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ABSTRACT

Steep orography can cause noisy solutions and instability inmodels of the atmosphere. A new technique for

modeling flow over orography is introduced that guarantees curl-free gradients on arbitrary grids, implying

that the pressure gradient term is not a spurious source of vorticity. This mimetic property leads to better

hydrostatic balance and better energy conservation on test cases using terrain-following grids. Curl-free

gradients are achieved by using the covariant components of velocity over orography rather than the usual

horizontal and vertical components.

In addition, gravity and acoustic waves are treated implicitly without the need for mean and perturbation

variables or a hydrostatic reference profile. This enables a straightforward description of the implicit treat-

ment of gravity waves.

Results are presented of a resting atmosphere over orography and the curl-free pressure gradient formulation is

advantageous.Results of gravitywaves over orography are insensitive to the placement of terrain-following layers.

Themodel with implicit gravity waves is stable in strongly stratified conditions, withNDt up to at least 10 (whereN
is the Brunt–Väisälä frequency). A warm bubble rising over orography is simulated and the curl-free pressure
gradient formulation givesmuchmore accurate results for this test case than amodelwithout thismimetic property.

1. Introduction

As the resolution of atmospheric models increases,

the orography resolved becomes steeper, which leads to

pressure gradient errors (Gary 1973), which can lead to

noisy solutions (e.g., Hoinka and Zangl 2004) or even

instability (e.g., Webster et al. 2003). A variety of tech-

niques for avoiding this problem have been proposed,

which will be discussed. However, none of them solves

the problem that existing discretizations of the pressure

gradient over orography are not curl free. This means

that pressure gradients can be spurious sources of vor-

ticity, which may lead to noisy vorticity fields away from

the surface such as that reported by, for example,

Hoinka and Zangl (2004).

While resolution is increasing, it is still necessary to create

models that can run stably with long time steps in the pres-

ence of high stratification. This means that gravity waves, as

well as acoustic waves, should be treated implicitly (at least

in the vertical direction, in which resolution is higher). A

variety of methods for treating gravity waves implicitly have

been described (e.g., Cullen 1990; Smolarkiewicz et al. 2014)

that involve separating atmospheric variables intomean and

perturbation quantities and linearizing. These will be dis-

cussed, which will motivate an alternative approach that

does not rely on an explicit linearization.

The introduction of orography into atmosphere models

is usually done using terrain-following coordinates, so that

the grid does not intersect with the ground, grid boxes are

arranged exactly in vertical columns, and high resolution

of the planetary boundary layer is maintained (e.g., Schär
et al. 2002; White 2003; Melvin et al. 2010). Whether the

equations in the transformed coordinates are discretized

onauniformgrid, or the equations inCartesian coordinates

are discretized on a curvilinear terrain-following grid de-

fined by the terrain-following coordinates, existing models
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do not have curl-free discretizations of the gradient

operator, which is likely to lead to problems over steep

orography. There are a variety of approaches to allevi-

ating this problem that will be discussed.

Smoothing of orography has been used in order to avoid

noisy solutions and instabilities associated with steep

orography (e.g., Kanamitsu et al. 2002;Webster et al. 2003)

but smoothed orography can lead to problems such as

reduced barrier heights and raised sea levels (Rutt et al.

2006) or elevated heat sources (Kanamitsu et al. 2002). A

popular alternative is to use terrain-following coordinates

(or layers), which rapidly become smooth with height

(e.g., Schär et al. 2002; Klemp 2011) so that the pressure

gradient errors are reduced away from the ground.Hoinka

and Zangl (2004) found that this approach avoided the

spurious potential vorticity (pv) fields near the tropopause

over steep orography in the fifth-generation Pennsylvania

State University–National Center for Atmospheric Re-

search Mesoscale Model (MM5). However, this smooth-

layers approach leads to very thin model layers over

mountain peaks, which can lead to instability, while layers

adjacent to the mountain slopes will not be smooth and so

will still have large numerical errors that can be detri-

mental for predictions of mountain weather (Fast 2003).

