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Abstract 

We report the influence of monovalent cation halide additives on the optical, excitonic and electrical 

properties of CH3NH3PbI3 perovskite. Monovalent cation halide with similar ionic radii to Pb
2+

, including 

Cu
+
, Na

+
 and Ag

+
, were added to explore possibility of doping. We observed significant reduction of sub-

bandgap optical absorption and lower energetic disorder along with a shift in the Fermi level of the 

perovskite in the presence of these cations. The bulk hole mobility of the additive based perovskites as 

estimated using the space charge limited current method exhibited an increase of up to an order of 

magnitude compared to the pristine perovskites with a significant decrease in the activation energy. 

Consequentially, enhancement in the photovoltaic parameters of additive-based solar cells was achieved. 

We observed an increase in open circuit voltage for AgI (~1.02 vs 0.95 V for the pristine) and 

photocurrent density for NaI and CuBr based solar cells (≈23 vs 21 mA.cm
-2

 for the pristine). This 

enhanced photovoltaic performance could be attributed to the formation of uniform and continuous 

perovskite film, better conversion and loading of perovskite as well as the enhancement in the bulk charge 

transport along with a minimization of disorder, pointing towards possible surface passivation. 

 

Keywords: Monovalent cation halide, additives, CH3NH3PbI3 Perovskite, doping, surface passivation 
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1. Introduction 

Nowadays, organic–inorganic metal halide perovskites have been receiving tremendous attention 

owing to their facile synthesis
[1]

, low temperature deposition
[2]

, capability to make flexible 

devices
[3]

, and extraordinary optical and electronic properties
[4,5]

. Organic-inorganic metal halide 

perovskites have a cubic framework structure with general formula ABX3 (where A is an organic 

cation, B a divalent metal ion and X a halide ion Cl, Br or I or any mixture thereof). Perovskite-

sensitized solar cell employing a liquid electrolyte was first documented by Miyasaka and co-

workers, and reported an efficiency of 3.8% for CH3NH3PbI3 based solar cell
[1]

. In recent years, 

perovskite solar cells (PSC) have shown a paradigm shift in photovoltaic technology, mainly by 

adopting device configuration ranging from mesoscopic semiconducting TiO2
[6,7]

 or insulating 

Al2O3 scaffolds
[8]

, to the planar heterojunction (PHJ) architecture
[3,9]

. Recently, a certified power 

conversion efficiency of over 20%
[10]

 has been reported through optimizing device design, 

material interfaces, processing techniques and chemical composition of perovskite materials
[11–13]

. 

These recent developments further demonstrate the promising potential of PSC to compete with 

silicon solar cells in the photovoltaic markets
[14]

. 

In general, there are four methods, which includes one step spin deposition
[15]

, vacuum vapor 

deposition
[9]

, two-step deposition technique
[6,16]

, and patterning thin film
[17]

 to prepare the hybrid 

organic-inorganic perovskite film. So far, solution processed PSC show the highest efficiency and 

stability
[12,18]

. However, achieving good quality solution processed CH3NH3PbI3 films on top of 

mesoporous TiO2 (ms-TiO2) with high uniformity and smoothness is a challenge. In many PSC, a 

non-continuous perovskite film is usually obtained, where pinholes can introduce shunting 

pathways limiting the device performance. Recent studies show that by upon addition of excess 

organic component (methyl ammonium iodide) much larger crystalline domains can be created
[8]

, 

and smoother films can be formed than those processed from a stoichiometric mixture of 

CH3NH3I and PbI2
[19]

. In addition, it is found that changing the anions from halide to acetate in 
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the lead source of perovskite solution has an effective influence on the perovskite crystal growth 

and therefore improves the film quality
[20]

. On the other hand, hybrid CH3NH3PbI3 doped with 

Sn
2+

, Sr
2+

, Cd
2+

 and Ca
2+

 in the position of the Pb
2+

 ion, are also known to affect both the 

crystalline phase and the band gap energy
[21]

. A complete understanding of these issues is hence 

critically important for advancing our understanding of perovskite semiconductors and solar cell 

performance.  

Despite the rapid rise in the PSC performance, the fundamental properties of organic–inorganic 

trihalide perovskites pertaining to the formation of perovskite are not yet well understood. 

Various investigations have focused on tuning the band gap of absorber material by changing the 

ratio of cations
[22]

, anions
[5]

 or the divalent metal
[23,24]

.  But, the effect of precursor composition 

on the perovskite crystal growth, film formation, coverage and thus on the device performance, is 

yet to be investigated in detail
[20,25,26]

.  

In this work, we explore the effect of adding small amount of monovalent cation halide based 

salts including NaI, CuBr, CuI and AgI into the perovskite precursor solution on morphology, 

charge transport, excitonic and optical properties of CH3NH3PbI3 perovskite. To the best of our 

knowledge, the incorporation of CH3NH3PbI3 with aforementioned salts has not been reported so 

far. Morphological characterization based on field emission scanning electron microscopy (FE-

SEM) determined that shape and coverage of the CH3NH3PbI3 structures prepared in the presence 

of additives is considerably different from an additive-free reference. In addition, samples were 

characterized using X-ray diffraction (XRD) to study crystalline phases present in the samples 

and the extent of lead halide conversion into perovskite in presence of additives.  Comprehensive 

studies on optical properties of additive based perovskite were carried out using photothermal 

deflection spectroscopy (PDS), UV-visible absorption and photoluminescence (PL). In addition, 

kelvin probe force microscopy (KPFM) and space charge limited current (SCLC) technique were 

used to characterise influence of aforementioned additives on electrical properties of CH3NH3PbI3 
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perovskite. Finally, fabrication of solar cells based on the incorporated monovalent cation in 

perovskite structure reveals an improvement in power conversion efficiency (PCE) reaching 

15.6% which can be ascribed to the improvement in the conversion reaction, optical, excitonic 

and electrical properties of CH3NH3PbI3. 

