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The crucial effect of early-stage gelation on the
mechanical properties of cement hydrates
Katerina Ioannidou1,2, Matej Kanduč3,4, Lunna Li5, Daan Frenkel5, Jure Dobnikar6,7 & Emanuela Del Gado8

Gelation and densification of calcium–silicate–hydrate take place during cement hydration.

Both processes are crucial for the development of cement strength, and for the long-term

evolution of concrete structures. However, the physicochemical environment evolves during

cement formation, making it difficult to disentangle what factors are crucial for the

mechanical properties. Here we use Monte Carlo and Molecular Dynamics simulations to

study a coarse-grained model of cement formation, and investigate the equilibrium and

arrested states. We can correlate the various structures with the time evolution of the

interactions between the nano-hydrates during the preparation of cement. The novel

emerging picture is that the changes of the physicochemical environment, which dictate the

evolution of the effective interactions, specifically favour the early gel formation and its

continuous densification. Our observations help us understand how cement attains its unique

strength and may help in the rational design of the properties of cement and related

materials.
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C
ement is the main binding agent of concrete, the most
widely used, durable building material. Its production is
responsible for 5–8% of anthropogenic carbon dioxide

production1. In spite of its great practical importance, there is
only limited understanding of the fundamental physicochemical
processes that give the material its functional properties. At
present, this lack of understanding hinders progress towards
‘rational’ cement design, which will be needed for designing novel
green formulations with a reduced carbon footprint2. For the
control of the mechanical properties, calcium–silicate–hydrate
(C–S–H), the primary hydration product of Portland cement
paste, is of particular importance. C–S–H is known to precipitate
as nanoscale particles from the so-called ‘pore solution’ that
forms upon mixing the polydisperse cement powder with water.
The particles form a highly cohesive gel that acts as a
spontaneously densifying glue. The early-stage properties of this
gel affect the ultimate strength that cement (and hence concrete)
can attain upon hardening at the end of the hydration process3–6.
Hence, somewhat surprisingly, the ultimate hardness of cement,
which is important for its role in concrete, is determined by the
structural properties of the C–S–H gel, that is, of the soft
precursor of the final hardened paste.

Experiments to probe the gel formation are challenging and
therefore few in number7,8. More work has been carried out, in
contrast, on the hardened paste that can be probed by neutron
scattering and by atomic force microscopy (AFM) or scanning
electron microscopy imaging9–13. These studies, mainly
performed on tri-calcium silicate (the main source of C–S–H in
Portland cement and often used as a model system for cement
hydration), indicate an amorphous mesoscale organization
comprising structural units of locally compact assemblies of
calcium–silicate layers with a typical size of C10 nm (refs 14–17).
The main theoretical approaches for modelling the structural
evolution of the C–S–H gels have either assumed mesoscale
nucleation and growth or nanoscale Diffusion Limited Cluster
Aggregation18–22. Nucleation and growth models are based on
the analysis of multicomponent phase diagrams and assume a
kinetic evolution scenario to match the one observed in
experiments. diffusion-limited cluster aggregation, on the other
hand, assumes a completely random, irreversible (and hence
purely kinetic) aggregation of colloidal nanoparticles.
Calorimetric studies of the (exothermic) C–S–H production
show that time evolution of this process is strongly non-
monotonic18, indicating that the gel growth goes through an
acceleration and a deceleration regime, a feature that is difficult to
reconcile with the growth kinetics expected for random, fractal
aggregation. As a matter of fact, there is at present no theoretical
approach that derives, rather than postulates, the scenario that
links gel growth to the kinetics and the final morphology and
properties of the hardened paste. As a consequence, there is no
clear answer to the following basic questions: how can
nonequilibrium aggregation, which takes place in a complex
and evolving physicochemical environment, still result robustly in
reproducible material properties? How does the low-density,
fractal structure that is typically produced by irreversible random
aggregation evolve to the high density required to give hardened
cement its final strength?

