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Abstract Among the environmental factors that affect blood
pressure, dietary sodium chloride has been studied the most,
and there is general consensus that increased sodium chloride
intake increases blood pressure. There is accruing evidence
that chloride may have a role in blood pressure regulation
which may perhaps be even more important than that of Na+.
Though more than 85 % of Na+ is consumed as sodium
chloride, there is evidence that Na+ and Cl− concentrations
do not go necessarily hand in hand since they may originate
from different sources. Hence, elucidating the role of Cl− as an
independent player in blood pressure regulation will have
clinical and public health implications in addition to advanc-
ing our understanding of electrolyte-mediated blood pressure
regulation. In this review, we describe the evidence that sup-
port an independent role for Cl− on hypertension and cardio-
vascular health.
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Essential hypertension is the result of a complex interplay
between multiple regulatory systems which are themselves
influenced by a multitude of genetic and environmental fac-
tors. Among the environmental factors that affect blood pres-
sure, dietary sodium chloride has been studied the most, and
there is general consensus that increased sodium chloride
intake increases blood pressure. The role for NaCl is support-
ed by insights from the pressure-natriuresis mechanism [30],
monogenic forms of hypertension [51], and dietary salt reduc-
tion studies [16, 32, 76]. However, there is still considerable

debate about NaCl and hypertension particularly in relation to
the context in which this occurs, its prognostic implications,
and the role of the underlying regulatory and counter-
regulatory pathways that are perturbed when salt intake is
altered [2, 25, 43, 60, 62, 65–67]. The blood pressure response
to sodium chloride intake is referred to as salt sensitivity and
while this has universal definition, a 5–10 % change in office
blood pressure in response to a change in salt intake is indic-
ative. Importantly, studies of salt sensitivity show that the
blood pressure responses to salt are variable and demonstrate
a Gaussian distribution within populations. Salt sensitivity is
more prevalent in hypertensive individuals (30–50 %) com-
pared to normotensives, and the presence of salt sensitivity in
normotensives is a risk factor for future development of hy-
pertension [95]. Salt sensitivity is not specifically NaCl relat-
ed, as it can be modulated by other components of the diet
including potassium, calcium, protein, carbohydrate, and fat
[45, 53]. There is growing evidence that Cl− component of
NaCl may have a more specific role in salt-sensitive blood
pressure, and this may perhaps be even more important than
that of Na+. But this is neither a recent nor novel idea; a role
for Cl− had been mooted as early as 1904 by Ambard and
Beaujard [3] and in 1908 byHiggins [34] who pointed out that
hypertension was intimately associated with “chlorine reten-
tion.” Then in 1929, Berghoff and Geraci [5] noted that
loading hypertensive individuals with sodium bicarbonate
did not have the same pressor effect as loading with sodium
chloride. Since then, an independent effect of Cl− has been re-
discovered in the 80s using diet containing citrate or phos-
phate as the anion for Na+ [48, 49, 83, 97], and again more
recently from epidemiologic outcome studies showing con-
trasting associations of serum Cl− and Na+ on mortality [19,
59]. In usual diets, more than 85 % of Na+ is consumed as
sodium chloride and any clinical relevance of the independent
effect of Cl− on blood pressure and prognosis has been con-
sidered to be largely “academic” [39]. However, studies
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measuring Na+ and Cl− content in processed foods indicate
that Na+ and Cl− concentrations do not go necessarily hand in
hand since they may originate from different sources [13]. In
this review, we shall describe the role of Cl− as a significant
electrolyte in its own right with major impact on hypertension
and health.