2. Results and discussion 

In this study, CH3NH3PbI3 perovskite samples were synthesized using sequential two-steps deposition 

process
[6]

 in which 0.02 mol.L
-1

 of different additives including NaI, CuBr, CuI and AgI were added into 

the 1.2 mol.L
-1

 PbI2 solution in N, N-dimethylformamide (DMF). In this procedure, the CH3NH3PbI3 is 

formed onto ~250 nm thick TiO2 photoanode films by spin coating DMF solution of PbI2 followed by dip 

coating in a solution of isopropyl alcohol containing methylamonium iodide (MAI) under optimized 

conditions. 

2.1. Morphological characterization 

To understand the impact of these additives on the surface morphology of the PbI2 and 

CH3NH3PbI3 deposited on mesoporous TiO2 photoanode, field emission scanning electron 

microscopy (FESEM) was employed. The top view SEM image confirms that the mesoporous 

TiO2 is covered by an overlayer of PbI2 (Figure 1, left-side). It is noteworthy that a significant 

change in the morphology of PbI2 overlayer is observed while adding NaI to its solution (Figure 

1d) and a rough and highly porous overlayer of PbI2 containing branched large crystals was 

formed. This morphological difference was also evident from the macroscopic image (Figure S1a) 

as the respective PbI2 film including NaI is relatively more scattering compared to pristine lead 

iodide film (Figure S1b). 

In addition, the presence of CuBr does not make any significant difference in the morphology of 

PbI2 (Figure 1b) whereas, in case of CuI and AgI based samples, we, obtain a uniform and pinhole 

free overlayer (Figure 1c, e). The right side of Figure 1 displays top-view SEM images of 

CH3NH3PbI3 films obtained after the conversion of pristine and additive based PbI2 films. 
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Comparative SEM analysis brought out variations in perovskite morphology. Pristine samples 

revealed the formation of large tetragonal-shaped perovskite crystals on top of the ms-TiO2 film 

while relatively better surface coverage of mesoporous-TiO2 with perovskite crystal is observed 

for CuBr based sample (Figure 1b). Moreover, considerable improvement in the surface coverage 

of titania scaffold with uniform and continuous perovskite structure is observed in the presence of 

CuI and AgI additives (Figure 1c, e). Particularly, in the case of CH3NH3PbI3 incorporated with 

AgI, the perovskite crystals are better-connected. In Figure 2d, large crystals of NaI based 

perovskite sample with asymmetric shape are observed which infers that the nature of PbI2 film 

can define the morphological properties of resulting perovskite films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Top-view SEM images of PbI2 (left side) and CH3NH3PbI3 (right side) structures: (a) 

pristine, (b) CuBr-, (c) CuI-, (d) NaI- and (e) AgI-based perovskite samples deposited on a 

mesoporous TiO2-coated FTO. 
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We further characterized the perovskite films obtained from pristine and additives based lead 

halide precursors by atomic force microscopy (AFM) (Figure 2). The root mean-squared 

roughness of the pristine, CuBr, CuI, NaI, and AgI based perovskite films was found to be 51.2, 

28.2, 21.3, 63.0 and 17.7nm, respectively. Expectedly, perovskite film including NaI additive 

exhibits a branched morphology with the highest roughness whereas the roughness of CuI and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. AFM images of perovskite structures: (a) pristine, (b) CuBr-, (c) CuI-, (d) NaI- and (e) 

AgI-based CH3NH3PbI3 deposited on a mesoporous TiO2-coated FTO. Examples of pinholes in 

pristine, CuBr and NaI derived films are circled, which are notably absent in the CuI and AgI 

based films. Line segments from each scan (f) and the height distribution (g) around the average 

height, HAv, show the exceptional smoothness of the AgI and CuI-derived films. 
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AgI based films are greatly reduced compared with the pristine sample, as is evident from both, 

AFM line segments (Figure 2f) and height distribution analysis (Figure 2g). It is worth 

emphasizing that the perovskite films including CuI and AgI additives are nearly pinhole free as 

compared to pristine and other samples (see circles in Figure 2a, b and d). It is encouraging that 

by adding small amount of additives inside the lead halide precursor solution, the smoothness of 

the perovskite films prepared by two-step deposition method enhanced strongly. 

2.2. Structural characterization 

To investigate the effect of monovalent cation halide additives on the crystal structure of PbI2 and 

CH3NH3PbI3 perovskite, X-ray diffraction spectroscopy was carried out. In Figure 3, we show the 

X-ray diffraction patterns of pristine- and additive based-PbI2 and -CH3NH3PbI3 films, 

respectively. These diffraction patterns are indexed based on the standard JCPD file number 01-

072-1147 and 21-1272 for FTO and TiO2, respectively, as well as using literature data for PbI2 

and CH3NH3PbI3 perovskite
[27]

.  

According to the literature data, it is evident that the PbI2 deposited by spin-coating from DMF 

solution crystallizes in the form of the hexagonal 2H polytype
[28]

. The presence of the most 

intense diffraction peak (2θ=12.60) indexable to the (001) lattice planes (Figure 3a, black curve), 

is indicative of preferential growth of PbI2 crystallites along the c-axis.  

It should be noted that CuBr, CuI and AgI-based perovskite films show similar intensity in 

various diffraction peaks to the pristine one, however the NaI-based sample depicts sharper 

diffraction peaks for the (001) lattice plane. Moreover, sharpness of the diffraction peak (001) for 

NaI based sample compare to broad one for the pristine can be attributed to the larger crystallite 

size of PbI2 structures which demonstrates that NaI additive influences the growth of PbI2 

structures (Figure 1d).  

The conversion of PbI2 into CH3NH3I was ascertained by X-ray diffraction (XRD). All the  
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Figure 3. X-ray diffraction spectra of pristine and additives based (a) PbI2 and (b) CH3NH3PbI3 

perovskite that is grown on mesoporous TiO2 film which is deposited on the FTO coated glass.  

diffraction peaks present in the XRD patterns could be indexed to the tetragonal phase of the 

CH3NH3PbI3 perovskite
[29]

. In addition, presence of diffraction peak (2θ=12.6) attributable to PbI2 

indicates the presence of unconverted PbI2 within the CH3NH3PbI3 film. XRD patterns obtained 

from the additives based samples perfectly match with that of pristine CH3NH3PbI3 sample which 

confirms that the presence of additives do not alter the crystal structure of the final CH3NH3PbI3 

material (Figure 3b). However, based on an analysis using the Scherrer equation,
[30]

 the average 

crystallite sizes of pristine, CuBr, CuI, NaI and AgI based perovskite vary and were estimated to 

be 62±10, 73±12, 56±9, 95±14 and 45±11 nm, respectively. It is important to note that these 

values are based on the assumption of spherical perovskite crystals. 

