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Abstract: The feedback gains in state-of-the-art flight control laws for commercial aircraft are
scheduled as a function of values such as airspeed, mass, and centre of gravity. If estimates
of these are lost due to multiple simultaneous sensor failures, it is necessary for the pilot to
either directly command control surface positions, or to revert to an alternative control law.
This work develops a robust backup load-factor tracking control law, that does not depend on
these parameters, based on application of theory from robust MPC and H2 control. First the
methods are applied with loss only of airdata, and subsequently also with loss of mass and CoG
estimates. Local linear analysis indicates satisfactory performance over a wide range of operating
points. Finally, the resulting control laws are demonstrated on the nonlinear RECONFIGURE
benchmark, which is derived from Airbus’s high fidelity, industrially-validated simulator, OSMA.
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1. INTRODUCTION

Automatic control systems are integral to the operation of
modern civil airliners (Favre, 1994), reducing the pilot’s
workload through stability augmentation and providing a
homogeneous response to commands through the whole
flight envelope. The open-loop response of the aircraft
varies considerably, and when a linear feedback control law
is used, it is usual to schedule its parameters based on the
flight point. For example when controlling the longitudinal
short-period mode, load factor (nz) and pitch rate (q) are
fed-back, but the control law parameters are scheduled as
a function of a combination of airspeed, altitude, mach
number, mass and centre-of-gravity of the aircraft. Each
parameter used must therefore be measured or estimated.

Unfortunately, faults can occur. Hardware redundancy is
the typical mitigating measure (Brière et al., 1995; Goupil,
2011). To achieve robustness to sensor failure, multiple
(possibly dissimilar) sensors can be implemented and a
“voting” mechanism employed to detect and compensate
for a pre-determined number of failures Goupil (2011). Ana-
lytical redundancy (where multiple signals are combined to
reconstruct an estimate of a parameter without explicitly
measuring it) can also be exploited through soft sensor
design, providing additional fault-tolerance without the
burden of additional physical hardware. However when too
many simultaneous sensor faults occur, the signals must
be treated as polluted and ignored.

This paper considers first the case where airspeed data is
lost, for example due to multiple simultaneous faults on
? The research leading to these results has received funding from
the European Union Seventh Framework Programme FP7/2007-2013
under grant agreement number 314 544, project “RECONFIGURE”.

pitot tubes and angle-of-attack sensors (so AoA cannot be
used to estimated airspeed). In this situation, one recourse
is to switch to a direct control law, where elevator deflection
is commanded instead. However, it would be desirable
to maintain a load-factor control law with reasonable
robustness and handling qualities, so as to limit the
inevitable additional workload falling on the pilot. Stable
operation is subsequently demonstrated where estimates
of mass, centre of gravity are also lost.

Recently, Puyou and Ezerzere (2012) achieved a similar
objective, applying non-smooth optimisation to obtain a
fixed-complexity controller robust to loss of mass and centre
of gravity estimates. The remaining scheduling information
was introduced through an inner-loop nonlinear dynamic
inversion (NDI) controller due to difficulties interpolating
dynamic systems. Similarly, Varga et al. (2014) proposes a
non-scheduled backup C∗ control law, tuned using multi-
objective optimisation. The present work demonstrates an
alternative method for maintaining a load factor control
law using a robust discrete-time control technique. The
controller is designed using local linearisations of the
longitudinal dynamics of an Airbus A380, and then tested in
an industrial high-fidelity nonlinear simulator provided by
Airbus for use in the RECONFIGURE project, based on an
evolution of OSMA (Outil de Simulation des Mouvements
Avion, Favre (1994)).

This paper has the following structure. Section 2 outlines
the control problem. Section 3 describes the theoretical
tools which will be applied. Section 4 describes the tuning
method and linear analysis of the resulting control law.
Section 5 then demonstrates the control laws in a high
fidelity nonlinear simulation, and Section 6 concludes. The
key purpose of this paper is not the development of new
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Fig. 1. Schematic of control design setup

theory, but an approach to address the requirements of a
challenging industrially-motivated application.