One key experimental observation is that the effective
interactions between the C–S–H units depend strongly on the
chemical environment, which evolves in time because of the
dissolution of the cement grains and the precipitation of various
hydration products23. As the chemical composition of the solvent
changes, the effective attraction between the nanoscale units
increases, mainly because of increasing ionic concentrations in
the pore solution. Owing to the presence of multivalent ions, the
effective interactions between the nanoscale units show a

combination of a short-range attraction and a longer-range
electrostatic repulsion, which progressively disappears by the end
of the setting17,23–28. In principle, the dependence of interparticle
interactions on the composition of the pore solution could
be reproduced using fully atomistic models29,30. However,
simulation of the phase diagram of such models would be
prohibitively expensive. Using a coarse-grained ‘implicit solvent’
model that accounts for the time evolution of the interparticle
interactions can therefore help investigate how the equilibrium
properties and the aggregation of the nanoscale C–S–H clusters
evolve in time during hydration.

Here we report simulations that allow us to address these open
questions and propose a consistent scenario for C–S–H gelation
and densification. The computer simulations allow us to identify
and characterize both stable and the kinetically arrested states
that occur over a range of low to intermediate volume fractions,
corresponding to the early stages of cement hydration. Surpris-
ingly, we find that the morphology of the gel, the early
development of mechanical strength and the continuous
densification of the material are all intimately related to the
underlying equilibrium-phase behaviour that is expected for the
(evolving) effective interactions between the hydrates. This
observation is far from obvious as out-of-equilibrium conditions
prevail during gelation and densification. The implication is that
the evolution of the material properties strongly depends on the
thermodynamic conditions encountered on the path towards
hardened cement, and is surprisingly less sensitive than expected
to the precise timeline for traversing this path. These findings are
important because they indicate that rational design of the
properties of cement can be achieved by controlling the effective
hydrate interactions along the densification path by a judicious
choice of the physicochemical environment and/or the chemical
composition of the pore liquid during densification. This would
open the way to ‘nanoscale’ engineering of cement, the ultimate
‘bulk’ material.

Results
Model and numerical simulations. We describe the C–S–H
hydrates as colloidal nanoparticles with a diameter s (ref. 5).
Without much loss of generality we assume that the interactions
between the particles are pairwise additive. The characteristic
features of the pair potentials were chosen to agree with
experimental observations and atomistic simulations: hydration
experiments performed at fixed lime concentrations31,
nanoindentation experiments in the hardened paste32,33 and
atomistic simulations30,34,35 are consistent with a model where
the hydrate particles of typical size C10 nm have short-ranged
attractive interactions, with a strain at rupture of C5%. The
hydration experiments as well as calculations of ion correlation
forces also indicate an intermediate-range residual repulsion
(typical screening length for C–S–H in water is C5 nm); the
strength of this repulsion is controlled by the pH, which in turn
depends on the lime concentration. The strength of the repulsion
decreases in time as the lime concentration increases during the
cement hydration. However, the range of the repulsion, which
depends on the ionic strength, is roughly constant since the ionic
strength is not changing much during lime dissolution16,23,36. We
therefore assume a generic model for effective interactions
comprising a short-range attractive well and a long-range
Yukawa repulsion37:
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r is the interparticle distance and k is the inverse screening
length. The ratio A1/A2 gives the relative strength of attraction
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and repulsion, while E sets the energy scale. Inspired by the
experimental observations, we fix two parameter values to g¼ 12
and k� 1¼ 0.5s and vary A1 and A2 in such a manner that the
depth of the attraction well in equation (1) is fixed to V rminð Þ ¼ E,
whereas the height of the repulsive shoulder, V(rmax), varies with
the ratio A1/A2. We note that we have used more parameters
(A1, A2 and E) to describe the strength of the potential: two of the
three parameters would suffice. However, by defining E as the
depth of the potential well, it becomes easier to compare results
for different potentials with equal strength of attraction.

The choice of parameters made in the coarse-grained model
allows for a reasonable comparison with the physical systems.
With the particle size sC10 nm, the position of the minimum
and the repulsive shoulder in the interactions are consistent with
the experimental results in ref. 31 and recent atomistic simulation
studies35. The reduced temperature in the simulations is
T ¼ kBT0=E, where T0 corresponds to the room temperature,
that is, to the condition of the AFM experiments, and E is the
depth of the attractive well and the unit energy in the simulations.
Using 2.43 g ml� 1 for the density of C–S–H, as in refs 30,33,
setting the reduced temperature to T¼ 0.15 roughly corresponds
to interparticle forces measured in experiments and simulations.
In fact, when considering that the cohesive force measured in the
experiments in the early hydration is C0.5 nN and the contact
area between two C–S–H nanoparticles can be estimated
C5 nm2, the unit pressure in the simulations E=s3 corresponds
to 20 MPa, which makes the mechanical strength of the gels
obtained here comparable to typical values of hydrating cement
paste. Moreover, the same coarse-grained model was recently
used in simulations of the hardened paste at the end of the
hydration38. The morphological and mechanical properties
obtained in those simulations agree well with the experimental
observations, which further supports the choice of the coarse-
grained model and interaction parameters in this work.

