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KEYWORDS: Ag@ZnO nanorods, low temperature plasma growth, laser treatment, long life 

span SERS. 

ABSTRACT: UV nanosecond laser pulses have been used to produce a unique surface 

nanostructuration of Ag@ZnO supported nanorods (NRs). The NRs were fabricated by plasma 

enhanced chemical vapor deposition (PECVD) at low temperature applying a silver layer as 

promoter. The irradiation of these structures with single nanosecond pulses of an ArF laser 

produces the melting and reshaping of the end of the NRs that aggregate in the form of bundles 

terminated by melted ZnO spherical particles. Well defined silver nanoparticles (NPs), formed 

by phase separation at the surface of these melted ZnO particles, give rise to a broad plasmonic 

response consistent with their anisotropic shape. Surface enhanced Raman scattering (SERS) in 

the as-prepared Ag@ZnO NRs arrays was proved by using a Rhodamine 6G (Rh6G) 

chromophore as standard analyte. The surface modifications induced by laser treatment improve 

the stability of this system as SERS substrate while preserving its activity. 
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1 INTRODUCTION 

Metal nanoparticles are known to generate large electromagnetic field enhancements via 

surface plasmon resonance (SPR) effects that have a high impact in different optical 

spectroscopies including linear absorption or Raman. SPR features are known to depend on the 

size, shape and association of the NPs as well as on the type of metal and the dielectric 

environment around them.
1-4

 This dependence has been exploited for the fabrication of dichroic 

filters,
5,6

 polarized light nanostructures,
7,8

 materials with second-order nonlinearities,
9
 several 

sensing applications
10

 or surface enhanced resonance spectroscopy (SERS) sensors. In particular, 

due to its high sensitivity, rapid response and fingerprint management, SERS has developed 

rapidly for its tremendous potentials in chemical and biological sensing.
11,12

 In this spectroscopy 

the Raman bands of organic molecules experience an enhancement by several orders of 

magnitude when they are adsorbed on silver nanoparticles and therefore affected by the 

evanescent field of the SPR field.
13

 

The increase of the evanescent field, deemed responsible for the SERS effect, is higher at neck 

interconnections between associated NPs 
14

 or in metal/semiconductor heterostructures enabling 

specific metal-semiconductor interface interactions.
15,16

 In fact, some semiconductors such as 

ZnO can also generate weak SERS activity with prominent enhancement factors up to 10
3
.
17

 

Similarly, Ag or Au NPs in contact or deposited on semiconductor nanorods or nanowires of Si, 

Ge or ZnO, have led to significant enhancements in Raman scattering. 
18,19

 These evidences have 

prompted the study of composites or heterostructures formed by semiconductors and noble 

metals to promote higher SERS effects due to the contributions of both an electromagnetic 

enhancement (excited by the localized SPR of noble metals) and a semiconductor supporting 
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electromagnetic enhancement (caused by the charge transfer between the noble metal and the 

adjacent semiconductor).
20-23

  

Enhancement of the sensing response is also observed in hollow one-dimensional 

nanostructures with a high surface to volume ratio.
24-29

 In previous works, we have reported a 

route to produce supported hollow NRs of ZnO which were decorated with silver 

nanoparticles.
30,31

 The fabrication method consisted of a plasma enhanced chemical vapour 

deposition (PECVD) procedure.
30,31

 This system, with a high surface area and a high 

concentration of silver NPs, has an ideal nanostructure for the development of a SERS sensor 

system. Another advantage of this system for SERS resides in its vacuum-based methodology 

that circumvents potential spectral interference caused by remaining chemical agents used during 

chemical wet methods.
32

 However, a problem encountered by its use for SERS sensing is a 

progressive decrease in sensitivity when utilised successive times. The observed association of 

the supported NRs in the form of nanocarpets when dripping water on their surface
33

 is deemed 

as the main responsible factor for this decrease in sensitivity.  

