (0.4) 591.11 (5.02) 99 (0.4)

Fig. 1. Descriptive statistics of mean reaction times and mean accuracy rates for the valence by arousal design, analyses by item: (a) Sussex sample and (b) Berlin sample.
Error bars represent standard errors of the mean.
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3.1.2. Emotionality
RT results revealed a main effect of emotionality (F1(2,32)¼

5.22, po0.05), not confirmed by the item analysis (F2(2,172)¼
2.22, p¼0.11). A trend toward slower RTs for neutral than
emotionally-valenced words was found (F1(1,16)¼3.01, p¼0.051);
further comparisons revealed significantly slower RTs for negative
than neutral words (F1(1,16)¼8.66, po0.01). See Table 2 for
descriptive statistics.

Accuracy results also revealed a significant effect of emotion-
ality, in both participant and item analyses (F1(2,32)¼9.23,
po0.001; F2(2,172)¼4.10, po0.05). Planned contrasts revealed
significantly lower accuracy for neutral than emotionally-valenced
words (F1(1,16)¼11.08, po0.01; t2(172)¼2.42, po0.01).

3.1.3. Valence by arousal
RT results revealed a main effect of valence with faster responses

to positive than negative words (F1(1,16)¼8.18, po0.05; F2(1,136)¼
4.85, po0.05). No main effect of arousal (F1(1,16)¼1.85, ns;
F2(1,136)¼0.55, ns) and no interaction (F1(1,16)¼0.65, ns;
F2(1,136)¼0.02, ns) were found (see Fig. 1a).

Accuracy results revealed a main effect of valence with higher
accuracy for positive than negative words (F1(1,16)¼5.34, po0.05;
F2(1,136)¼4.93, po0.05), accompanied by a significant interaction
(F1(1,16)¼8.13, po0.01; F2(1,136)¼4.93, po0.05), whereby words
eliciting conflicting approach-withdrawal orientations (PH and NL
conditions) showed lower accuracy than words eliciting congruent
orientations (PL and NH) (t1(16)¼2.85, po0.01; t2(118.38)¼2.19,
po0.05) (see Fig. 1a).

3.2. Functional imaging results

3.2.1. Lexicality
Several brain regions were significantly activated for the con-

trast words4pseudowords (refer to Table 3 for a detailed list).
Increased activations for words were found in the left inferior and
superior frontal gyri (IFG, SFG) and in the left dorsomedial
prefrontal cortex (dmPFC). Clusters of activation were also found
bilaterally within the middle and superior temporal gyri (MTG,
STG), and in the right middle cingulate cortex (CC). These areas are
known to be part of a general language network (cf. Ferstl,
Neumann, Bogler, & von Cramon, 2008), but more specifically,

they are activated in response to the retrieval of lexical and
semantic word representations (Fiebach et al., 2002; Price, Wise,
& Frackowiak, 1996).

3.2.2. Emotionality
The contrast between emotionally-valenced and neutral words

(positiveþnegative4neutral words) revealed a cluster of signifi-
cant activation in the right superior occipital gyrus (SOG) and
cuneus, both part of the extra-striate cortex (see Table 4 and
Fig. 2). A similar cluster was also significant for negative words
compared to neutral ones, whereas activation of the SOG did not
reach corrected cluster level significance in the contrast positive
vs. neutral words.

3.2.3. Valence by arousal
A significant cluster of activation in the right insula extending

to the superior temporal gyrus (STG) was observed in response to
the interaction between valence and arousal (PHþNL4PLþNH).
As can be seen in Fig. 3a, this region showed increased activation
for PH and NL conditions, stronger for the former, and very little
response to PL and NH conditions. A second cluster within the left
posterior insula did not reach corrected cluster level significance
(T¼6.12, p¼0.078). No main effects of either valence or arousal
were found.

Further planned pair-wise comparisons extended the results
found for the interaction by showing a bigger cluster of activation
in the right insula and STG for the contrast PH4PL (see Table 4).
Again, a cluster of activation in the left posterior insula was
observed at a level just below corrected cluster level significance.
In addition, a significant activation of the left parahippocampal
gyrus was found, with increased activation for PH, but no response
to PL (see Fig. 3b). No other pair-wise comparisons showed
significant clusters of activation. Nevertheless, clusters in the left
parahippocampal gyrus and in right STG were visible for the
contrast PH4NH and a cluster in the right pulvinar of the
thalamus was apparent for the contrast NL4NH (see Table 4).

