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Abstract 

The STAT family of transcription factors transduce signals from cytokine receptors to 

the nucleus where STAT dimers bind to DNA and regulate transcription. STAT3 is 

the most ubiquitous of the STATs being activated by a wide variety of cytokines and 

growth factors. STAT3 has many roles in physiological processes such as 

inflammatory signalling, aerobic glycolysis, and immune suppression and was also 

the first family member shown to be aberrantly activated in a wide range of both solid 

and liquid tumours. STAT3 promotes tumourigenesis through regulating the 

expression of various target genes including cell cycle regulators, angiogenic factors 

and anti-apoptosis genes. Paradoxically, in some circumstances STAT3 signalling 

induces cell death. The best known example is the involuting mammary gland where 

STAT3 is essential for the induction of a lysosomal pathway of cell death. 

Nevertheless, direct silencing or inhibition of STAT3 diminishes tumour growth and 

cell survival in both animal and human studies. This suggests that abolishing STAT3 

activity could be an effective cancer therapeutic strategy. However, despite this 

potential as a therapeutic target and the extensive attempts by academia and 

pharmaceutical companies to develop an effective STAT3 inhibitor for use in the 

clinic, there has not been a single, direct STAT3 inhibitor approved for clinical use. In 

this review, we will focus on the role of STAT3 in tumourigenesis and discuss its 

potential as a therapeutic target for cancer treatment.  

 

Introduction 

The signal transducers and activators of transcription (STATs) are a family of seven 

proteins of close homology, STAT1, STAT2, STAT3, STAT4, STAT5a and closely 

related STAT5b, and STAT6. There are four known isoforms of human STAT3 

located on chromosome 17q21.31 (1). STAT3α, the predominantly expressed isoform, 

is a 770 amino acid, 88kDa protein that elicits most functions ascribed to STAT3 (2). 

STAT3β, an alternatively spliced variant, lacks the C-terminal domain and was 

described as a dominant negative form until evidence showed it to be a functional 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/42338721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


transcription factor (3). STAT3γ and STAT3δ, the lesser well known STAT3 

isoforms, may have roles in neutrophil and granulocytic differentiation respectively 

(4, 5). The structure of STAT3 is typical of the STAT family, comprising an N-

terminal domain, a coiled-coil domain, a Src homology 2 (SH2) domain, a DNA 

binding domain and a C-terminal transactivation domain (Figure 1) (6). The N-

terminal coiled-coiled domain forms an interface for dimer-dimer interactions during 

STAT3-driven initiation of gene expression (7, 8). The SH2 domain contains three 

important solvent accessible subpockets that stabilize STAT-STAT dimer interactions 

and STAT3-receptor binding interactions (9). The DNA-binding domain provides the 

protein-DNA binding interface, whereby upon activation, individual STAT monomers 

dimerize completing a nutcracker-like structure which binds to specific DNA motifs, 

initiating transcription (10). 

 

1. STAT3 activation  

STAT3 activation is mediated primarily by IL-6 family cytokine receptor-associated 

Janus kinases (JAKs) although receptor tyrosine kinases such as EGFR and non-

receptor tyrosine kinases such as Src can also phosphorylate STAT3 (Figure 2) (11-

13). Following JAK activation, latent cytosolic STAT3 monomers dock with 

cytokine-bound receptors at pTyr sites through SH2 domain binding, whereupon 

JAKs phosphorylate STAT3 on a conserved tyrosine residue (pTyr705) found in the 

C-terminal region. Post-phosphorylation, STAT3 monomers dissociate from receptor 

docking sites and dimerize through reciprocal pTyr and SH2 domain interactions (14). 

STAT3 is known to form homo and heterodimers with STAT1 due to the high 

sequence similarity between the two proteins, diversifying the number of genes under 

their transcriptional control (15). STAT3 can also be further modified by 

phosphorylation on a serine residue (S727) in the C-terminal region to promote full 

STAT3 activation. This serine residue, important in prolonging retention in the 

nucleus and affecting overall growth, is only present on the STAT3α isoform (16, 17). 