We have studied the phase behaviour of the model hydrate for
three typical interaction potentials (shown in Fig. 1 with the
corresponding parameter values listed in Table 1) within the
regime relevant to the cement hydration (roughly VðrmaxÞt0:3E):
‘high shoulder’ (HS), ‘mid shoulder’ (MS) and ‘low shoulder’ (LS).

Numerical simulations of the model allow us to characterize
the equilibrium and nonequilibrium states for different densities
and values of the reduced temperature 0.1rTr0.5.

The densities are expressed in terms of the particle volume
fraction f�pNs3/6V, where N is the total number of particles
and V the volume of the simulation box (see also Methods
section). We use these reduced units to facilitate comparison with
different real systems that would be characterized by different
values of E and s but by roughly similar reduced parameters.

Clusters and preferred local packing. At low temperatures, that
is, for interaction strengths sufficiently larger than kBT, we
consistently observe that the particles aggregate into small clus-
ters at low-volume fractions and form a complex gel network
upon increasing f, regardless of the differences in the effective
potential.

However, the shapes and sizes of the clusters, as well as the
gel morphology, vary distinctly with the interaction potential
(see Fig. 2), suggesting that the changes in the effective
interactions from HS to LS during the hydration process might
drive significant morphological changes in the C–S–H gels. In
Fig. 3a we compare the results of the Grand Canonical Monte
Carlo (GCMC) and Molecular Dynamics (MD) simulations at
low-volume fractions. In GCMC simulations we evaluated the
free energy of single clusters of a fixed size (infinitely diluted
limit), whereas MD simulations where performed on larger

systems (N¼ 6,912) at finite f and included cluster–cluster
interactions. In the case of the HS potential, at low-volume
fractions both approaches reveal the existence of small, stable
clusters of a well-defined size. At higher f a percolating network
forms through growth and aggregation of the clusters. As the
height of the repulsive shoulder is decreased (MS), the GCMC
data show that the cluster-size distribution at infinite dilution is
broader and shifted towards larger cluster sizes. In addition, the
MD simulations for MS show evidence of large, system-spanning
clusters at lower f. The trend towards aggregation is even more
pronounced for LS, where the GCMC simulations suggest a
tendency for particles to coalesce into few large clusters (at the
expense of clusters of smaller size). In fact, for LS there is no
longer a sharp cutoff in the cluster-size distribution. Hence, small
clusters, once nucleated, tend to coalesce rapidly. This is clear
from the corresponding MD simulations that show clear evidence
for aggregation, even at low-volume fractions (f¼ 0.052). One
question is obviously whether the cluster phase is thermodyna-
mically stable (and, if so, whether it remains so upon changing
the potential). In particular, one might envisage a situation where
the cluster phase is metastable with respect to crystallization. To
estimate the relative stability of the crystalline and the cluster
phases, we have computed the chemical potential of the
constituent hydrate particles both in the cluster phase and in
the crystalline phase. In these calculations, we kept the
temperatures and pressures of the disordered and ordered phases
the same. Hence, the relative stability of the two phases is
completely determined by the chemical potential. For the
crystalline phase, we used thermodynamic integration (Einstein
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Figure 1 | Interaction potentials. The curves correspond to LS, MS, HS

potentials considered here as a function of the interparticle distance r, plus

the purely attractive well case (AW) from ref. 58. The corresponding values

of the parameters A1 and A2, and V(rmax) are listed in Table 1.

Table 1 | Potential parameters.