2. CONTROL PROBLEM

Airbus has provided the RECONFIGURE consortium with
linearisations of the longitudinal dynamics of an Airbus
A380 in straight-and-level flight at 214 different flight
points covering an envelope of altitudes, airspeeds, masses
and centre-of-gravity (CoG), as well as simplified linear
sensor, filter and actuator models. We consider a setup
where all elevators act in common mode, and neglect the
trimmable-horizontal-stabiliser (THS), which in any case
can only control at much lower frequency ranges than those
considered. A sampling period Ts = 0.04 s is used.

The objective is to control only the short-period dynamics
(leaving the pilot or an autopilot control law to control the
phugoid mode). Classically the short-period dynamics are
modelled with the pitch rate q and angle-of-attack α as
states, with q, α and vertical “load factor” nz as outputs.
Usually, α is not available at sufficiently high bandwidth
to be used for the innermost control loop, so q and nz are
used as feedback variables. The control input is the elevator
deflection (multiple elevators operating in common mode).
For design purposes, the short-period model at each flight
point is augmented with a first-order-plus delay actuator
model for the elevator and first-order low-pass linear sensor
models on q and nz, followed by a first-order low-pass filter
yielding estimates q̂ and n̂z of the true values (Figure 1).
These approximate the higher order “true” filters, which
also include notch filters to attenuate certain structural
modes, and the assumption is made that the existing filters
are unalterable.

Let x denote the combined state-vector of the actuator
dynamics, short-period mode and sensors/filters and y
denote that measured output [q̂, n̂z]

T . The short-period
dynamics vary with the current airspeed, altitude, CoG,
and mass. We will denote these parameters that determine
the flight point as θ. The augmented linearised plant model
at a given flight point θ sampled at time step k, with period
Ts can be described by the parameterised linear difference
equations:

x(k + 1) = A(θ)x(k) +B(θ)u(k) (1a)

y(k) = C(θ)x(k) +�����XXXXXD(θ)u(k). (1b)

Delays in the model mean this is strictly proper, i.e. D = 0.

The specification for the RECONFIGURE project (Goupil
et al., 2014) states that the closed-loop response should
have the following time-domain characteristics. First, the
response to a step change in commanded nz should be
“substantially finished” within 6 s. The corresponding pitch
rate q should not overshoot its steady state value by more
than 30% and the load factor should not overshoot its

setpoint by more than 10%, and the “control anticipation
parameter” (CAP) should be “homogeneous” throughout
the flight envelope. In addition it is desirable to have a local
60◦ phase margin and a 6 dB gain margin at the linear
design points, although in degraded conditions, it may not
be possible to achieve all of these simultaneously on top of
the nominal design uncertainty.

3. THEORETICAL GROUNDING

Let I , {1, . . . , 214} be an index for the 214 design points,
and θi, for i ∈ I denote the flight parameters for the ith
flight point. Define subsets of the flight points Jj ⊆ I,
j = 0, . . . , jmax, as “flight groups” such that Jm ∩ Jn = ∅,
∀m 6= n, and let θji denote the parameters of the flight
point indexed by the ith element of Jj . The design objective
can be posed as the finding jmax control laws κj(z) that
each stabilise all flight points in Jj , with satisfactory
tracking performance. We assume that parameters vary
slowly in comparison to the controlled dynamics and can
be locally approximated as time-invariant.

3.1 Output-feedback transformation

This is an output feedback control problem. For an observer-
based control law, a nominal plant model would need to be
chosen (the choice of which is not obvious). Moreover, since
non-zero setpoints are to be tracked, the usual assumption
that observer error converges to zero is invalid. On the
other hand, a static, or arbitrary order feedback law
might be difficult to tune. The alternative used here is
to transform (1) for each flight point into a non-minimal
input-output form whose “state” is a finite time history of
inputs and outputs. The “state-observer” for this is then
simply a set of shift registers. This form was commonly
used in legacy implementations of MPC for SISO systems
(Maciejowski, 2002), and has also been recently highlighted
in Granado et al. (2005); Ding and Zou (2014) for applying
state-feedback control techniques for uncertain systems
in an output-feedback setting. This form also means that
the controller state has the same physical interpretation
at all flight points, and thus interpolating a feedback
gain between flight points using the remaining available
parameters is a possible strategy. The present application
has the complication of multiple measured outputs but the
same principles hold. This is not quite as simple as using
Matlab’s “ss2tf” command and extracting the coefficients.
The following proposes a systematic method to compute
such a form.