STAT3 can also be acetylated at Lys685 to alter expression of specific gene targets 

(18).  

 

2. STAT3 regulation 

STAT3 dimers regulate transcription of a variety of genes through binding to 

canonical palindromic CCT(N)3GAA sites in the promoter regions of target genes. 



Collectively, each STAT member elicits a wide range of important cellular responses 

and although DNA binding sites appear to be shared, each STAT displays specific 

gene expression signatures that seem to be cell type dependent (19). Expression and 

activation of STAT3 is exquisitely regulated in normal cells with a plethora of factors 

that silence JAK/STAT signalling. These include SOCS (suppressor of cytokine 

signalling) proteins that can bind to activated JAKs or receptor domains and 

efficiently block STAT phosphorylation. SOCS3 is a direct transcriptional target of 

STAT3, providing a cellular negative feedback mechanism for STAT3 signalling 

(20). The PIAS family (protein inhibitor of activated STAT) are a family of SUMO-

E3 ligases that covalently attach SUMO proteins to target substrates, thus altering 

their activity. PIAS3 in particular has been shown to directly inhibit STAT3 activity 

through this post translational modification (21). In addition to these, PTPs (protein 

tyrosine phosphatases), SHPs (Src homology domain-containing tyrosine 

phosphatases) and the more recently discovered PTPRT (protein tyrosine phosphatase 

receptor T) can specifically dephosphorylate STAT3 and upstream kinases in the 

JAK-STAT pathway to terminate STAT3 signalling (22).  

 

3. STAT3 as an oncogene 

STAT3 was first noted to be constitutively active in breast cancers (23). It became 

directly associated with oncogenic signalling when cells transformed by HTLV-1 and 

EBV viral infections were found to have constitutive STAT3 activity, a result of 

increased tyrosine kinase activity (24, 25). Furthermore, blocking STAT3 activity 

decreases cellular transformation in v-Src transformed cell lines (26). Further 

evidence that STAT3 is an oncogene was provided by expressing a mutated STAT3 

construct (STAT3C), that constitutively forms dimers, in normal mouse fibroblasts 

which, when transplanted into nude mice, formed tumours (27). This STAT3C 

construct was found to drive tumour formation in a variety of cell types by up-

regulating important oncogenic and angiogenic factors such as MMP-9, VEGF, and 

Cten (28-30).  

During tumourigenesis, STAT3 activity can become dysregulated, despite the 

impressive array of negative regulators of STAT3 signalling. Abnormal persistent 

STAT3 activity has been demonstrated in multiple haematological and solid cancers 

(31).  Of notable interest, constitutive STAT3 activity is found in a high percentage of 

triple negative breast cancers and in 30-60% of all primary breast cancers (32).  



Unlike most oncogenes, STAT3 mutations that contribute to aberrant STAT3 

signalling are not frequently found in tumours. A rare exception is the STAT3 SH2 

domain somatic mutations that were found in 12% of inflammatory hepatocellular 

adenomas that lacked mutations in the IL-6 receptor, which sensitized STAT3 

proteins to activation and homo-dimerization independently of IL-6 (33). In the 

majority of cases, however, persistent STAT3 activation occurs through deregulated 

upstream signalling where kinases that phosphorylate STAT3 can become over-

expressed or constitutively activated (32, 34). 