In addition, it was also observed that the diffraction peak of PbI2 in NaI-based sample vanished 

and its intensity dropped significantly in CuBr-based one. This observation can be attributed to 

the following two reasons; first, presence of additive is enhancing the extent of conversion 

reaction of PbI2 into CH3NH3PbI3 which eventually leaves less amount of unreacted PbI2. 

Secondly, morphological modifications of PbI2 overlayer, i.e., from a relatively compact layer to a 

more porous one, facilitates the conversion further. As the NaI-based sample reveals a full 

conversion of PbI2 into the CH3NH3PbI3, which has been already established from the XRD 
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pattern, the second hypothesis seems more feasible. It is to be noted that significant variations in 

the morphology of PbI2 overlayer were observed in SEM analysis (Figure 1). On the other hand, a 

relatively high intense PbI2 diffraction peak is observed in the XRD patterns of CuI and AgI based 

samples. This further confirms that the morphology of PbI2 overlayer strongly influences the 

extent of PbI2 conversion into CH3NH3PbI3.  

2.3. Optical spectroscopy 

2.3.1. UV-visible Absorption 

Steady state optical absorption and PL spectra of pristine and additives based methylammonium 

lead iodide perovskite films, are presented in Figure 4a. The optical absorption spectrum of 

pristine CH3NH3PbI3 perovskite film (solid black line) shows broad absorption band covering the 

entire visible spectral range with a band edge at around 780 nm. Large extinction coefficient and 

typical spectral behaviour of methylammonium lead iodide perovskite film is consistent with the 

previous reports
[31]

. The comparative analysis of absorption spectra of pristine and additives based 

CH3NH3PbI3 films do not show any noticeable position alterations i.e. the absorption onsets at 

780 nm are very similar nevertheless, we observed a slight deviation in the absorption slopes 

which are below the band edge. Such deviations (without base line correction) could appear from 

strong light scattering, which originates from rough perovskite surface, rather than from the effect 

of additives. However, in order to verify whether presence of additive have any influence on the 

band gap position, we evaluated approximate band gap positions from the measured spectra. By 

performing scattering subtraction which is proportional to -4 
and by applying extrapolation to the 

linear part of absorption edge, we obtained that optical band gap of all synthesized films to be 

around 1.58eV, which is in agreement with literature
[32]

. It should be noted that due to a very high 

perovskite layer thickness, which is ≈300 nm, absorption spectrum below 600 nm becomes 

saturated and therefore precise interpretation of the results in this region becomes difficult. 



 
 

 

 

 

 

Figure 4. (a) Steady state absorption and PL spectra for pristine and additives based perovskite 

films. (b) The absorption spectra of perovskite films derived from pristine and additive based lead 

sources measured using the PDS technique. The inset shows the corresponding Urbach energies 

for all samples. The error bar is defined by the s.d in fitting the Urbach tail. 

2.3.2. Photoluminescence study 

Steady state PL spectra of perovskite films are presented in Figure 4a. Strong and narrow 

fluorescence bands with full-width half maximum of about 40 nm appear at around 775 nm upon 

sample excitation at 460 nm. It is observed that the PL spectra are similar for all CH3NH3PbI3 

films, i.e. pristine and additives based, confirming that the additives did not affect band edge of 

organo-metal perovskite semiconductors. This could be due to the tendency of additives to be at 

the crystalline surfaces rather than having impact on the band gap of perovskite films. Most 

likely, the effect of additives on the perovskite crystallization is more pronounced and influences 

film morphology which, can affect the  photovoltaic performances
[16]

. PL decay measurements 

were performed using time-correlated single photon counting technique (see details in Figure S2). 

The estimated PL lifetimes and their relative contributions are summarized in Table S1. It is 

evident that PL decay kinetics experience several important differences depending on the type of 

additive. 
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2.4. Photothermal deflection spectroscopy (PDS) 

We used photothermal deflection spectroscopy (PDS), which is an ultrasensitive absorption 

measurement technique, to explore the optical absorption of the CH3NH3PbI3 films near the band 

edge (Figure 4b).  PDS has a dynamic sensitivity range of 4-5 orders of magnitude and is less 

affected by optical light scattering.  From Figure 4b, it is evident that the pristine perovskite has 

the highest sub-bandgap absorption. In addition, both copper based perovskite (e.g. CuI and 

CuBr) samples shows relatively higher absorption compared to the AgI and NaI based perovskite 

films in the sub-bandgap region. It is notable that Cu based additives create a tail in the absorption 

spectra of perovskite which confirm the presence of these monovalent cations inside the film. In 

contrast to AgI and NaI, copper based additives absorb intrinsically (Figure S3) which generate 

aforementioned tail. Comparing the PDS absorption spectra for CuBr based PbI2 and perovskite 

shows that these additives are not fully incorporated in the perovskite film. 

As reported by Sadhanala et al. for CH3NH3PbI3, we observe sharp band edges for all the samples 

with an exponential decay of the density of states after the band edge, known as the Urbach 

tail
[31,33]

. The extent of the absorption tail below the band gap is correlated with the degree of 

electronic disorder within the material, which could originate from structural disorder, thermal 

fluctuation of the ions comprising the material and defects in the crystalline structure. Indeed, 

there have been several recent reports which suggest that the presence of defects within 

CH3NH3PbI3 perovskite crystals would induce localized states in the range of a few hundred meV 

from the extended states of the bands, which could result in the broadening of the Urbach tail
[34]

. 

Assuming the same level of thermal disorder, the slope of the exponential part of the Urbach tail 

gives an estimation of the defect density, in terms of Urbach energy ‘Eu’
[31,33]

. The estimated 

Urbach energies for the pristine and additive based perovskite samples are shown in the inset of 

Figure 4b, along with the respective fitting error, which are 15.6, 11.8, 12.8, 13.5 and 15.2 meV 

for pristine, NaI, CuBr, CuI and AgI based perovskite, respectively. The data fittings are shown in 
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the Figure S4. These values suggest that within the measurement error, additive based perovskite, 

particularly NaI, CuBr and CuI, have a lower level of electronic disorder compared to the pristine 

perovskites.   

