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Summary 

 

Gene-environment interactions are determining factors for the etiology of 

psychiatric disorders, diabetes and cancer, and are thought to contribute to 

disease inheritance across generations. Small non-coding RNAs (sncRNAs) are 

potential vectors at the interface between genes and environment. Here, we 

report that environmental conditions involving traumatic stress in early life in mice 

altered microRNAs (miRNAs) expression, and behavioral and metabolic 

responses in the progeny. Several miRNAs were affected in the serum and brain 

of both, the traumatized animals and their progeny when adult, but also in the 

sperm of traumatized males. Injection of sperm RNAs from these males into 

fertilized wild-type oocytes reproduced the behavioral and metabolic alterations in 

the resulting offspring. These results strongly suggest that sncRNAs are sensitive 

to environmental factors in early life, and contribute to the inheritance of trauma-

induced phenotypes across generations. They may offer potential diagnostic 

markers for associated pathologies in humans.   
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Text 
 
While the genetic make-up of an individual contributes to disease risk and 

heritability 1, environmental factors, in particular, adverse and traumatic 

experiences in early life are also critical. How they mediate their influence is 

poorly understood but likely involves non-genetic mechanisms. Small non-coding 

RNAs (sncRNAs) are potential mediators of gene-environment interactions that 

can relay signals from the environment to the genome and exert regulatory 

functions on gene activity 2. They are implicated in gene dysregulation in many 

diseases including psychiatric and neurological conditions, cancer and metabolic 

disorders 2-4. Recent studies in C. elegans 5,6 and mice 7,8 have suggested that 

sncRNAs can mediate non-Mendelian inheritance of traits or phenotypes acquired 

across life. SncRNAs are abundant in mature sperm in mammals and may 

therefore convey transgenerational inheritance 9,10. Whether sncRNAs in germ 

cells are influenced by environmental factors like early traumatic stress and 

contribute to associated pathological traits is unknown. 

 

We investigated the involvement of sperm sncRNAs in the impact of traumatic 

stress in early life across generations and for this, first examined sncRNAs 

content of adult mouse sperm in normal conditions. Deep sequencing of purified 

sperm RNA (Supplementary Fig. 1) identified several populations of short RNAs 

mapping to the mouse genome to a different degree and fidelity (Fig. 1a, 

Supplementary Fig. 2a). Many had typical miRNA size (21–23bp), and others 

aligned to piRNA clusters and had typical piRNA size (26–31bp) (Supplementary 

Fig. 2b,c). Some 15–44bp reads mapped to ribosomal RNAs, to small 

cytoplasmic, nuclear or transfer RNAs, or to repeat regions such as 
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retrotransposons (Fig. 1b,c). A 16bp read giving an unusually large peak mapped 

to a specific piRNA sequence (Supplementary Fig. 3). Reads of all sizes mapped 

uniquely to mitochondrial DNA sequences (Fig. 1d), consistent with the presence 

of mitochondria in adult sperm 11. 

 

We next examined the impact of exposure to traumatic stress in early life on 

sperm sncRNAs using a mouse model of unpredictable maternal separation 

combined with unpredictable maternal stress (MSUS) (Supplementary Fig. 4) 12-14. 

In these mice, behavioral responses are affected by MSUS across generations. 

On the elevated plus maze, a test based on the natural avoidance of mice for 

open and unfamiliar space, MSUS males had shorter latency to first enter an open 

arm than controls (F1, Fig. 2a). This effect was not due to altered locomotor 

activity (Supplementary Fig. 5a), suggesting reduced avoidance and fear. In a 

light-dark box, a task based on the aversion of rodents for brightly lit areas, MSUS 

males spent more time in the illuminated compartment than controls (F1, Fig. 2b), 

suggesting altered response to aversive conditions. On a Porsolt forced swim test, 

a test of behavioral despair, MSUS males spent more time floating than controls 

(F1, Fig. 2c), suggesting depressive-like behaviors. Strikingly, these behavioral 