To overcome this limitation UV nanosecond laser pulses have been applied to induce specific 

surface modifications contributing to keep the efficiency of the original material as a long lasting 

SERS substrate. Laser irradiation with UV nanosecond laser pulses have been used to improve 

the structural or optical properties of ZnO NRs, these latters evidenced by an overall 

enhancement of the UV photoluminescence (PL).
34-36

 This treatment has been also proved to be 

an useful tool for increasing the on-current NRs field effect transistor.
37

 In all these experiments 

there were microstructural changes affecting the end of the NRs that can be related to surface 

melting processes induced by laser. The characteristics of the obtained nanostructures depended 

on the utilized laser fluence: coarsening is generally observed for low fluences, while formation 
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 5

of spherical NPs,
37,38

 clustering of adjacent NRs
35,37

 or even offal NRs leading to an irregular 

coating on top of the NRs
36

 have been found for high fluences. 

In the present work, we show that NRs tip melting and association and the formation of 

embedded anisotropic Ag nanoparticles are the main structural changes induced by laser.  These 

changes prevent the nanocarpet association of NRs by water dripping
33

 and contribute to the 

stabilization of the Ag@ZnO NRs structure for its long-lasting use as SERS sensing substrates. 

Besides disclosing the nature of the laser induced microstructural changes, it has been also found 

that reshaped Ag NPs are responsible for a polarization sensitive plasmonic response of these 

laser transformed materials. 

 

2 EXPERIMENTAL METHODS 

The fabrication process steps of supported Ag@ZnO nanostructures are shown in Scheme 1. 

Firstly, silver NPs are deposited by DC-sputtering at room temperature onto different substrates. 

Additional information about this procedure can be found elsewhere.
39,40

 These NPs act as metal 

seeds for the growth of Ag@ZnO NRs by PECVD at low temperatures. Then, nanosecond pulses 

from a UV laser are used to transform the surface of the NRs. This transformation implies their 

tip partial melting with the subsequent formation of ZnO particles that act as NR aggregation 

templates. In the course of this process newly formed Ag NPs become also incorporated in these 

oxide particles. 
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Scheme 1. Illustration of the synthesis process of Ag@ZnO complex nanostructures. a) Initial 

Ag layer deposited by DC-sputtering; b) Ag@ZnO NRs grown by PECVD, highlighting the 

components on a single NR cross section (CS); and c) laser treated Ag-ZnO nanostructures, 

showing a characteristic association of their upper part and the formation of ZnO particles with 

embedded larger Ag NPs. 
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2.1 Fabrication of the supported Ag@ZnO-NRs 

Polycrystalline Ag@ZnO core@shell NRs were fabricated by PECVD of diethyl zinc 

precursor on silver sputtered substrates (Si(100), fused silica and glass). The silver, acting as 

seed layer for the posterior deposition of ZnO by PECVD, was deposited by sputtering from a 

metal wire under a pressure of 1 Torr of Ar and an applied voltage of 400V for 2 hours. The 

plasma reactor consisted of a microwave electron cyclotron resonance set-up working in a 

downstream configuration. The deposition of ZnO was carried out at 135ºC in the plasma reactor 

supplied with oxygen (5 x 10
-3

 Torr) and excited with a microwave power of 400W. Diethylzinc 

(purchased from Sigma), used as precursor of zinc, was dosed directly in the deposition chamber 

at a rate of 1.2 sccm for 1 hour. A set of 20 identical samples were prepared following the 

described procedure. These conditions produce the growth of composite nanostructures 

consisting of hollow ZnO NRs decorated internally by silver nanoparticles. A thorough 

description of the obtained materials and additional experimental details can be found 

elsewhere.
30,31

 

 

2.2 Laser treatment of supported Ag@ZnO NRs 

The Ag@ZnO NRs samples as taken from the PECVD reactor were exposed in air to single 

and multiple 20 ns pulses from an excimer laser operating at 193 nm. A beam homogenizer was 

used to enable constant beam intensity exposures (within 5%) over 4x4 mm
2
 square regions. For 

the experiments, we have used four irradiation fluences in the range 44-130 mJ cm
-2

. 