Assume that the plant (1) is m-step observable, and
that the number of states in (1) is a whole multiple of

m. Define the augmented state x̃(k) =
[
u(k)T y(k)T

]T
where u(k) = [u(k −m) · · · u(k − 1)]

T
and y(k) =[

y(k −m)T · · · y(k − 1)T
]T

. Letting dependency on θ be
implicit (and approximated as time-invariant), define

Φ =


C
...

CAm−2

CAm−1

 , Γ =


D

· · ·
. . .

· · · CB D
· · · CAB CB D

 (2)

and
Ψ =

[
CAm−1B · · · CA2B CAB CB

]
. (3)
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Theorem 1. y(k) =
(
Ψ− CAmΦ−1Γ

)
u(k)

+ CAmΦ−1y(k) +Du(k).

Proof. At a given flight point, it holds that

y(k) = Φx(k −m) + Γu(k). (4)

Since we have assumed the plant to be m-step observable,

x(k −m) = Φ−1(y(k)− Γu(k))

y(k) = CAmx(k −m) + Γu(k) +Du(k)

= CAmΦ−1(y(k)− Γu(k)) + Ψu(k) +Du(k)

= (Ψ− CAmΦ−1Γ)u(k) + CAmΦ−1y(k) +Du(k).

Thus, the non-minimal state-space system is:

x̃(k + 1) =


0 I(m−1)nu

0 0

0 0 0 0

0 0 0 I(m−1)ny

(Ψ− CAmΦ−1Γ) CAmΦ−1

 x̃(k) +


0

I

0

D

u(k)

y(k) =
[
(Ψ− CAmΦ−1Γ) CAmΦ−1

]
x̃(k) +Du(k). (5)

This is generalised to systems with a higher observability
index and systems where the state dimension is not an
integer multiple of the outputs by increasing the length
of the time history of inputs and outputs, m until Φ is of
full row rank, and using the Moore-Penrose Pseudo-inverse,
Φ+ instead of Φ−1. We will denote the nonminimal system
realisation with the matrices Ã(θ), B̃(θ), C̃(θ), D̃(θ).

3.2 Robust control theory

One way to design a control law that is robust to large
degrees of parametric uncertainty is to choose a nominal
plant model and then characterise uncertainty around it.
However, such a choice is not obvious. Instead, the tool
applied here is based on robust MPC theory and H2 control
theory. Kothare et al. (1996) proposed a method based on
linear matrix inequalities (LMIs) to simultaneously stabilise
a set of linear plants. At each time step, an optimisation is
solved to find a controller of form u(k) = K(x(k))x(k) that
minimises and upper bound on a quadratic cost function
over an infinite horizon from the current state. Input and
output constraints can also be accommodated, conserva-
tively. Cuzzola et al. (2002) suggests a less conservative
method based on multiple Lyapunov functions (de Oliveira
et al., 1999; De Oliveira et al., 2002). This is prohibitively
computationally demanding for the present application.
However, Wan and Kothare (2002) proposes an offline
method, based on interpolation of gains computed at judi-
ciously selected states based on set membership conditions.
The present work does not consider constraints: the tracking
nature of the problem adds complications with constraints
and large amounts of plant/model mismatch. For tracking,
we will follow the classical technique of augmenting the
plant with an integrator of the error between the load factor
to be tracked and the reference. Let H = [0, 1], and Ai = 1,
Bi = Ts be the state space matrices of the integrator, then
the augmented system is[
e(k + 1)

x̃(k + 1)

]
︸ ︷︷ ︸

x(k+1)

=

[
Ai −BiHC̃(θ)

0 Ã(θ)

]
︸ ︷︷ ︸

A(θ)

[
e(k)

x̃(k)

]
︸ ︷︷ ︸

x(k)

+

[
−BiHD̃(θ)

B̃(θ)

]
︸ ︷︷ ︸

B(θ)

u(k)+

[
Bi

0

]
︸︷︷︸
Br

r(k).

