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Abstract:  

The introduction of a mobile and polarised organic moiety as a cation in three-dimensional 

lead-iodide perovskites brings fascinating optoelectronic properties to these materials.  The 

extent and the timescales of the orientational mobility of the organic cation and the molecular 

mechanism behind its motion remain unclear, with different experimental and computational 

approaches providing very different qualitative and quantitative description of the molecular 

dynamics. Here we use ultrafast two-dimensional vibrational spectroscopy of 

methylammonium (MA) lead iodide, to directly resolve the rotation of the organic cations 

within the MAPbI3 lattice. Our results reveal two characteristic time constants of motion. Using 

ab-initio molecular dynamics simulations, we identify these as a fast (~300 fs) ‘wobbling-in-

a-cone’ motion around the crystal axis, and a relatively slow (~3 ps) jump-like reorientation of 

the molecular dipole with respect to the iodide lattice. The observed dynamics are essential for 

understanding the electronic properties of perovskite materials. 
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Main text: 

Hybrid organic-inorganic perovskites (1) are attracting a lot of attention for 

optoelectronic applications as they combine the solution processability of molecular electronic 

materials with the low exciton binding energy and high charge mobility of inorganic 

semiconducting crystals. (2,3) Many of these features can be related to the high dielectric 

constant of the material. The recent breakthroughs achieved by the application of 

methylammonium (CH3NH3
+ or MA) lead halides (4) in photovoltaic (5-8) and light-emitting 

(9) devices have triggered extensive research efforts to unravel the fundamental photophysics 

of these material systems. 

The organic cations, like MA, are not directly involved in the makeup of the valence or 

conduction bands. Yet they are shown to have a strong influence on the optoelectronic 

properties of the perovskites.(10,11) The size and shape of the molecular cations, as well as 

their embedding in the lattice, determine the macroscopic and molecular-scale perovskite 

crystal structure (10,12,13), which in turn determines the band gap (11,14) of the material via 

the deformation potential. This offers the opportunity to tune the material properties through 

modification of the organic cation.(11) Furthermore, some of the unique properties of hybrid 

perovskites may be associated with the asymmetry and preferential alignment or to the 

dynamics of the embedded molecules. In contrast to spherically symmetric inorganic (atomic) 

cations, organic ions have a less symmetric shape and can hold a permanent dipole 

moment.(11,15) As a result, the positioning, orientation and rotational dynamics (16) of the 

organic moiety within the inorganic lattice can have a strong influence on the electronic 

system.(17) The reorientation of the organic cation with its associated dipole moment 

contributes to the dielectric response, and applies a crystal field to the material; both will affect 

the photovoltaic action. However, recent results suggest that though the choice of organic 
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moieties is critical for material performance, (18,19) cations do not dominate solar cell 

hysteresis (20) and are not essential in obtaining high open circuit voltages.(21) 

A number of optoelectronic phenomena associated with molecular cation motion have 

been proposed based on electronic structure calculations. Cations were proposed to be 

responsible for the variations in dielectric constants, para- and ferroelectric 

behaviour,(15,22,23) current-voltage hysteresis,(10,24-26) a decrease in exciton binding 

energy, charge carrier segregation in the material, and dynamic disorder in valence and 

conduction band energies.(27,28) Most of these effects are expected to be extremely sensitive 

to the interplay between cation-cation and cation-anion interactions, the orientational mobility 

of organic molecules and the time scales of the structural dynamics. The rotational mobility of 

organic cations in inorganic lattices has been studied for application-relevant lead-iodide and 

lead-bromide perovskites using MA as an organic cation (Figure 1a). The first estimates for 

MA reorientation were obtained using NMR spectroscopy, which pointed towards 0.2-0.4 ps 

rotational correlation functions for the C-N and N(C)-H axes,(29)  comparable to the time scale 

of the reorientation of similarly sized molecules in free space. Dielectric relaxation and 

calorimetry measurements confirmed the fast rotation and orientation disorder of MA in 

perovskite materials at room temperature.(30,31) However, some recent theoretical(32,33) (34) 

and experimental (22,25,35-37) present arguments towards longer reorientation timescales of 

5-14 ps and more. Clearly, at present there is insufficient understanding of hybrid perovskite 

structural dynamics. What is needed is a comprehensive and direct experimental-theoretical 

approach that would allow one to identify the mechanistic picture behind the different 

timescales of the atomic and molecular motions.  