 

2.3 Characterization 
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NRs arrays deposited on silicon wafers were characterized by scanning electron microscopy 

(SEM). The analysis of selected irradiated areas of samples deposited on fused silica substrates 

yielded identical results than on silicon wafers. A field emission apparatus, S4800 from Hitachi, 

was used for these studies. An in-depth characterization of as prepared Ag@ZnO NRs before 

laser irradiation was carried out using high-angle annular dark field scanning transmission 

electron microscopy (HAADF-STEM). The NRs were removed from the substrates and then 

placed in a holey carbon grid (from Agar). HAADF-STEM electron tomography was performed 

on a FEI Tecnai F20 field emission gun transmission electron microscope operated at 200 kV.   

The extinction spectra expressed as ln(1/T) were determined from the transmittance spectra (T) 

recorded for the samples deposited on fused silica normalized to the spectrum of the bare 

substrate. The recording system consisted of a Mercury-Xe lamp, a polariser and a visible fiber 

optics spectrometer. Spectra were recorded in the range of 400-750 nm at both 0° and 45° angle 

of incidence with respect to the normal to the substrate and for light polarized parallel (p-

polarization) and perpendicular (s-polarization) to the incidence plane. Since for 0° incidence 

angles the spectra were not affected by the polarization of light, we will refer to the 

corresponding experiments by just mentioning the angle of incidence. For 45º incidence 

experiments, the type of polarized light will be also mentioned. 

Raman spectra were collected in a LabRAM HR High Resolution 800 Confocal Raman 

Microscope. For the measurements a green laser (He–Ne 532.14 mn), 600 line/mm, 100x 

objective, 20 mW and 100 µ pinhole, was used. Rh6G was used as SERS probe. Different 

amounts of this dye molecule were dissolved in ethanol to get different solutions with 

concentrations ranging from 10
-11

 to 10
-5

 M. Droplets of 2 µl were dropped on the substrate and 

naturally dried in air before SERS characterization. 
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 9

 

3 RESULTS 

3.1 Laser treatment of Ag@ZnO nanorods 

Figure 1a) and b) shows a series of SEM images of the as-prepared samples with the supported 

Ag@ZnO NRs deposited on a silicon substrate. These NRs are vertically aligned and have a 

length of 900 nm with a typical diameter of 60 nm and a surface density of 70 NRs/µm
2
. As 

reported previously and presented here in Figure 1c),
30,31

 small silver NPs (diameter in the range 

3-15 nm) are mainly distributed in an inner hollow along the NRs. The entire NR-structure is 

highly porous, thus enabling the direct contact of the Ag NPs with liquids when dripping a 

droplet on the sample surface. The set of specimens investigated in this work had a similar 

morphology and spatial distribution of NRs. 

An example of laser treated Ag@ZnO NRs is presented in Figure 2, where SEM images of a 

zone exposed to a fluence of 72 mJ cm
-2

 are shown.  The irradiation leads to the formation of 

almost spherical ZnO particles at the upper part of several NRs that in this way become 

associated in a rigid superstructure as sketched in Scheme 1c) and imaged in this figure. Fig. 2b) 

shows a backscattered electron image of these rounded particles evidencing some bright areas 

confined to the neighborhood of the surface. These bright dots are attributed to newly formed 

silver NPs.  It is important to stress that these structural modifications do not affect the lower part 

of the NRs, as evidenced by comparing the cross section SEM micrographs of Fig. 2c) taken 

from the irradiated area and the one in Fig. 1b) corresponding to the as-prepared NRs. The 

diameter of the spherical ZnO particles and the newly formed Ag NPs are respectively in the 

ranges 100-200 nm and < 50 nm.  
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 10

Figure 1. a) Normal view and b) cross section SEM micrographs of vertically aligned supported 

Ag@ZnO NRs as grown by PECVD. c) Vertical orthoslice of the HAADF-STEM 3D 

reconstruction of a single Ag@ZnO NR; bright features correspond to the Ag nanoparticles.  
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 11

 

Figure 2. Normal view view SEM micrographs of laser treated Ag@ZnONRs 72 mJ cm-2 using 

(a) secondary and (b) backscattered electrons. (c) Secondary electrons cross section image of the 

same preparation. The inset in (c) shows the corresponding backscattered electrons cross section 

image of the same preparation. The inset in (c) shows the corresponding backscattered electrons 

image. 
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Figure 3 shows the dependence of the structural changes induced by laser irradiation as a 

function of the laser fluence. The lowest fluence, i.e., 44 mJ cm
-2

 (Fig. 3a), is close to the tip 

association threshold since some coarsening of the tip and incipient clustering of NRs is 

observed. At higher fluences (72mJ cm
-2

, Fig. 3b) several NRs become associated through a 

single rounded ZnO particle with a diameter increasing with the fluence. For the highest fluence 