traits were transmitted to the F2 offspring. On the elevated plus maze, F2 MSUS 

mice had a shorter latency to first enter an open arm than F2 controls (Fig. 2a), 

but normal locomotor activity (Supplementary Fig. 5b). They spent more time in 

the bright compartment of the light-dark box, and had depressive-like behaviors 

on the forced swim test (Fig. 2b,c).  
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Since early stress can be a strong metabolic dysregulator 15, we next examined 

glucose metabolism. Insulin in serum was normal in F1 MSUS animals, but lower 

than controls in F2 MSUS progeny (Fig. 2d). Blood glucose was also normal in F1 

animals (Supplementary Fig. 6a) but lower in F2 MSUS mice, both at baseline 

and following an acute restraint stress (Fig. 2e). Further, F1 MSUS males had 

normal baseline glucose level and clearance on a glucose tolerance test (GTT) 

but a larger decline in blood glucose on an insulin tolerance test (ITT) 

(Supplementary Fig. 6b,c). F2 MSUS animals had normal glucose at baseline, but 

lower glucose rise on GTT and normal glucose decrease on ITT (Supplementary 

Fig. 7a,b). These anomalies suggest insulin hypersensitivity. Further, F2 MSUS 

animals (not F1) also showed hypermetabolism as their body weight was lower 

than in controls despite higher caloric intake (Supplementary Fig. 6d,e and 7c,d). 

The alterations were overall more marked in F2 mice probably because the 

effects of stress are present starting at conception while they occur only after birth 

in F1.   

 

Because the traits induced by MSUS are transmitted to the progeny, we examined 

whether sperm sncRNAs are affected. Deep sequencing analyses revealed that 

several miRNAs were upregulated in F1 MSUS sperm (Fig. 1e), and 73 potential 

miRNAs targets, implicated in DNA/RNA regulation, epigenetic regulation or RNA 

binding and processing were identified (Supplementary Table 1).  PiRNAs were 

also affected, in particular cluster 110 which was downregulated in MSUS sperm 

(Supplementary Fig. 8a,b). These results indicate an effect of MSUS on several 

sncRNA populations. Validation by quantitative RT-PCR confirmed that miR-375-

3p and -5p, miR-200b-3p, miR-672-5p and miR-466-5p were up-regulated in F1 
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MSUS sperm (Fig. 3a). MiRNAs were also altered in serum, and in hippocampus 

and hypothalamus (not cortex), brain structures involved in stress response, in 

adult F1 MSUS animals (Fig. 3b,c and Supplementary Fig. 9a,b). Moreover, 

miRNAs were affected in the serum and hippocampus of adult F2 MSUS mice but 

not in F2 sperm (Fig. 3d-f). Consistently, miRNAs were normal in F3 hippocampus 

(Supplementary Fig. 10). Since F3 MSUS animals have behavioral symptoms 

similar to F1 and F2 animals 13 despite normal sperm miRNA level in F2 males, it 

is possible that the changes in miRNAs initially occurring in sperm cells are 

transferred to other non-genomic or epigenetic marks such as DNA methylation or 

histone posttranslational modifications, for maintenance and further transmission 

16,17.   

 

MiR-375 is implicated in stress response and metabolic regulation 18,19. We found 

that mimicking the effect of stress by injecting corticosterone in vivo increases 

miR-375 expression in the hippocampus (Saline n=14, corticosterone n=14; 

t(26)=2.27). One of miR-375 predicted targets is catenin β1 (Ctnnb1), a protein 

implicated in stress pathways 20. Cultured cells transfected with a miR-375 

expression vector showed downregulation of Ctnnb1 (Control n=3; transfected 

n=3, mRNA t(4)=2.78 protein: t(4)=5,14), confirming that miR-375 targets Ctnnb1. 

Consistently, Ctnnb1 was decreased in F2 MSUS hippocampus (Fig. 3g,h), 

suggesting that miR-375 alteration has functional consequences on Ctnnb1 

expression in vivo.    