Dietary chloride and blood pressure—animal and human
studies

There is data from three experimental rat models (Dahl salt-
sensitive rat, DOCA salt-sensitive rat, and SHRSP) demon-
strating that the full expression of NaCl-dependent hyperten-
sion is reliant on the concomitant provision of both Na+ and
Cl−. Early studies in Dahl salt-sensitive rats [1, 44, 46] showed
that hypertension occurred within several weeks when ani-
mals were fed on a high NaCl diet, but not when the animals
were fed an identical Na+ load provided as sodium bicarbon-
ate or other non-chloride salts of Na+. Kurtz and Morris [49]
showed similar findings in a model of desoxycorticosterone
acetate (DOCA) salt-sensitive hypertension where after ad-
ministration of DOC, the mean systolic blood pressure in rats
given sodium chloride were significantly higher than in those
given sodium bicarbonate and/or sodium ascorbate. The fail-
ure of selective dietary sodium loading to produce hyperten-
sion was not related to differences of body weight, net Na+

balance, blood pH, serum concentrations of Na+, potassium,
or chloride [1, 44, 46, 49]. Passmore and Jiminez [73] showed
that in DOCA salt-sensitive hypertensive rats, blood pressure
and renal vascular resistance were significantly higher in rats
consuming a diet high in Cl− while cardiac output was related
to Na+ intake. Their group followed this with studies showing
that the pressure-flow curves of the DOCA-high Cl− groups
shifted significantly downward (reduced renal blood flow at
all pressures) and rightward (elevated lower threshold) com-
pared with the DOCA-normal NaCl and -high Na+ groups
[37]. Luft et al. [54] reported that supplementation of NaCl in
drinking water caused a modest but significant increase of
arterial pressure in the stroke-prone spontaneously hyperten-
sive rat (SHRSP), whereas an equivalent Na+ load, primarily
in the form of sodium bicarbonate, did not. The increase in
blood pressure with Cl− alone was less than the increase with
NaCl in both Dahl salt-sensitive rat and SHRSP, suggesting
that the pressor “sensitivity” to dietary NaCl depends on both
its Na+ and Cl− components [96, 100]. Schmidlin et al. [77]
and Tanaka et al. [89] in a study of SHRSP showed that
dietary Cl−was selectively sufficient to induce a pressor effect
and that the Na+ component of dietary NaCl was not selec-
tively sufficient to induce a pressor effect. Further support for
the role of Cl− comes from the renin response to Na+ and Cl−.
The rise in blood pressure with NaCl intake is usually accom-
panied by suppression of the renin-angiotensin system and

decreased plasma renin. Acute and chronic administration of
non-chloride sodium salts did not appear to suppress plasma
renin activity in rats, while renin was inhibited by both sodium
chloride and by selective Cl− (without Na+) loading both in
rats and humans [1, 38, 44, 46]. Curiously, a diet containing a
combination of sodium iodide and sodium bromide induces
hypertension more readily than other non-chloride sodium
salts in DOCA-treated rats, suggesting that the role of Cl− in
the effect of NaCl on blood pressure may be related to some
property common to halides [7].

A limited number of clinical observations also suggest that
blood pressure is not increased in humans by high dietary Na+

intake in the absence of Cl−. The earliest clinical study in 1929
showed that Cl− was the main blood pressure increasing
component with the observation that sodium bicarbonate did
not have the same pressor effect as sodium chloride in hyper-
tensive individuals [5]. Kurtz et al. [48] demonstrated that the
rise in blood pressure in response to a high sodium diet (high-
salt diet, 240 mmol sodium chloride per day; 5.52 g Na+) was
abolished upon substituting an equimolar amount of sodium
citrate. Luft et al. [55] showed opposite effects of NaCl and
NaHCO3 on blood pressure and calcium excretion with
NaHCO3 reducing blood pressure but increasing calcium
excretion. Shore et al. [83] reported that NaCl intake induced
a greater rise in blood pressure than sodium phosphate intake.
In 1945, Grollman showed that both Na+ and Cl− were re-
quired to increase blood pressure in humans when dietary
supplementation with ammonium chloride failed to increase
blood pressure of hypertensive humans after dietary NaCl
restriction had decreased blood pressure [28]. Also, in hyper-
tensive humans, the reduction of blood pressure by dietary
potassium was attenuated by potassium chloride compared
with that of potassium citrate [71], but this difference was
not observed in other studies [8, 33], and supplemental potas-
sium chloride did not reduce the need for antihypertensive
medication in hypertensive men on a restricted-sodium diet
[27].