(130 mJ cm
-2

, Fig. 3d) the diameter of the ZnO particles becomes ≈ 250 nm. The Ag NPs 

decorating the ZnO particles also change their size and shape as the fluence increases. For low 

fluences (Fig. 3b), Ag NPs look round and have diameters in the range 20-40 nm. At high 

fluences smaller Ag NPs (<10 nm of diameter) are observed.  

In order to investigate the structure of the rounded ZnO particles, complementary XRD and 

TEM measurements were performed. Supporting Information S1 presents XRD spectra of 

samples irradiated at different fluences, preserving the crystallinity in all the cases. By contrast, 

the XRD peaks associated to Ag depict no major alteration upon laser treatment. This would 

indicate that the laser treatments have produced a recrystallization of the oxide phase. Supporting 

Information S2 further deepens in this aspect with TEM analysis of the ZnO particles.  Selected 

area electron diffraction reveals the presence of crystalline ZnO and Ag. Using high resolution 

TEM it was also possible to differentiate the Ag NPs within the ZnO. In another experiment, the 

samples were exposed for 2, 5 and 6 times to a laser fluence of 72 mJ cm
-2

. The SEM images, 

presented in Figure S3 of the Supporting Information, show that the associated structures of NRs 

formed after the first irradiation is stable and remains unaltered after successive laser treatments. 

As prepared Ag@ZnO NRs exhibit a superhydrophobic behaviour attributed to the 

combination of two factors: the hydrophobicity of ZnO itself and the nanostructuration of the 

surface.
30,33

 Water contact angle measurements have been also carried out on laser treated  
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 13

 

Figure 3. SEM micrographs of Ag@ZnO NRs laser irradiated with different power fluxes: a) 44 

mJ cm-2, b) 72 mJ cm-2, c) 101 mJ cm-2 and d) 130 mJ cm-2. Insets: BSE images showing the 

silver NPs on the bundles created after the laser treatment (sizes between 5-80 nm). 

 

Ag@ZnO NRs, where a hydrophobic behaviour with a contact angle of about 145º was found 

in all cases (a picture of a water droplet on a Ag@ZnO surface can be found in the Figure S4 of 

the Supporting Information). It is known that dripping water on the as-prepared Ag@ZnO NRs  

surfaces give rise to a clustering process known as nanocarpet effect.
33

 This nanostructural 

modification is attributed to the compensation of capillary forces induced by the liquid and the 

mechanical bounding of the NRs towards the substrate surface (a micrograph showing these 
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surface modifications is displayed in the Figure S5 of the Supporting Information.). In contrast 

with this modification of the surface nanostructure by dripping water on the as-prepared NRs, 

SEM micrographs of wetted areas (experiments were carried out with water or ethanol) of laser 

modified NRs showed no major alterations of the nanostructure for samples treated with fluences 

higher than 72 mJ cm
-2

. The implications of this laser mechanical stabilization of the 

nanostructure for sensor SERS applications will be discussed below. 

 

3.2 Optical properties of Ag@ZnO NR system 

The as-prepared samples presented a brownish coloration likely as consequence to the large 

dispersion of Ag NP sizes. Contrary to this optical behaviour, the laser treated Ag@ZnO NRs 

samples present a well-defined plasmonic response visually identified by bluish coloration. This 

different optical behaviour is evidenced in Fig. 4 showing the extinction spectra recorded at 0º 

for both the as-prepared and the four irradiated NRs samples. The as-prepared sample depicts a 

featureless spectrum with a smooth decrease in the extinction from UV to IR, very similar to that  

reported for pure ZnO films.
41

 No relevant changes in the spectral shape occurred before 

reaching the threshold fluence of 72 mJ cm
-2

, when it develops a broad peak extending from 435 

to 550 nm. The development of this band must be associated to the SPR response of the isolated 