 

Finally, we tested the causal link between sperm RNAs and the effects of MSUS 

across generations by microinjecting RNAs purified from sperm from MSUS males 
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(Supplementary Fig. 1) into wild-type fertilized mouse oocytes. On the elevated 

plus maze, MSUS-RNAinj animals (n=20) had a lower latency to first enter an 

open arm than controls-RNAinj (n=19) animals (t(37)=2.67) but normal locomotion 

(Supplementary Fig. 5c). In the light dark box, they spent more time in the bright 

compartment (Controls-RNAinj (n=15), MSUS-RNAinj (n=17) males, t(30)=–3.77), 

and on the forced swim test (Controls-RNAinj (n=18), MSUS-RNAinj, (n=20) 

males (t(37)=-2.19), they floated longer than controls-RNAinj. Further in MSUS-

RNAinj animals, insulin (Controls-RNA-inj (n=4) and MSUS-RNAinj (n=7) 

(t(9)=2.31)) and glucose at baseline and after acute stress (Fig. 2f) were 

decreased, body weight was lower, and miR-375-5p was up-regulated in the 

hippocampus (Supplementary Fig. 11a,b). These results indicate comparable 

behavioral, metabolic and molecular effects by either, direct exposure to MSUS 

during early postnatal life or injection of sperm RNAs from MSUS males. Notably, 

the offspring of MSUS-RNAinj animals also showed depressive-like behaviors 

(Supplementary Fig. 12), indicating transmission of the effects of injected sperm 

RNAs. 

 

These findings provide novel evidence in mammals that RNA-dependent 

processes contribute to the transmission of acquired traits. They underscore the 

importance of sncRNAs in germ cells, and highlight their sensitivity to early 

traumatic stress. They newly demonstrate the consequences of their exposure to 

such traumatic experience in early life across generations. The identification of 

several miRNAs and putative targets as mediators of these effects provide novel 

molecular markers of traumatic stress for potential diagnostic of stress 

predisposition and stress-induced disorders in humans.   
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Sequencing data were deposited to NCBI´s Gene Expression Omnibus with the 

accession number: GSE50132. 
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Figure legends  

Figure 1. SncRNAs in adult sperm. Mapping of 15–44bp sequencing reads to a) 

the mouse reference genome, b) ribosomal RNAs, c) other non-coding RNAs and 

repeat regions and d) mitochondrial DNA, with multiple (black) or unique (grey) 

hits (n=16 mice, pooled in 4 samples). % total reads represents the proportion of 

reads with a given size mapping to the mouse genome or selected sequences 

over the total number of same-size reads. (e) Heatmap showing miRNAs (>100 

reads) in control libraries which are altered by MSUS in adult sperm (n=3 (each 

pooled from 5 mice) in each group). The blue-to-yellow scale is the number of 

normalized reads of a given sample over the mean normalized reads of all control 

samples for each miRNA. Bioinformatic analyses were performed twice using two 

independent methods.  Data are mean ± s.e.m. 

 

Figure 2. Behavioral responses in MSUS males across generations, and in 

mice derived from RNA-injected oocytes. (a) Latency to first enter an open arm 

on an elevated plus maze in F1 (control, n=8; MSUS, n=18; t(24)=2.37) and F2 

(control, n=30; MSUS, n=25; t(41.98)=3.74) mice. (b) Time spent in the bright 

compartment of the light dark box in F1 (control, n=16; MSUS, n=21; t(35)=–2.14) 

and F2 (control, n=33; MSUS, n=36; t(41.61)=–3) mice. (c) Time spent floating on 

the forced swim test in F1 (control n=14, MSUS n=16; t(28)=–2.34) and F2 

(control n=19, MSUS n=20; t(37)=–2.36) mice. Results replicated in two 

independent experiments. (d) Insulin concentration in serum in F1 (control, n=5; 

MSUS, n=9; t(12)=0.28) and F2 (control, n=10; MSUS, n=10; t(18)=2.1) males. (e, 

f) Glucose level in blood in e) F2 MSUS (control, n=8; MSUS, n=7; F(1,13)=5.64) 

and f) Controls-RNAinj (n=8) and MSUS-RNAinj (n=8) (F(1,14)=9.72) males at 
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baseline (time 0) and 15, 30 and 90 minutes after stress initiation. Data are mean 

± s.e.m. *p<0,05, **p<0,01, ***p<0,001.  