2.5. Kelvin probe force microscopy (KPFM) 

We then used Kelvin probe force microscopy (KPFM), an electrical operation mode of scanning 

force microscopy (SFM), to investigate the effect of adding monovalent cation halide on 

CH3NH3PbI3 perovskite Fermi level. KPFM is a powerful technique based on measuring and 

compensating the electrostatic forces between a sample and an AFM tip to determine the local 

contact potential difference (CPD)
[35,36]

, which is a measure of the Fermi level energy if the 

electron affinity is known. Previously, it has been used to study the electrical potential distribution 

across the internal interfaces of inorganic solar cells
[37,38]

. KPFM was recently used to 

characterize the perovskite top layer
[39,40]

, where the presence of a small potential barrier at the 

grain boundaries was found. Bergmann et al. have recently measured cross-sections of a complete 

perovskite based solar cell under illumination with KPFM and showed that the potential is similar 

to a p-i-n type junction
[41]

. Figure 5 shows CPD of line profiles recorded at pristine and additive 

based perovskite films which is sensitive to the surface work functions Φ of the materials. The 

line scan is carried out at the interface of perovskite and gold layer as shown in topography AFM 

image (Figure 5). Assuming that the tip work function remains constant during a line scan, the 

CPD reflects the built-in potential of the device. It is notable that adsorbed water on the surface 

may have altered the absolute value of the CPD, but not the relative difference between the 

studied materials. 

We found a decreasing CPD from the pristine perovskite (0.3 V) towards the Au electrode (≈0V, 

black line profile in in Figure 5). The difference between these two values corresponds to the 

differences of the work function of perovskite (Φperovskite / e≈ 4.8 V) and Au (ΦAu/e≈5.1 V) which 
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Figure 5. CPD line profiles recorded from pristine and additive based perovskite films using KPFM. The 

AFM topography image is shown on the top. 

are comparable to the previous reports
[41,42]

. Surprisingly, the work function of  additive based 

perovskite shifted significantly (about 0.1V) toward the Au work function. This shift in the work 

function can be attributed to the following two reasons; first, substitutional doping of perovskite 

in which Pb
2+

 is replaced by Cu
+
, Na

+
 and Ag

+
 cations resulting in generation of valance band 

holes. Thus, the Fermi level of the bulk perovskite thin film comes closer to the valence band. 

Secondly, these additives can potentially passivate the surface of perovskite film (where there is a 

missing iodide) and as a result reduce the contact potential difference which is measured by 

KPFM. It is notable that the chance of substitutional doping at the room temperature is very low 

since the excess energy associate with putting these monovalent cation (e.g. Ag
+
) in place of Pb

2+
 

is very high
[43]

. Thus, the second scenario is more probable in which the crystalline surfaces of 

CH3NH3PbI3 are passivated in the presence of these monovalent cations.  

2.6. Charge transport measurement 
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To further understand the role of the monovalent cations on the properties of the perovskite 

material, extensive charge transport measurements were performed. Both electron and hole only 

devices were fabricated (see details in Experimental section) with all the different perovskite 

materials to estimate the bulk carrier mobility (SCL). A clear transition from the linear to space 

charge limited trap free behavior is observed in all the materials (Figure 6a). The onset voltage of 

the trap-free space charge limited (TFSCL) transport regime is directly related to the density of 

trap states at the transport level
[44]

. In general, all the perovskite devices with typical thickness in 

the range of 0.5 - 1 m demonstrated TFSCL in a voltage range of < 5V, indicating low trap 

density. Child’s law given by: 𝐽 =  
9

8
 𝜀0𝜖𝑟𝜇𝑆𝐶𝐿

𝑉2

𝑑3 where, J is the current density, o is the vacuum 

permittivity, r is the dielectric constant of the active material which is measured to be in the 

range of 15 - 25 (at 1 kHz) for different materials and d is the thickness of the active layer was 

utilized to estimate the bulk mobility of electrons and holes in the TFSCL regime
[45]

.  

Typical electron mobility (𝜇𝑆𝐶𝐿
𝑒 ) of 0.02 cm

2
.V

-1
.s

-1
 and hole mobility (𝜇𝑆𝐶𝐿

ℎ ) of 0.008 cm
2
.V

-1
.s

-1
 was 

obtained for pristine perovskite films. This magnitude of bulk mobility is lower than that reported 

for a single crystal of perovskite
[44]

. It should be noted that hysteresis was observed in the J-V 

measurements and hence for a conservative estimate of the SCL, forward sweep is considered. 

Moreover, factors like injection limited behavior have to be carefully considered to obtain the 

actual magnitude of 𝜇𝑆𝐶𝐿  in thin films. For TFSCL behavior, J(E)  d
-3

, hence devices were also 

fabricated with different thickness to confirm the TFSCL behavior compared to injection limited 

behavior.  As evident from Figure S5, J(E) decreases with increased thickness for the perovskite 

films.  

Nevertheless, under similar conditions upon addition of the monovalent cation additive, the SCL 

increased significantly (up to an order of magnitude) for holes compared to that for electrons. 

Hole mobility as high as 0.07 cm
2
.V

-1
.s

-1
 was obtained for NaI based perovskite thin films (Figure 



 
 

 

 

 

Figure 6. (a) J-V characteristics of hole only devices (ITO/PEDOT:PSS/Perovskite/Au),  utilized 

for estimating the SCLC hole mobility. Note that the current density (J) is scaled with thickness of 

perovskite layers. (b) The trends in the Jsc, h and e for pristine and additive based perovskite.  

6b). However, electron mobility increased to around 0.04 cm
2
/Vs resulting in a more balanced 

charge transport. It should be noted that these values of bulk mobility are one of the highest in the 

community for perovskite thin films. Correspondingly, the conductivity magnitude estimated 

from the linear regime were obtained to be as high as 5  10
-8

 S.cm
-1

 for NaI based perovskite 

compared to 10
-9

 S.cm
-1

 for pristine films. It is evident from the charge transport measurements 

that the addition of monovalent cations strongly affect the balanced charge transport properties 

and the overall conductivity which is enhance the Jsc of the solar cells (Figure 6b). Thus it can be 

concluded that one of the strategies to increase the Jsc  in perovskite solar cells could be to 

increase the balance between the bulk electron and hole transport.  