(6)

The objective reduces now to synthesising control gains
Kj that stabilise our integrator-augmented short-period-
plus-elevator-plus-sensor input-output composite models.

The control synthesis objective is, for each group Jj , to
minimise an upper bound on

min
Kj

max
θji∈Jj

∞∑
k=0

x(k)T (Q+KT
j RKj+SKj+KT

j S
T )x(k). (7)

The cross term is helpful for this application.

Lemma 2. KTRK +SK +KTST = (KT +SR−1)R(K +
R−1ST )− SR−1ST

Proof. By expansion.

With this, we can apply the result of Cuzzola et al. (2002)
for a general quadratic cost function:

Theorem 3.
∑∞

k=0 x(k)
T (Q+KT

j RKj+SKj+KT
j S

T )x(k)
≤ γj if Yj = KjGj and for all θji ∈ Jj ,

Gj +GT
j −Xji ∗ ∗ ∗

(A(θji) +B(θji))Y Xji 0 0
(Q− SR−1ST )1/2Gj 0 γjI 0
R1/2(Yj +R−1STGj) 0 0 γjI

 ≥ 0 (8a)

[
1 x(k)T

x(k) Xji

]
≥ 0 (8b)

Corollary 4. The control law u(k) = YjG
−1
j x(k) =

Kjx(k), obtained by solution of

min
γ,Gj ,Xji,Yj

γj subject to (8) (9)

minimises an upper bound on the cost function (7).

Solving (9) online for each new x(k) is not appropriate for
an aircraft inner control loop where the sampling period is
in the order of tens of milliseconds due to the complexity of
the required software, the required solution time, and the
limited computational hardware. Instead, following the lead
of Wan and Kothare (2002) the problem is solved offline
for a fixed value of x(k) = x0 and the resulting control
gain used for all x(k) given the relevant flight parameters.
Thus, the final implementation used here is not “MPC” in
the conventional sense, and can rather be interpreted as a
form of H2 controller.

The dynamic output feedback control law κj(z) is parame-
terised by a dynamic, but fixed component GK(z) and a
flight-group dependent gain Kj . Letting As, Bsu, and Bsy

denote the shift registers formed as in (5), and ˆ̃x denote the
estimate of x̃(k) contained therein, the fixed component
GK(z) can be described by the system:

e(k + 1)
ˆ̃x(k + 1)

e(k)
ˆ̃x(k)
u(k)

 =


Ai 0 0 −BiH Bi

0 As Bsu Bsy 0

I 0 0 0 0
0 I 0 0 0
0 0 I 0 0




e(k)
ˆ̃x(k)

u(k)
y(k)
r(k)

 . (10)

The static component is Kj , and the dynamic controller
can be described by the upper linear fractional transform

κj(z) = Fu(GK(z),Kj), (11)

i.e., the control input is computed by multiplying the
integrator state and the shift register state by the gain.

4. LINEAR DESIGN

For synthesis, we model the actuator dynamics with the dis-
crete transfer function 0.3297/(z2−0.6703z). The pitch rate
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sensor and filter are modelled as (0.118z + 0.06885)/(z3 −
1.01z2 + 0.1967z) and the load factor sensor and filter are
modelled as (0.1417z + 0.08081)/(z3 − 0.9615z2 + 0.184z).
These constitute a low-order approximation of the real ones.
The short-period dynamic model considers only the states
α, and q, a single lumped elevator input and outputs q and
nz.