Serum chloride and outcomes

Large epidemiologic studies curiously show that lower circu-
lating levels of Cl− are associated with higher cardiovascular
and all-cause mortality. De Bacquer et al. [19] studied 9106
participants from the Belgian Interuniversity Research on
Nutrition and Health (BIRNH) study who were followed up
for 10 years. They showed serum Cl− <100 mEq/L was
associated with an increased risk of all-cause, cardiovascular
disease, non-cardiovascular disease, and coronary heart dis-
ease mortality after adjustment for age, body mass index
(BMI), and serum Na+ levels. Serum Cl− <100 mmol/L was
found to be a strong predictor (RR 1.77; 95 %CI 1.22–2.5), in
multivariate analysis, of total, cardiovascular, and non-
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cardiovascular mortality independent of other classic risk
factors and larger than the effects of diabetes (RR 1.46;
95 % CI 0.81–2.63), smoking status (RR 1.50; 95 % CI
1.10–2.05), BMI (RR 1.20; 95 % CI 0.85–1.67), and choles-
terol levels (RR 1.16; 95 % CI 0.88–1.54).

A post hoc analysis of the Candesartan in Heart failure-
Assessment of Reduction in Mortality and Morbidity
(CHARM) study [21] aimed to identify novel prognostic
markers in heart failure in a cohort of 2679 American patients.
The multivariate analysis showed that serum Cl− was a pre-
dictor of all-cause mortality in patients with heart failure with
an adjusted HR 0.78 per SD increase in serum Cl− (95 % CI
0.71–0.85), suggesting that serum Cl− predicts risk indepen-
dently of blood pressure and serum Na+.

A large study of 12,968 treated hypertensive patients at-
tending the Glasgow Blood Pressure Clinic with a follow up
period of 197,101 person-years sought to investigate the as-
sociation between serum Cl− and mortality [59]. Similar to De
Bacquer et al. [19], this study reported that individuals with
serum Cl− <100 mEq/L had the lowest survival independent
of serum Na+ or HCO3

− levels (p<0.001). Multivariate, ad-
justed, analysis showed an inverse association between serum
Cl− and all-cause mortality; a 1.5 % reduction in all-cause
mortality is seen for every 1 mEq/L increase in serum Cl− (HR
0.985; 95 % CI 0.980–0.990). Similar results were shown for
cardiovascular disease mortality (HR 0.985; 95 % CI 0.978–
0.991), ischaemic heart disease mortality (HR 0.985; 95 % CI
0.976–0.995), and non-cardiovascular disease mortality (HR
0.985; 95 % CI 0.977–0.990). The association with stroke
mortality did not reach statistical significance (HR 0.996;
95 % CI 0.981–1.010).

The mechanism by which low serum Cl– increases
mortality or cardiovascular events is unclear [23]. The
risk associated with low serum Cl– appears to be inde-
pendent of serum Na+, K+, or anion gap [59]. This also
suggests that dietary Cl– and serum Cl– exert different
effects and perhaps the regulation of serum Cl– is not
entirely related to dietary intake and renal mechanisms.
Emerging evidence that the immune system plays an
extrarenal regulatory role in Na+ homeostasis and the
intriguing finding that when this immune mechanism
was blocked there was selective Cl− accumulation in
the skin salt-sensitive hypertension would support this
hypothesis [56, 57, 98].