To further understand the reason for the increased 𝜇𝑆𝐶𝐿
ℎ  in additive based perovskite films, 

temperature dependent bulk transport measurements were performed. Arrhenius fits were utilized 

to estimate the activation energy (EA) for the charge transport (Table 1). Adding of monovalent 

cations in the perovskite films results in a decrease of EA for hole transport from 198 meV to 137 

meV and electron transport from 13 meV to 77 meV. In the framework of a mobility edge model, 

it is expected that the increase in carrier concentration due to doping can result in filling up of the 
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traps at the transport level and decrease the barrier for transport which can diminish the activation 

energy. This is consistent with the observed change in the Fermi level of perovskite upon the 

addition of monovalent cation halide additives. Hence, it is plausible that the presence of stable 

+1 oxidation states of the cations results in passivation of traps in the system. Thus, it can be 

concluded from the charge transport measurements that the addition of monovalent cation halide 

additive results in enhancing the overall mobility of the charge carriers which is expected to 

enhance the Jsc of the perovskite solar cell devices.    

2.7. Photovoltaic performance  

 Current density-voltage (J–V) characteristics of the pristine and additive based perovskite solar 

cells were measured under simulated air mass 1.5 global (AM1.5G) solar irradiation. The devices 

were fabricated based on the optimized procedure which is explained in the experimental section. 

A typical device has the structure of FTO/compact TiO2/mesoporous TiO2/CH3NH3PbI3/Spiro-

MeOTAD/Au, shown in Figure S7.  

The influence of additive concentration on the photovoltaic performance of PSC was 

demonstrated by examining three different concentrations of CuBr (0. 01, 0.02 and 0.04 mol.L
-1

) 

additive based perovskite devices (Figure S6). As summarized in Table S2, the lowest 

concentration slightly increased photocurrent density (Jsc) by 0.5 mA.cm
-2

. By increasing the 

concentration of CuBr to 0.02 mol.L
-1

 photovoltaic performance of the device revealed an average 

PCE of 15.4% while further increase in the amount of additive decreases Jsc and open circuit 

voltage (Voc) which eventually brought down the overall power conversion efficiency (PCE) of 

the device. Therefore a concentration of 0.02 mol.L
-1

 can be stated as the optimum level of the 

additive to realize the high performance of PSC.  

Figure 7a and Table 1 show the influence of different additives on the photovoltaic parameters of  
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Table 1. Summary of the photovoltaic parameters derived from J-V measurements and charge 

mobilities along with activation energy for the pristine and additive based perovskite solar cells 

(showing the best performance) fabricated using two-step deposition method. 

 

the PSC. It is notable that the statistics of the photovoltaic parameters follow the same trend as the 

best performing devices (Table S3).  For the additive-free reference cell, Jsc of 21.03 mA.cm
-2

, Voc

of 0.95 V, fill factor (FF) of 0.70 and PCE of 14.01% are achieved. The Jsc of AgI based device 

dropped nearly by 2 mA.cm
-2 

compare to the pristine cell which could be attributed to the lower 

loading of CH3NH3PbI3 in AgI based sample (as it shows the lowest absorption in Figure 4b). On 

the other hand, because of the ideal surface coverage of AgI based perovskite, high VOC of 1.02 V 

is achieved (Figure 1e). In addition, since the fill factor of AgI based device improved due to the 

relatively balanced charge transport (Figure 6a and Table 1), the overall efficiency of the device 

slightly improved to 14.18%. 

 

Type of 

Sample 

 

JSC 

(mA cm
-2

) 

 

VOC 

(V) 

 

FF 

 

PCE 

(%) 

 

e 

(cm
2
/Vs) 

 

h 

(cm
2
/Vs) 

 

EA
e
 

(meV) 

 

EA
h
 

(meV) 

Pristine 21.03 0.95 0.70 14.01 0.02 0.008 135 198 

CuBr 22.92 0.95 0.72 15.61 0.05 0.040 88 132 

CuI 21.81 0.99 0.71 15.25 0.02 0.036 94 157 

NaI 22.97 0.90 0.73 15.14 0.04 0.070 77 137 

AgI 19.24 1.02 0.72 14.18 0.005 0.006 105 177 



  
 

19 

 

 

 

Figure 7. (a) Current-voltage characteristics of devices under illumination of 100 mW 

cm
-2

 obtained using different type of monovalent cation halide added to the lead source 

solution. (b) Incident photon-to-current efficiency (IPCE) spectra as a function of the 

wavelength of monochromatic light for the pristine, CuBr-, CuI-, NaI- and AgI-based 

perovskite solar cells. 

Surprisingly, all other additives including NaI, CuBr and CuI enhanced the PCE of 

PSC notably to 15.14%, 15.61% and 15.25%, respectively. The open-circuit voltage of 

CuBr based device (0.95 V) was similar to that of pristine one while a considerable 

drop of around 50mV is noticed for NaI based cells (0.90 V). The lower voltage in NaI 

based derived samples can be explained due to the presence of increased shunting 

pathways because of detrimental contact between spiro-OMeTAD and mesoporous 

TiO2 layer which is quite expected from a rougher perovskite films, (SEM images in 

Figure 1d). In contrast, a uniform and pinhole free surface of CuI based CH3NH3PbI3 

sample lead to the improvement in Voc (0.99 V vs 0.95 V for additive-free reference) 

(Figure 1c). 