The primary distinction between STAT3 activation in normal and cancer cells is the 

level and duration of signalling. While cytokine-mediated activation of STAT3 is 

substantial and acute, oncogene-mediated STAT3 activation is generally at a lower 

level and prolonged (35). Some cancers become dependent upon, or addicted to this 

activity such that STAT3 inhibition restricts tumour growth and can induce cell death 

(36).  In addition to the tumour cells themselves, STAT3 activity in the tumour 

microenvironment plays a major role in tumour progression and metastasis. STAT3 

activation can induce expression of inflammatory cytokines such as IL-6 and 

angiogenic factors such as HIF1α and VEGF (30, 37). These inflammatory mediators 

promote wound healing but also influence cells in the tumour microenvironment via 

further induction of the JAK/STAT3 pathway (37, 38). Indeed, cancer has been 

considered as a wound that does not heal. The release of inflammatory and angiogenic 

factors driven by STAT3 in this microenvironment has suppressive effects on the 

immune system. Immature dendritic cells (DCs) are prevented from differentiating 

into antigen presenting cells, while macrophage expression of factors that promote 

Th1-mediated adaptive immune responses are suppressed (39, 40). Persistent STAT3 

activation in immature myeloid cells (iMCs) and naïve T-cells, promoted by STAT3 

induced cytokines, expands the populations of myeloid derived suppressor cells 

(MDSCs) and T regulatory (Treg) cells (41, 42). Treg cells directly inhibit CD4+ and 

CD8+ T cells through a cell-contact-dependent mechanism and induction of 

suppressive factors such as TGF-β and IL-10, aiding tumour immune evasion (42-44). 

Complete STAT3 ablation from the myeloid lineage leads to increased immune 

responses due to increased macrophage activation and production of Th1 cytokines 

(40). STAT3 ablation from the hematopoietic lineage produces a similar result with 

increases in activation of dendritic, natural killer and T-cells, resulting in suppressed 

tumour growth (42). 



 

4. STAT3 as a viable therapeutic target: effects of inhibition on cancer 

growth 

As mentioned above, tumour cells are often highly susceptible to STAT3 inhibition or 

ablation (42, 45).  This is not surprising since STAT3 signalling promotes 

proliferation through the up regulation of cell cycle regulators such as cyclins D1, and 

D3 and c-Myc (45, 46). A variety of STAT3 inhibitors, including chemicals, decoy 

peptides and siRNA reagents have been developed, albeit often with limited efficacy 

(47, 48). STAT3 inhibition or siRNA knockdown has been shown repeatedly to 

increase cell death and reduce growth of tumours both in vivo and in vitro. For 

example, STAT3 inhibitor treatment of malignant glioma xenograft models 

suppressed the expression of c-Myc, Bcl-xL and Mcl-1, and induced apoptosis 

(49)while siRNA-mediated STAT3 inhibition in laryngeal tumours down regulated 

Bcl-2, survivin, and cyclin D1 protein levels and also induced apoptosis (50). In 

addition, STAT3 RNAi knockdown in aggressive breast cancer cell lines increased 

expression of apoptotic proteins Fas/Fas-L, while decreasing expression of anti-

apoptotic genes Bcl-xL and survivin, to induce apoptosis in vitro and in vivo (51). 

STAT3 is also implicated in epithelial-to-mesenchymal transition (EMT) which can 

contribute to invasion and metastasis. Transcription factors known to promote EMT, 

such as Twist and Snail are up regulated in cancers with aberrant STAT3 activity and 

STAT3 is required for TGF-β-induced EMT (52, 53). Consequently, STAT3 

inhibition reduces expression of these genes leading to reduced cancer cell invasion 

(53). Finally, persistent STAT3 signalling also directs cancer cells towards aerobic 

glycolysis, increasing proliferation and survival (54). Taken together, it is clear that 

STAT3 is implicated in multiple features of cancer cells highlighting the unmet need 

for effective inhibitors. 

In this context it is interesting to note that STAT3 inhibition in adult mice and recent 

human trials produced only moderate side effects in differentiated tissues suggesting 

that STAT3 drugs may not be highly toxic and encouraging the further development 

of STAT3 therapeutics (51, 55, 56). In addition, STAT3 inhibition sensitizes cancer 

cells to chemotherapeutic agents, highlighting the potential for STAT3 inhibitors in 

combinational cancer therapy (57, 58). However, STAT3 inhibitors need to be able to 

distinguish between STAT3 and STAT1 to be useful in a clinical setting. STAT3 and 

STAT1, although structurally very similar, display key differences in transcriptional 



targets. STAT1 provides an important anti-viral mechanism and is also a known 

tumour suppressor (59, 60). 