3.3. Post-hoc collection of behavioural data from an independent
sample

The most important result of our study, namely the interaction
between valence and arousal dimensions in insular cortex, was

Table 3
Regions showing significant BOLD signal change to words compared to pseudowords.

Words4Pseudowords

Lobe Hemi. Region Cluster size T x y z

Frontal L Dorso-medial prefrontal cortex 279* 5.87 �6 56 32
Superior medial frontal gyrus 4.82 �8 60 22
Superior frontal gyrus 4.24 �14 46 34

L Inferior frontal gyrus 84* 4.98 �48 24 10
Inferior frontal gyrus 4.49 �56 22 22

Temporal L Middle temporal gyrus 121* 5.85 �54 �14 �16
Superior temporal pole 5.50 �54 6 �14

R Superior temporal gyrus 93* 7.17 54 �10 �12
L Middle temporal gyrus 664* 6.00 �54 �50 8

Middle temporal gyrus 5.27 �40 �50 16
Middle temporal gyrus 5.23 �60 �60 0

R Middle temporal gyrus 332* 6.28 46 �60 14
Middle temporal gyrus 6.05 58 �48 2

Cingulate R Middle cingulate cortex 85* 5.12 4 �16 42
Supplementary motora area 5.08 8 �22 48

Hemi.¼hemisphere, L¼ left, R¼right; cluster size is in voxels, T¼peak t-value; x, y, z¼MNI stereotactic space coordinates.
n Significant clusters (with correction).
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supported by a similar interactive pattern in the accuracy rates,
but not in the reaction times. In our view, behavioural data
collected in the scanner might be more noisy and have higher
variance than data collected while sitting in front of a computer
screen, because of greater fatigue (e.g., scanner noise, movement
constraints, etc.). Therefore, we decided to conduct a second,
independent behavioural replication study.1

3.3.1. Participant sample
Eighteen native English-speakers living in the Berlin area (8

women, 10 men), aged between 18 and 30 years (mean7-
SD¼23.973.2 years) took part in the experiment. Participants
came from different English-speaking countries. They all had
normal or corrected-to-normal vision and 16 of them were
right-handed. Participants were paid 5€ for their participation.
They all gave written informed consent before participating.

3.3.2. Methods
The experiment was conducted in a quiet room, where parti-

cipants sat in front of a computer screen. They responded by
pressing two buttons highlighted on the keyboard. All other
details regarding the programming of the experiment, the timing

of stimulus presentation, the randomisations, as well as the data
analyses, are identical to the ones in the original experiment.

3.3.3. Group comparison
The Berlin sample showed high mean accuracy overall (97%),

not different from the accuracy of the Sussex sample (t1(33)¼0.02, ns),
but significantly faster RTs (t(25.83)¼5.20, po0.0001) and much
lower variance. Please refer to Table 2 for descriptive statistics.

3.3.4. Berlin sample: lexicality
As in the previous sample, words were responded to signifi-

cantly faster (t1(17)¼7.51, po0.0001; t2(348)¼12.38, po0.0001)
and more accurately (t1(17)¼1.66, p¼0.06; t2(321.60)¼2.64,
po0.01) than pseudowords (see Table 2). The difference in
accuracy was smaller than in the Sussex sample, possibly due to
the fact that the Berlin sample came from a more heterogeneous
language background. In fact, some participants expressed their
awareness of the British spelling and the possibility of not
knowing some specific British words.

3.3.5. Berlin sample: emotionality
As in the Sussex sample, RT results revealed a main effect of

emotionality, this time consistent across participant and item
analyses (F1(1.32,22.37)¼4.31, po0.05; F2(2,172)¼3.63, po0.0.05).
Planned contrasts revealed no difference between neutral and

Table 4
Regions showing significant BOLD signal change in the emotionality and valence by arousal designs. Significant clusters with correction are marked with an asterisk.
Additional non-significant clusters exceeding an extent threshold of at least 45 contiguous voxels are reported for completeness. When identifiable, Brodmann areas (BA)
were reported along with the cortical region.