Moreover, a substantial enhancement in the Jsc of 21.81 mA.cm
-2

 for CuI, 22.92 

mA.cm
-2

 for CuBr and 22.97 mA.cm
-2

 for NaI based devices compared to 21.03 
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mA.cm
-2

 for pristine solar cells was observed. The highest Jsc exhibited by NaI based 

device can be attributed to the better conversion of PbI2 into CH3NH3PbI3 as revealed 

by XRD pattern (Figure 3) and therefore higher loading of perovskite inside the meso-

TiO2 scaffold which is consistent with the PDS data (Figure 4b). However, diminished 

photocurrent density observed in other samples, i.e., AgI could be attributed to the 

relatively low conversion of lead halide into CH3NH3PbI3 under given conditions. The 

enhancement in current densities of PSC based on NaI, CuBr and CuI-based 

CH3NH3PbI3 are supported by the improvement in the incident photon to current 

conversion efficiency (IPCE) spectra shown in Figure 7b. In addition, IPCE of all the 

devices as a function of wavelength shows that the generation of photocurrent starts at 

around 780 nm, which is in agreement with the band edge of pristine CH3NH3PbI3. 

This confirms further that the presence of additives does not change the band gap of 

the perovskite material which is consistent with PDS results.  We also noticed that the 

fill factors (FFs) of devices based on the NaI and CuBr based perovskite improved 

noticeably, in comparison with the pristine reference cell.  Arguably, improvement of 

FFs could be due to the enhancement in conductivity and presence of lower level of 

electronic disorder in the additive based CH3NH3PbI3 films (Figure 4b, 6 and Table 1).   

3. Conclusions 

In summary, we have systematically studied the role of the monovalent cation halide 

based additives on the morphological, optical and electrical properties of CH3NH3PbI3 

perovskite films. We found that a better conversion of lead iodide into CH3NH3PbI3 

structure is achieved for NaI and CuBr based films which was confirmed by XRD and, 

for CuI and AgI based perovskite a uniform film with a continuous coverage is formed. 

Detailed experiments based on PDS, KPFM and bulk transport measurements on the 
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pristine and additive based perovskites indicate that the additives can possibility cause 

a passivation of states at the crystallite surfaces. This minimizes the extrinsic doping at 

the crystallite boundaries and improves the overall charge transport properties as well 

as the solar cell performance. These observations indicate that the additives seem to 

passivate the hole traps in the surface (or grain boundaries) of perovskite films that 

results in an enhancement of Jsc and hence, the overall efficiency of the solar cell. The 

confluence of aforementioned favourable properties led to the enhancement of PCE to 

15.14%, 15.25% and 15.61% for NaI, CuI and CuBr, respectively, in comparison with 

14.01% for the additive-free reference cell. The photovoltaic results, particularly for 

AgI based cell, confirm that the ideal surface coverage of perovskite is not the only 

sufficient factor to achieve a high efficiency but also a full conversion of lead iodide 

into the perovskite is required. In summary, this work demonstrates the possibility of 

enhancing the structural and optoelectronic properties that play a very crucial role in 

improving the performance of perovskite based solar cells by simple addition of a 

rational amount of low cost monovalent cation based inorganic salts. 

4. Experimental Section 

Materials. Unless stated otherwise, all materials were purchased from Sigma- Aldrich 

or Acros Organics and used as received. Spiro-MeOTAD was purchased from Merck 

KGaA. CH3NH3I was synthesized according to a reported procedure
3
. 

Photoanode preparation. Devices were fabricated on laser patterned FTO-coated 

glass (NSG 10, Nippon sheet glass, Japan). Initially, FTO substrates were cleaned 

sequentially in 2% Hellmanex detergent, 2-propanol and ethanol, and then treated with 

a ultraviolet/O3 cleaner for 15 min. A hole-blocking layer of compact TiO2 was 

deposited by spray pyrolysis using a precursor solution of titanium di-isopropoxide 

bis(acetylacetonate; 0.6 ml titanium acetylacetonate in 8ml ethanol) on a hot plate at 
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450 
o
C. The titanium acetylacetonate was prepared by pouring acetylacetone (Wako 

Pure Chemical Industries, Ltd.) into titanium isopropoxide (Kanto Chemical Co., Inc.) 

with a mole ratio of 2:1. For the preparation of mesoporous TiO2 scaffold, a 

commercial TiO2 paste (Dyesol 30NRD) was diluted with ethanol (2:7, weight ratio) 

and was then deposited by spin coating at 5,000 r.p.m. for 30 s. After drying at 125 
o
C, 

the TiO2 films were gradually heated to 500 
o
C and annealed at this temperature for 20 

min. 

Synthesis and deposition of pristine and additive based CH3NH3PbI3. PbI2 was 

dissolved in N,N-dimethylformamide (DMF) at a concentration of 1.2M under 

constant stirring at 80 
o
C. The halide salts including NaI, CuBr, CuI and AgI were then 

added to the lead halide solution at a concentration of 0.02M.  All the solution were 

prepared inside an argon glove box under moisture- and oxygen-controlled conditions 

(H2O level: <1 ppm and O2 level: <10 ppm). The CH3NH3PbI3 films were prepared 

using two-step deposition method
[6]

. In the first step, the mesoporous TiO2 was 

infiltrated with pure or additive based PbI2 solution by spin coating at 6500 rpm for 

30 s and dried at 80 
o
C for 30 min., To form perovskite resulting PbI2 films were 

dipped in a solution of CH3NH3I in 2-propanol (8 mg mL
-1

) for 30 s, and were dried at 

80 °C for 30 min after cooling to room temperature 

Solar cells fabrication. After infiltration of TiO2 scaffold with pure and additive based 

CH3NH3PbI3, the hole transport material (HTM) was deposited by spin coating at 

4,000 rpm for 30 s. The spin coating formulation of HTM was prepared by dissolving 

72.3 mg spiro-MeOTAD, 28.8 ml 4-tert-butylpyridine, 17.5 ml of a stock solution of 

520 mgml
-1

 lithium bis (trifluoromethylsulphonyl) imide in acetonitrile and 29 ml of a 

stock solution of 300 mgml
-1

 tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine) cobalt(III) 

bis (trifluoromethyl sulphonyl) imide in acetonitrile in 1 ml chlorobenzene. Finally, 
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70nm of gold was thermally evaporated on top of the device to form the back contact. 

The device fabrication was carried out under controlled atmospheric conditions with a 

humidity of <1%. 