For tuning, we define a performance output z(k) =
[e(k), q(k−1), nz(k−1),∆q(k−1),∆nz(k−1), u(k),∆u(k)]T ,
where ∆u(k) = u(k) − u(k − 1), and z(k) = Cp(θ)x(k) +
Dp(θ)u(k), and the objective is to thus, minimise an upper
bound on

∑∞
k=0 z(k)

TQz(k) over all θji ∈ Jj , where we
define Q with tuning weights on the diagonal as

Q , diag {1, Qq, Qnz , Q∆q, Q∆nz , R,R∆} . (12)

Thus the weights in (7) becomeQ = CT
p QCp, R = DT

p QDp,

S = CT
p QDp. As a rule of thumb, increasing Qq can damp

q overshoot and increase phase margin, but increase rise
time. Increasing Qnz increases rise time. Increasing Q∆q

increases phase margin, but can also increases rise time.
It is more effective than Qq on this front but does not
reduce q overshoot so much. Increasing R slows the reponse,
increases high-frequency roll off and increases gain margin,
but can reduce phase margin, slow response and increase
overshoot. Q∆nz

and R∆ have less pronounced effects. We
choose x0 as a vector of zeros with unity on the state
corresponding to the previous input (this appeared most
reliable at the most challenging (high altitude, high mass,
forward CoG) flight points).

The optimisation (9) is expressed using YALMIP (Löfberg,
2004) and solved using MOSEK. In case the problem
becomes too ill conditioned, the chosen x0 can be scaled,
or the full problem can be scaled by similarity trans-
formation on A(θ) and equivalent scaling on all other
matrices. To gain an idea of the best levels of perfor-
mance that can be achieved, we relegate tuning of (12)
to an optimisation-based procedure implemented using
the Simulated-Annealing solver, ASA (Ingber, 2012). The
chosen cost-function for this tuning minimises a weighted
sum of 6 criteria given a 10 s step response for each flight

point in a given flight group: c1 = maxi
∑kmax

k=0 (nz(k) −
yref (k))

2, c2 =
∑

i max(0,maxk(nz(k) − 1.1)), c3 =∑
i max(0,maxk(q(k)/qkmax)− 1.3)),

c4 =
∑

i max(0,maxk(−PM +60)), and c6 is the sum over
design points θji of the maximum gain above the roll-off
from −10 to −30 dB between 20 and 78 rad/s evaluated
at 1 rad/s intervals. PM, and GM are phase and gain
margins in deg and dB, and yref (k) is the response to a
first-order system plus a delay representing the desired
“ideal” response. The controller parameters could be tuned
directly also in this way, but the proposed method allows
for intuitive interactive fine-grained re-tuning based on
previously stated rules.

4.1 Airspeed failure

Figure 2 shows the closed-loop step responses of the lin-
earised short-period model (with filters and actuator) over
the range of airspeeds at vertices of the [0, 1]-normalised
mass/CG envelope at an altitude of 5000 ft. The rise-time
to 90% (6 s) and overshoot in q (30%) and nz (10%) are
met, and the response, whilst not as consistent as possible
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Fig. 2. Step response for linear models at 5000 ft
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Fig. 3. Step response for linear models at 35000 ft

with a fully scheduled control law varies in a predictable
manner. Figure 3 shows the closed-loop step responses over
the vertices of the airspeed, mass and CoG envelope at
35000 ft. Most flight points meet the required specifications,
except at the highest-mass, most forward CoG, where it
is very difficult to simultaneously stabilise the upper and
lower airspeeds. Here, there are slight violations of rise
time requirement at high airspeed and overshoot at low
airspeed. Nevertheless the system is stable.

4.2 Airspeed, mass and CoG missing

When mass and CoG are also polluted a control law can
be designed to simultaneously stabilise all vertices of the
flight envelope for a given altitude. Figure 4 shows the step
response for such a control law at 5000 ft. This has been
tuned to achieve at maximum 40% overshoot in q, 10%
overshoot in nz and a linear phase margin of 40◦ at each of
the design points so as to achieve the required nz response.
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Fig. 4. Step response for linear models at 5000 ft: no mass
or CoG