Contrasts, followed by Hemi. Region Cluster size T x y z

Emotional4neutral words
R Superior occipital gyrus (BA 18) 84* 5.56 18 �94 18

Cuneus 4.91 22 �96 10

Negative4neutral words
R Superior occipital gyrus (BA 19) 86* 5.87 18 �92 20

Cuneus 5.55 12 �86 26
R – 52 4.62 30 �40 12

Precuneus 4.61 22 �46 12
Cerebellum 50 5.36 20 �62 �22

Positive4neutral words
R Superior occipital gyrus 57 4.84 22 �94 8

Superior occipital gyrus (BA 19) 4.55 20 �94 20 20

Interaction valence by arousal: PHþNL4PLþNH
R Insula (BA 13) 81* 5.35 42 �4 �2

Superior temporal gyrus 4.72 44 6 �24
L Rolandic operculum 68 6.12 �42 �22 20

Posterior insula 5.10 �42 �16 26
Posterior insula (BA 13) 4.02 �36 �22 12

R Cerebellum 46 7.79 32 �48 �32

PH4PL
R Insula 119* 5.89 42 �4 �2

Superior temporal gyrus 5.04 52 �12 �2
Insula 4.61 40 �6 �14

L Parahippocampal gyrus (BA 35) 81* 7.22 �20 �26 �18
L Posterior insula 47 4.81 �38 �16 0

Posterior insula (BA 13) 4.67 �32 �22 14
Superior temporal gyrus 4.38 �40 �26 8

NL4NH
R Pulvinar (thalamus) 50 5.79 16 �32 8

Pulvinar (thalamus) 4.39 22 �32 2

PH4NH
R Superior temporal gyrus 67 6.26 46 �2 �8
L Parahippocampal gyrus 46 6.44 �18 �26 �22

Hemi.¼hemisphere, L¼ left, R¼right; cluster size is in voxels, T¼peak t-value; x, y, z¼MNI stereotactic space coordinates.
n Significant clusters (with correction).

1 We would like to thank an anonymous reviewer for this suggestion.
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emotionally-valenced words (F1(1,17)¼0.46, ns; t2(172)¼1.36,
p¼0.09), but further comparisons showed significantly slower RTs
for neutral than positive words (F1(1,17)¼4.39, p¼0.05; t2(172)¼
2.19, po0.05). See Table 2 for descriptive statistics.

Accuracy results also revealed a main effect of emotionality
(F1(2,34)¼8.92, po0.001; F2(2,172)¼3.60, po0.05), with lower
accuracy for neutral than emotionally-valenced words (F1(1,17)¼
13.31, po0.001; t2(172)¼2.56, po0.01), confirming the results
from the Sussex sample.

3.3.6. Berlin sample: valence by arousal
RT results confirmed a main effect of valence, with faster

responses to positive than negative words (F1(1,17)¼22.46,
po0.0001; F2(1,136)¼6.29, po0.05). Most importantly, a significant
interaction between valence and arousal was found (F1(1,17)¼9.64,
po0.01; F2(1,136)¼4.02, po0.05), whereby words eliciting conflict-
ing approach-withdrawal tendencies were responded to more slowly
than words eliciting congruent approach or withdrawal tendencies
(t1(17)¼3.11, po0.01; t2(127.16)¼1.97, po0.05). A trend toward a
main effect of arousal was observed only in the participant analysis
(F1(1,17)¼3.31, p¼0.09; F2(1,136)¼1.31, ns). Please refer to Fig. 1b for
descriptive statistics.

Accuracy results confirmed a significant interaction between
valence and arousal (F1(1,17)¼3.17, po0.05; F2(1,136)¼4.42,
po0.05), whereby words eliciting conflicting orientations showed
lower accuracy thanwords eliciting congruent orientations (t1(17)¼
1.78, po0.05; t2(137.97)¼2.10, po0.05). As in the previous sample,
no main effects of valence (F1(1,17)¼0.49, ns; F2(1,136)¼1.52, ns) or
arousal (F1(1,17)¼0.66, ns; F2(1,136)¼1.39, ns) were found.

4. Discussion

The present study examined how emotional valence and arousal
affect hemodynamic brain responses during implicit emotion word
processing, within a framework that predicts interactive effects
(Robinson et al., 2004). To this end, we employed a lexical decision
task and manipulated valence and arousal dimensions orthogonally,
by controlling for other lexico-semantic variables that are known to
affect written word recognition.