A complementary approach is to improve the accu-

racy of the pressure gradient calculation. In atmospheric

models, the prognostic velocity variables are usually the

vertical velocity and two components of horizontal ve-

locity. To solve the components of the momentum equa-

tion, the pressure gradient is needed in the same direction

as the velocity components. This is straightforward for the

vertical velocity because the prognostic pressure variables

will also be aligned in vertical columns and so the ver-

tical pressure gradient can be accurately calculated in

a straightforward manner. However, around steep

orography, horizontal pressure gradients will be more

difficult to calculate because the pressure is not known

along constant horizontal surfaces but along terrain-

following surfaces. Consequently, much work has gone

into accurate evaluations of horizontal pressure gradi-

ents using pressure data from different layers (e.g.,

Zängl 2012). The increased accuracy will reduce the curl
of the pressure gradient but is not guaranteed to remove

it. It is also possible to eliminate pressure gradient er-

rors in the absence of stratification (Botta et al. 2004).

To eliminate errors associated with sloping coordinate

surfaces, cut cells can be used adjacent to the orography

(Adcroft et al. 1997; Bonaventura 2000; Steppeler et al.

2002; Good et al. 2013) so that horizontal grid layers

intersect with the orography. However, it is difficult

to maintain the resolution of the boundary layer at

mountain peaks with cut cells and nonorthogonal dis-

tortions will still exist between-cut and non-cut cells next

to the ground, meaning that pressure gradients will still

not be curl free.

The common approach of using vertical and hori-

zontal velocity components as prognostic variables with

terrain-following coordinates implies that the vertical

velocity is a covariant component of the velocity whereas

the horizontal velocity is a contravariant component. [An

exception is examined by Simarro andHortal (2012), who

use contravariant velocity components in all directions.]

On horizontal, nonorthogonal grids, regardless of using

Arakawa B or C grids (Ran�ci�c et al. 1996; Adcroft et al.

2004; Thuburn et al. 2014; Weller 2014), the CD grid

(a blend between the Arakawa C and D grids; Putman

2007; Harris and Lin 2013), or discontinuous Galerkin

(Nair et al. 2005), the covariant velocity is used as the

prognostic variable. This means that, on nonorthogonal

horizontal grids, pressure gradients can be curl free

(Thuburn and Cotter 2012). In this paper, we will explore

the use of covariant velocity components as prognostic

variables in all directions in combination with terrain-

following grids in Cartesian space. This will enable us to

calculate pressure gradients that are curl free and con-

sequently not a spurious vorticity source. This follows

recent mimetic discretizations on nonorthogonal hori-

zontal grids (e.g., Thuburn and Cotter 2012; Thuburn

et al. 2014; Weller 2014). This work entails applying the

horizontal discretization described by Weller (2014) in

a vertical slice rather than in the horizontal plane in order

to achieve some of the same mimetic properties.

Implicit treatment of gravity waves is necessary for

using a long time step for strongly stratified flow. If

gravity waves are treated explicitly, there will be a time-

step restriction based on the stratification. The semi-

implicit method including the implicit treatment of gravity

waves, as described by Cullen (1990) and Tanguay et al.

(1990), involves separating the thermodynamic variables

into hydrostatically balanced and perturbation variables.

The use of hydrostatically balanced reference profiles that

are uniform in time and in the horizontal directions leads

to the cancellation of various terms, which consequently

simplifies the algorithm. But the perturbation parts can be

large and, as a consequence, if linearization assumptions

are made, these will not always be accurate.

To avoid large deviations from reference profiles,

Davies et al. (2005) and Melvin et al. (2010) use a ref-

erence profile consisting of the profile from the previous

time step and so the profile about which the model is

linearized is no longer in hydrostatic balance. This means

that fewer approximations are made but the semi-implicit

technique ismore complicated since all terms are retained.

The retention of all mean and perturbation terms and the

description involving the semi-Lagrangian method

makes the presentation of the technique complicated. The
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description of the semi-implicit, semi-Lagrangian (SISL)

algorithm employed by Qian et al. (1998) is also very

complicated and we conjecture that the semi-implicit solu-

tion of the fully compressible equations has not been taken

up so widely because these descriptions are so complex.

Gravity waves have also been treated implicitly in

models of various simplified equation sets, such as sound-

proof or pseudo-incompressible (e.g., Smolarkiewicz et al.