5. NONLINEAR APPLICATION

Figure 6 shows a high-level functional description of the
online control task. A simple gain-scheduling (Rugh and
Shamma, 2000) approach is employed, with the control
gains interpolated based on the non-faulty flightpoint
parameters. The control law must also be defined for small
deviations outside the nominal flight envelope. Since the
grid describing the flight groups is not completely regular,
firstly, “fictitious” flight groups are used to “pad” the
flight envelope to allow it to be bounded by simple box
constraints. This is done by repeating the data for the
nearest defined flight point. Then a Delaunay Triangulation
is performed. At a given point in the flight envelope, the
control gain is obtained by a barycentric interpolation of the
gains computed for the simplex containing the current flight
parameters. To clarify this, Figure 5 shows the triangulation.
Mass and CoG positions are normalised into the range [0, 1]
corresponding to the bounds of their admissible values.
Green markers indicate the extended padding used to
allow use of simple box saturation online. Whilst the
point-location and interpolation task is conceptually simple
and can be performed using standard Matlab tools, the
online task can be further simplified by re-sampling the
interpolation offline (red markers) to partition the padded
flight envelope into cuboids. This allows implementation
in Simulink using (for the case where mass and CoG are
available) a pre-lookup block and an array of “Interpolation
Using Prelookup” blocks. The case where only altitude is
available is a trivial corollary.

5.1 Airspeed failure

The RECONFIGURE benchmark simulator is a high-
fidelity industrially-validated nonlinear simulator provided
to the RECONFIGURE consortium by Airbus. It comprises
of two parts: a compiled “black box” running on a Linux
server, which simulates the flight dynamics; and a Simulink-
based interface containing parts of the flight control com-
puter logic with sufficient hooks to allow replacement of
the built-in benchmark control law with a custom design.
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Fig. 5. Flight envelope padding, triangulation and re-
sampling (normalised-CoG into the page)
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Fig. 6. High-level functional description of implementation

The two parts communicate over a network link using an
Airbus proprietary protocol. To demonstrate the behaviour
of the proposed control law, the control law is implemented
as a Model Reference Block in Simulink and connected in
place of the nominal (fully scheduled) benchmark control
law. When airspeed measurements are unavailable, but
mass and CoG are usable, the design from Section 4.1
is demonstrated, interpolated based on mass, CoG and
altitude. Figure 7 shows the closed-loop responses to a
sequence of pilot sidestick commands corresponding to
a small backward deflection at t = 5 s followed by a
return to neutral at t = 16 s, a small forward deflection
at t = 27 s and neutral at t = 38 s, from a selection of
initial conditions. Standard outer “protection” loops and
autothrust are disabled since these are polluted by the
faults. As well as demonstrating transient behaviour this
also shows the response as airspeed varies.

5.2 Airspeed, mass and CoG failure

Figure 8 shows the closed-loop responses in the nonlinear
benchmark to the robust control law designed to not depend
upon airspeed, CoG or mass estimates at all design points
at 5000 ft, i.e. for a given altitude each simulation will use
the same control law. Performance is adequate, except for
the high-mass, forward CoG and low airspeed scenario, in
which due to absence of protection loops and autothrottle
the airspeed deviates from the design envelope and the
quality of control deteriorates. Elevator responses are more
“cautious” than the scenario where CoG and mass are
available. The nz response is more homogeneous for this
scenario, perhaps due to design using a common cost
function for all CoG/mass/airspeed values, and perhaps
due to less stringent additional robustness criteria applied
during tuning.
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Fig. 7. Closed-loop simulation (no airspeed) in nonlinear
RECONFIGURE benchmark: all design points at
5000 ft
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Fig. 8. Closed-loop simulation (altitude only) in nonlinear
RECONFIGURE benchmark: all design points at
5000 ft

6. CONCLUSIONS

A robust load-factor tracking control law for the longi-
tudinal dynamics of an aircraft has been proposed and
demonstrated in linear and nonlinear simulation. The
performance requirements are met over a large region of the
flight envelope, and a further degraded control law which
does not require even mass or centre of gravity estimates has
also been demonstrated. Heavy computation is relegated
to the offline design phase, and the online computational
task involves only simple operations. Future developments
will involve a more rigorous treatment of the behaviour
between design points and of implementing a switching and
initialisation procedure to allow bumpless transfer from the
nominal control law upon detection of the faulty scheduling
data, as well as the possibility of application of nonlinear

state estimation or online parameter-identification based
control laws to improve performance, or to provide a
substitute for the invalidated outer AoA and airspeed
protection loops.
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