Ag NPs formed within the spherical ZnO particles upon laser treatment. At higher fluences, the 

extinction coefficient increases and the band broadens towards the IR part of the spectrum. 
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Figure 4.  a) Extinction spectra at 0º of laser treated Ag@ZnO NRs with fluences in mJ cm
-2

 as 

labelled. b) Extinction spectra of NRs at 45º treated with 72 and 130 mJ cm
-2

, using incident 

polarized light as labelled. 0 stands for the spectra of as prepared sample. 
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To further investigate the characteristics of this band, we measured the transmission spectra at 

45º with both p- and s- polarized light. The results of this analysis for the as prepared samples 

and the laser irradiated areas (fluences of 72 mJ cm
-2

 and 130 mJ cm
-2

) are presented in Fig. 4b). 

The spectra taken with s-polarized light are identical to those obtained at 0º (Fig. 4a), while those 

recorded with p-polarized light produces an enhancement of the extinction at the UV side of the 

spectrum (see the clear maximum developing in the range 435-455 nm depending on the 

fluence), while practically no changes are observed in the IR side (i.e. in the range 520-550 nm). 

 

3.3 Ag@ZnO nanorods as SERS substrates for Rh6G detection 

As reported in references,
30,31

 in the Ag@ZnO NRs samples, silver NPs with diameters 

comprised between 3 and 15 nm are distributed in an inner hollow extending along the ZnO NR 

porous shell structure. The high dispersion of silver NPs and/or aggregates and a likely electronic 

interaction of the metal phase with the ZnO semiconductor makes this material very attractive for 

SERS applications.
13,14

 An intimate electrical contact between Ag and ZnO was in fact evidenced 

by the visible photoactivity depicted by these samples.
30

 

To check the SERS activity of the Ag@ZnO NRs, Rh6G dye was used as a probe molecule. 

Figure 5a) illustrates the SERS response after dripping ethanol droplets with different 

concentrations (from 10
−11

 to 10
−5

 M) of Rh6G on the as-prepared sample. The spectral features 

characteristic of Rh6G are clearly identified in the spectra, even for concentrations as low as 

10
−11

 M.  According to literature,
42

 the observed peaks can be attributed to the C–C–C ring in-

plane, out-of-plane and C–H in-plane bending vibrations (611, 771, and 1125 cm
−1

), and to 

symmetric modes of in-plane C–C stretching vibrations (1189, 1360, 1508, and 1649 cm
−1

). This 
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material presents a high SERS activity with an enhancement factor of about 1.6 × 10
6
 (Part S6 of 

the Supporting Information).  

The wetting of Ag@ZnO NRs substrates with liquids implies the irreversible formation of a 

nanocarpet structure.
33

 Due to this self-bending and association process, this surface 

transformation produces a decrease in the active surface area which, most likely, is the 

responsible for the observed small decrease in SERS sensitivity. According to the results in the 

previous section (c.f. Figure 2), laser induced morphological changes in the NRs samples offer a 

way to provide rigidity and stability to the system even after water immersion. Laser irradiation 

also produces the association of NR tips and affects the Ag NPs distribution (c.f., Figure 2). To 

check the influence of these morphological differences in the SERS activity, Rh6G SERS spectra 

were recorded for the as-prepared Ag@ZnO NRs, laser treated Ag@ZnO NRs and a reference 

ZnO thin film (Figure 5b). This figure shows that the spectra taken on the laser treated NRs were 

similar to that on the as-prepared samples. In the two cases all the resonant peaks of Rh6G were 

recorded, although their intensity was slightly weaker in the former case. Defining the detection 

efficiency as the ratio between the intensity of the 771 cm-1 peak of the laser treated with respect 

to that in the as-prepared NRs, it results that this parameter is close to 90%  

 in the former case. In terms of the enhancement factor, laser treated NRs present a value of 

approximately 1.4 × 10
6
. It is also apparent in Fig. 5b) that the reference ZnO thin film does not 

present any SERS activity. 
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Figure 5. a) SERS spectra of Rh6G collected on as prepared Ag@ZnO NRs for different 

concentrations (indicated on the upper-left of each spectrum). b) Comparison between the SERS 

activity of as prepared NRs, laser treated NRs and a ZnO thin film. 
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An advantageous difference of the laser treated Ag@ZnO NRs with respect to the as-prepared 