2001; Smolarkiewicz and Szmelter 2011; Durran and

Blossey 2012; Weller 2014). The use of simplified equa-

tion sets often implies that a global Poisson distribution

must be solved rather than a global Helmholtz problem,

which does not reduce the computational cost. How-

ever, an understanding of simplified equation sets can

inform the design of solution algorithms for the fully

compressible Euler equations, since the large, stiff terms

are the same. To move away from the complication of

using mean and perturbation variables, Benacchio et al.

(2014) describe a method of treating sound but not

gravity waves implicitly in which a blend between fully

compressible and pseudo-incompressible dynamics can

be made.

This article describes a new discretization of the fully

compressible Euler equations suitable for strongly

stratified flow over orography. The discretization has

exactly curl-free pressure gradients, implying that the

pressure gradient term is not a spurious source of vor-

ticity. A new technique for treating gravity waves im-

plicitly is presented that does not rely on a background

mean state, a hydrostatic mean state, or perturbation

variables, and that works on a Lorenz C grid. This sim-

plified approach enables more clarity in ensuring the

conservation of mass. The numerical method is de-

scribed in section 2, some test cases and results dem-

onstrating the properties of the method are presented in

section 3, and conclusions are drawn in section 4.

2. Numerical method

The numerical method comprises the following ele-

ments:

(i) solution of the nonlinear, fully compressible Euler

equations in flux form;

(ii) semi-implicit treatment of acoustic and gravity

waves and explicit treatment of advection;

(iii) no explicitly defined reference profile or hydro-

static profile and no reliance on perturbation

variables;

(iv) exact conservation of mass;

(v) curl-free pressure gradients over orography,

following the technique of Weller (2014);

(vi) a split space–time (method of lines) multi-

dimensional cubic upwind advection scheme;

(vii) Lorenz staggering of u and P (with some Charney–

Phillips elements within each time step); and

(viii) the C-grid finite-volume method for spatial

discretization.

This numerical method has been implemented using

OpenFOAM 2.3 (OpenFOAM 2014). The implemen-

tation described in this paper is available for download

online [http://www.met.rdg.ac.uk/;sws02hs/AtmosFOAM/

ExnerFoam.tar.gz].

a. The fully compressible Euler equations

The fully compressible, nonrotating Euler equations in

flux form (and advective form for potential temperature)

are

Momentum:
›ru

›t
1$ � ruu5 rg2 cpru$P , (1)

Continuity:
›r

›t
1$ � ru5 0, (2)

Potential temperature(flux):
›ru

›t
1$ � ruu5 0, (3)

Potential temperature(advective):
›u

›t
1u �$u50, and

(4)

State: P(12k)/k 5Rru/p0 , (5)

where r is the density, u is the velocity, g is the accelera-

tion due to gravity, cp is the heat capacity at constant

pressure, u 5 T(p0/p)
k is the potential temperature, T is

the temperature, p is the pressure, p0 is a reference pres-

sure, P 5 (p/p0)
k is the Exner function of pressure, and

k5R/cp 5 (cp 2 cy)/cp 5 12 (1/g) is the ratio of the gas

constant to the heat capacity. Both forms of the potential

temperature equation will be used in this discretization.

In this u–P form, a curl-free discretization of $P does

not automatically lead to a curl-free discretization of $p
and consequently pressure gradients may still be spuri-

ous sources of vorticity. In the continuous equations,

pressure gradients should only be a source of vorticity if

pressure gradients are not parallel to density gradients;

that is, the solenoidal term, $p 3 $r, is not zero. If we
discretize cpru$P so that $P is curl free, it does not

follow that there will be no spurious vorticity source.

However, there should, at least, be no spurious vorticity

source due to the discretization of $P.

The thermodynamic variables of u and P are used in

order to treat gravity waves implicitly following Davies

et al. (2005). The u andP in the cpru$P term are treated

implicitly but r in rg and in cpru$P is treated explicitly.

DECEMBER 2014 WELLER AND SHAHROKH I 4441

http://www.met.rdg.ac.uk/~sws02hs/AtmosFOAM/ExnerFoam.tar.gz
http://www.met.rdg.ac.uk/~sws02hs/AtmosFOAM/ExnerFoam.tar.gz


The important point is that the same r is used for both of

these terms, which define the hydrostatic balance.

b. Spatial discretization

The spatial discretization is a C-grid staggered finite

volume with Lorenz staggering of thermodynamic var-

iables using covariant velocity components as prognostic

variables at the faces between cells. None of the spatial

discretization described assumes a structured grid and

the implementation is for an arbitrarily structured 3D

grid. However, all of the test cases described in section 3

use 2D, terrain-following, structured grids.