In this letter, we report on an ultrafast polarization-resolved two-dimensional infrared 

(2DIR) vibrational spectroscopy and ab-initio molecular dynamics (MD) study of the MA 

cation rotation within the lattice for a set of MAPbI3 materials. Using the N+H3 symmetric 
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bending vibration as a probe, we observe two characteristic timescales of molecular motion, 

which we identify as a fast (~0.3 ps) wobbling-in-a-cone around the preferential MA dipole 

directions parallel to the lattice axes and relatively slow (>2 ps) jump-like reorientation of the 

molecular dipole (aligned with the CN axis) with respect to the crystal lattice. This result 

suggests that in MAPbI3 at room temperature the alignment of cation dipoles, if present, is 

likely to be of intermediate-range order.  

To tackle the potential effect of crystal defects and grain boundaries on cation 

dynamics, we investigated MAPbI3 films made with three different techniques: (i) multilayer 

spin-coating, (ii) a solvent-free two-step formation from PbI2 and methylammonium-iodide 

(MAI) precursors,(38) and (iii) co-evaporation from PbCl2 and MAI.(39,40) For the details of 

film preparation see Supplementary Information. All films were deposited onto infrared (IR) 

transparent CaF2 substrates and had a thickness of ~1 µm. 

To observe the dynamics of molecular reorientation we used ultrafast vibrational 

spectroscopy, with the symmetric N+H3 bending vibration as a probe. Figures 1b-d show the 

structure of the MA molecule and its contribution to the perovskite IR absorption spectrum in 

the vibrational fingerprint region.(41) The spectrum is dominated by the N+H3 stretching and 

bending modes in the regions of ~3200 cm-1 and ~1500 cm-1, respectively. We attribute the 

weak narrow peaks in the regions around 2800 cm-1 and 1420 cm-1 to CH3 stretching and 

bending vibrations. These peaks are much less pronounced than the N+H3 vibrations due to the 

relatively small transition dipole moments of the CH vibrations as compared to the NH 

vibrations, and will not be discussed in this study. Due to the degeneracy of the three NH 

oscillators, both stretching and bending vibrations split into one symmetric and two asymmetric 

normal modes with orthogonal transition dipole moments. The symmetric bending mode at 

1470 cm-1 is well separated in frequency from the asymmetric modes (Figure 1d) at 1580 cm-1 

and has its transition dipole moment aligned along the C-N axis of the molecule. This makes it 
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possible to use the transition dipole moment of the symmetric N+H3 bending vibration as a 

probe for the reorientation of the C-N bond and, thus, of the static molecular dipole. 

To measure the orientational dynamics of the symmetric N+H3 bending oscillator we 

performed polarization-resolved 2DIR experiments (42) (43) (44,45) on perovskite films in the 

1400-1600 cm-1 frequency range (figure 2a). Using a collinear fast-scanning Mach-Zehnder 

scheme,(46) molecular vibrations were first excited by an interferometric pair of strong 100-fs 

IR pump pulses. After a variable delay time, the excited state population was probed by weak 

broadband probe pulses with the polarizations parallel and orthogonal to the pump pulse. The 

isotropic signal and the anisotropy of the response (47) were calculated as: 
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Here 
||T (t) and T (t) stand for the time-dependent relative transmission changes for the 

parallel and perpendicular components of the probe, respectively. For non-interacting transition 

dipoles in an isotropic medium, the anisotropy decays from its initial value of 0.4 to 0, when 

the orientations of the transition dipoles are completely scrambled as a result of orientation 

diffusion. In the isotropic signal, the effect of the reorientation is completely removed, thereby 

only representing population relaxation. By scanning the delay between the two pulses of the 

interferometric pump we obtain a frequency resolution of ~5 cm-1. 

Figure 2b,c shows the isotropic transient absorption for a co-evaporated MAPbI3 film. 

In this measurement, only the isotropic component was extracted. At positive delay times, the 

bleaching/stimulated emission of the 0-1 N+H3 symmetric bending transition is clearly 
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observed at 1470 cm-1. The excited state 1-2 absorption from the first to the second excited 

state of the vibrational oscillator is observed at 1445 cm-1 and is anharmonically shifted from 

the 0-1 transition by ~25 cm-1. The excited-state population decays on an timescale of ~3 ps 

which should provide an observation window of up to 6 ps for the orientational dynamics.  