Chloride physiology

Cl− is the principal extracellular and intracellular anion in the
body representing 70 % of the total negative ion content and
about 0.15 % of total body weight (115 g in an adult). The
normal plasma concentration of Na+ is 135–145 mEq/L.
Because of its high concentration, Cl− is critical inmaintaining

electroneutrality. Cl− is responsible for about 100 of the
300 mOsml/L of extracellular fluid tonicity [4]. Regulatory
mechanisms for volume homeostasis are generally triggered
by changes in Na+ and Cl− concentrations. Cl− has an inverse
relationship with bicarbonate and this maintains acid-base
balance through reciprocal transport into and out of erythro-
cytes and renal tubuli [4]. Cl− excretion is an important
mechanism in the kidney’s adaptation to metabolic acidosis
and chronic respiratory acid-base disturbances. Circulating
Cl− concentrations are mainly regulated by the gastrointestinal
tract and the kidneys. Cl− is absorbed along the entire length of
the intestine, secreted by the gastric parietal cells as HCl. The
driving flux for fluid secretion into the intestinal tract is the
osmotic gradient between the intestinal lumen and the mucosa
which is mainly generated by Cl− and to a lesser extent by
HCO3

−. Normally, the kidney adapts urinary Na+ and Cl−

excretion to match exactly daily dietary NaCl intake. Cl−

channels are expressed along the entire mammalian nephron
and participate in transepithelial Cl− transport, cell volume
regulation, and acidification of intracellular vesicles [92].
Renal reabsorption of Na+ and Cl− is tightly linked in most
segments, often occurring even through the same transport
proteins such as the Na+-K+-2Cl− cotransporter NKCC2 or the
Na+-Cl− cotransporter NCC in the thick ascending limb or the
distal tubule, respectively. In the proximal tubule and in parts
of the collecting system, the transport of Cl− and Na+ is
mediated by separate mechanisms and Cl− fluxes occur
through both paracellular and transcellular routes.
Remarkably, in the connecting tubule (CNT) and the
collecting duct (CD), Na+ reabsorption is not linked molecu-
larly to Cl− transport directly but appears to be linked to
bicarbonate secretion. In the collecting duct, particularly in
the CNTand cortical collecting duct (CCD), Na+ is reabsorbed
via the aldosterone-sensitive luminal epithelial Na+ channel
(ENaC) and the basolateral Na+-K+-ATPase in principal cells.
However, these cells appear to have almost no Cl− conduc-
tance on both membranes, excluding them as the route for
transcellular Cl− transport. In contrast, neighboring intercalat-
ed cells express a number of anion transport and anion channel
proteins. The Na+-independent Cl−/HCO3

− exchanger,
pendrin (SLC26A4), is located on the apical membrane of
B-intercalated cells in the kidney DCT, CCD, and the CNT
and mediates the secretion of HCO3

− and the reabsorption of
Cl−. Type A intercalated cells in contrast express the H+-
ATPase on the apical plasma membrane and the Cl−/HCO3

−

exchanger (AE1) on the basolateral plasma membrane.
Pendrin may be regulated by the urinary excretion of Cl−.
With depleted urinary Cl−, pendrin is upregulated and when
large amounts of Cl− are delivered to the CCT, the expression
of pendrin is reduced [12, 93]. The basolaterally expressed
Cl−/HCO3− anion exchanger, AE1, that releases bicarbonate
into blood belongs to a subfamily of electroneutral anion
exchangers of the SLC4 family of bicarbonate transporters.
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AE1 is abundant in the red cell membrane, where it is an
integral part of the cell’s cytoskeletonwhere it has a key role in
the normal gas transfer of CO2. It is also expressed in the
basolateral membrane of the collecting duct acid-secreting
cell, though as a shorter N-terminally truncated form
(kAE1), where it transports intracellular HCO3− out of the
cell in exchange for Cl-. Mutations in AE1 cause distal renal
tubular acidosis, hereditary spherocytosis, and Southeast
Asian ovalocytosis [86, 99].

The intracellular concentration of Cl− is much lower than
its plasma concentration and depends on the resting mem-
brane potential of the cell and ranges from 2–4 mEq/L in
muscle cells and 100–120 mEq/L in smooth muscle cells
and red blood cells [4, 29]. The Cl− channels in other tissues
include (1) the ClC family of Cl− channels that are often
voltage-gated, (2) the cystic fibrosis transmembrane conduc-
tance regulator (CFTR), a member of the ABC transporter
family, (3) the ligand-gated GABA and glycine-activated Cl−

channels, (4) the calcium-activated Cl− channels and
bestrophins, and (5) the transmembrane protein 16
(TMEM16)/anoctamin (ANO) [20, 92].