 

5. Strategies for inhibiting STAT3 signalling 

 

5.1 Indirect targets 

Most cases of persistent STAT3 activation are caused by activating mutations in, or 

overexpression of, upstream kinases such as JAK2, Src and EGFR.  A decrease in 

expression of STAT3 negative regulators such as SOCS and PIAS, as observed in 

hepatocellular carcinoma and mesothelioma tumours respectively, can also result in 

constitutive STAT3 activity (61, 62). Several drugs that can target these components 

are already in clinical trials or in use in the clinic, including the JAK2 inhibitor 

Ruxolitinib and the EGFR blocking antibody Cetuximab (63, 64). Furthermore, key 

methyltransferases and acetyltransferases specific to STAT3 could also be targeted as 

additional therapeutic options for STAT3 inhibition (65, 66).  

 

Overexpression of EGFR can contribute to aberrant STAT3 activity and is abundant 

in squamous cell carcinoma of the head and neck (SCCHN), a leading cause of death 

worldwide (67). EGFR is also overexpressed in approximately 16-36% of all breast 

carcinomas and may harbour activating mutations (68).  

 

Aberrant STAT3 activity in cancer is also frequently caused by overactive members 

of the JAK family (32, 34). A breakthrough in understanding myeloproliferative 

diseases occurred after discovering JAK2 activating mutations leading to a novel class 

of oral JAK2 inhibitors (69). As such, many FDA-approved JAK kinase specific 

inhibitors are now in clinical use for cancer treatment. Ruxolitinib, the first FDA-

approved JAK1 and JAK2 specific kinase inhibitor for myeloproliferative disease 

treatment, is now prescribed for other types of cancer with constitutive STAT3 

activity, such as lymphomas and pancreatic cancer (70, 71). STAT3 activity is 

inhibited by Ruxolitinib, inducing apoptosis and reducing cisplatin resistance in non-

small-cell lung cancer (NSCLC) cell lines  (72). AZD1480, another FDA-approved 

JAK2 inhibitor for myeloproliferative disease treatment, also displays significant 

pSTAT3 reduction in solid tumours, reducing growth of many cell lines with 

constitutive STAT3 activity (73). Furthermore, JAK2 specific inhibitors such as 



Pancritinib are in the final stages of clinical trials for myelofibrosis and display 

increased potency compared to currently available JAK inhibitors (74).  

 

5.2 Directly inhibiting STAT3  

Despite persistent attempts by many laboratories and pharmaceutical companies to 

develop STAT3 inhibitors, this has yet to be satisfactorily achieved raising the 

question of whether STAT3 is truly a druggable target. Many direct STAT3 inhibitors 

have been identified or produced using a variety of techniques, including screens of 

large compound libraries, computer assisted virtual screening with the STAT3 crystal 

structure, optimization of natural STAT3 inhibitor compounds and STAT3- binding 

peptides, and fragment-based drug design and drug repositioning using multiple 

ligand simultaneous docking (MLSD) (75-77). These inhibitors can be placed into 

three broad groups; peptides, small molecules and oligonucleotides. All groups act on 

STAT3 through targeting one of three STAT3 motifs namely the N-terminal domain, 

the SH2 domain and the DNA binding domain (DBD) (Figure 3). Peptide inhibitors 

mimic STAT3 binding protein sequences to interrupt protein-protein interactions and 

can be directed towards all three sites. SH2 domain peptide inhibitors, for example, 

are based on the SH2 domain binding motif pTyr-Xxx-Xxx-Gln (where Xxx 

represents any amino acid) (47, 78). The majority of small molecule inhibitors are 

claimed to bind the STAT3 SH2 domain although some are directed towards the DBD 

(79-81). In contrast oligonucleotide decoy inhibitors, that resemble the STAT3 DNA 

binding site in the c-fos promoter, act solely on the STAT3 DBD to prevent DNA 

binding and transcriptional activation (55). 