Our main finding, in line with our first hypothesis, was an
interaction between the two dimensions of emotion, expressed via
increased neural responses within right insular cortex to stimuli
eliciting incongruent approach-withdrawal tendencies (PH and NL
words, e.g., rollercoaster and weak, respectively) compared to
stimuli eliciting congruent approach vs. withdrawal tendencies
(PL and NH words, e.g., flower and bomb, respectively). In addition,
pairwise comparisons showed increased activation in the very
same region as well as in the left parahippocampal gyrus for the
contrast PH4PL. The interaction at the neural level was supported
by behavioural data showing slower LD latencies and lower
accuracy for stimuli eliciting conflicting orientations, in line with
previous behavioural results (Citron et al., under review; Robinson
et al., 2004).

Insular cortex, and more specifically anterior insula, is respon-
sible for the integration of afferent information about the physio-
logical state of the body with on-going cognitive and evaluative
processes (Critchley et al., 2004; Gray, Harrison, Wiens, &
Critchley, 2007). Initial somatic afferent representations within
the posterior insula may underlie consciously accessible feeling
states following integrative processing within anterior insula
regions: this integration gives rise to emotional awareness

Fig. 2. Regions showing significant BOLD signal changes to emotional words compared to neutral words. Less decrease in activation for emotional words was found
significant in the left extra-striate cortex. A small cluster of activation is also visible in the right homologous region, even though not significant. The left diagram shows the
signal change (ß values) for positive, negative and neutral words; these conditions are broken down by valence and arousal in the right diagram.
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(cf. Craig, 2009; Critchley et al., 2004; Damasio et al., 2000).
Lateralisation of insular functions has also been proposed (Craig,
2005), whereby right anterior insula is activated by homoeostatic
afferents associated with sympathetic functions (e.g., pain) or
“energy expenditure”, whereas left anterior insula activation is
associated with the parasympathetic system or “energy enrich-
ment” (e.g., nourishing during quiescence).

In our study, implicit integration of conflicting approach-
withdrawal tendencies elicited by specific emotionally-laden stimuli
was processed in the right insula, consistent with increased sympa-
thetic arousal, and suggesting that these stimuli demand more
energy in order to be processed. Further, the proposed functional
role of insula suggests that both automatic reaction tendencies and
cognitive stimulus evaluation were involved.

Our finding lends support to the multidimensional model
proposed by Robinson et al. (2004) and confirms previous findings
of interactive effects of valence and arousal during implicit emo-
tion processing (Citron et al., under review; Eder & Rothermund,
2010; Feng et al., 2012; Hofmann et al., 2009; Larsen et al., 2008).
Moreover, this result extends previous behavioural and ERP find-
ings by suggesting a possible functional neural correlate of the
integration of pre-attentive approach-withdrawal tendencies eli-
cited by salient stimuli, namely the right insula.

The model proposed by Robinson et al. (2004) differs from
previous models in that it predicts approach vs. withdrawal
tendencies for low vs. high arousal independently of whether
the stimulus is positive or negative. For example, other models of
emotion processing predict appetitive behaviour toward highly

Fig. 3. (a) Regions showing significant BOLD signal changes to positive high-arousal (PH) and negative low-arousal (NL) words compared to positive low-arousal (PL) and
negative high-arousal (NH) words. Increase in activation for the former two conditions was found in the right insula, also significantly activated in the pair-wise comparison
PH4PL. (b) In addition, the latter contrast showed significant activation of the left parahippocampal gyrus. Please refer to Table 4 for exact MNI coordinates. Diagrams of
increase or decrease in activation (ß values) are reported for the 4 conditions. Error bars represent standard errors of the mean.
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arousing positive stimuli such as sugary food or sexually attractive
pictures, given that they are positive in valence (e.g., Lang et al.,
1997; Lang, Bradley, & Cuthbert, 1999). The prediction of conflict-
ing approach-withdrawal tendencies for PH stimuli made by
Robinson et al. is based on distinct effects of valence and arousal
dimensions and cannot be predicted by previous models, which
associate increase in (positive or negative) valence with a neces-
sary increase in emotional arousal (Bradley & Lang, 1999; Lang
et al., 1997). In this respect, empirical support for partial distinc-
tion (e.g., Ito, Larsen, Smith, & Cacioppo, 1998) and a non-perfect
correlation between these two variables (Citron et al., 2012) allows
room for interactive effects, that can only be predicted by an
interactive model. As an example, rollercoaster represents some-
thing positive and exciting one might want to approach, but also
something very intense, that might elicit withdrawal.