Chloride, blood pressure, and cardiovascular
risk—putative mechanisms

A direct role for Cl− on hypertension is not established cur-
rently. However, evidence from monogenic syndromes, die-
tary and animal studies on renal Cl− balance, and Cl− trans-
porters in vascular tissues point to a critical role for Cl− in
mechanisms that contribute to blood pressure regulation.

Monogenic syndromes associated with Cl− transporters
manifest high and low blood pressure phenotypes. In
Gordon’s syndrome (pseudohypoaldosteronism type II), hy-
pertension occurs as a consequence of increased Cl− reabsorp-
tion in the thiazide-sensitive segment of the distal renal tubule
[87]. Bartter syndrome is associated with salt wasting, hypo-
kalemia, metabolic alkalosis, and increased renin secretion
and is caused by inactivating mutations in genes encoding
ion channels and transporters that mediate salt transport in the
thick ascending limb of the loop of Henle [6]. The genes
implicated in Bartter’s syndrome are the NKCC2, the potas-
sium channel (ROMK), one of the Cl− channels (CIC-Ka),
and barttin (an essential subunit for the Cl− channels CIC-Ka
and CIC-Kb).

Extensive investigations in several models of hypertensive
rats and in humans show that loading with equimolar amounts
of sodium salts causes similar degrees of Na+ retention,
weight gain, and suppression of RAAS, but only sodium
chloride causes an expansion of plasma volume and a rise in
BP [7]. In Dahl-S rats, DOCA salt rats, and in humans, plasma
volume is higher on a high NaCl intake than when Na+ is
provided with anions other than Cl−, although net Na+

balances do not differ. This suggests that the anion ingested
with Na+ affects the distribution of Na+ between the intracel-
lular and extracellular compartments [7].

Cl− reabsorption in the cortical segment of the loop of
Henle is greater in Dahl-S than in Dahl salt-resistant (R) rats
when both are examined at equivalent renal perfusion pres-
sures [40]. This finding is present before exposure to a high
NaCl diet and before the onset of hypertension. Enhanced
reabsorption of water and Cl− in the loop of Henle may
contribute to the blunted natriuretic capacity and hence to
hypertension in Dahl-S rats. In the Dahl-S rat, if Cl− delivery
to the loop is related to dietary Cl− intake, decreased renal
tubular reabsorption of Cl−may account for the failure of non-
chloride salts of Na+ to increase blood pressure [42].

In vivo, in isolated perfused kidneys, and in kidneys per-
fused in situ, hyperchloremia results in renal vasoconstriction
and a decline in glomerular filtration rate as a consequence of
tubuloglomerular feedback [77, 78]. This suggest that
tubuloglomerular feedback is activated by increased Cl− de-
livery to the macula densa in chloride-fed animals, resulting in
increased renal afferent arteriolar resistance, reduced renal
blood flow and glomerular filtration rate, and increased sys-
temic arterial pressure.

In clinical studies, the failure of blood pressure to fall
significantly during the non-chloride Na+ salt phase may
reflect the fact that the enrolled subjects in most of these
studies were primarily salt-sensitive. A high dietary sodium
chloride intake has been shown to increase the pressor re-
sponse to both norepinephrine [75] and angiotensin II [36] and
thus contribute to salt sensitivity. However, Sharma et al. [81]
showed that the pressor response to norepinephrine and an-
giotensin II is dependent on Na+ but not on Cl−, and this
finding in conjunction with the observation that blood pres-
sure increased with NaCl but not with non-halide Na+ would
suggest that enhanced pressor response is not the sole mech-
anism responsible for salt sensitivity [81, 82].