For most interpolations, the arithmetic mean is used.

The exception is for advection where an upwind multi-

dimensional cubic fit is used. The arithmetic mean is

second-order accurate only on uniform grids. For non-

uniform grids, alternatives will be needed in order to

maintain second-order accuracy but care will be needed

to maintain balance and conservative energy transfers.

For example, in some situations, volume-weighted

interpolation may be preferred to linear or to higher

order.

1) NOTATION

Avariable c located at a cell center is given a subscript

c: cc, where c is the cell number. A variable, c located on

a face is given subscript f : cf, where f is a face number. A

variable without a subscript implies an array of all of the

cell or face values over the entire grid. Interpolation of

cell center values to face values is denoted with sub-

script F: cF. Reconstruction of cell values from face

values is denoted with subscript C: cC; f 2 c means the

faces of cell c and c 2 fmeans the (two) cells either side

of face f.

2) PROGNOSTIC VARIABLES

The prognostic variables are the cell center Exner

function, Pc; the cell center potential temperature, uc
(hence Lorenz staggering); and the momentum at the

cell faces in the cell center to cell center direction, Vf 5
rfuf � df, where the vector df is defined for each face and

is the vector between the cell centers on either side of

the face. These variables and vectors are shown in Fig. 1.

3) CELL CENTER AND NORMAL VELOCITIES FROM

PROGNOSTIC VELOCITIES (OPERATOR H)

To solve the continuity equation using Gauss’s di-

vergence theorem, we will need the mass flux over every

cell face as a diagnostic variable. This is denoted Uf 5
rfuf � Sf, where the face area vector, Sf, is normal to each

face with themagnitude of the face area. To find the field

of U values from the field of V values, we need operator

H [following the notation of Thuburn and Cotter 2012)]:

U5HV .

Thuburn et al. (2014) define a symmetric, positive-

definite H for two-dimensional grids with centroidal

duals. To use an H suitable for three-dimensional, ar-

bitrary grids, we use an H similar to that defined by

Weller (2014), which is asymmetric and so does not

guarantee energy conservation:

Uf 5 (ru)F � Sf 1 [Vf 2 (ru)F � df ](Sf � d̂f )/jdf j , (6)

where (ru)F is the momentum vector interpolated from

cell centers onto faces using arithmeticmean interpolation,

(ru)F 5 (1/2)�c2f (ru)C. The second term in Eq. (6) is

a correction to ensure thatH is diagonal wherever the grid

FIG. 1. Cell center positions of prognostic variablesPc and uc and diagnostic variable rc, face

locations of momentum components, Uf 5 ru � Sf and Vf 5 ru � df, and geometric vectors, Sf
(face area vector, normal to the face with magnitude of the face area) and df (the vector be-

tween adjacent cell centers).
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is orthogonal. The cell center momentum, (ru)C, is re-

constructed from surrounding values of Vf 0:

(ru)C 5

 
�
f 02c

df 0d
T
f 0

!21

�
f 02c

df 0Vf 0 , (7)

where df 0d
T
f 0 is a 33 3 tensor and so the inversion of the

tensor sum is a local operation that can be calculated

once for each cell of the grid rather than at each time

step. Equation (7) is a least squares fit that reconstructs

uniform vector fields exactly and so it is first-order ac-

curate on arbitrary grids (and second order on uniform

grids). To prove the consistency of Eq. (7), we can as-

sume that ru5 (ru)f5 (ru)c is uniform and see if Eq. (7)

reconstructs this uniform velocity field exactly. Sowemove

the inverted tensor to the lhs to give �f 02cdf 0d
T
f 0(ru)f 0 5

�f 02cdf 0Vf 0 . Each term in the sum on the lhs is equal to

df 0 [d
T
f 0 � (ru)f 0 ], which is identical to the terms in the sum

on the rhs only if Vf 0 5 dTf 0 � (ru)f 0 , which is in fact the

definition of Vf.