 

Figure 3. Molecular effects of MSUS in adult F1 and F2 mice. (a-f) RT-qPCR 

in (a) sperm of F1 control and MSUS adult males (miR-375-3p: control, n=10; 

MSUS, n=9; t(7.679)=–2.79. miR-375-5p: control, n=10; MSUS, n=10; t(18)=–

3.19. miR-200b-3p: control, n=10; MSUS, n=10; t(11.17)=–2.46. miR-672-5p: 

control, n=10; MSUS, n=10; t(9.38)=–2.92. miR-466c-5p: control, n=10; MSUS, 

n=10 t(13.05)=–2.4), (b) serum of F1 control and MSUS adult males (miR-375-3p: 

control, n=8; MSUS, n=8; t(7.06)=–5.17. miR-375-5p: control, n=8; MSUS, n=8; 

t(7.01)=4.33. miR-200b-3p: control, n=8; MSUS, n=7; t(9.3)=0.90. miR-672-5p: 

control, n=8; MSUS, n=8; t(8.8)=2.24. miR-466c-5p: control, n=8; MSUS, n=7; 

t(7.90)=2.26), (c) hippocampus of F1 control and MSUS adult males (miR-375-3p: 

control, n=8; MSUS, n=6; t(12)=-2.34. miR-375-5p: control, n=8, MSUS, n=6;  

t(6.045)=0.59. miR-200b-3p: control, n=8; MSUS, n=6; t(5.8)=–1.1. miR-672-5p: 

control, n=8; MSUS, n=6; t(12)=-0.54. miR-466c-5p: control, n=8; MSUS, n=6; 

t(11)=–2.79), (d) serum of F2 control and MSUS adult males (miR-375-3p: control, 

n=6; MSUS, n=6; t(9)=0.93. miR-375-5p: control, n=5; MSUS, n=6; t(9)=0.93. 

miR-200b-3p: control, n=6; MSUS, n=6; t(10)=1.38. miR-672-5p: control, n=6; 

MSUS, n=6; t(5.29)=2.08. miR-466c-5p: control, n=6; MSUS, n=6; t(10)=2.21), (e) 

hippocampus of F2 control and MSUS adult males (miR-375-3p: control, n=7; 

MSUS, n=8; t(8.62)=–2.74. miR-375-5p: control, n=14; MSUS, n=15; t(17,89)=-

2,14. miR-200b-3p: control, n=8; MSUS, n=8; t(14)=–1.47. miR-672-5p: control, 

n=7; MSUS, n=8; t(13)=–2.01). miR-466c-5p: control, n=7; MSUS, n=8; t(13)=–

2.15), (f) sperm of F2 control and MSUS adult males (miR-375-3p: control, n=8; 
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MSUS, n=8; t(14)=0.26;  miR-375-5p: control, n=8; MSUS, n=8; t(14)=0.94; miR-

200b-3p: control, n=4; MSUS, n=3; t(5)=0.44;  miR-672-5p: control, n=4; MSUS, 

n=4; t(6)=–0.24;  miR-466c-5p: control, n=4; MSUS, n=4; t(6)=–1.16). (g, h) Level 

of Ctnnb1 (g) mRNA (control n=7; MSUS n=7; t(12)=0.4) and (h) protein (control 

n=7; MSUS n=6; t(11)=3.26) in hippocampus of F2 control and MSUS males. 

Results replicated in an independent experiment using samples from a different 

batch of animals. Data are mean ± s.e.m.  #p<0.1, *p≤0.05, **p<0.01, ***p≤0.001.  
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 Methods 

 

Animals 

C57Bl/6J mice were maintained under a reverse light-dark cycle in a temperature 

and humidity-controlled facility with food and water ad libitum. All experimental 

manipulations were performed during the animals’ active cycle in accordance with 

guidelines and regulations of the cantonal veterinary office, Zurich. 

