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Abstract   

Phototransduction in Drosophila’s microvillar photoreceptors is mediated by phospholipase C 

(PLC) resulting in activation of two classes of Ca
2+

-permeable channels, TRP and TRPL. 

Here we review recent evidence on the unresolved mechanism of their activation, including 

the hypothesis that the channels are mechanically activated by physical effects of PIP2 

depletion on the membrane, in combination with protons released by PLC. We also review 

molecularly explicit models indicating how Ca
2+

-dependent positive and negative feedback 

along with the ultracompartmentalization provided by the microvillar design can account for 

the ability of fly photoreceptors to respond to single photons 10-100x more rapidly than 

vertebrate rods, yet still signal under full sunlight. 
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Introduction 

Vision throughout the animal kingdom is based on rhodopsins, at least three subfamilies of 

which arose before the deuterostome (chordate and vertebrate) and protostome invertebrate 

lineages diverged over 550 Mya [1,2].  Ciliary C-opsins and Go-opsins couple to cyclic 

nucleotide based machinery, exemplified by ciliary rods and cones [3]. Rhabdomeric R-

opsins, found in microvillar photoreceptors typical of many invertebrate eyes, use the 

phosphoinositide (PI) cascade, involving phospholipase C (PLC) and TRP channels [4,5].  In 

many phyla both R-opsin and C-opsin/Go-opsin based photoreceptors still co-exist in the 

same animals, typically with one used for vision, and the other for non-visual tasks such as 

circadian entrainment. Even mammalian retinae harbour a third class of photoreceptor, so-

called intrinsically photo-sensitive retinal ganglion cells, which express an R-opsin 

(melanopsin) and a PI cascade similar to that in Drosophila [**6,7]. This review covers 

recent advances in microvillar phototransduction in Drosophila, which is also an influential 

genetic model for the PI cascade more generally. The major focus is on the unresolved 

mechanism of activation, whilst briefly reviewing Ca
2+

-dependent feedback and 

computational models that account for photoreceptor performance. 

 

 

The Phototransduction cascade 

Fly photoreceptors are exquisitely sensitive, responding to single photons with kinetics ~10-

100x faster than in vertebrate rods (Figure 1), yet like cones can rapidly adapt over the full 

diurnal range. Eight photoreceptors form a repeating unit, the ommatidium, beneath each of 

the ~750 facets of the Drosophila compound eye (Figure 1). The phototransduction 

compartment, the light-guiding rhabdomere is formed by a stack of ~30000 microvilli, each 

containing all the essential elements of the transduction cascade [8-11]. Many of these are 

generic elements found in any PI cascade, including the G-protein coupled receptor 

(rhodopsin, encoded by ninaE), heterotrimeric G-protein (Gq), phospholipase C (PLC4, 

encoded by norpA), and two related Ca
2+

-permeable cation channels encoded by the transient 

receptor potential (trp) and trp-like (trpl) genes (Figure 1C). TRP and TRPL are thought to 

assemble as distinct homo-tetrameric channels [*12], although TRP also requires an 

accessory, single pass transmembrane protein, INAF for full functionality [13,14]. Several 

components, including PLC, TRP, protein kinase C (PKC) and myosin III (NINAC) are 

assembled into multimolecular signalling complexes by the scaffolding protein, INAD with 

its 5 PDZ domains [8,11]. 
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Mechanism of activation  

The usual suspects 

Drosophila TRP was known to be activated via PLC from the time of its discovery as the first 

TRP channel [15-17]. PLC hydrolyses phosphatidyl-inositol 4,5 bisphosphate (PIP2), yielding 

diacylglycerol (DAG), inositol 1,4,5 trisphosphate (InsP3) and a proton (Figure 2), but which 

product(s) ultimately activate the channels remains controversial [8,9,11]. InsP3 and Ca
2+

 

stores contribute to excitation in some microvillar photoreceptors (e.g. Limulus), but not in 

Drosophila [18,19]. This would seem to leave DAG, well known to activate some related 

vertebrate TRPCs [20], as the obvious alternative candidate. Indeed, evidence for an 

excitatory role for DAG has come from mutants of rdgA¸ encoding DAG kinase (DGK), 

which controls DAG levels by phosphorylating it to phosphatidic acid (PA, Figure 2B). In 

rdgA mutants TRP and TRPL channels become constitutively active resulting in severe retinal 

degeneration. Hypomorphic mutations in PLC (norpA), have severely attenuated light 

responses; but in norpA,rdgA double mutants, not only is the degeneration in rdgA rescued 

but the residual norpA light response is greatly facilitated, representing a striking reciprocal 

genetic rescue [21,22]. These phenotypes would seem most simply explained if DAG is the 

excitatory messenger, or at least required for channel activation. Thus, mutations in DGK 

might elevate DAG levels generated by basal PLC activity – potentially accounting for 

constitutive channel activation – as well as amplifying the effect of residual light-induced 

DAG generation in PLC hypomorphs [21].  