 

Thus, there are a number of STAT3 domains that are potentially targetable by 

therapeutics and these will be discussed in more detail below. 

 

6. Targetable STAT3 Domains 

 

6.1 The N-terminal domain  

The N-terminal coiled-coil domain interface is formed of 4 helices that are grouped to 

form a hook-like structure and is responsible for protein-protein interactions and 

formation of multiple oligomers (82). Here, two STAT3 DNA-bound dimers interact 

to form a transcription initiating tetramer (7, 8). In addition this region is required for 



successful nuclear shuttling of phosphorylated and unphosphorlyated STAT3 

monomers (83). ST3-H2A2, a synthetic peptide discovered from a library directed 

towards STAT3 N-Domain binding, successfully binds at this site to specifically 

inhibit STAT3 function but not that of STAT1. The N-Domain of STAT1 displays 

considerable differences in sequence to STAT3, and therefore is not recognised by the 

tailored peptide. ST3-H2A2 modified regulation of STAT3 gene targets, increasing 

expression of 17 pro-apoptotic genes and inducing apoptosis (84). Furthermore, ST3-

H2A2 could be made more membrane permeable by tagging the C-terminus to 

Penetratin, a 16 amino acid peptide internalized by cells (85).  

 

6.2 The SH2 domain 

The STAT3 SH2 domain is a 100 amino acid sequence containing three solvent-

available subpockets that can interact with activated receptors and a second STAT3 

monomer (9, 82). These pockets interact with key sites, the pTyr-705, the adjacent 

leucine residue and additional hydrophobic residues on a second STAT3 monomer to 

stabilize STAT3 dimer interactions. STAT3 SH2 domain inhibitors prevent docking 

with receptors and dimerization, thereby blocking activation and function (9). Many 

SH2 domain-binding peptides have been synthesized with high potency, some with 

IC50 values in the low nanomolar range (78). For example, PY
*
LKTK-mts and 

APTSTAT3-9R potently inhibit STAT3 activation and dimerization, inhibiting tumour 

cell growth and inducing apoptosis in vitro and in vivo (47). STA-21, a small 

molecule discovered from a virtual screen of over 400,000 compounds against the 

STAT3 SH2 domain, inhibits STAT3 activity and DNA binding at 20 µM and has 

completed phase II clinical trials as a topical agent for STAT3 driven psoriasis (75, 

86). LLL-12, an optimized analogue of STA-21, blocked STAT3 activation and DNA 

binding at 2 µM, suppressing tumour growth and inducing apoptosis (87).  Stattic, 

another small molecule STAT3 SH2 domain inhibitor, was discovered in a fluorescent 

polarization (FP) compound screen against the STAT3 SH2 domain and inhibits 

STAT3 DNA binding at 10 µM with specificity over STAT1 (79). BP-1-102, a 

structurally modified analogue of S31-201, displays binding to all three subpockets of 

the STAT3 SH2 domain and inhibits STAT3 activity at 20 µM, reducing growth and 

invasion of multiple tumour cell line xenografts (9). Inhibitors claiming to inhibit the 



STAT3 SH2 domain are the most numerous of all STAT3 inhibitors with many other 

notable examples (88). 