However, at long times we observe additional signals at 1475 cm-1 and 1420 cm-1, which do 

not change significantly with time. These features coincide with the linear absorption peaks 

(Figure 1d) and live for the times longer than 50ps, which make us to assign them to the thermal 

response.(47) The relaxation of high-frequency bending vibrations creates multiple low-

frequency excitations (a so-called hot ground state), which lead to the change in the absorption 

of the bending modes. The spectral overlap of the bleaching of the 0->1 transition and the 

thermal response complicates the anisotropy analysis in this energy range. Therefore, for later 

anisotropy analysis, we will only consider the data from the ESA probe region ~1445cm-1, 

where the thermal signal is much smaller than population signal in the time window <20ps, as 

can be seen from the spectra at long delay times. With this in mind, we will use the 2D-IR 

spectra to (i) decouple the ‘clean’ rotation-related anisotropy dynamics from the thermal 

response and (ii) to separate the responses and anisotropy dynamics coming from the 

symmetric and asymmetric modes. 

Figure 3a shows the 2D-IR spectrum of a co-evaporated MAPbI3 film at a delay of 1ps. 

We use the convention of displaying the excitation frequency, ex, along the horizontal axis 

and the probe frequency, pr, along the vertical axis. As expected from the absorption spectra 

and the pump-probe measurements presented above, the signal associated with the bleaching 

of the 0-1 transition of the symmetric bending mode is located at (ex;pr)=(1470;1470) cm-1 

and the ESA around 1470;1445) cm-1. As can be seen from the cross sections of the response 

for symmetric mode excitation at ex=1470cm-1 (fig. 3b), at delay times longer than 10 ps, the 

signals associated with the excitation of the v=1 state are substantially influenced and then 
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overtaken by the thermal response. In addition to the symmetric bending responses, the 2D-IR 

spectra reveal cross peaks corresponding to the population of the symmetric mode pr=1470 

cm-1, following excitation of asymmetric vibrations ex=1560 cm-1. Due to the orthogonal 

orientation of the transition dipoles the response at cross peaks is strongly depolarised.  

 To extract the anisotropy decay originating from the symmetric mode reorientation, we 

focus on the responses in the center of the ESA feature at (1470;1445) cm-1. Figure 3c presents 

the population dynamics measured with different pump and probe polarization and the blue 

dots figure 3d show the extracted transient anisotropy decay for the co-evaporated MAPbI3 

film. After photoexcitation, the initial anisotropy is close to 0.4, which is the expected value 

for a random distribution of uncoupled dipoles.(48) The anisotropy decays on two clearly 

different timescales. The faster decay occurs on a timescale of <300 fs and decreases the 

anisotropy approximately by half. The longer ~3 ps decay brings the anisotropy close to zero 

within the 6 ps observation window. We did not analyze the dynamics at longer times because 

at longer delays the signal becomes dominated by the thermal response. We also note that, as 

the anisotropy is analyzed in the center of the ESA peak, it reflects the reorientation for the 

majority of the molecules. However, some minor sub-ensemble of MA ions may have a shifted 

IR absorption line or/and faster spectral diffusion with a more pronounced orientational 

dynamics. Around 500 fs, the residual anisotropy still has a relatively high value of ~0.2 for all 

samples. While the fast time-scale observed here agrees with the 400 fs timescale reported in 

previous NMR experiments, (29) the slow timescale of 3 ps has not been observed before. 

Longer (~5ps) timescales were predicted based on selective dynamics (artificially constrained 

frozen lead positions) MD simulations (14) and measured (5-14 ps) with quasi elastic neutron 

scattering on bulk material.(37,49) Independent of the preparation protocol and film 

morphology, all our thin-film samples demonstrate similar anisotropy dynamics (figure 4a). 

We can hence exclude an influence of solvent residuals on the observed time scales, as two of 
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the samples were fabricated with solvent free methods. We speculate that this explains part of 

the discrepancy between the reorientation times presented here and those recently derived from 

neutron scattering.(37) 

To obtain molecular-scale mechanistic insight into the origin and details of organic 

cation dynamics we undertake ab-initio molecular dynamic (MD) simulations starting in a 

pseudo-cubic geometry and at temperatures of 150, 300 and 450 K. To validate the simulations 

and to allow for a direct comparison to experimental results, the MD trajectories are used 

directly to calculate the absorption and the full 2D-IR response of the MA N+H3 bending 

vibrations. (50) (51)  

  Figure 1d shows that the N+H3 bending absorption spectrum calculated with the 

procedure described above reproduces the experimental results well. The additional small 

peaks observed in the experimental data are probably associated with the CH3 bending modes; 

the slightly different absorption cross section ratio for the symmetric and asymmetric modes is 

likely to originate from our assumption that the transition dipole direction of the local NH 

bendings mode are perpendicular to the NH bonds. Figure 4b shows the calculated 2D-IR 

spectrum (perpendicular polarisations), which also reproduces the experimental results (Figure 

3). This proves the adequacy of the applied method for calculating the spectroscopic 

observables and, in turn, allows the further analysis of anisotropy and orientation dynamics as 

taken explicitly from the MD simulations.  

