
The use of XML and CML in Computational Chemistry and
Physics Programs

A. García1, P. Murray-Rust2, J. Wakelin3

1 Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad del País Vasco, E-48080 Bilbao,

Spain.
2 Unilever Centre for Molecular Science Informatics, Chemistry Department, University of Cambridge, Cambridge

CB2 1EW, UK.
3 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK.

Abstract

This work addresses problems associated with data exchange and data representation in the computational
chemistry and physics communities. Recent computational developments, such as Condor and the Grid,
have paved the way for new kinds of simulations that demand more rigorous data handling. To this end,
the paper discusses the use of XML and the Chemical Markup Language (CML) in theoretical chemistry
and physics. Extensions to the core CML language, known as CMLComp, are also discussed. However,
the majority of atomic scale simulation software is written in Fortran. Fortran’s lack of XML support
represents a potential barrier to the adoption of CML in these fields. This has prompted the authors to
develop XML and CML processing tools for Fortran, including native SAX and DOM implementations, as
well as libraries for generating well formed XML and CML. These libraries have been used to extend
existing simulation packages to work with the CML and CMLComp languages. Finally, we give a
practical example that highlights how these XML aware applications can be effectively used as workflow
components in complex chemical and physical simulations.

1. Introduction
Data exchange has always been an important issue for
the computational chemistry and physics communities.
However, it has normally been tackled on an informal or
ad hoc basis and there is no agreement upon standards
for data representation in these fields. Consequently, the
majority of data is represented by bespoke or legacy
formats, intimately tied to the software that produces
them. Traditionally, our data sets and data processing
requirements have been on a scale such that an informal
treatment has been possible. However, recent
computational advances, such as the Grid and Condor,
that allow the user to perform high-throughput
simulations and/or create complex workflow schemes,
have forced us to think more carefully about data
representation. Indeed, data handling is becoming one of
the most important issues of scientific simulation.

2. Data Exchange in Computational
Chemistry and Physics

Conventionally, atomic scale simulation programs have
relied on bespoke text and binary formats for data input
and output (see figure 1). These formats are rarely well
specified and have little, if any, syntactic commonality
between them. This presents a major barrier to data
exchange and software interoperability in these fields.
However, while there is little commonality between them

at the syntactic level, at a semantic level the content of
these files is often extremely similar. Moreover, in
comparison to many disciplines the semantics in
chemistry and physics are well established. For instance,
a single set of atomic coordinates could be used in many
hundreds of different programs regardless of the
methodology on which they are based or what they are
used to calculate – this is because concepts such as
“atomic coordinates” have strict meanings, when we
obtain a set of atomic coordinates we “know what we are
getting”. There are many more examples and some are
listed in Table 1. The clear semantics in these fields
mean that it is possible to take data from one source and
use it in another. But it is the fact that much of this data
can be readily re-purposed that actually makes it useful
or desirable for us to exchange it. For instance, the same
set of atomic coordinates could be used as the basis of
many different studies (e.g. a molecular dynamics run, a
phonon calculation, a band structure calculation).

• Atomic Coordinates
• Connectivity Tables
• Lattice Parameters
• Atomic Forces
• Forcefields
• Basis Sets
• Pseudopotentials
• Wavefunctions
• Charge Densities

Table 1. Examples of the kinds of data that are frequently transferred
between atomic scale simulation programs.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/42333172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1. The traditional set-up of atomic/molecular scale simulation software (left) and the way our chemistry and physics programs now work (centre).
Where the source code is not available it is necessary to parse input and output text to generate XML (right) – In these cases the developer can use the
JUMBO CML libraries available for a wide range of programming languages, details of which are given in an accompanying manuscript.

3. CML and CMLComp
The Chemical Markup Language was the first example of
an XML application and is becoming the de facto
standard for XML-based interchange of chemical
information [1,2].

However, while the core CML language was able to
cover many of the necessary concepts it became apparent
that certain concepts, central to solid state physics or
computational chemistry, could not easily be
accommodated in the existing CML framework. This
lead to the development of a new markup language
designed specifically to cover the needs of chemical and
physical simulations. The language, now known as
CMLComp, comprises a subset of core CML and a
relatively small number of new elements introduced
specifically to cover the needs of the atomic scale
simulation communities. Currently these extensions are
incorporated into the CMLComp XML schema and more
generally can be re-used in other applications using
JUMBO [3].

4. XML and Fortran
The majority of computational chemistry and physics
software is written in Fortran, a language eminently
suitable for high-performance numerical work but with
little support for other application domains.
Unfortunately, the lack of XML support for Fortran
presents a major barrier to the adoption of CML or XML
in these fields. To this end, the development of robust
XML processing libraries for Fortran has been one of the
major successes of this work. We have implemented the
two main XML processing APIs, the Simple API for
XML (SAX) and the W3C’s Document Object Model
(DOM) [4,5]. In addition we have developed libraries
for generating well-formed XML and CML directly from
Fortran.