The interaction between emotional variables elicited no activation
in the ACC. This null finding is consistent with the notion that the
ACC is typically engaged by emotional (or cognitive) conflict elicited
by the task requirements (cf. Kanske & Kotz, 2011; Ullsperger et al.,
2010); for example, in the go/no-go or in the Stroop task, the
participant needs to put effort in order to avoid a strong, automatic
response tendency and to successfully perform the task. In such
situations, the individual is aware of the conflict and explicitly acts in
order to solve it (Ullsperger et al., 2010). This importantly differs from
the type of conflict we propose in our study, which is induced by the
implicit integration of conflicting stimulus-driven response tenden-
cies to emotional valence and arousal.

Besides the insula, the anterior portion of the right superior
temporal gyrus (STG), also referred to as anterior temporal lobe
(ATL), also showed enhanced activation in the interaction as well
as in the PH4PL contrast. Bilateral ATL activation is associated
with semantic/conceptual categorisation (Rogers et al., 2006) as
well as comprehension of coherent, comprehensible text (Ferstl
et al., 2008). More specifically, right ATL showed enhanced activa-
tion during comprehension of emotionally and chronologically
inconsistent stories compared to consistent ones (Ferstl, Rinck, &
von Cramon, 2005), thus suggesting a possible role of this region
in making sense of emotionally incongruent information. Besides
language, ATL is also involved more generally in social-emotional
cognition (cf. Wong & Gallate, 2012); for example, the right
anterior STG contributes to encoding facial expressions, as it
responds to dynamic changes in face features (Haxby, Hoffman,
& Gobbini, 2002) and is more strongly activated in response to
judgment of emotion from facial expression than to simple face
detection (Streit et al., 1999). Thus this region is also involved in
decoding the emotional content of visual information.

Activation of the parahippocampal gyrus in response to PH
compared to PL words was also not specifically predicted but is not
surprising; in fact, this region is part of the Papez circuit, one of the
major pathways of the limbic system, involved in the cortical control
of emotion, as well as in maintaining novel information in working
memory (cf. Bear, Connors, & Paradiso, 2006; Hasselmo & Stern, 2006).

PH words elicited the highest increases in activation in the right
insula, both in the contrast and in the interaction. These words,
even though matched for emotionality and arousal level with the
NH words, might represent the most strongly emotionally-laden
words in our study. In fact, negative stimuli are naturally more
intense than positive ones (cf. Bradley & Lang, 1999; Citron et al.,
2012). In our manipulation, highly arousing negative words such as
rape, war or death had to be excluded in order to obtain a good
matching with the corresponding positive words.

A second important finding, in line with our general second
hypothesis, was significant activation within the left extra-
striate cortex in response to emotionally-valenced words com-
pared to neutral words, in line with previous research (Compton
et al., 2003; Herbert et al., 2009). This result is interesting for

two reasons: First of all, it suggests enhanced processing (or
stronger attention capture) of emotionally salient stimuli
(Compton et al., 2003; Kissler et al., 2007) in regions that are
functionally associated with perceptual, i.e., visual processing;
Further, source localisation techniques found the left extra-
striate cortex to be the source of an early ERP component
(200–300 ms, with posterior scalp distribution) associated with
implicit emotion word processing, namely the early posterior
negativity (EPN; Kissler et al., 2007). Thus, the emotional
connotation of verbal stimuli seems to modulate not only
emotion-related processes, but also early, perception-related
processes, during reading.

The fact that no clusters of activation for the contrast emotio-
nal4neutral in emotion-related cortical areas (e.g., OFC, amyg-
dala) were found might be due to the relatively small difference in
arousal level between the two conditions. Our neutral words had
the same arousal level as half of our valenced words and, as can be
seen in the bottom right diagram of Fig. 2, the effect was mainly
driven by high-arousal valenced words (i.e., PH, NH), which
showed the least decrease of activation in this region. Previous
studies reporting OFC activation compared highly arousing posi-
tive and negative words with neutral ones (e.g., Kuchinke et al.,
2005). Further, OFC activation is typically elicited by tasks that
require deep encoding of the emotional material, such as valence
decision (Dolcos, LaBar, & Cabeza, 2004; Small et al., 2003),
associated with retrieval of emotional memories (Posner et al.,
2009), or self-referential tasks (Lewis et al., 2007).