The use of V (covariant momentum component)

rather than U (contravariant component) as a prognos-

tic variable was recommended by Thuburn and Cotter

(2012) for nonorthogonal horizontal grids in order to

achieve a combination of mimetic properties, including

curl-free pressure gradients. Although the asymmetric

H has not been proved to conserve energy, Weller

(2014) showed that it gives the same unity amplification

factors for the solution of the linearized shallow-water

equations as the symmetric H.

4) GRADIENTS

For a cell-centered, scalar field,Cc, two different types

of gradients are defined. For the C-grid-staggered

method with V 5 ru � d as the prognostic variable, the

gradient at the face in direction d is required:

$dC5
1

jdj �c2f
2nfCc , (8)

where nf 5 1 if Sf points outward from the cell and 21

otherwise. This simple two-point gradient leads to curl-

free pressure gradients. For the solution of the advective

form potential temperature equation, the gradient at the

cell center is also needed and is defined using Gauss’s

theorem:

$cC5
1

Vc

�
f2c

nfCFSf , (9)

where the cell has volume Vc. The interpolation of C
from cell centers onto faces to calculate CF in Eq. (9)

uses an arithmetic mean interpolation. For solving the

potential temperature equation in advective form, the

potential temperature gradient at the face in the plane

normal to d is needed. This is interpolated from the

cell-centered potential temperature gradient using arith-

metic mean interpolation, ($cu)F 5 (1/2)�c2f$cu, and

the component parallel to d is not used. In general,

df � ($cC)F 6¼ jdfj$dC but changes to equality for lin-

early varying fields, for which this discretization would

be perfect.

5) DIVERGENCE

Divergences are calculated at cell centers using

Gauss’s divergence theorem, for example, for scalar

field C and vector field v, both defined at cell centers,

$c � (Cv)5
1

Vc

�
f2c

nfCFvF � Sf , (10)

or since momentum component U 5 ru � S is defined at

the face, then $ � ru5 (1/V)�f2cnfUf , which is simply

denoted $ � U. Similarly, $ � ruC5 (1/V)�f2cnfCFUf ,

which is denoted$ �UC. Amultidimensional cubic least

squares fit over an upwind biased stencil of cells is used to

calculate CF, which is described in section 8. For solving

the momentum equation on the face, the nonlinear ad-

vection term is needed on the face. This is interpolated

from the cell-centered values using arithmetic mean in-

terpolation: ($ �Uu)F 5 (1/2)�c2f$c �Uu.

6) PERPENDICULAR COMPONENT OF VELOCITY

For the implicit treatment of gravity waves using the

advective form of the potential temperature equation,

the component of the velocity perpendicular to dfwill be

needed:

u?f 5 uF 2
uF � df
jdf j2

df ,

where uF is calculated using arithmetic mean in-

terpolation from uC, which is reconstructed fromV/rF as

in Eq. (7).

7) INTERPOLATIONS FOR LORENZ STAGGERING

Using Lorenz staggering, u, P, and r are all stored at

cell centers and, where needed, interpolated onto faces

using the arithmetic mean: uF 5 (1/2)�c2fuc and

rF 5 (1/2)�c2frc. However, as will be described in sec-

tion 2 below, in the course of one time step, u is also

advanced on the face using the advective form of the

potential temperature in Eq. (4). This is denoted uf. At

the beginning of the time step, uf is set to uF by in-

terpolating from uc but then, during a time step, uf is

advanced independently from uc. Charney–Phillips
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staggering could be achieved by setting uc from uf at the

beginning of the time step instead but this has not yet

been done and care would be needed to maintain the

same level of energy conservation.