Potential A1 A2 V(rmax)/e

LS 6.0 4.0 0.07
MS 6.8 5.8 0.15
HS 9.6 12 0.30

LS, low shoulder; MS, middle shoulder; HS, high shoulder.
Interaction magnitudes A1 and A2, and the shoulder height V(rmax) for the different interaction
potentials.
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crystal method) to compute the free energy per particle of the
crystal as a function of temperature, at constant pressure (the
density was chosen such that PE0). From the free energy per
particle, we directly obtain the chemical potential of the particles
in the crystal. Table 2 summarizes these results. For the cluster-
fluid phase, we determined the chemical potential by using the
Widom particle insertion method (see Methods) at volume
fractions between f¼ 0.026 and f¼ 0.0104 and pressure C0.
The results are plotted in Fig. 3b,c for HS and LS, respectively,
where they are compared with the chemical potential of the
crystalline states (black symbols *) obtained from the free energy
calculated using the Einstein crystal method and thermodynamic
integration (see Methods). For HS the clusters are clearly more
stable than the crystalline states. Going to LS instead, the
crystalline states have comparable or lower free energies,
supporting the idea that in this case the clusters, even though
they persist throughout the simulation runs, are only metastable.

In all cases, the shapes of the clusters change with their size:
small clusters tend to be roughly spherical, whereas larger
clusters are more elongated. A quantitative measure of the
elongation is given by the normalized asphericity b=R2

g
(see Methods), which equals zero for a spherically symmetric
object, þ 1 for a needle and � 0.5 for a disk. The dependence of
the asphericity on the cluster size is plotted in Fig. 4a. The data
show that upon going from the HS to the LS potential the
asphericity decreases: small- and intermediate-size clusters have
a fibrillar shape in HS and MS, whereas they are much more
spherical in LS, where the asphericity emerges only for
much larger clusters (see Supplementary Fig. 1). Analysis of
the particle arrangements inside the aggregates reveals that
the (metastable) clusters for the LS case are quite crystalline (see
Supplementary Fig. 2). The rotational invariants ŵ6 and ŵ4
computed from the local bond orientational order (BOO; see
Methods)39 allow us to distinguish face-centred cubic (fcc) or
hexagonal close-packed (hcp) crystals from the orientational
order typical of Bernal spirals (BS), which is compatible with the
fibrillar growth of the clusters in HS and MS. Figure 4b shows
indeed that the nature of the local packing in the LS clusters is
quite different from that in the HS clusters: for the LS potential,
the local packing in clusters appears to fall in the fcc–hcp range,
whereas the HS clusters have a structure that is more similar to

that of a BS, typical of a fibril-like growth40 (see Supplementary
Figs 3 and 4).

Arrested states and hydration kinetics. Upon increasing the
volume fraction of hydrate particles, the clusters grow and
interconnect into a gel. The morphology and local packing of this
gel also depends on shape of the interaction potential. For HS
potential, the fibrillar crystals that are stable at low densities easily
grow into a system-spanning network at relatively low-volume
fractions, allowing for early development of mechanical proper-
ties. Upon decreasing the intermediate-range repulsion towards
LS, the fibrils are progressively substituted by large dense and
crystalline clusters coexisting with a gas phase. These large
clusters can form system-spanning arrested states only at higher-
volume fractions (with respect to HS) while favouring the growth
of extended and homogeneous high-density regions in the
material. The observed equilibrium and arrested states are
summarized in the diagrams of Fig. 5. The solid blue line in HS
marks the onset of the geometric percolation of the fibrillar
clusters (see Supplementary Fig. 5). Along the dashed lines,
energy fluctuations measured in MD simulations (NVT, i.e. at
constant number of particles N, volume V, and temperature T),
display a very weak maximum for HS, as breaking and reforming
fibrillar clusters become persistent, and a rather sharp peak in LS,
as clusters form from the gas phase, suggesting for LS some kind
of coexistence (gas–solid or gas–liquid; see Supplementary Fig. 6).
The analysis of equilibrium and arrested states discussed so far
indicates that packing, local density and morphology changes can
occur in the assembly of C–S–H nanoparticles because of changes
in the effective interactions during cement hydration (from HS to
LS), characterized by a continuous increase in the lime con-
centration due to the dissolution of the cement grains. As the lime
concentration increases, the electrostatic repulsion between the
nanoscale hydrates is progressively screened16 (that is, going from
HS to LS). In our model, we assumed that the C–S–H nanoscale
units are monodisperse. This is of course an oversimplification:
although these nanoclusters have a characteristic size, they seem
to be closer to platelet than spheres and tend to be quite
polydisperse11,31,41,42. Size and shape polydispersity is likely to
decrease the stability and predominance of any crystalline
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structure. However, we expect that the overall aggregation,
gelation and densification scenarios discussed above still apply.
Aggregate morphologies very similar to the ones discussed
here in our equilibrium simulations were indeed observed in
nonequilibrium simulations mimicking the precipitation and