The SAX parser is implemented using a finite state
machine, which processes the input sequentially, with a

very small memory footprint. The standard callbacks of
the SAX specification are supplemented with helper
routines to ease the manipulation of numerical datasets.
Well-formedness is checked and errors in the file tagged
with line/column information, but no DTD processing or
validation in general is attempted. The SAX parser is
actually written in the F subset of Fortran [6], which
enforces very clean coding constructs and for which free
compilers exist.

Our DOM implementation builds on the SAX
implementation, using callbacks to fill the appropriate in-
memory data structures. The DOM Core API provides
two different sets of interfaces to an XML document; one
presenting an "object oriented" approach with a hierarchy
of inheritance, and a "simplified" view that allows all
manipulation to be done via the node interface [5]. As
casting and inheritance are not supported in F95 we
provide only a “flattened” implementation in which all
DOM nodes are described identically (regardless of what
they represent). However, even though all data are
stored in identical structures internally, we still provide
all of the DOM 1.0 methods, so that from the point of
view of the end-user there is no difference between this
implementation and any other. The actual nodes tree is
constructed using a linked-list/pointers strategy similar in
spirit to the C GDOME implementation. In addition to
the node interface there are two other interfaces central to
the DOM representation of an XML document:
namedNodeMaps, which are used for accessing attributes
and nodeLists which are used when accessing the child
nodes of a given node, or indeed any collection of related
nodes. Again, both interfaces have been implemented
using linked lists. There are still a number of missing
features; most notably there is no validation. In addition
DOM should be able to handle different text encodings
and any DOM implementation should use 16-bit strings
unfortunately there is no simple way to do this in Fortran
and we only support 8 bit character encodings, such as
ASCII/ISO 8859-1 (although we do not expect this to be
a problem for most work). It is important to note that

Prog

OutpuOutpuInput.txt

OutpuOutpuout.txt

Parser
OutpuOutpu<Input>

Parser
OutpuOutpu<Input>

Prog

OutpuOutpuInput.txt

OutpuOutpuout.txt

Prog

OutpuOutpu<Input>

OutpuOutpu<output>

Fortran does not offer a native variable length character
type (or character array type) therefore variable length
strings are handled in a separate module [7]

For convenience we have provided libraries for
generating well formed XML and CML. The XML
formatting library (WXML) can be used to manage
multiple XML files and will generate well-formed XML
or else inform the user when well-formedness rules are
violated. It also allows the user optionally to indent
output. The CML library extends the base XML
formatting modules, again checking and enforcing well-
formedness, but in addition providing convenience
routines for generating large CML elements. In general
the CML routines reflect the underlying CML and
CMLComp schemas. Routines are typically overloaded
to take any of the allowed data types, and use Fortran’s
optional arguments to represent optional CML attributes.

In the near future we plan to offer an Xpath API built
on top of the DOM subsystem (there is already a very
simple but useful “stream-Xpath” module based on the
SAX parser). The complete Fortran XML set of libraries
is open-source, distributed with the BSD license [8,9].

5. Chemistry and Physics Software
Using the libraries described in section 4 we have
extended a range of solid-state chemistry/physics
software packages to use the CML and CMLComp
languages described in section 3. We have initially
focused on three programs [10-12].

• SIESTA: an ab initio simulation package based on

density functional theory and the pseudopotential
approximation. SIESTA is used to perform accurate
and detailed, but computationally expensive,
electronic structure calculations.

• GULP: a classical mechanics simulation program
that uses empirically parameterised potentials to
describe the interaction between atoms, making it
computationally less demanding than ab initio
methods. GULP can calculate lattice energies,
optimised structures, elastic and vibrational
properties for large and complex systems. GULP
may also be used for developing potentials.

• DL_POLY: also uses a classical description of the
atomic interactions based on interatomic potentials,
including those developed in GULP. DL_POLY
main role is to investigate the dynamic and
thermodynamic properties of extremely large
systems.

6. A Real World Example: Pollutants in Soils
One of the main aims of our work is to investigate the
mechanisms by which pollutant molecules such as DDT,
dioxins and biphenyls, become bound to soil minerals. It
is the complex data processing requirements of these
simulations that have driven much of this work. It is not
the purpose of this paper to discuss the scientific details

of this work rather the aim of the following discussion is
to highlight the extreme combinatorial nature of the
problem.

From a scientific point of view, we hope to determine
where and how these molecules become bound to soils,
systematically searching for trends across families of
related compounds. In practical terms this is an
extremely large and open-ended task. There are
potentially thousands of candidate molecules.
Concentrating on the provisional list above there are 420
molecules (including 210 dioxin and 209 biphenyl
congeners). There is an equally large choice of minerals,
and even for a given mineral there may be many relevant
surfaces to investigate. Moreover, even for a single
choice of molecule, mineral and surface, we need to
investigate the potential energy surface of the system (i.e.
how the energetics of the problem change as function of
the molecules’ position above the mineral). This in itself
requires a large number of calculations. In fact, the
nature of the problem requires that calculations be
performed, not only on the whole system, but also on
molecules and minerals separately, in order to assess
their individual contributions to the energetics. It should
be clear that any systematic analysis would require many
thousand of calculations.