The regulation of release and synthesis of renin by the
juxtaglomerular cells in response to body salt content is mul-
tifactorial and involves angiotensin II, autacoids released from
endothelial or macula densa (MD) cells, various hormones,
and the intraluminal blood pressure in afferent arterioles [47].
The MD mechanism for control of renin secretion is through
tubular salt sensing, and a reduced NaCl concentration in the
macula densa segment of the nephron elicits an activation of
the renin-angiotensin system. There is ample evidence that the
MD cells senses luminal NaCl concentration via the NKCC2
cotransporter and that a reduction in NaCl concentration re-
sults in stimulation of renin release and renin synthesis [69,
84]. There is considerable evidence that renin release is
inhibited by increased Cl− delivery to the macula densa or
increased Cl− transport across the thick ascending limb of the
loop of Henle [52, 80]. Cl− dependence has been related to the
involvement of NKCC2 in the initiation of a transmitted MD
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signal, and the relative affinities of NKCC2 for Na+ and Cl−

are such that the Cl− ion is predicted to act as the dominant
physiological regulator of NKCC2 transport rate, and this
mechanism is virtually inoperative when luminal Cl− is low
[10, 26, 79]. In studies of uromodulin knock-out mice, Mutig
et al. [63] showed that activation of NKCC2 is facilitated by
uromodulin in a Cl−-sensitive manner, which is interesting as
there is now an accrual of data from human genome-wide
association studies and rodent studies that uromodulin is
associated with hypertension and salt sensitivity [24, 72, 90].
The release of prostaglandin E2 from the macula densa and
the adjacent thick ascending limb of Henle’s loop increases
when the concentration of sodium chloride in the tubular fluid
falls [74, 103]. Such a fall in tubular NaCl concentration at the
macula densa site is thought to occur in states of salt deficien-
cy and in situations of reduced glomerular filtration. The data
from salt-restricted humans does not show difference in renin
and angiotensin II production with NaCl and non-halide Na+

dietary intake [22, 48, 55, 81–83], while the phenomenon is
not as consistently observed in rodents and may suggest
species differences in BP regulation [46, 52].

Several early studies demonstrated Cl− flux in a variety of
different vascular smooth muscle cell (SMC) types.
Noradrenaline stimulated Cl− efflux in rat aorta [85] and rabbit
pulmonary veins [14]. Endothelin activates Cl− currents in
porcine coronary artery, human mesenteric artery SMCs,
[41], and cultured aortic SMCs [91]. Studies using non-
selective Cl− channel antagonists [64, 88] and anion replace-
ment [17, 50, 94] support the concept that Cl− flux contributes
to vasoconstriction. 4,4′-Diisothiocyanatostilbene-2,2′-disul-
fonic acid (DIDS) and indaryloxyacetic acid (IAA-94)
hyperpolarized and relaxed pressurized rat cerebral arteries
[64]. IAA-94 inhibited ET-induced vasoconstriction in cul-
tured vascular SMCs [88]. Lowering extracellular Cl− poten-
tiated pressure-induced constriction in rat cerebral arteries
[64]. In addition to modulating SMC contractility, both
volume-sensitive Cl− channels and Ca2+-activated Cl− chan-
nels have been proposed to control SMC proliferation [15,
101]. ClC-3 has been found to be ubiquitously expressed in
almost all eukaryotic cells, which functions as anion channel
at cell plasma membrane or as Cl−/H+ antiporter in intracellu-
lar vesicles. Studies in vascular smooth muscle cell showed
that several cytokines, including tumor necrosis factor-α
(TNFα) and interleukin 1β, could activate Cl− conductance,
and this Cl− current is dependent on ClC-3 expression [58].
ClC-3-dependent Cl− efflux decreased intracellular Cl−, which
underlies the proinflammatory effects of ClC-3-dependent Cl−

conductance by activating the NF-κB pathway [61, 102].
The ubiquitous Na+, K+, 2Cl− cotransporter (NKCC1)