densification of C–S–H gels with the same effective intera-
ctions43,44. As a matter of fact, the anisotropic growth
characteristic of the HS regime, followed by branching, and the
densification/rigidification favoured by an evolution towards MS
and LS can be directly associated to hallmark steps in cement
hydration, corresponding to different stages of the kinetics.
Figure 6a shows the hydration curve measured via calorimetry
(reprinted from ref. 6): the colour bar indicates the possible
evolution of the effective interactions over time16. The early
times, corresponding to lower lime concentrations and HS
interactions, are characterized by an accelerating regime
corresponding to the growth of fibrils that rapidly lead to
branching and percolation. The space-filling gel slows down the
kinetics and the deceleration regime follows: however, it
corresponds to a change towards LS, which favours further
densification. Summarizing our findings, the plot in Fig. 6b
illustrates the pathways to mechanical strength (Supplementary
Fig. 7 shows a more detailed analysis). To achieve optimal
mechanical strength, cement hydrates should first form an open
percolating network that can act as a scaffold to form
homogeneous dense structures through the densification
pathways. The dashed lines depict the sequences of equilibrium
structures upon densification at fixed interaction potentials
(HS: blue, MS: black, LS: red), whereas the arrow with the
changing background colour indicates a possible nonequilibrium
pathway with time-varying interactions from HS to MS and LS,
consistent with the experiments in ref. 16. Such a pathway can be
manipulated by controlling the chemical composition and its
evolution before and during hydration. Building on the results
obtained here, one could quantitatively explore the consequences,
for the morphology and the mechanical properties, of a different
evolution of the effective interactions by suitably designed
nonequilibrium simulations. The Supplementary Movie 1 issued
from preliminary simulations serves as a proof of concept. These
ideas call for a systematic analysis of how changing chemical
composition of the dissolving cement and/or chemicophysical
conditions (that is, controlling pH, temperature or using various
additives) may change the nanoscale effective interactions during
hydration as well as their evolution in time. Such an analysis
would benefit from experimental, theoretical and simulations
combined efforts. With such an analysis at hand, our approach
would allow for quantitative predictions of which chemi-
cophysical modifications of C–S–H and cement hydration can
enhance strength development, final mechanical performance and
durability.

Discussion
The simulations presented in this paper provide new insight into
how the underlying chemistry of cement formation allows this
material to attain its unique mechanical strength, and explain
how the natural time evolution of the interactions between
hydrate nanoparticles is crucial for attaining the mechanical
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Table 2 | Thermodynamic integration.

HS HS LS LS

KBT=E 0.15 0.30 0.15 0.30
fequil 0.59 0.58 0.60 0.59
A=ðNkBTÞ � 1.34 3.55 � 21.8 � 6.81
m=E �0.21 1.06 � 3.27 � 2.04

HS, high shoulder; LS, low shoulder.
Table summarizing the results of the thermodynamic integration for the free energy A=NE and
the chemical potential m=E of the crystalline states.
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strength. As the hydrate concentration increases, the repulsion
between the nanoparticles gets weaker and densification sets in
through thickening of the strands of the gel. This thickening
results in increased mechanical strength. Importantly, as gel
formation already takes place at low-volume fractions with HS,
the densification happens uniformly throughout the system. This
is important for the development of mechanical strength: if the
densification were to take place through phase separation
involving large droplets or crystallites, the resulting material

would lack the cohesion that is crucial for its mechanical strength.
Moreover, the evolution of the chemical environment that
progressively screens electrostatic repulsion as in LS ends up
favouring further the continuous densification of the material and
hence the development of the mechanical strength needed for
construction materials.

Understanding the mechanism by which cement is able to
attain its unique mechanical strength is important for the rational
design of novel, cement-like construction materials. The
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implication is a novel perspective and opportunity to start
designing the hydration process and material properties. By
providing new fundamental understanding, our study gives a
proof of principles of how controlling and changing the chemical
composition and the time evolution of the chemical environment
can become the handles for a scientifically guided material design
of cements. While indicating a novel investigation path for
nanoscale research in cement, our work provides a new
opportunity to bridge the microscopic features of the material
with the engineering-scale description as attempted in refs 45–47.
The same insights could also be used profitably to achieve high
mechanical strength in other (for example, polymeric) materials
that can be formed by nanoparticle aggregation.