samples was the long lasting detection efficiency achieved in the first case. For analytical 

purposes, a long lasting stability of the SERS response is an important condition that has been 

overlooked in previous publications dealing with the SERS activity of Ag-ZnO 

nanostructures,
13,14

 This is a critical issue with zinc oxide based materials due to their relatively 

low chemical stability in water.
43

 To evaluate the robustness of our system for SERS, water 

droplets with Rh6G were deposited and then dried on the different studied samples. Figure 6 

shows the evolution of the normalized intensity of the 771 cm
-1

 peak after successive tests. For 

the as prepared Ag@ZnO NRs, the SERS activity decreased considerably after the first 

experiment (~80%) and then more slowly up to reach 60% of the initial intensity after dripping 5 

droplets. By contrast, the laser treated NRs were more stable and still exhibited an 85% of the 

initial SERS activity after 5 immersions. 
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Figure 6. Lasting duration test representing the normalized intensity of the 771 cm
-1

 Rh6G peak 

for the as prepared and laser treated NRs after a series of water drippings. Inset, 771 cm
-1

 Rh6G 

peak evolution after different number of immersions as labelled. 
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4 DISCUSSION 

4.1 Laser induced morphological modification of Ag@ZnO NRs 

The main effect of laser irradiation is the production of bundles of NRs due to the formation of 

large and almost spherical ZnO particles at the end of the NRs that associate several of them. The 

morphologies of the particles and bundles are very similar to those reported earlier upon laser 

irradiation of non-doped ZnO NRs,
37,38 

and are related to melting followed by rapid 

solidification. The melting temperature of ZnO nanorods under conventional slow heating in air 

has been reported to be ≈ 750 °C, that is significantly lower than that of the bulk material (1700 

ºC).
44

 Annealing during 1 hour at this temperature lead to partial melting and coalescence of the 

nanorods by joining neighboring NRs, while the NRs have completely converted into particles 

upon annealing at ≈ 950 °C. In our case, the porous character of the Ag@ZnO NRs together with 

the large amount of accumulated defects in their structure might contribute to decrease further 

the melting temperature. Therefore, we can conclude that laser irradiation for fluences higher 

than 44 mJ cm
-2

 at 193 nm induces melting of the tip of the NRs and the formation of round 

particles to minimize the free energy. Once the particle size becomes comparable to the NRs 

separation, neighboring particles coalesce leading to a single bigger particle on top of various 

NRs, i.e. forming the bundles, similarly to what is observed under conventional annealing at 

threshold temperature.
44

  

Since the melting temperature of bulk silver (960 ºC) is close to that of the NRs and that of the 

initial small Ag NPs in the porous structure is expected to be at least ≈ 100 ºC lower due to their 

small diameter,
45

 we can conclude that the initial Ag NPs have also melted. The low miscibility 

of Ag and ZnO as well as the high diffusion lengths of atoms within the liquid state compared to 

those in the solid state promotes phase separation and the aggregation of Ag atoms. This 
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interpretation is supported by the SEM images reported in Figure 2 showing that the Ag NPs are 

at the surface of the ZnO particles and the absence of aggregation of Ag at the interface with the 

non-melted part of the NRs. In agreement with the results reported earlier,
37,38 

there are also no 

evidences for changes in the non-melted part of the NRs that thus act as crystalline seeds for the 

solidification of the molten ZnO. It has been reported that the atomic spacing was preserved 

when passing this interface thus supporting the epitaxial regrowth of the ZnO. XRD and TEM 

results and the fact that no further changes were observed after successive irradiation treatments 

are consistent with an epitaxial regrowth occurring also in our case. The fact that a second pulse 

with same fluence than the first one does not produce further changes evidences that the melting 

point of the surface material has increased and thus become closer to that of the bulk material 

and higher than that of the porous NRs. This reasoning is consistent with the ZnO spheres being 

formed by dense and crystalline ZnO as opposed to the porous structure of the NRs (see Figure 

S1 and S2 of the Supporting Information) in agreement with the earlier results reported upon 

laser irradiation of un-doped NRs
37, 38

 and the higher melting temperature of the bulk (dense) 

material than the porous one.
44
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4.2 Optical properties of laser treated Ag@ZnO NRs 