 

Mice treatment 

For unpredictable maternal separation combined with maternal stress (MSUS), 

C57Bl/6J dams (2-3 months-old) and litters were selected at random and 

subjected to daily 3hr proximal separation from postnatal day 1 to 14 as described 

previously 13. Control animals were left undisturbed apart from a cage change 

once a week until weaning (postnatal day 21). Once weaned, pups were reared in 

social groups (4-5 mice/cage) composed of animals subjected to the same 

treatment but from different dams to avoid litter effects. To obtain second and third 

generations, adult F1 males (>5 months old) were bred with primiparous C57Bl/6J 

females.  

 

Preparation of sperm samples  
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Mature sperm cells extracted from cauda epididymis from males were separated 

from somatic cells by counterflow centrifugal elutriation using a Beckman JE-5.0 

elutriation rotor in a Sanderson chamber and a Beckman Avanti J-26 XPI 

Elutriation Centrifuge. Briefly, cauda epidydimis and epidydimis were collected in 

culture dishes in PBS pH 7.4 (0.2 M phosphate, 1.5 M NaCl) containing 5% BSA, 

5% non-fat dry milk powder, 1M CaCl2, 1M MgCl2 filtered through a cellulose 

acetate membrane (Sartorius) and cut into small pieces to release sperm cells. 

The suspension was loaded into the elutriation chambers, which form part of the 

centrifuge rotor, using a rotor speed of 3500 revolutions per minute (rpm) and a 

pump rate of 7ml/min. Mature sperm was eluted by increasing the pump rate to 

31ml/min. Purity of the elutriate was confirmed by inspecting the eluted sperm 

cells under a light microscope.  

 

RNA sequencing 

Total RNA was prepared from adult mouse sperm using a standard Trizol 

protocol. The quantity and quality of RNAs were determined by Agilent 2100 

Bioanalyser (Agilent Technologies), Qubit® fluorometer (Life Technologies) and 

mass spectrometry (Supplementary Fig. 1 and see below). Pure RNA 

preparations with no DNA or protein contamination were used for sequencing. 

Sequencing was done using an Illumina Genome Analyzer (Illumina, San Diego, 

USA) at Fasteris AG, Geneva, Switzerland. Small RNA libraries were prepared 

according to a modified Illumina v1.5 protocol. Briefly, small RNAs of <50 nt were 

purified on an acrylamide gel. Universal miRNA cloning linker (New England 

Biolabs) instead of 3´ adapters and then 5’ Illumina adapters were single-stranded 

ligated with T4 truncated RNA and T4 ligase respectively. The constructs were 
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purified on an acrylamide gel to remove empty adapters then reverse-transcribed 

and PCR-amplified. The primers used for cDNA synthesis and PCR were 

designed to insert an index in the 3- adapter. This index enables assignation of a 

specific read to the corresponding library, among the multiplexed libraries of one 

sequencing lane. High-throughput sequencing was performed on a Genome 

Analyzer HiSeq 2000 for 50 cycles plus 7 cycles to read the indexes. After 

demultiplexing and adapter removal, an average of 16067416 pass filter reads 

was obtained in the libraries.. Sequencing results were validated by RT-qPCR on 

the same samples as those used for deep sequencing. 

 

Mass spectrometry 

In-solution trypsin digestion of protein 

Tryptic digestions were performed as previously described with slight 

modifications21. In brief, 1 ul of sperm RNA samples was made up to 100µl with 

25 mM ammonium bicarbonate, pH 8.0. Samples were reduced with 10 mM 

dithiothreitol (DTT) for 45 min at 56°C and alkylated with 40 mM iodoacetamide 

for 30 min. Samples were digested overnight with trypsin (Promega) at 37 °C and 

desalted using C18 Ziptip prior to MS analysis using ESI-LTQ-Orbitrap Velos. MS 

and MS/MS data were searched using Mascot and searches of MS/MS spectra 

used a Swiss-Prot protein database.  