 

6.3 DNA binding domain 

The STAT3 DNA-binding domain (DBD) is constituted of four loops originating 

from the DBDs and linker domains from each STAT3 monomer (82). Inhibitors 

binding here impede STAT3 binding to target DNA sequences and thus gene 

expression. Peptide inhibitors directed towards the STAT3 DBD, discovered through 

yeast two hybrid display of STAT3 DBD, inhibited STAT3 transcriptional activity 

with high potency, inhibiting growth and inducing apoptosis of human myeloma cells 

(89). InS3-54, a small molecule STAT3 DBD inhibitor discovered through a virtual 

screen against the crystal structure of STAT3β-complexed to DNA, also inhibited 

STAT3 transcriptional activity in a time and dose dependent manner (90). Decoy 

oligonucleotides, closely resembling STAT3 DNA binding sites, bind STAT3 dimers 

and prevent nuclear localisation and DNA binding. One such example induced 

apoptosis and growth inhibition in many cancerous cell lines with constitutive STAT3 

activity but did not affect normal cells (55). In a recent phase 0 trial this STAT3 decoy 

oligonucleotide proved to have tolerable toxicology and promising efficacy in 

xenograft models and in humans, inhibiting STAT3 gene targets in patients with 

HNSCC and reducing the tumour growth (55). 

 

7. Why have STAT3 inhibitors not reached the clinic? 

Despite these achievements the question remains as to why no STAT3 inhibitors have 

reached the clinic. Peptide therapeutics, although specific and highly potent, suffer 

from rapid degradation and instability, although considerable progress has been made 

into improving peptide pharmacokinetic and pharmacodynamic profiles (91). SH2 

domain binding peptidomimetics also require phosphorylated tyrosine residues to bind 

to the STAT3 SH2 domain, an essential negative charge that limits cell membrane 

penetrance, drastically reducing efficacies in vitro and in vivo (47).  Poor membrane 

permeability can also be improved however, by the addition of membrane 

translocating sequences or further modification (47, 85). Modified STAT3 specific 

peptides may yet provide a viable option for targeting STAT3 in vivo, although as yet, 

the aforementioned limitations has meant that none have moved into clinical trials. In 

contrast, small molecules efficiently cross the membrane. However, FDA-approved 



small molecule inhibitors are dominated by kinase inhibitors that mimic the structure 

of ATP and bind the deep hydrophobic ATP binding cleft, a site that STAT3 lacks. 

The three inhibitory sites mentioned above are large, planar surfaces that prove 

difficult for small molecules to bind to specifically and block the large protein-protein 

interactions. Many small molecule "STAT3 inhibitors",  identified from virtual and 

high-through-put screens, displayed unsaturated ketone groups that can be responsible 

for forming non-specific bonds with nucleophilic groups of peptides (92). The binding 

affinity of Stattic to STAT3, for example, was dramatically reduced in the presence of 

2 mM DTT, a strong nucleophile, suggesting electron donation saturates the 

electrophilic group of Stattic and prevents effective STAT3 binding. Furthermore, 

inhibition was reduced when a nitro group of Stattic, a strong electron acceptor, was 

replaced with NH2 or H (79). This raises the question; are STAT3 specific inhibitors 

binding specifically or adhering to protein surfaces non-specifically? The majority of 

STAT3 SH2 domain small molecule inhibitors are lacking crucial evidence of specific 

STAT3 binding. Despite this caveat, there are a number of small molecule STAT3 

inhibitors currently undergoing clinical trials, such as STA-21 for the treatment of 

psoriasis.  OPB-31121 and OPB-51602 have also completed phase I trials for the 

treatment of advanced cancer (93, 94). DNA oligonucleotide therapeutics suffer poor 

bioavailability, poor pharmacokinetics and short half-lives in vivo due to rapid 

nuclease degradation, which has meant very few have reached the clinic (95). The 

half-life of the unmodified STAT3 decoy oligonucleotide was short but could be 

extended following 5’ and 3’ end modification to create a cyclic molecule, inhibiting 

degradation (55). Other oligonucleotide therapeutics have been modified at the 

phosphate backbone to increase stability and reduce degradation in vivo (95). 

Membrane permeability and tissue specific delivery have remained problematic for all 

oligonucleotide therapies however, and has thus limited clinical use (96). 