 The red line in Figure 3d shows the anisotropy decay in the (1470; 1445) cm-1 region 

of the calculated 2D-IR spectra, i.e. in the same area used to extract the experimental 

anisotropies. The simulated curve matches the experimental dynamics very well. Only the 

short-time component of the decay is slightly faster, which is likely to be the effect of 

experimental time resolution. First of all, this confirms the validity of the MD simulations and 
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calculated orientation dynamics. Secondly, the theory-experiment match indicates the absence 

of intermolecular hopping of vibrational excitations. Intermolecular energy transfer is not 

included in the theoretical calculations and, in case it would play a role, the experimental 

anisotropy should decay much faster as seen in other materials with fast vibrational excitation 

transfer.(47,52) Finally, the validated MD calculations can be used to identify the molecular 

picture behind the two observed timescales in anisotropy dynamics.  

 We first verify that the anisotropy decay is due to rotation and not intramolecular 

vibrational population transfer. Simulating the 2D-IR spectra and extracting the anisotropy 

decay with fixed molecular orientations gives an anisotropy of 0.4 for all waiting times 

demonstrating that the origin of the observed decay is solely due to reorientation of the MA 

ions. This is not the case for the asymmetric peak at 1570 cm-1, where two degenerate modes 

rapidly mix. We also calculated 2D-IR spectra at 150 K and 450 K and the extracted transient 

anisotropies are shown in Figure 3d. It is apparent that at 150 K the anisotropy does not decay 

below 0.3, and that the anisotropy dynamics at 450 K are faster and lead to a nearly complete 

decay at 6 ps. Previous studies indicated a preferential orientation of the MD dipole parallel to 

the lattice axes (33) suggesting that at low temperatures the molecular dipole axis may be 

pinned to the lattice axes (fig. 4c, left). In Figure 4d histograms of the distribution of the angle 

between the molecular axis and the nearest of the lattice axis, which are equivalent in the 

simulated pseudo-cubic symmetry, are illustrated for the three simulated temperatures 

normalized to a random isotropic distribution of dipole directions. For 150 and 300 K there is 

a larger probability of finding an angle below 30 degree and lower probability of finding a 

larger angle. The 450 K data hardly deviate from the isotropic distribution. This suggests that 

the MA dipole preferentially points along one of the three lattice axes and is at 300 K confined 

within a semi-cone angle of about 30 degrees from each of these axes. We can consider a 
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wobbling-in-a-cone/angular jump model,(53) where the rotational anisotropy is given by the 

equation 

𝑟(𝑡) =
2

5
(𝑆2 exp(−

𝑡

𝜏𝑗𝑢𝑚𝑝
) + (1 − 𝑆2)exp(−(

1

𝜏𝑗𝑢𝑚𝑝
+

1

𝜏𝑤𝑜𝑏
) 𝑡)) 

and where r(t) is the anisotropy, 𝜏𝑗𝑢𝑚𝑝 is the effective jump time scale for 90 degree jumps, 

𝜏𝑤𝑜𝑏 is the time scale of the wobbling motion, and S is a constant depending on the semi-cone 

angle, Θ𝐶 , of the wobbling motion given by the equation 

𝑆 = cos(Θ𝐶)(1 + 𝑐𝑜𝑠(Θ𝐶))/2 

A biexponential fit to the simulated data results in a semi-cone angle of 31 degrees (S=0.625) 

from both the 150 K and 300 K data. The wobbling-in-a-cone timescale slows down from 130 

fs to 1.1 ps, when cooling from 300 K to 150 K. We note that at 300K the wobbling time fits 

well the 150 cm-1 vibration previously observed using Raman spectroscopy and assigned to 

librational motion,(54) which is the same as wobbling-in-a-cone motion. The time scale for the 

jump type motion is too long to fit for 150 K and 2.7 ps at 300 K (see also fig S5 in SI). The 

450 K data can be fitted with a single time scale of 570 fs and a small offset of 0.07 suggesting 

that the motion at this temperature is slowed down, but no longer confined by the barriers. The 

small offset hints at the presence of an optimal orientation of the cation along one of the crystal 

axes, but may also be due to the error bars in the simulation data as at 450 K the cubic crystal 

structure prevails. It should be noted that all simulations were done for the pseudo-cubic phase 

and that experimentally at low temperature the structure is orthorhombic. This phase transition 

is thus not accounted for in the present simulations. 