The brownish colour of the as-prepared Ag@ZnO NRs agrees with the wide size distribution 

of silver NPs found along the inner hollow of these structures. These Ag NPs have diameters in 

the 3-15 nm range and do not exhibit a well-defined plasmonic response. As suggested earlier,
30

 

this is likely related to the broad distribution of NP diameters and/or to that an excess of metal 

infiltrated in the porous ZnO shell prevents the localization of electron oscillations. The 

ultraviolet nanosecond laser treatment provides a way to modify locally the material surface as 

well as to produce NPs with plasmonic response. The plasmon band observed in the irradiated 

zones must be associated to the Ag NPs formed at the ZnO particles at the NR tips as deduced 

from the SEM analysis of the irradiated samples (c.f. Figure 2).  

 

The spectra recorded at 45º (Fig. 4b) with p- and s- polarizations show that the broad 

plasmonic band response observed at 0º is due to two contributions with relative maxima in the 

435-455 nm and 520-555 nm ranges. These two contributions can be accounted for by assuming 

that the silver NPs formed at the surface of the ZnO particles have an oblate shape with their 

shorter dimension axis perpendicular to the ZnO spheres. The SPR of similar oblate NPs are 

known to split into a blue-shifted longitudinal and a red-shifted transversal mode.
4,46

 

Furthermore, for oblate NPs with an aspect ratio of ~1.5 and embedded in a dielectric media of 

refractive index ~2.1 (approximately the refractive index of ZnO in the visible region of the 

spectrum), longitudinal and transversal modes at 445 nm and 540 nm are expected.
4
 These values 

are very close to the position of the two features observed in the spectra depicted in Fig. 4b). In 

our case, the fact that the blue-mode is enhanced at 45º by using p-polarization, i.e. when the 

electromagnetic field has a component parallel to the direction of the NRs, suggests that the NPs 
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distribution is not homogeneous and there is a certain solid angle along the NR axis were they 

are preferentially located. 

 

4.3 Long lasting SERS devices 

The results reported in Figures 2 and 3 have shown that by laser irradiating the Ag@ZnO NRs, 

the obtained nanostructure is quite robust and does not experience any nanocarpet formation 

when immersed in liquids. We attribute this behaviour to a high rigidity imparted by the laser 

formed ZnO nanoparticles to the NRs and to the fact that the long distance separating the 

associated bundles prevents a capillary driven nanocarpet formation. 

The existence of electronic interactions between silver and the ZnO semiconductor in Ag-ZnO 

composite nanostructures is known to contribute to enhance the SERS sensitivity.
14

 In our 

system, some electron transfer from the Ag NPs to the ZnO NRs should be expected until their 

Fermi levels attain equilibration. Since the Fermi level of ZnO is lower than that of Ag,
47

 ZnO 

and Ag should get negatively and positively charged, respectively. A certain prevalence of a 

higher charge-density region at the interface between the Ag-NPs and the ZnO NR should be 

also expected. This situation must be advantageous for detection via SERS because a localized 

electromagnetic field excited by a surface plasmon resonance can enhance the Raman scattering 

of analytes.
14

 A scheme of the energy band diagram of the two components illustrating the 

electron transfer process between Ag nanoparticles and ZnO is displayed in the Figure S7 of the 

Supporting Information. Results obtained proved that by using this material it is possible to 

detect concentrations as low as 10
-11

 M of Rh6G. We believe that not only the high SERS 

intrinsic activity of the Ag@ZnO NR structures contributes to enhance the detection sensitivity, 

but also its high adsorption capacity. The NRs arrays in this sample present a high porosity at 

Page 24 of 43

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 25

two different scales: at the micrometric scale, related with the length of the NRs and the hollow 

space between them, and at the nanometric scale within the nanocolumns, due to the intrinsic 

porosity of the ZnO shell.
30

 This characteristic nanostructure should lead to a large surface area 

for molecular adsorption and to an enrichment of analyte molecules. 