8) ADVECTION OF MOMENTUM AND POTENTIAL

TEMPERATURE

The interpolation operations, uF and uF, in the terms

$ �Uu5 (1/V)�f2cnfuFU and $ �Uu5 (1/V)�f2cnfuFU
control the advection of momentum and potential

temperature and so should be undertaken using an

upwind-biased interpolation scheme. We have used a

least squares fit to a multidimensional cubic using an

upwind-biased stencil of cells (Weller et al. 2009). In

two dimensions, the multidimensional cubic is

C5 a1 bx1 cy1 dx21 exy1 fy21 gx31 hx2y1 ixy2 ,

(11)

omitting terms in y3, where x is the direction normal to

a cell face and y is perpendicular to x. Coefficients a to i

are set from a least squares fit to the cell data in the

stencil. The least squares problem involves a 9 3 m

matrix singular-value decomposition for every face

where m is the size of the stencil. However, this is

purely a geometric calculation and is therefore a pre-

processing activity since the grid is fixed. This gener-

ates a set of weights for calculating CF from the cell

values in the stencil, leavingmmultiplies for each face

for each call of the advection operator. The stencils are

found for three-dimensional, arbitrarily structured

grids by finding the face(s) closest to upwind of the face

we are interpolating onto, taking the two cells on ei-

ther side of the upwind face(s) and then taking the

vertex neighbors of those central cells. For a two-

dimensional structured grid, this gives the stencil

shown in Fig. 2a.

The advection scheme is not an important part of

the algorithm described. Other good advection schemes,

monotonic and/or forward in time, could be used instead.

9) SPONGE LAYER

Following Melvin et al. (2010), a damping term is

added to the momentum equation to suppress wave re-

flections at the rigid lid. This term is 2mru, where m is

nonzero only for vertical velocities near the model top.

The distribution of the sponge layer is

m5

8><
>:

0 z, zB

m sin2
P

2

z2 zB
zt 2 zB

z$ zB

,

where z52x � ĝ is the distance from position x to the

surface, zB is the height of the bottom of the sponge

layer, and zt is the height of the model top.

c. Semi-implicit solution technique

Terms involving acoustic and gravity waves are solved

using Crank–Nicholson (trapezoidal) time stepping with

no off centering. Advection is treated explicitly with no

splitting between explicit and implicit terms (details

below). Two outer iterations are performed for each

time step so that terms treated explicitly are updated

for the second iteration. We will first describe the ad-

vection of r and u, then the derivation of the discretized

Helmholtz equation, and finally give a summary of the

whole solution procedure.

1) ADVECTION OF r AND u

The first task, at the beginning of each outer iteration

of each time step, is to solve the continuity and potential

temperature equations explicitly, with identical fluxesU

for each so that they are transported consistently:

FIG. 2. Finite-difference stencils for (a) cubic upwind advection and calculating $sC5 $C � S, the least squares linear gradient, in (b) the

horizontal S direction and (c) the near-vertical S direction.
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rn112 rn

Dt
52(12a)$ �Un2a$ �U‘ and

(12)

un11rn11 2 unrn

Dt
52(12a)$ � (Unun)2a$ � (U‘u‘) ,

(13)

where Dt is the time step, superscript n represents values

from the previous time level, n 1 1 gives values at the

new time level, and ‘ represents lagged values. At the

beginning of the time step, values at level ‘ are set to

values at level n and then these lagged values are up-

dated as soon as new values are available. So at con-

vergence, values at ‘ and n 1 1 are the same (if enough

outer iterations are taken). Crank–Nicholson time

stepping uses a5 1/2.

Since the advection is treated explicitly, the time step

is limited according to the multidimensional definition

of Courant number for cell c:

Coc 5
Dt

2Vcrc
�
f2c

Uf ,

so that Co , 1 is required.

Next in the outer iteration, the Helmholtz equation is

solved for Pn11.

2) DERIVATION OF THE DISCRETIZED

HELMHOLTZ EQUATION

A simultaneous solution in all of the prognostic vari-

ables together is needed in order to treat acoustic and

gravity waves implicitly. To construct a Helmholtz

equation in just one variable (Pn11), the momentum,

continuity, and potential temperature equations are

combined by hand. First, the potential temperature

equation is substituted into the momentum equation to

replace u in the cpru$P term with Vn11 and then the

momentum equation is substituted into the continuity

equation to replace Vn11 with Pn11. Finally, rn11 must

be replaced by Pn11 on the left-hand side of the conti-

nuity equation using a linearization of the equation of

state in order to create a Helmholtz equation for Pn11.

First, we take the dot product of the momentum

Eq. (1) with d and discretize in time to get an equation

for Vn11:

Vn112Vn

Dt
5 (12a)

�
›V

›t

�n

1af2[$ � (U‘u‘)]F � d

1 r‘f g � d2 cpr
‘
f u

n11
f jdj$dP

n112mVn11g ,
(14)

where (›V/›t)n is the term in curly brackets in Eq. (14)

but from time-level n. We have not yet said how we

define rf and uf. This will be done below.