The combined experimental and theoretical results demonstrate that in the studied 

samples at 300 K the MA dipoles reorient on two distinct time scales. These are interpreted as 

fast local wobbling-in-a-cone motion and slow 90 degrees jumps, respectively. We cannot fully 



11 
 

exclude a slower decay component, but the upper limit for the contribution of such a component 

is in the order of 0.07, corresponding to < 20% of all MA molecules moving on a slower time 

scale. These measurements thus dismisses the existence of large, slowly interconverting 

ferroelectric domains. However, we cannot rule out that the jump motion involves concerted 

motion of correlated MA domains.   

To conclude, ultrafast 2D-IR vibrational anisotropy spectroscopy on the N+H3 

symmetric bending vibration of MA and ab-initio MD were used to resolve in time the 

methylammonium cation rotation in different MAPbI3 perovskites films. Excellent agreement 

was found between the experiment and the simulations. For all materials we observed similar 

dynamics with two characteristic timescales of molecular motion, which we identified as a fast 

wobbling-in-a-cone motion around the lattice axes and a relatively slow (~3 ps) jump-like 

reorientation of the molecular dipole (aligned with CN axis) between the different lattice axes. 

These timescales are directly relatable to the contribution to the dielectric response that comes 

from the molecular motion. Such a contribution is of extreme importance for the device physics 

of these materials, as the stability of excitons, polarons, and other quasi-particle states will 

depend on the response time of the dielectric constant. These findings represent the first real-

time measurement of organic cation motion in organic-inorganic perovskite materials and 

provide access to the molecular mechanisms behind the optoelectronic properties of these 

materials. 
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Figures: 

 

 

 

Figure 1. Perovskite material under study: (a) A snapshot from the molecular dynamics 

simulation showing the structure of the MAPbI3 perovskite. (b) The MA molecule and the 

orientation of the transition dipoles of the NH3 bending vibrations. (c) IR absorption spectra of 

MAPbI3 films prepared using different methods. (d) Absorption spectra of a MAPbI3 film in 

the NH/CH bending vibrational region. The red line shows the calculated absorption spectrum 

of the NH3 bending modes (on the basis of the MD simulation). 
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Figure 2. Vibrational 2D spectroscopy: (a) Experimental setup for the 2D-IR polarisation -

resolved measurements. (b) Isotropic pump-probe transient spectra of a co-evaporated 

perovskite film measured using broadband excitation. (c)  Isotropic pump-probe responses at 

different pump-probe delay times.  
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Figure 3. 2DIR response of NH bending vibrations: (a) Isotropic 2D spectra of co-

evaporated perovskite film (average over three samples) 1 ps delay time. The different colours 

correspond to 5% steps from the maximum amplitude. Upper panel shows the corresponding 

absorption spectrum. (b) Cross sections through the 2D spectrum of the co-evaporated 

perovskite at ex=1470cm-1 for different delay times. (c) The dynamics of the excited-state 

absorption in the (ex = 1470 cm-1; pr = 1445 cm-1) point of 2D spectrum measured for parallel 

and orthogonal pump and probe pulses polarisations. (d)  Anisotropy dynamics associated with 

the data in panel (c) with 95% confidence interval indicated. The solid lines represent the 

transient anisotropy dynamics calculated based on the MD simulations at different 

temperatures.  
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Figure 4. (a) Transient anisotropy in the peak of ESA response (excitation = 1470 cm-1; probe 

= 1445 cm-1) for samples prepared using different techniques. The red line is a guide to the eye 

showing the transient anisotropy dynamics calculated based on MD simulations at 300K. The 

time resolution was ~100 fs for co-evaporated film and ~300 fs for spincoated and two-step 

fabricated films. (b) The example of 2D-IR spectrum calculated with MD simulations.  (c) An 

artist impression illustrating the motion of organic cation within the perovskite material. (d) 

Histogram of the simulated angular distribution of the MA dipoles at different temperatures 

normalized to the isotropic distribution. The inset illustrates the definition of the cone angle. 
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