Material characterization. Field-emission scanning electron microscope (FESEM, 

Merlin) was employed to examine morphology of the pristine and additive based 

perovskite films. An electron beam accelerated to 3 kV was used with an in-lens 

detector. The atomic force microscope (AFM) images were obtained using a Thermo 

Microscope M5 in non-contact mode and scanning over a range of 15 µm by 15µm at a 

resolution of 256×256 data points. The surface roughness was measured as the root 

mean-squared roughness over the scanning area. 2θ scans were obtained from samples 

of perovskite deposited on the mesoporous TiO2-coated FTO glass using Bruker 

Advance D8 X-ray diffractometer with a graphite monochromator, using Cu-Kα 

radiation, at a scanning rate of 0.5 deg.min
-1

. X-ray photoelectron spectroscopy (XPS) 

was performed on an X-ray photoelectron spectrometer (ESCALAB 250Xi, Thermo 

Fisher SCIENTIFIC INC., USA) with Al Kα radiation(hν= 1486.6 eV) as the source. 

Optical characterization. The steady state optical properties of perovskite films were 

studied using UV-visible absorption and fluorescence spectroscopy. The absorption 

spectra of perovskite films were recorded with convenient UV-Vis-NIR 

spectrophotometer (CARY-5) in transmission mode. Fluorescence spectra and 

fluorescence decay kinetics were recorded on a spectrofluorometer Fluorolog 322. 

Fluorescence spectra were recorded by exciting the samples with 450 W Xenon lamp 

at a fixed wavelength of 460 nm and scanning the emission monochromator from 500 

to 850 nm. Same spectrometer working in a single-photon counting mode was used for 

the measurements of fluorescence decay kinetics with sub-nanosecond time resolution. 

Picosecond pulsed diode laser head NanoLED-405LH (Horiba) emitting <200 ps 
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duration pulses at 406 nm with repetition rate of 1 MHz and pulse energy about 11 pJ 

was use as an excitation source. 

Photothermal deflection spectroscopy (PDS). PDS as a scatter-free surface sensitive 

absorption measurement were performed on the pristine and additive based perovskite 

films. Samples prepared in an identical fashion to the solar cell preparation were spun 

onto spectrosil quartz slides (which were cleaned with acetone, isopropanol, and water 

followed by a 10 min oxygen plasma etch). For this particular measurement, we made 

use of quartz rather than the FTO-coated glass to minimize light absorption by the 

substrate. During the measurement we kept the samples in a hermetically sealed quartz 

cuvette filled with an inert liquid, Fluorinert FC-72 from 3M Corporation, which acts 

as the deflection medium with high temperature dependent refractive index. We 

excited the perovskite films with a modulated monochromated light beam 

perpendicular to the plane of the sample. A modulated monochromated light beam was 

produced by a combination of a Light Support MKII 100W Xenon arc source and a 

CVI DK240 monochromator. The transverse probe beam was produced with Qioptiq 

670-nm fibre-coupled diode laser and passed as close as possible to the perovskite film 

surface. Beam deflection was measured using a differentially amplified quadrant 

photodiode and a Stanford Research SR830 lock-in amplifier which is proportional to 

the absorption in the sample. 

Kelvin probe measurement. Our KPFM apparatus is a Veeco Dimension 3100 

system operated in ambient atmosphere. This system was selected due to its ability of 

scanning over a length of 80 μm. The PtIr tip (Bruker, SCM-PIT, 60-100k Hz), which 

has a work function of about 4.85 eV was used for this measurement. The oscillation of 

the tip is controlled in an amplitude-modulation (AM) mode. 
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Diode for SCLC measurement. Devices were fabricated on pre-cleaned ITO 

substrates (15 ohm.Sq
-1

), obtained from XINYAN Technology Ltd. For hole only 

devices (ITO/PEDOT:PSS/Perovskite/Au), PEDOT:PSS was spin coated at 2000 rpm 

and annealed at 180
0
C for 1 hour in air. Perovskite films both pristine and doped were 

obtained by a two-step deposition process as described earlier to obtain films of 

thickness 0.5 - 1 m.  Similarly electron only devices (ITO/Perovskite/PCBM/Al) were 

fabricated. Thin PCBM layer of around 20- 30 nm was utilized to prevent the 

degradation of the Al electrode due to the perovskite. It was ensured that the presence 

of a thin layer of PCBM does not significantly degrade the electron transport of the 

perovskite. Metal electrodes were coated by thermal evaporation (10
-6

 mbar, 0.1 A
0
/s, 

60 nm thick). The devices were characterized using Keithley 4200 SCS and 

temperature was varied using a RF probe station from Cryogenic Technologies. 

Solar cell characterization. Current–voltage characteristics were recorded by 

applying an external potential bias to the cell while recording the generated 

photocurrent with a digital source meter (Keithley Model 2400). The light source was a 

450-W xenon lamp (Oriel) equippedwith a Schott-K113 Tempax sunlight filter 

(Praezisions Glas & OptikGmbH) to match the emission spectrum of the lamp to 

theAM1.5G standard. Before each measurement, the exact light intensity was 

determined using a calibrated Si reference diode equipped with an infrared cut-off 

filter (KG-3, Schott). IPCE spectra were recorded as a function of wavelength under a 

constant white light bias of approximately 5mWcm
-2

 supplied by an array of white 

light emitting diodes. The excitation beam coming from a 300-W xenon lamp (ILC 

Technology) was focused through a Gemini-180 double monochromator (Jobin Yvon 

Ltd) and chopped at approximately 2 Hz. The signal was recorded using a Model 

SR830 DSP Lock-In Amplifier (Stanford Research Systems). All measurements were 
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conducted using a non-reflective metal aperture of 0.159 cm
2
 to define the active area 

of the device and avoid light scattering through the sides. 