Activation of the amygdala has also been typically reported in
studies employing highly arousing positive and negative words
(Hamann & Mao, 2002; Lewis et al., 2007) and low-arousal neutral
words (Hamann & Mao, 2002). Further, this region is associated
with perceptual processing of emotionally-laden material
(Garavan, Pendergrass, Ross, Stein, & Risinger, 2001) and its
activation may be attenuated or suppressed by cognitively
demanding tasks (Phan et al., 2002). In fact, amygdala activation
was absent in Kuchinke et al. (2005), who employed a LDT, but
was instead reported by Herbert et al. (2009) during silent reading.
In our study, the subtle manipulation of arousal levels within
valenced words as well as between valenced and neutral words,
along with the employment of a LDT, might have hindered
amygdala activation.

As an additional note, we would like to mention the fact that
single words elicit little BOLD-signal response compared to emo-
tional pictures (Citron, 2012) and only a few neuroimaging studies
on implicit emotion word processing exist in the literature (i.e.,
Herbert et al., 2009; Kuchinke et al., 2005; Lewis et al., 2007). See
also Schlochtermeier et al. (2013) for a detailed investigation of the
effects of the type of emotional material (verbal vs. pictorial) and
its visual complexity.

At the behavioural level, we report better performance for
valenced than neutral words, in line with previous literature (e.g.,
Kousta et al., 2009). Furthermore, faster RTs and higher accuracy
for positive than negative words are in line with Kuchinke et al.
(2005), who interpreted this effect in light of a more intercon-
nected network of lexical and semantic representations for posi-
tive words, therefore making their processing easier (cf. Ashby,
Isen, & Turken, 1999). Finally, the lack of an arousal effect within
positive and negative words can again be attributed to the
relatively small difference in arousal level between high- and
low-arousal valenced words. Furthermore, arousal effects within
valenced words are not well-established at the behavioural level
(cf. Bayer et al., 2012; Hofmann et al., 2009).

The behavioural data collected outside of the scanner showed
stronger and more consistent effects than the data collected while
scanning, i.e., most effects were significant in both participant and
item analyses and the interactive pattern between valence and
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arousal was replicated in the reaction times, beyond accuracy
rates. These results are not surprising, given the fact that perfor-
mance in the scanner might be affected by a number of factors (e.
g., noise, strain, movement constraints) and therefore lead to
increased noise and variance in the data. In fact, the Sussex sample
showed significantly slower RTs and much larger variance than the
Berlin sample. Accuracy in a LDT is typically very high and in this
study it was not affected by the environmental conditions.

A possible limitation of our 2�2 design is the fact that the
interactive pattern of effects may be driven by other variables. For
example, the fact that the difference in BOLD response between
PH and PL conditions is larger than the difference between the
corresponding negative conditions, along with the significant pair-
wise comparison, may suggest that the interactive effect found is
actually driven by an arousal effect within positive words. We
cannot currently rule out this interpretation, but only suggest that
future confirmation of this pattern within positive and negative
stimuli is needed. One promising approach would be to use a more
naturalistic word selection. In particular, selecting highly arousing
negative words – that do not need to match positive words in
arousal level – might induce a larger difference between high- and
low-arousal valenced words. In fact, first results of a pilot study
using German words yields a clear interactive pattern, weighting
on both positive and negative words.

Finally, our experimental design could also be used to conduct
research on mood disorders, such as anxiety or depression, that
typically disrupt processing of emotionally salient stimuli (cf.
Mathews & MacLeod, 1994)

4.1. Conclusions

The present study provides new empirical evidence from fMRI
in support of a multidimensional, interactive model of emotion
processing (Robinson et al., 2004), whereby valence and arousal
dimensions affect the processing of emotional stimuli interac-
tively, i.e., positive high-arousal and negative low-arousal words
elicit conflicting approach-withdrawal tendencies and therefore
require more processing resources than positive low-arousal and
negative highly arousing words, that elicit congruent approach vs.
withdrawal tendencies, respectively.

Our findings add to previous research showing that interactive
effects arise during implicit processing of a stimulus0 emotional
content (e.g., Eder & Rothermund, 2010; Feng et al., 2012) and
propose for the first time a specific neural correlate reflecting the
integration of pre-attentive approach-withdrawal tendencies eli-
cited by salient stimuli, namely the right insular cortex.

Finally, our findings support the claim that emotional variables
affect even highly abstract cognitive processes such as reading,
beyond other well-known lexico-semantic variables, and this
could have implications for formal education in school, as well
as the assessment and diagnosis of mood disorders.
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