Following the semi-implicit solution technique of

Davies et al. (2005), un11
f in Eq. (14) is calculated from

the advective formof the potential temperature equation,

un11
f 2 unF

Dt
52(12a)

�
u? � ($cu)F 1

V

rF jdj
$du

�n

2a

"
(u?)‘ � u? � ($cu)F

1
V

rF jdj
$du($cu)

‘
F
1
Vn11

r‘f jdj
$du

‘

#
, (15)

so that un11
f in Eq. (14) can be replace by Vn11 (all other

terms being lagged or from the previous time level).

Note that unF is used rather than unf . That is, u on the face

from the previous time step is interpolated from the

prognostic, cell center uc rather than storing uf from one

time step to the next, which would result in an over-

specification of u. Equation (15) can be rewritten

un11
f 5 u0 2a

Vn11

r‘f jdj
$du

‘ , (16)

so that the part

u0 5 unF 2 (12a)Dt

"
u? � ($cu)F 1

V

rf jdj
$du

#n

2aDt(u?)‘ � ($cu)
‘
F

(17)

is calculated explicitly. From Eq. (16), un11
f can now

be substituted into the discretized momentum equation

[Eq. (14)]. This can be rearranged so that terms in-

volving Vn11 are on the lhs. Additionally, one instance

of $dP
n11 is replaced by $dP

‘ so that the equation is

linear in implicit terms:

Vn11 5G(V 01aDtr‘f g � d2aDtcpr
‘
f u

0jdj$dP
n11), (18)

where G takes a form similar to that defined by Davies

et al. (2005):

G5
1

12a2Dt2cp$du
‘$dP

‘ 1aDtm
(19)

and

V0 5Vn1 (12a)Dt

�
›V

›t

�n

2aDt[$ � (U‘u‘f )]F � d .
(20)
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Fixed flow-rate boundary conditions are imposed on V0

and the remaining terms of Vn11, the gravity and pres-

sure gradient, are set to cancel exactly on boundaries.

SettingV0 to zero and$dP5 g � d/cpu at rigid boundaries
gives no flow across the boundaries as long as the

boundary faces are orthogonal (d 3 S 5 0 on the

boundary). This can always be enforced by setting d to

be parallel to S on the boundaries.

It may be counterintuitive that rf is treated explicitly in

Eq. (18) since we are treating gravity waves implicitly.

However, this follows from Davies et al. (2005), who

solve the advective form of themomentum equation. The

important detail is to use the same density in the gravity

and pressure gradient terms of Eq. (18).

Using U 5 HV, Eq. (18) can now be substituted into

the rhs of the continuity Eq. (2):

rn112 rn

Dt
52(12a)$ �Un 2a$ � (HVn11)

52(12a)$ �Un 2a$ � (HGV 0)2a$ � (HGaDtr‘f g � d)
1a$ � (HGaDtcpr

‘
f u

0
f jdj$dP

n11) . (21)

Tomake this into aHelmholtz equation forPn11, we need

to replace rn11 on the lhs with a linear function of Pn11.

This can be done using the equation of state [Eq. (5)]:

rn115C‘Pn11 , (22)

where

C‘ 5 (r‘)(2k21)/(k21)

�
Ru‘

p0

�k/(k21)

’
�p0
R

�0:4(r‘)0:6
(u‘)0:4

.

Because of the low powers of r and u inC (assuming that

k 5 0.288), C varies less than r and u, so the above

linearization is useful and leads to convergent outer it-

erations (in the tests so far undertaken but analysis is

needed). Substituting Eq. (22) into Eq. (21) gives the

Helmholtz equation for Pn11:

C‘Pn112CnPn

Dt
52(12a)$�Un2a$� (HGV0)

2a$� (HGaDtr‘f g �d)1a$ � (HGaDtcpr
‘
f u

0
f jdj$dPn11).