 

There are, however, problems with this model [23]. Firstly, exogenous DAG usually fails to 

activate native or heterologously expressed TRP or TRPL channels. A possibly significant 

exception is a report that native TRP channels can be activated by DAG in excised patches 

from isolated rhabdomeres [*24]. However, responses were very sluggish (tens of seconds 

delay), and from a preparation in a physiologically severely compromised state. Secondly, 

available biochemical measurements failed to show raised DAG levels in rdgA mutants 

despite a reduction in PA [25]. Thirdly, DGK immunolocalises, not to the microvilli where 

the rest of the transduction machinery resides, but to smooth endoplasmic reticulum abutting 

their base [26]. However, it should be noted: i) that rdgA generates multiple transcripts (10 

annotated in http://www.flybase.org) so that there could be a rhabdomeric isoform 

unrecognised by available antibodies; ii) rdgA has a PDZ-binding motif and may interact with 

the INAD signalling complex [27]; iii) ATP was reported to suppress DAG-stimulated TRP 

activity in excised patches from isolated rhabdomeres, but not in rdgA mutants, suggesting 

DGK activity in the patches [24]. 

 

http://www.flybase.org/


 4 

Whilst most authors find DAG an ineffective agonist, all agree that TRP and TRPL are 

potently activated by polyunsaturated fatty acids (PUFAs), which could in principle be 

released from DAG by an appropriate lipase (Figure 2) [28-30]. In apparent support, DAG 

lipase mutants (inaE) have severely attenuated light responses [31]. However, inaE encodes 

sn-1 DAG lipase, which rather than PUFAs, releases mono-acyl glycerols (Figure 2), which 

are also poorly effective agonists (Hardie R.C. unpubl.). For PUFA generation, either an sn-2 

DAG lipase or an additional enzyme (MAG lipase) would be required; but there is no 

evidence for either in photoreceptors and no evidence that PUFAs are generated in response 

to light [24]. Rolling blackout (rbo), mutants of which also have an impaired light response, 

was also suggested as a lipase involved in phototransduction  [32], but was recently identified 

as a homologue of Efr3, a scaffolding protein which recruits PI 4-kinase to the membrane,  

suggesting the rbo phenotype might reflect a defect in PIP2  synthesis [33].  

 

Recently Lev et al. [30] supported a role for PUFAs, after confirming that TRPL channels 

expressed in HEK cells could be activated by PUFAs but not by DAG. They reported that 

activation of the channels via PLC was suppressed by a DAG lipase inhibitor, consistent with 

PUFAs generated from DAG as the endogenous agonist.  However, given that PUFAs are 

effective agonists, it is only to be expected that in cell types capable of generating PUFAs, 

activation could be achieved by this mechanism. As the authors later conceded [34], this 

therefore contributes little to the question of whether the channels are activated by 

endogenous PUFAs in the photoreceptors. 

 

Protons and bilayer mechanics 

PLC activity has at least two further consequences: PIP2 depletion and proton release (Figure 

2). The latter is usually ignored; however, a proton is released for each PIP2 hydrolysed and 

Huang et al. [*35] measured a rapid light-induced and PLC-dependent acidification in the 

rhabdomeres.  They also found that the strict combination of PIP2 depletion and acidification 

achieved by protonophores, rapidly and reversibly activated both TRP and TRPL channels in 

photoreceptors (Figure 3). The findings have been questioned [11] since the protonophore 

used (dinitrophenol = DNP) is a mitochondrial uncoupler and native TRP channels become 

spontaneously activated following ATP depletion [36]. However, activation of channels by 

DNP in PIP2-depleted photoreceptors was equally effective and reversible with or without 

ATP in the patch electrode and was unaffected by the ATP-synthetase inhibitor oligomycin, 

which did, though, prevent activation of the channels by mitochondrial uncoupling [*35]. 

 

PIP2 modulates the activity of numerous ion channels, including many mammalian TRP 

isoforms [37]. It is usually believed to do so via PIP2 binding domains on the channels, but 
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recent evidence raises the possibility that the light-sensitive TRP/TRPL channels may be 

regulated by physical effects of PIP2 depletion on the membrane [**38]. PIP2 is an integral 

membrane phospholipid and cleavage of its bulky and highly charged inositol headgroup by 

PLC (Figures 2 & 3) effectively reduces membrane area, volume and phospholipid crowding. 