 

miRNA targets prediction 

The DIANA-microT CDS miRNA target prediction algorithm 22 which is based on 

potential binding site in the 3´ untranslated region of the mRNA and predicted 

stable thermodynamic binding, was used to predict target genes of miRNAs. 



	
   16 

Binding score threshold was set to 0.9 (1=highest potential binding predicted, 

0=no binding predicted) and only the top 100 targets were considered for each 

miRNA, to only consider predictions with highest probability. 

 

RNAs injection in fertilized oocytes 

Fertilized oocytes were collected from B6D2F1 (Janvier) females superovulated 

by intraperitoneal (ip) injection of 5 IU pregnant mare serum gonadotropin 

followed by 5 IU human chorionic gonadotrophin 48 hours later, then mated with 

B6D2F1 males. One to two picoliters of 0,5 ng/µl solution of total RNA isolated 

and pooled from sperm from 5 adult MSUS or control males (same samples used 

for sequencing) dissolved in 0,5 mM Tris-HCl, pH 8.0, 5 uM EDTA were 

microinjected into the male pronucleus of fertilized eggs using a standard 

microscope and DNA microinjection method 23.  

 

Behavioral testing 

The experimenter was blind to treatment, and behaviors were monitored by direct 

observation and videotracking (Viewpoint, France). All behavioral tests were 

conducted in adult male animals.  

Elevated plus maze   

The elevated plus maze consisted of a platform with two open (without walls) and 

two closed (with walls) arms (dark gray PVC, 30cm x 5cm) elevated 60 cm above 

the floor. All experiments were performed in red light (15W). Each mouse was 

placed on the central platform, facing a closed arm, and observed for a 5-min 

period. The latency to enter an open arm, the time spent in each arm and the total 

distance moved were automatically recorded by a videotracking system. The 
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number of rearing, protected (body in closed arm) and unprotected (body in 

opened arm) stretch-attend postures in the center of the maze were manually 

recorded.  

Light/dark box  

Each mouse was placed in the lit compartment (white walls, 130 lux) of a plastic 

box (40 x 42 x 26cm) split into two unequal compartments (2/3 lit, 1/3 dark 

compartment with black walls and covered by a black lid) by a divider with an 

opening (5x5cm). The animal can move freely from the lit to the dark compartment 

during a 10 mins session. The time spent in each compartment and the latency to 

enter the dark compartment were measured manually.  

Forced swim test  

Mice were placed in a small tank of water (18 cm high, 13 cm diameter, 18 ± 1°C, 

filled up to 12 cm) for 5 min. Floating duration was scored manually.  

 

Serum insulin and blood glucose analyses 

For non-fasted baseline measurements of insulin, blood was collected, stored 

overnight at 4°C, centrifuged for 10 minutes at 2,000 g at 4°C, then serum was 

collected and stored at -80°C until analyzed. Insulin was measured in serum using 

a mouse insulin ELISA (Alpco). The sensitivity of the assay was 0.06 ng/mL, and 

the intra-assay coefficient of variation was 3.7%. Glucose in non-fasted animals 

was measured in blood samples at baseline and after acute stress. Mice were 

restrained for 30 minutes (between 14h00 and 16h00) in a plastic tube and blood 

samples were collected from a tail nick 0, 15, 30 and 90 minutes after initiation of 

restraint. For the glucose tolerance test, mice were fasted for 6 hours. Glucose 

was measured in blood samples at baseline, and 0, 15, 30 and 90 minutes after 
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i.p. injection of 2mg/g body weight glucose in 0.45% saline (injection started at 2 

pm). For the insulin tolerance test, mice were fasted for 6 hours. Glucose was 

measured in blood samples at baseline, and 0, 15, 30, 90 and120 minutes after 

i.p. injection of 1mU/g body weight insulin (NovoRapid Novo Nordisk A/S) in 

sterile 0.9% saline. If blood glucose fell below 1.7 mM/ml, animals were rescued 

with i.p. injection of 2mg/g glucose and were removed from the experiment. 