As-prepared Ag@ZnO NRs undergo a decrease in sensitivity after successive SERS tests (c.f., 

Figure 6). Different factors should contribute to this decrease in detection efficiency. Firstly, the 

formation of NR clusters due to the nanocarpet effect tends to minimize the surface in contact 

with the liquid after the first immersion.
33

 Additionally, ZnO tends to dissolve or become 

hydroxylized in water, hence  successive water immersions during SERS tests might result in 

loss of material and/or in disrupting the electrical contact between ZnO and Ag NPs.
43

  Although 

the latter limitation cannot be easily overcome, our previous results show that laser treated NRs 

offer an interesting alternative to create a more robust morphology with a longer detection 

lifespan. Main factor contributing to this improvement is the rigidity of the bundles formed by 

laser melting and solidification of the upper part of the NRs and a lower degradation of the ZnO 

melted nanoparticles as compared with that of the porous NRs shell. 
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5 CONCLUSSIONS 

Laser treatment of Ag@ZnO NRs produce a reshaping of the end of the NRs leading to the 

formation of bundles terminated by recrystallized ZnO spheres decorated with oblate Ag NPs. 

These oblate silver NPs exhibit a plasmonic response that is polarization sensitive. The laser 

induced modifications render a surface with a higher stability towards SERS detection. The 

simplicity of the manufacturing method, not requiring any template or the use of complex 

techniques, and its compatibility with any kind of substrate material are some of the 

advantageous features of the procedure. 
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ABBREVIATIONS 

CS, cross section; NP, nanoparticle; NR, nanorod; PECVD, plasma enhanced chemical vapour 

deposition; PL, photoluminescence; Rh6G, rhodamine 6G; SEM, scanning electron microscopy; 

SERS, surface enhanced Raman scattering; SPR, surface plasmon resonance; 
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Scheme 1. Illustration of the synthesis process of Ag@ZnO complex nanostructures. a) Initial Ag layer 
deposited by DC-sputtering; b) Ag@ZnO NRs grown by PECVD, highlighting the components on a single NR 
cross section (CS); and c) laser treated Ag-ZnO nanostructures, showing a characteristic association of their 

upper part and the formation of ZnO particles with embedded larger Ag NPs.  
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Figure 1. a) Normal view and b) cross section SEM micrographs of vertically aligned supported Ag@ZnO NRs 
as grown by PECVD. c) Vertical orthoslice of the HAADF-STEM 3D reconstruction of a single Ag@ZnO NR; 

bright features correspond to the Ag nanoparticles.  
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Figure 2. Normal view view SEM micrographs of laser treated Ag@ZnONRs 72 mJ cm-2 using (a) secondary 
and (b) backscattered electrons. (c) Secondary electrons cross section image of the same preparation. The 
inset in (c) shows the corresponding backscattered electrons cross section image of the same preparation. 

The inset in (c) shows the corresponding backscattered electrons image.  
130x271mm (150 x 150 DPI)  
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Figure 3. SEM micrographs of Ag@ZnO NRs laser irradiated with different power fluxes: a) 44 mJ cm-2, b) 
72 mJ cm-2, c) 101 mJ cm-2 and d) 130 mJ cm-2. Insets: BSE images showing the silver NPs on the 

bundles created after the laser treatment (sizes between 5-80 nm).  
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Figure 4. a) Extinction spectra at 0º of laser treated Ag@ZnO NRs with fluences in mJ cm-2 as labelled. b) 
Extinction spectra of NRs at 45º treated with 72 and 130 mJ cm-2, using incident polarized light as labelled. 

0 stands for the spectra of as prepared sample.  
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Figure 5. a) SERS spectra of Rh6G collected on as prepared Ag@ZnO NRs for different concentrations 
(indicated on the upper-left of each spectrum). b) Comparison between the SERS activity of as prepared 

NRs, laser treated NRs and a ZnO thin film.  
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Figure 6. Lasting duration test representing the normalized intensity of the 771 cm-1 Rh6G peak for the as 
prepared and laser treated NRs after a series of water drippings. Inset, 771 cm-1 Rh6G peak evolution after 

different number of immersions as labelled.  
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Table of Contents Graphic: Long live span SERS substrates were produced by combining vertically aligned 
Ag@ZnO nanorods grown using plasma techniques and UV nanosecond laser irradiation.    
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