Might this generate sufficient forces (e.g. membrane tension, changes in lateral pressure 

profile, thickness and/or curvature) to mechanically gate the channels, in combination with 

protons? Evidence for this included the remarkable finding that light induced rapid 

contractions of the photoreceptors (Figure 3C). These photomechanical responses, measured 

by atomic force microscopy, had latencies shorter than the electrical response, were abolished 

in PLC mutants and interpreted as the synchronized contractions of microvilli as PIP2 was 

hydrolysed in their membrane [**38]. It was also shown that: i) known mechano-sensitive 

channels (gramicidin) responded to light when incorporated into the membrane in place of  

the native light-sensitive channels; ii) light responses mediated by the native channels were 

facilitated by hypo-osmotic solutions (Figure 3D); and iii) cationic amphiphiles, which should 

insert into, and crowd the inner leaflet of the bilayer, potently inhibited the light response 

[**38].  A role of physical membrane properties in channel activation was also proposed by 

Parnas et al. [39] who reported that osmotic swelling, PIP2 sequestration by poly-lysine, and 

PUFAs all had similar effects in enhancing activity of TRPL channels expressed in 

Drosophila S2 cells, whilst PUFA-induced channel activity was suppressed by the mechano-

sensitive channel inhibitor GsMTx-4.  

 

Ca
2+

-dependent feedback  

Ca
2+

 influx mediates ~30% of the light-induced current [40], has profound effects upon gain 

and kinetics and mediates light adaptation via multiple targets including the channels. In Ca
2+

-

free solutions, both onset and termination of the light induced current are slowed ~10-fold 

indicating sequential positive and negative feedback by Ca
2+

 influx. The effects of removing 

extracellular Ca
2+

 are mimicked by mutation of a single negatively charged residue  (Asp
621

) 

in the pore of the TRP channel, which converts the normally Ca
2+

-selective channel (PCa:PNa 

>50:1) to a monovalent ion channel with negligible permeability for Ca
2+

 [41]. Positive 

feedback by Ca
2+

 is essential for rapid kinetics and high gain, and is mediated by facilitation 

of TRP (but not TRPL) channels, and possibly PLC [8,42]. The Ca
2+

 dependence of both 

positive (EC50  ~300 nm) and negative feedback (IC50 ~1 M) on the channels have been 

estimated by manipulating cytosolic Ca
2+

 via the Na
+
/Ca

2+
 exchanger equilibrium [43,44]. 

Negative feedback acts on both TRP and TRPL channels, is responsible for rapid termination 

of the quantum bump, and is sufficient to account for the major features of light adaptation 

[43].  The molecular basis of Ca
2+

-dependent channel regulation is unclear. Both TRP and 
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TRPL contain calmodulin (CaM) binding sites, but their role is uncertain. TRP has 28 

identified phosphorylation sites, redundantly controlled by multiple kinases and phosphatases 

[*45,46,47]. But again, their function is enigmatic and neither positive nor negative feedback 

of the channels is obviously affected in mutants of the eye-specific, Ca
2+

 dependent PKC, 

inaC [43]. 

 

Eye-specific PKC is however, required for inhibition of PLC, which occurs at the much 

higher (>50 M) concentrations reached transiently in the microvillus during a quantum 

bump [43]. Since PLC is not known to be a PKC target, it has been suggested that this 

inhibition maybe mediated indirectly by phosphorylation of the scaffolding protein INAD. In 

particular, the PDZ4/5 domains of INAD form a supramodule that switches between two 

conformational redox states via a cys-cys bridge which forms in response to illumination in a 

PKC – and also pH dependent – manner. In the oxidized state it dissociates from its target 

(both PLC and TRP have been proposed as partners) potentially modulating its activity 

[48,49]. 

 

A third target, active metarhodopsin (M*), is rapidly (time constant ~20ms) inactivated by  

Ca
2+

-dependent binding to arrestin (Arr2)  [50]. The Ca
2+

-dependence is abolished in mutants 

of both calmodulin (cam) and ninaC, which encodes a CaM binding myosin III, abundantly 

expressed in the microvilli. This suggests that MyoIII sequesters Arr2 in the dark preventing 

it from binding to M*, but that as soon as the quantum bump is initiated, Ca
2+

 influx promotes 

release of Arr2, which then rapidly binds and inactivates M* (Figure 1C) [50].  

 

Ca
2+

 has yet further targets, particularly in the visual pigment cycle, but these do not seem to 

directly influence the electrophysiological response [8,50]. 