Glucose level was determined in fresh tail blood using an Accu-Chek Aviva device 

(Roche). 

 

Caloric intake measurement 

The amount of consumed food was measured for each mouse (4 months old) 

every 24h. Caloric intake was calculated as the mean amount of food intake over 

48 hours in relation to mean body weight (caloric intake = mean food intake/mean 

body weight). 

 

Cell culture 

Mouse neuroblastoma (N2a) cells were obtained from American Type Culture 

Collection (ATCC) and cultured in Dulbecco’s modified eagle medium (DMEM) 

with 10% fetal bovine serum. Approximately 300,000 cells from three different 

passage number stocks were simultaneously platted in 6-well culture plates. Cells 

were treated with miScript miRNA mimic (Qiagen) and a negative control siRNA 

with no known targets in mammalian genome (All Stars Negative siRNA, Qiagen) 

at 60 nM for 48 hours. Transfections were carried out using lipid-based HiPerfect 

transfection reagent (Qiagen).  Cells were harvested 48 hours after transfection 

and total RNA was isolated using standardized Trizol protocol.  
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Western blotting 

Western blotting was performed as previously described 24. Briefly, 30-60 µg 

proteins were resolved on 10-12% SDS-PAGE and transferred onto a 

nitrocellulose membrane (Bio-Rad). Membranes were blocked (milk 5%) then 

incubated in primary and secondary antibodies. Band intensity was determined 

and quantified using an Odyssey IR scanner (Li-Cor Biosciences). βactin 

(1:15000; mouse monoclonal; Sigma #A5316) was used as internal control. The 

following antibodies were used: Ctnnb1 (1:2000, mouse monoclonal; BD 

Transduction Laboratories #610153); and goat anti-mouse (IRDye 680 nm, 

1:10,000; Li-Cor Biosciences). Samples from different groups were processed on 

the same blots. Data are expressed as percent relative to controls. 

 

Reverse transcription quantitative real-time polymerase chain reaction (RT-

qPCR)  

For miRNAs, DNaseI-treated RNA isolated from pure sperm cells or hippocampal 

samples (Trizol) was reverse-transcribed (RT) using the miScript reverse 

transcription kit (Qiagen). RT-qPCR were performed in a LightCycler 480 qPCR 

(Roche) using miScript probes (Qiagen) according to the manufacturer’s 

recommendations. For normalization of Ct values for miRNAs, we used miR-101b 

for sperm, ribosomal Rrnu6 for hippocampus and miR-195 for serum. For mRNAs, 

RT-qPCR were performed using SYBR green (Roche) on a Light-Cycler II 480 

(Roche) according to the manufacturer’s recommendations. Data for tissue 

samples were normalized to two endogenous controls (Tubd1 and Hprt), and data 

for cell samples were normalized to GAPDH. Cycling conditions: 5 min at 95°C, 
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45 cycles with denaturation (10 sec at 95°C), annealing (10 sec at 60°C) and 

elongation (10 sec at 72°C). Primers were as follows: Tubd1 forward: 

TCTCTTGCTAACTTGGTGGTCCTC reverse: 

GCTGGGTCTTTAAATCCCTCTACG, Hprt forward: 

GTTGGGCTTACCTCACTGCTTTC reverse: 

CCTGGTTCATCATCGCTAATCACG, Ctnnb1 forward: 

ATGGAGCCGGACAGAAAAGC reverse: CTTGCCACTCAGGGAAGGA, GAPDH 

forward: CCACTGGTGCTGCCAAGGCT reverse: 

GGCAGGTTTCTCCAGGCGGC. 