belongs to the superfamily of Cl−-coupled carriers and are
inhibited by high-ceiling diuretics such as furosemide and
bumetanide. In the VSMC, loop diuretics decrease the con-
centration of intracellular chloride, hyperpolarize the

sarcolemma, and attenuate Ca2+ influx though voltage-gated
channels, indicating a putative mechanism by which NKCC1
contributes to hypertension via elevation of vascular tone [68,
70]. NKCC1-null mice have decreased baseline BP but ex-
hibit augmented BP increment evoked by high-salt diets.
NKCC1 deficiency causes approximately threefold elevation
in plasma renin concentrations and attenuates high-ceiling
diuretics-induced renin production [68, 70].

There is evidence of extrarenal regulatory mechanisms for
electrolyte homeostasis with the finding of Na+ and Cl− se-
questration in the skin interstitium which appear to be regu-
lated by the mononuclear phagocyte system [56, 57, 98].
Macrophages infiltrate to the sites of Na+ and Cl− overload
in the skin which display a hypertonic microenvironment and
subsequently upregulate the transcription factor nuclear factor
of activated T cells 5 (NFAT5) [31]. The induction of NFAT5
in macrophages of the skin was shown to directly govern the
expression of vascular endothelial growth factor C (VEGF-C),
resulting in the hyperplasia of lymph capillaries via and inter-
action with the VEGF receptor 3 (VEGFR3) [98]. Failure of
this local extrarenal macrophage-dependent control mecha-
nism to regulate interstitial electrolyte and water homeostasis
resulted in arterial hypertension and massive disturbances in
skin electrolyte composition [98]. Moreover, when NFAT5/
VEGF-C axis was knocked out in experimental models, there
was selective Cl− accumulation in the skin, a direct correlation
between skin Cl− content and blood pressure increases, and no
relationship between Na+ and water content and blood
pressure [98].

The paradoxical association of serum Cl− on mortality and
the association of dietary Cl− with blood pressure are intrigu-
ing and may help attempts to understand the role of Cl−

currents and osmolarity/volume homeostatic mechanisms.
Gąsowski and Cwynar [23] hypothesize that low serum Cl−,
whether associated with a hypoosmotic state or not, may
facilitate Cl− currents, acting as an enhancer to the phenomena
that have been traced as possible triggers increasing the prob-
ability of an open state of these channels. Such phenomena
include ischemia-induced local hypoosmotic state leading, in
turn, to swelling of the cell and stimulation by tumor necrosis
factor-α and interleukin-1β [18, 23, 35, 102]. Experimental
evidence support the potential role of several Cl− channels in
the heart including CFTR, ClC-2, ClC-3, CLCA, Bestrophin,
and TMEM16A which may contribute to cardiac
arrhythmogenesis, myocardial hypertrophy and heart failure,
and cardioprotection against ischemia–reperfusion [20]. Other
potential mechanisms may relate to non-cardiac and non-renal
roles for Cl−. For examples, Cl− channels are present in the
surface and transverse tubular membranes of mammalian
skeletal muscle and Cl− moves into muscle during t-tubular
action potentials or with K+-induced depolarization of the
sarcolemma. Extracellular Cl− has been shown to be protec-
tive against fatigue (with implications for survival and
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cardiovascular risk) involving high-intensity contractions in
both fast- and slow-twitch mammalian muscle possibly by
preventing excessive depolarisation with exercise-induced de-
cline in trans-sarcolemmal K+ gradient [9, 11].

In conclusion, Cl−-dependent mechanisms appear to un-
derlie a plethora of critical pathways underlying cardiovascu-
lar disease and blood pressure regulation highlighting the need
for further studies to elucidate the mechanistic underpinnings
of these observations. However, the relationship between
dietary chloride, serum chloride, and intracellular chloride
all appear to have different pathophysiological effects, and
further studies are needed to determine the mechanistic un-
derpinnings of the epidemiologic findings. The weight of
evidence indicate that it is time Cl− moved out the shadow
of Na+ as a mediator of disease and survival.
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