 

Quantum bumps and Computational models 

Fly photoreceptors respond to single photons yet continue signalling in full sunlight with the 

fastest kinetics of any photoreceptors. Their microvillar organization, along with Ca
2+

-

dependent feedback is critical for this performance. Each quantum bump is generated within 

the confines of one microvillus, with macroscopic currents representing the summation of 

quantum bumps across the microvillar ensemble. A single activated metarhodopsin (M*) is 

believed to activate ~5-10 Gq proteins by random diffusional encounters. Each released Gq 

subunit binds and activates a PLC molecule,  several of which must be activated to generate 

sufficient excitatory “message” (putatively local membrane perturbation and protons) to 

overcome a Ca
2+

-dependent  threshold required to activate the first TRP channel [42,44]. In 
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fully dark-adapted cells this happens with a stochastically variable latency of ~15-100 ms 

(mean ~40 ms). Within the tiny volume of a microvillus a single Ca
2+

 ion already represents a 

concentration of ~1 M, and Ca
2+

 influx through even one TRP channel rapidly raises Ca
2+

 

throughout the microvillus, facilitating activation of most of the remaining ~20 channels in 

the microvillus, resulting in an “all-or-none” quantum bump. This transiently raises Ca
2+

 

within the affected microvillus to mM levels, terminating the bump by Ca
2+

-dependent 

inactivation of the channels and preceding steps of the cascade. During light-adaptation, 

accumulation of Ca
2+

 entering via many microvilli raises steady-state Ca
2+

 throughout the cell 

to maximally ~10 M; this inhibits both TRP and TRPL channels, progressively reducing 

quantum bump currents, whilst depolarization of the cell and activation of voltage-activated K 

channels results in further global reduction in voltage gain. This conceptual model of 

quantum bump generation [21] has been combined with experimentally determined 

parameters to generate molecularly explicit computational models that accurately predict 

quantum bump waveforms and their latency distribution (Figure 4) [8,51,52,**53].  

 

Once the bump has terminated, the affected microvillus is temporarily refractory to further 

photoisomerizations for a stochastically variable period of ~100 ms. This may simply reflect 

inhibition by the transiently high Ca
2+

 levels, but may also reflect more subtle molecular 

events, such as the reversible conformational changes in INAD [48]. Far from compromising 

sensitivity, the refractory period contributes seamlessly to light adaptation. With increasing 

photon flux, the proportion of microvilli in a refractory state at any one instant increases, 

progressively reducing effective quantum efficiency (Q.E.); however, with ~30000 microvilli, 

even during bright sunlight (~10
6
 photoisomerizations per photoreceptor per second) a 

significant fraction will always be recovering from the  refractory state. Modelling and 

experiment confirm that the reduction in Q.E. is balanced by the increase in photon arrival, so 

that the overall rate of effectively absorbed photons simply plateaus. This means that a high 

rate of information transfer is maintained in responses to naturalistic stimuli over a broad 

range of intensities (Figure 4E) [**53]. Despite sacrificing photons, this strategy enables 

perceptually consistent estimates of real-world light contrast patterns over a large illumination 

range, in an energy efficient manner [54]. 

 

Conclusions 

Ultracompartmentalization inherent in the microvillar design, combined with Ca
2+

-dependent 

feedback, can account for many aspects of the performance of fly photoreceptors. 

Nevertheless, the final “messenger” of excitation downstream of PLC remains unresolved. 

Although there is evidence implicating DAG and/or PUFAs, it is not compelling. Recent 
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evidence suggests that the channels may be activated by the combination of two neglected 

consequences of PLC activity: the physical effects of PIP2 depletion on the membrane, and 

acidification.  A more specific hypothesis is that the physical state of the membrane following 

PIP2 depletion favours a conformational state of the channels with an accessible protonatable 

site (perhaps previously buried within the bilayer), which promotes channel gating when 

protonated.  It is of course premature to accept this as the final solution. Not only must the 

hypothesis be further tested and refined, it must also be reconciled with existing evidence, 

such as the rdgA mutant phenotypes. Here it may be pertinent to recall that DGK not only 

metabolises DAG, but is also the first step in the resynthesis of PIP2 (Figure 2B). Therefore,  

rdgA mutants may have reduced PIP2 and raised DAG levels in their microvilli, potentially 

approximating the physical state of the membrane following PIP2 hydrolysis. In addition, PA 

is a facilitator of PI(4)P 5-kinase [55] so that the final step of PIP2 synthesis might also be 

compromised in rdgA (Figure 2B). Finally, TRP family members are notorious for being 

polymodally regulated and it may not be surprising to find that multiple signals contribute to 

channel activation or that the channels behave differently in different expression systems [34].  
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Figure 1 Photoreceptors and transduction cascade in Drosophila.  