 

Deep sequencing data analyses  

Overall analysis of small RNAs libraries 

After adapter trimming, sequence reads were sorted based on length (number of 

nucleotides) and only 15-44bp reads were used for analysis. The number of reads 

of each size was counted and normalized to the total number of reads. The 

obtained counts were averaged across control libraries. Reads were aligned to 

the mouse genome (UCSC mm9, 

http://hgdownload.cse.ucsc.edu/goldenPath/mm9/bigZips/) 25, ncRNAs and repeat 

elements from rmsk (UCSC mm9, 

http://hgdownload.cse.ucsc.edu/goldenPath/mm9/bigZips/) and mitochondrial 

DNA (UCSC mm9,  http://hgdownload.cse.ucsc.edu/goldenPath/mm9/bigZips/) 

using a BWA software 26 with mismatch tolerance of up to 2bp for 15–17bp 

inserts, and 3 and 4bp for 18–38bp and 37–44bp inserts respectively. Sequencing 

reads were aligned to different selected features (ncRNAs, mtDNA) separately to 

“force” mapping (sequences of the mouse genome other than the respective 



	
   21 

feature were masked to prevent alignment to featured regions), and the different 

features matching each read were determined.  The percentage of reads of a 

given size mapping once or multiple times (unique or multiple hits) to the mouse 

genome or to a given feature (100% represents all reads of a given size within a 

library) was determined and averaged across all control libraries. In figure 1a, un-

mapped reads may result from PCR pre-sequencing amplification artifacts, 

incomplete trimming of adapters or sequencing errors, or may reflect the presence 

of RNA splicing products. In Figure 1b, some reads map to ribosomal RNAs 

(cleaved) with multiple hits, reflecting ribosomal RNAs cleavage and no functional 

ribosomes in sperm cells (transcriptionally quiescent) 27. Reads mapping to 

mitochondrial DNA showing only unique hits allow unambiguous attribution to 

mitochondria DNA. For quantitative comparison, one control library showing a 

substantially lower number of total reads, possibly due to a bias in library 

preparation prior to sequencing, was excluded from the analyses. 

Analysis of miRNA and piRNA sequences 

Perfect matches to mature miRNA sequences downloaded from miRBase 28 were 

identified using custom Perl scripts.  One sample was removed from the analysis 

due to much lower total read count (see Supplementary Figure 3a).  Read counts 

were identified for each miRNA and normalized using DESeq 29.  A Wilcox 

unpaired test on the normalized data was used to identify miRNAs showing a 

statistically significant difference after MSUS treatment. piRNAs were identified by 

determining sequences that aligned to annotated piRNA clusters 30 using Bowtie 

31. Alignments to piRNA cluster sequences were conducted as a custom-built 

“genome” with parameters –k 1 –v 0 ––best (to select only the best aligning read 

with 0 mismatch). After inspection to confirm enrichment of piRNA-like sequences 
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(Supplementary Figure 3 c), all sequences with a length of 26–32 nucleotides and 

a T as the first nucleotide were selected from the libraries and used for alignment 

to piRNA clusters.  DEseq was then used to normalize read counts for each 

cluster and the differential expression and statistical significance of the differential 

expression was calculated using a negative binomial test within the DESeq 

package.    

 

Statistical analyses 

No statistical methods were used to predetermine sample sizes but our sample 

sizes are similar to those reported in our previous publications on th the MSUS 

model12-14. Two-tailed Student t tests were used to assess statistical significance 

for behavioral, quantitative RT- qPCR, insulin, bodyweight and caloric intake 

measurements. The remaining metabolic experiments were analyzed using 

repeated measurements ANOVAs. All analyzed data matched the requirements 

for parametric statistical tests (normal distribution). If variance was not 

homogenous between groups (determined by Levene´s test), adjusted p-value, t-

value and degree of freedom were determined. miRNAs were analysed using 

Mann Whitney U test and piRNAs were analyzed using negative binomial test with 

and without Bonferoni multiple test correction. Values over two standard 

deviations away from the mean of each group were considered outliers and 

excluded from analysis. All statistics were computed with SPSS. All reported 

replicates were biological replicates, or pooled samples from biological replicates 

in the case of sequencing samples. Significance was set at p < 0.05 for all tests. 

Error bars represent SEM in all figures.  
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