Methods
MD and Monte Carlo simulations. We have investigated the three cases (LS, MS
and HS) by MD simulations in the microcanonical (NVE, i.e., at constant number
of particles N, volume V and energy E) and canonical (NVT) ensemble using a
Nosé–Hoover thermostat48. Initial configurations of 2,048 and 6,912 particles were
prepared at different fixed-volume fractions by varying the simulation box size
(from Lbox¼ 13.679s to Lbox¼ 51.706s), at high relative temperature (T¼ 1), and
slowly cooled to carefully equilibrate them at T¼ 0.15. We used a time step
dt¼ 0.0025 for the MD, with up to 107 steps for thermalization. All the results
presented from the MD simulations are averaged over five independent samples.
From the particle number density r we estimate the fraction f of the total volume
occupied by particles as approximately fC(p/6)rs3. Most of the simulations were
performed by LAMMPS49. We have monitored internal energy, kinetic energy and
different time-correlation functions, which did not show any significant aging up to
fC0.15. For f40.15 the thermalization requires increasingly longer times and in
the simulations we obtained arrested states that depend on the thermalization
protocol and on the system size.

In order to sample more efficiently the equilibrium phases, we have performed
parallel tempering Monte Carlo (MC) simulations50. We simulated M¼ 40 replicas
of the same system at different temperatures T1,y,TM. The replicas’ temperatures
range from T1¼ 0.15 to TM¼ 0.7 in such a way that the two adjacent temperatures
differ by a factor of Tiþ 1/Ti¼ 1.04. Replicas are either randomly initialized or
initialized from the MD configurations equilibrated at the corresponding
temperatures. For each replica we perform the same number of MC steps at a given
temperature using MC moves of individual particles as well as cluster moves, that
is, translation moves of all the particles that belong to the same cluster. Cluster
moves that result in cluster fusion are rejected.

We attempt to swap particle configurations between two adjacent replicas i and
iþ 1 with the prescribed Metropolis-based probability50,

P ¼ min 1; exp T � 1
i �T � 1

iþ 1

� �
Ui �Uiþ 1ð Þ

� 	
 �
ð2Þ

where Ti and Tiþ 1 are the temperatures and Ui and Uiþ 1 are the total potential
energies of the two replicas. In order to achieve sufficient swapping acceptance
between replicas, the average energy difference between the adjacent replicas
Ui�Uiþ 1 need to be comparable to energy fluctuations. Since expected energy
Ui scales linearly with the number of particles N, whereas the corresponding
fluctuations as

ffiffiffiffi
N
p

, the larger the number of particles the smaller the temperature
difference between the adjacent replicas needed to be, that is, more replicas are
needed to cover the desired temperature range. Therefore, for MC we have used a
smaller number of particles (NC500). This enables for a successful replica-
swapping with acceptance probabilities of B0.10–0.3, which is considered an
optimal choice51. We performed simulations with 20–80� 106 MC steps, using the
first half for equilibration and the second half for sampling.

The percolation thresholds just reported depend on the temperature and also on
the cooling protocol used for the systems at different T and f. They have been
evaluated for a fixed system size; hence, they are not intended to be exact by any
means, since this would require a finite-size scaling analysis. The arrested states
discussed here depend of course on the specific kinetic path selected by the MD
simulations, that is, they are specific of the NVE or NVT MD simulations
performed and of the cooling protocol chosen. We have verified that, for
sufficiently slow cooling, the gel morphology and properties discussed here are not
significantly affected by the cooling rate. They could change if MD simulations
were performed at constant pressure (rather than at constant volume), although we
have monitored the pressure in our simulations and we could not detect any steep
or abrupt change in pressure upon gel formation. On this basis, we do not expect
too large differences. With respect to experimental conditions, one could expect
gelation to result into the development of tensile internal stresses because of the net
attractive interactions that drive the gelation and to the formation of a poorly
connected structure. Hence, the periodic boundary conditions and the imposed
fixed volume used for the MD simulations could share some similarities with the
experimental conditions under which gels are forming.