 

8. STAT3 therapeutics: future perspectives 

Evidence continues to accumulate that STAT3 is an oncogene and an important target 

for therapy. Recent analysis of the six main breast cancer subtypes, basal-like, luminal 

A, luminal B, ERBB2/HER2+, normal breast-like and claudin low, suggests 

constitutive STAT3 activity is predominantly associated with basal-like breast cancers 

(97). This important finding re-establishes STAT3 as a desirable therapeutic target, as 

basal-like breast cancer often lacks the three treatable breast cancer markers, estrogen 



receptor (ER), progesterone receptor (PR) and human epidermal growth factor 

receptor 2 (HER2) (98). However, despite intensive efforts, STAT3 has remained 

frustratingly elusive as a target for cancer therapy. There are a large number of 

STAT3 inhibitors currently undergoing clinical trials, which shows that with 

technological advances and the continuous improvement to all approaches, progress is 

being made. However, the lack of a clinically applicable STAT3 inhibitor has brought 

to light the problems still being encountered. Lack of cell penetrance, lack of binding 

specificity and rapid degradation are some examples of the problems that have needed 

to be addressed. Most inhibitors and methods of delivery described in this review will 

require more research and development if they are to become the next generation of 

cancer therapies. A non-specific compound is likely to cause off target effects 

resulting in cytotoxicity and a likely failure in clinical trials. Whereas a molecule that 

is too rapidly degraded in vivo, or that lacks membrane permeability will undoubtedly 

lack efficacy in a clinical setting. Nevertheless, providing clinicians with an addition 

to the armamentarium in the fight against therapy-resistant cancer will always justify 

the resources and effort required to develop a STAT3 specific therapeutic.  
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Figure legends 

 

Figure 1. A linear diagram depicting functional STAT3 domainsN-Domain, coiled-

coil domain, DNA binding domain, linker domain, SH2 domain and transactivation 

domain are all presented with amino acid numbers indicating boundaries between 

each. Phosphorylation sites Tyr705 and Ser727 and acetylation site Lys685 are also 

displayed. 

 

Figure 2. The activation and regulation of the STAT3 pathway. Binding of 

stimulatory ligands to cell surface receptors induces members of the JAK family to 

cross-phosphorylate each other and then specific domains on the cytokine receptors. 

This provides binding sites for the recruitment and phosphorylation of STAT3 

monomers. STAT3 can be activated also by receptor and non-receptor tyrosine 

kinases such as EGFR and Src respectively. Phosphorylated STAT3 monomers 

homodimerize and translocate to the nucleus where they bind DNA and regulate 

http://en.wikipedia.org/wiki/Epidermal_growth_factor_receptor
http://en.wikipedia.org/wiki/Epidermal_growth_factor_receptor


transcription of target genes. STAT3 signalling is regulated via many negative 

feedback controls. SOCS members, some of which are directly upregulated by 

STAT3, bind either to JAKs or to receptor-binding sites where they compete with 

STAT3. PIAS members lead to direct degradation of STAT3 protein while 

phosphatases, such as PTP and SHP-1, lead to dephosphoryation of kinases and 

STAT3 to inhibit signalling.  

 

 

Figure 3. Schematic diagram of the DNA bound STAT3β homodimer complex and 

potential binding sites for inhibitor compounds on the STAT3β monomer. The 

STAT3-DNA complex (PDB code 1BG1) with the N-terminal oligomerization 

domain depicted in green, DNA binding domain in orange, linker domain in blue, 

SH2 domain in red and C-terminal phosphotyrosine containing region in grey.  A. A 

solid surface view of entire complex viewed from along the DNA axis. B. Ribbon 

surface STAT3β-DNA complex close up view along DNA axis. C. Solid surface view 

of STAT3β monomer and potential inhibitor binding sites with examples. This figure 

was designed using the program Chimera. Inhibitor compounds are referenced in the 

text.  
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