The data underlying this paper are available at 

https://www.repository.cam.ac.uk/handle/1810/254105. 
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Figure S1. Macroscopic pictures of PbI2 (top) and CH3NH3PbI3 (bottom) films for (a) pristine 

and (b) NaI-based samples. 
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Lifetime measurements 

Although the addition of additive does not modify the bandgap of CH3NH3PbI3 perovskite, the 

presence of low amount of additives can influence free or bound carrier dynamics. To 

estimate the charge carrier lifetimes, we performed photoluminescence lifetime measurements 

using time-correlated single photon counting. Photoluminescence decay kinetics of perovskite 

films deposited on mesoporous TiO2 in the absence of hole transport materials (HTM) are 

shown in Fig. 4b. PL traces for all investigated samples can be approximated by exponential 

functions containing two time constants. The estimated PL lifetimes and their relative 

contributions are summarized in Table S1. It is evident that PL decay kinetics experience 

several important differences depending on the type of additive. In comparison to pristine 

sample a fast PL decay component becomes slightly slower whereas long lived decay 

becomes accelerated in additive based samples. Moreover, the contribution  
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Figure S2. Fluorescence decay kinetics measured at 780 nm upon excitation at 406 nm with 

fluence of 11 pJ.cm
-2

 for pristine and additives based perovskite films. 
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of τ1 relaxation components became slightly higher (>50 %) upon addition of silver and 

sodium iodides, whereas its contribution decreases significantly for copper halide based 

samples. These observations can have implications in the recombination processes and 

disorder dynamics. However, a detailed analysis of these is beyond the scope of this work. 
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Table S1. The summarized emission lifetime "τ" and corresponding intensities “A” for 

various perovskite samples obtained using three exponential fit.  

 Ref CuI CuBr NaI AgI 

A1, % 32.6 18.2 17.8 57.4 43.8 

1, ns 17.6 20.8 21.25 22.3 20.7 

A2, % 5.6 5.2 5.6 18 6.7 

2, ns 87.7 64.5 69.2 72.7 63.6 
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Figure S3. The absorption spectra of pristine and additive based lead iodide and perovskite 

films as well as additive deposited on ms-TiO2 and additive only films measured using the 

PDS technique. 
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Figure S4. Data fittings of Urbach energy for PDS measurements of perovskite films 

prepared from (a) pure PbI2, (b) CuBr, (c) CuI, (d) NaI and (e) AgI based lead iodide. The 

dotted lines in each plot are the linear fits used to calculate the Urbach energy and the 

obtained Urbach energy ‘Eu’ is indicated in each plot. The error indicated in each plot is due 

to the s.d. in fitting the Urbach tail. 
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Thickness dependency of charge mobility measurement 

As evident from the figure only a small variation of thickness was possible for the devices. It 

should be noted that varying the thickness of the films in perovskite affects the conversion of 

the perovskite layer, crystallinity of the material and thus the defect density. Hence, to ensure 

proper comparison between different thicknesses, devices were carefully chosen such that the 

current density is minimally affected by external parameters like coverage, crystallite size and 

grain boundary density for a particular type of materials.  
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Figure S5. Thickness dependency of measured current density using SCLC method for 

pristine, CuBr and NaI based perovskite.   
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Table S2. Summary of the photovoltaic parameters derived from J-V measurements for the 

pristine and CuBr based perovskite solar cells (batch of 30 devices) with various 

concentration fabricated using two-step deposition method. 

 

Type of 

Sample 

 

Dopant Concentration  

(mol.l
-1

) 

 

JSC 

(mA cm
-2

) 

 

VOC  

(mV) 

 

FF 

 

PCE  

(%) 

Pristine - 20.7±0.4 945±13 0.69±0.02 13.7±0.3 

CuBr 0.01 22.1±0.6 921±10 0.69±0.03 14.3±0.3 

CuBr 0.02 22.5±0.1 948±7 0.70±0.02 15.2±0.4 

CuBr 0.04 19.8±0.5 896±16 0.71±0.01 12.6±0.7 
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Figure S6. Current-voltage characteristics of devices under illumination of 100 mW cm
-2

 

obtained with varying concentration of CuBr additive. 
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Table S3. Summary of the photovoltaic parameters derived from J-V measurements for the 

pristine and additive-based perovskite solar cells (batch of 30 devices) fabricated using two-

step deposition method. 

 

Type of Sample 

 

JSC  

(mA cm
-2

) 

 

VOC  

(mV) 

 

FF 

 

PCE  

(%) 

Pristine 20.7±0.4 945±13 0.69±0.02 13.7±0.3 

AgI 19.1±0.1 1007±11 0.71±0.01 14.0±0.2 

NaI 22.6±0.2 900±9 0.72±0.02 14.7±0.5 

CuI 21.5±0.4 982±14 0.70±0.01 15.0±0.2 

CuBr 22.5±0.1 948±7 0.70±0.02 15.2±0.4 
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Figure S7. SEM cross sectional micrograph of a complete device having the structure of: 

FTO/compact TiO2/mesoporous TiO2/CH3NH3PbI3/Spiro-MeOTAD/Au.   
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Table S4: Summary of the thickness values for perovskite caping layers on top of 

mesoporous TiO2 (measured using a Veeco Dektak 150 profilometer) and FWHM values 

obtained from the corrsponding lead halide XRD patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type of Sample  
 

 

 

Thickness (nm) FWHM (2θ) of (001) PbI2 peak 

 

Pristine 

 

150±20 nm 
0.0487 

 

CuBr 

 

170±30 nm 
0.0325 

 

CuI 

 

160±20 nm 
0.0372 

 

NaI 

 

130±20 nm 
0.1467 

 

AgI 

 

190±30 nm 
0.0412 
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Figure S8. J–V curves for devices fabricated from (a) pristine and (b) CuBr based perovskite 

measured by forward (short circuit → open circuit) and reverse (open circuit → short circuit) 

scans with 10 mV voltage steps and 40 ms delay times under AM 1.5 G illumination. 
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Figure S9. The average value of power conversion efficiency (Normalized PCE) as a function 

of time for the freshly prepared solar cells is used as the normalization reference value (i.e. for 

the five types of samples, their initial PCE values are all normalized to 1). The J-V scans 

were measured under simulated air mass 1.5 global (AM1.5G) solar irradiation. The 

devices were stored under ambient conditions. 

 

 

 

 

 

 

 

 

 

 

 

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
o

rm
a

li
z
e

d
 P

C
E

Time (hours)

 Ref

 CuBr

 CuI

 NaI

 AgI



  
 

46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S10. X-ray photoelectron spectroscopic (XPS) analysis of pristine, CuBr-, CuI-, NaI- 

and AgI-based perovskite films. 
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