Free energy calculations. We have used a reversible path between the solid
obtained in the simulations and an ideal Einstein crystal with the same struc-
ture52,53. The ideal Einstein crystal consists of particles attached to their lattice
positions via harmonic springs of constant LE, and its free energy A0(T,r) can be
analytically evaluated. The free energy difference, DA1(T,r), between the ideal
Einstein crystal and the interacting Einstein crystal (in which particles interact
through the interparticle potential used in the simulations) can be expressed as

DA1 T; rð Þ ¼ Ulattice �NkBT log exp � b Us �Ulatticeð Þ½ �h i ð3Þ
where Ulattice is the potential energy of the perfect lattice and Us the potential
energy of the solid obtained in the simulations with the given interparticle
interactions. The free energy difference between the interacting Einstein crystal and
this solid DA2(T,r) can be computed as

DA2 T; rð Þ ¼ �
Z LE

0

XN

i

ri� ri;0
� �2

* +
dL0E ð4Þ

where the integrand is the mean square displacement of particles from their lattice
positions. To calculate DA1(T,r) and DA2(T,r), we performed canonical (NPT, i.e.
at constant number of particles N, pressure P and temperature T) MD simulations
of 2,048 particles at zero pressure and different temperatures using LAMMPS49,54.
From DA1(T,r) and DA2(T,r), we get the free energy of the solid obtained in the
simulations as

As T; rð Þ ¼ A0 T; rð ÞþDA1 T;rð ÞþDA2 T;rð Þ: ð5Þ
Additional thermodynamic information has been obtained by measuring the

chemical potential using the Widom insertion method55. The total chemical
potential m of interacting particles is composed of two parts,

m ¼ kBT log rþ mexc ð6Þ
with the first term corresponding to an ideal gas contribution of density r, and mexc

being the excess part due to the presence of particle–particle interactions. For the
purpose of test particle insertions, we used particle configurations obtained by the
MC simulations. From the resulting potential energies, Ui of the inserted particle at
random positions (2� 106 per sampled snapshot), the excess chemical potential
can be evaluated from

e� bmexc ¼ e� bUi

 �

ð7Þ
where hyi denotes the average over all particle positions over the whole sampled
trajectories.

Owing to the lower repulsion, LS crystals have much lower free energy than the
HS ones (The free energies of the fcc and hcp crystals are the same within the error
bar of our calculation; therefore, we cannot distinguish which crystal is more
stable.).

Grand canonical simulations. As already mentioned, in cases of low f we obtain
persistent clusters whose nature, stable or metastable, is difficult to discriminate. To
elucidate this point, we have also evaluated the cluster-size distribution by free
energy calculation using GCMC simulations. We followed the same procedure
introduced to investigate micelle formation in refs 56,57.

In an approximation of a dilute gas of clusters, such that interactions between
the clusters are negligible, we can decompose the total partition function of the
system into contributions of individual clusters

Q ¼
Y1
s¼1

QNs
s

Ns !
¼
Y1
s¼1

VNs

Ns !

Qs

Q1

� �Ns

ð8Þ

where Ns is the number of clusters with size s, V is the volume of the system and Qs

is the single cluster (of size s) partition function. We have ignored the (irrelevant)
factor because of the thermal de Broglie wavelength. Upon minimizing the total
free energy � kBT log Q with respect to cluster size Ns, with the constraint of total
number of particles

P1
s¼1 sNs ¼ N , one obtains the number of clusters of size s in

equilibrium,

Ns

V
¼ N1

V

� �s Qs

Q1

� �
: ð9Þ

The related cluster-size distribution is therefore ns¼Ns/Ncl, where Ncl ¼
P1

s¼1 Ns

corresponds to the total number of clusters in the system. This yields

ns ¼ n1 eb~mðs� 1Þ Qs

Q1
where eb~m � r

N1

N
ð10Þ

with r¼N/V being the particle number density. The parameter ~m plays the role of
the chemical potential in a diluted system with b¼ 1/kBT, and the parameters
n1¼N1/Ncl and ~m are fixed by the two constraints