Figure 2. A diagram showing the sequence of simulation that we are
using to model the interactions between pollutants and soil minerals.

The series of events described in the preceding

paragraph are illustrated in the flow diagram in Figure 2.
The diagram highlights all of the major features of this

Combine
Mol + Min

Create
Mesh

Calculation
Mol + Min

Separate
Mol +

(1) Separate
Mol + Min

 (1) Calculation
Mol + Min

 Calc
Molec

(1)Calc
Molecule Calc

Miner
(1) Calc
Mineral

Select
Molecule

Select
Mineral

Calc
Mineral

Calc
Molecule

complex simulation scheme: (1) there are dependencies
between calculations, i.e. certain calculations can not be
performed until other calculations have finished (2) every
time a major calculation is completed there is a small
post-processing step needed before the next simulation(s)
can be performed and (3) the vast majority of
calculations can be performed in parallel. We aim to
automate this series of events using the Condor
DAGMan utility [13]. However, while it is possible to
automate the execution of jobs with off-the-shelf
workflow tools, it is still necessary to deal with data as it
passes from program to program. The creation of CML
aware applications has been essential in tackling this
problem. Moreover, the use of XML allows one to
efficiently separate the workflow problem from the
underlying simulations, so that it is possible to replace
the simulation software with any other CML aware
application (that calculates the necessary data) in a
component-like fashion. Initial calculations have been
performed using the e-Minerals Condor pools at UCL
and Cambridge. Full-scale calculations will be
performed using the e-Minerals minigrid.

7. Conclusions
Computational advances have paved the way for new
kinds of chemical and physical simulations that have
forced us to re-evaluate the way in which we deal with
our data. The authors believe that a move, away from the
traditional data representation formats of chemistry and
physics, to more robust XML based description of data,
will improve software interoperability and data exchange
more generally. The creation of CML aware scientific
software has allowed us to efficiently implement
multipart scientific workflow schemes. Moreover,
standardization of data representation (within our project)
allows us to treat these applications as interchangeable
workflow components. The other major success of this
work is the development of free, open-source XML
processing libraries for Fortran. The libraries offer
implementations of the SAX, DOM and Xpath standards,
thus providing a useful resource for the entire Fortran
community.

References
[1] P. Murray-Rust and H. S. Rzepa, Chemical Markup

Language and XML Part I. Basic principles, J.
Chem. Inf. Comp. Sci., 39, 928 (1999).

[2] P. Murray-Rust and H. S. Rzepa, Chemical Markup,
XML and the World Wide Web. Part II: Information
Objects and the CMLDOM, J. Chem. Inf. Comp.
Sci., 41, 1113 (2001).

[3] Y. Zhang, P. Murrary-Rust, M.T. Dove, R.C. Glen,
H.S. Rzepa, J.A. Townsend, S. Tyrrell, J. Wakelin,
E.L. Willighagen, JUMBO – An XML Infrastructure
for eScience, Proceedings of UK e-Science All-
Hands Conference, September 2004.

[4] http://sax.sourceforge.net/

[5] http://www.w3c.org/DOM

[6] http://fortran.com/imagine1

[7] http://nn-online.sci.kun.nl/fortran/xml

[8] http://lcdx00.wm.lc.ehu.es/ag/xml

[9] After completing the initial stages of the project we
learnt of two other Fortran XML initiatives (see
http:// sourceforge.net/projects/xml-fortran/ and ref
[7]). However, we offer both SAX and DOM
interfaces and an Xpath like interface to XML. In
addition we provide a basic XML formatting
library, making this the most complete and robust
Fortran-XML library that we are aware of.

[10] J.M. Soler, E. Artacho, J.D. Gale, A. García, J.
Junquera, P. Ordejón and D. Sánchez-Portal, The
Siesta method for ab initio order-N materials
simulation, J. Phys.: Condens. Matter, 14, 2745
(2002).

[11] J.D. Gale, GULP - a computer program for the
symmetry adapted simulation of solids, JCS Faraday
Trans., 93, 629 (1997)

[12] I.T. Todorov and W. Smith, DL_POLY_3: The
CCP5 National UK Code for Molecular Dynamics
Simulations, Phil. Trans. (in press).

[13] http://www.cs.wisc.edu/condor

Acknowledgments
JW would like to thank the NERC for funding.

	Abstract
	Introduction
	Data Exchange in Computational Chemistry and Physics
	CML and CMLComp
	XML and Fortran
	Chemistry and Physics Software
	A Real World Example: Pollutants in Soils
	Conclusions
	References
	Acknowledgements