A Single photon responses (quantum bumps) in Drosophila and mouse rod (blue): inset, normalised to 

compare kinetics B Left: section of an ommatidium showing two photoreceptors with their 

rhabdomeres (~80 m long). Right:  in cross-section, rhabdomeres R1-R6 (λmax 480 nm) surround the 

central R7 (UV-sensitive). R8 (blue/green sensitive) lies proximally in the ommatidium. The electron-

micrograph shows one rhabdomere, with one row of its stack of ~30000 microvilli (scale bar 0.5 m). 

C Elements of the cascade in a ‘half’ microvillus. Photoisomerization of rhodopsin (R) to 

metarhodopsin (M) activates Gq via GDP-GTP exchange (I), releasing the Gqα subunit; Gqα activates 

phospholipase C (PLC), generating InsP3, diacylglycerol (DAG) and a proton from PIP2 (II). Two 

classes of light-sensitive channels (TRP and TRPL) are activated downstream of PLC (III). Ca
2+

 influx 

feeds regulates multiple targets, including both channels, PLC (via PKC)- and arrestin (Arr2, via CaM 

and NINAC = myosin III). Several components, including TRP, PKC, and PLC are assembled into 

signalling complexes by one or other of five PDZ domains (1–5) in the scaffolding protein, INAD, 

which may be linked to the central actin filament via NINAC. Modified from [8]. 
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Figure 2 Phosphoinositide pathways 

A Hydrolysis of PIP2 by PLC releases InsP3 and a proton, leaving DAG in the membrane. In principle 

DAG could be further metabolised by sn-2 DAG lipase to PUFAs (e.g. linolenic acid), or by sn-1 DAG 

lipase (inaE gene) to generate monoacyl glycerol (MAG).  B PI turnover cycle: phosphorylation of 

DAG to PA by DGK (encoded by rdgA) is the first step in the PIP2 resynthesis pathway, whilst PA is 

also a potential activator of PI(4)P-5 kinase (PIP kin). 



 16 

 

Figure 3 Activation by protons, PIP2 depletion and bilayer mechanics 

A Rapid light-induced acidification measured with pH indicator dye (loaded via patch pipette), is 

abolished in a PLC mutant (norpA). B The protonophore  DNP fails to activate channels  under control 

conditions, but following PIP2 depletion, rapidly and reversibly activates the light-sensitive channels: 

from [35]. Inset shows molecular models of PIP2 and DAG illustrating the physical effect of PIP2 

hydrolysis by PLC. C i) Contractions, measured by atomic force microscopy, elicited by flashes of 

increasing intensity (200-8000 effective photons). Voltage responses to same flashes shown above 

(blue); ii) contractions elicited by brighter flashes (up to ~10
6
 photons) on faster time base; iii) intensity 

dependence of contractions (black squares) overlaps the intensity dependence of PLC activity (blue 

triangles: measured using fluorescent pH assay: Hardie R.C. unpubl.). D i) voltage-clamped responses 

to flashes of light in a trp mutant were reversibly facilitated by perfusion with hypo-osmotic solution 

(200 mOsm); ii) current amplitudes in hyper- and hypo-osmotic solutions normalised to control values 

in 300 mOsm bath  in trp and  trpl mutants and wild-type flies in absence of Ca
2+

: from [**38]. 
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Figure 4 Modelling bumps and light adaptation 

A Microvillar phototransduction reactions. M∗, metarhodopsin; C∗, Ca
2+

-dependent feedback; D∗, 

DAG (proxy for messenger of excitation); P∗, G protein-PLC complex. B Reactions modelled in a 

stochastic framework: simulations show how elementary responses (bumps) to captured photons (green 

circles) are generated: after a variable latency, 5-15 TRP-channels open, mediating Ca
2+

 and Na
+
 

influx. Ca
2+

-dependent feedback (red) results in a refractory period. ∗∗  two photons arriving during 

refractory period fail to activate channels. C,D Average recorded and simulated bumps and their 

latency distributions are similar. 

E As photon flux increases (5x10
4
 – 10

6 
 photons absorbed/second), an increasing  proportion of 

microvilli are refractory (black) at any one instant, reducing quantum efficiency (Q.E.); but the overall 

effective  sampling rate (absorbed photons x Q.E.) and hence information transfer rate,  plateaus in 

both simulations and intracellular voltage recordings from the intact fly: from [**53]. 

 