X1
s¼1

ns ¼ 1 and Ncl

X1
s¼1

sns ¼ N ð11Þ

The ratio of partition functions Qs/Q1 is computed in the GCMC simulations. As in
the MC simulations, we implemented a parallel tempering scheme, but limited the
simulations to one single cluster by rejecting all the moves that would break the
cluster. That is, besides particle translation moves as in usual MC, we also
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performed insertions and deletions of particles according to the standard GCMC
scheme with the restriction to preserve a single cluster in the system, that is, only
insertions within the attractive wells of particle interactions were attempted. Here
the volume in the standard GCMC acceptance rule for the particle insertion
corresponds to the total volume of all attractive wells. In order to preserve detailed
balance, in case of overlap of k attractive wells of neighbouring particles at the
location of an insertion attempt, the standard insertion acceptance probability
needs to be corrected (multiplied) by a factor 1/k. During the simulation, we were
sampling the probability distribution of the single cluster size P(s), which is related
to the ratio of the partition functions as

Qs

Q1
¼ PðsÞ

Pð1Þ e�bmGC s� 1ð Þ ð12Þ

where mGC is an arbitrary value used in the simulations for the chemical potential,
which does not affect the ratio Qs/Q1 but influences the sampling efficiency. The
chemical potential mGC used in GCMC should not be confused with ~m in
equation (10). In order to further increase sampling efficiency, we have
implemented the standard Umbrella Sampling scheme where we sample at once a
cluster of only two possible sizes, s and sþ 1. The results for all cluster sizes are
obtained by stitching together the simulation results of different cluster sizes57.

Observables. The radial distribution function g(r) is defined as

g rð Þ ¼ 1
4pr2Nr

X
i

X
j 6¼ i

d r� rij
� �* +

; ð13Þ

where N is the number of particles and r their density. We define a cluster as a
group of those particles that are mutually separated by rrrc, where rc is distance of
the minimum followed by the first peak in g(r). As the aggregation proceeds, we
sample the cluster-size distribution as the number of clusters ns composed of s
particles. To characterize the morphology of such clusters, we determine the
gyration tensor

Sab sð Þ ¼ 1
Ns

XNs

j¼1

1
s

Xs

i¼1

ri
a � ra;CM

� �
ri

b � rb;CM
� �" #

ð14Þ

where Ns is the total number of cluster of s particles, ri
a is the ath coordinate of the

position vector ri of the ith particle belonging to the cluster j and ra;CM ¼
1=s
Ps

i¼1 ri
a is the ath coordinate of the position of the centre of mass of cluster

j. The gyration radius is defined as the sum of the eigenvalues of the gyration
tensor:

R2
g sð Þ ¼ Tr Sab sð Þ ¼ l1 þ l2 þ l3 ð15Þ

where the eigenvalues of Sab(s) are sorted in descending order, that is, l1Zl2Zl3.
In addition, the asphericity parameter

b ¼ l1 �
1
2

l2 þ l3ð Þ: ð16Þ

measures the deviation from the spherical symmetry (b¼ 0).
Finally, the BOO parameters �qlmðiÞ enable us to characterize the local order39.

The BOO are defined as

�qlmðiÞ ¼
1

Nbi

XNbi

j¼1

Ylm r̂ij
� �

ð17Þ

where Nbi is the number of the bonded neighbours of particle i (using the cutoff
distance rc). The unit vector r̂ij specifies the orientation of the bond between
particles i and j. The Ylm r̂ij

� �
are the corresponding spherical harmonics. The

second-order rotational invariants

qlðiÞ ¼
4p

2lþ 1

Xl

m¼� l

�qlmðiÞj j2
" #1=2

ð18Þ

and the normalized third-order invariants

ŵlðiÞ ¼ wlðiÞ=
Xl

m¼� l

�qlmðiÞj j2
" #3=2

ð19Þ

with

wlðiÞ ¼
X

m1;m2;m3

m1 þm2 þm3 ¼ 0

l l l
m1 m2 m3

� �
�qlm1 ðiÞ�qlm2 ðiÞ�qlm3 ðiÞ ð20Þ

(where the coefficients in the sum are the Wigner 3-j coefficients) can be used to
identify specific orientational order. In fact, the first non-zero �qlmðiÞ (apart from
l¼m¼ 0) as found in systems with cubic symmetry for l¼ 4 and in systems with
icosahedral symmetry for l¼ 6. The BOO parameters (q4; q6; ŵ4; ŵ6) are generally
sufficient to characterize orientational order typical of crystalline solids, colloidal
gels and glasses. We use ŵ4 and ŵ6, as they are sufficient to characterize the local

order of interest and distinguish between fcc and hcp crystals. We compute the
BOO locally for each particle within the cutoff distance rc.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information Files.
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