(23)

Given the spatial discretization defined, Eq. (23) is

a sparse matrix equation that could be solved to find

Pn11. However, to simplify the construction of the ma-

trix, the operator H is split into its diagonal and off-

diagonal components and only the diagonal components

are treated implicitly:H5Hd1Hoff. So the final term in

Eq. (23) becomes

a$ � (HdGaDtcpr
‘
f u

0
f jdj$dP

n11)

1a$ � (HoffGaDtcpr
‘
f u

0
f jdj$dP

‘) . (24)

This version is not considered better, just simpler to

implement. This version would not be stable for long

time steps for highly nonorthogonal grids since too much

of the pressure gradient would be treated explicitly.

However, it is stable for the test cases described in this

paper.

This leads to a sparse matrix that is solved using the

conjugate gradient solver fromOpenFOAM (2014) with

incomplete Cholesky preconditioning.

We now come to how r‘f is defined in Eqs. (14)–(23).

The algorithm, as defined so far, has too many prog-

nostic variables: r, P, u, and V, and the continuity

equation is used to advance both r and P indepen-

dently. The overspecification is removed by settingC5
(r)(2k21)/(k21)(Ru/p0)

k/(k21) using r advanced from the

continuity equation and then setting

r‘f 5 (C‘P‘)F . (25)

This ensures that, over the course of a long simulation, r

advanced from the continuity equation and CP do not

drift.

3) SUMMARY OF THE SEMI-IMPLICIT SOLUTION

PROCEDURE

The entire update procedure for one time step is given

in Algorithm 1. Note that, while the mathematical de-

scription talks about values at time levels n, n1 1, and ‘,

only values at levels n and n 1 1 need storage. In addi-

tion, primed variables, u0 andV0, use the same storage as

un11 and Vn11.

Once Eq. (23) is solved forPn11,Vn11 is updated from

Eq. (18) (the back substitution). Unlike in ENDGAME

(Davies et al. 2005; Melvin et al. 2010), there is no back

substitution for uf. Instead, final solutions forEqs. (12) and

(13) are calculated for the beginning of the next time step.

Regardless of the level of convergence, this solution

algorithmwill always give the exact localmass conservation

since rc is advanced using fluxes over cell faces from the

continuity Eq. (2). However, only at convergence will

the density calculated from the continuity equation equal

the density calculated from the equation of state (CP).
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d. Alternative model formulations

To demonstrate the value of the novel aspects of the

discretization presented, two alternative approaches are

presented and have been implemented for comparisons.

1) HORIZONTAL PRESSURE GRADIENT (›p/›x)

Most models of the global atmosphere use horizontal

winds as prognostic variables and require the reconstruc-

tion of horizontal pressure gradients (e.g., Klemp 2011;

ALG. 1. Outline of order of calculations for each time step, going from time level n to n 1 1.
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Zängl 2012). A similar approach is presented in order to

compare with the new version that uses the H operator.

This version is called ›p/›x. In this form,U is the prognostic

variable rather than V and V is in fact not defined. The

momentum equation is formulated in direction S rather

than d (i.e., in the horizontal direction and in the near-

vertical direction, normal to the cell faces). The derivation

in direction S rather than d is very similar apart from the

gradient at the face in direction S, $sC 5 $C � S, which is

given by a least squares fit to the linear polynomial:

C5 a1 bx1 cz ,

where the coefficients a, b, and c are set using values of

C in stencils around each edge, as shown in Fig. 2. This

approach is not as sophisticated a form as that used by

Zängl (2012) but it is of a similar complexity to the H

version so as to make a like-for-like comparison.

2) EXPLICIT SOLUTION OF GRAVITY WAVES

To treat gravity waves explicitly and acoustic waves

implicitly, and to make no other changes to the formu-

lation, uf 5 uF is used instead of Eq. (16) and

G5
1

11aDtm
(26)

is used instead of Eq. (19).

3. Results

A number of test cases from Skamarock and Doyle

(2013) are used to demonstrate the value of the curl-free

pressure gradient and the implicit treatment of gravity

waves. All of the test cases use a reference pressure of

p0 5 105 Pa in the definition of the Exner pressure, zero

viscosity, zero hyperviscosity, and k 5 0.287 698. The

test cases use different reference temperatures for the

definition of the potential temperature.

All of the test cases require hydrostatically balanced

initial conditions. To find P in discrete hydrostatic bal-

ance with an initial u field, we numerically solve the

Poisson equation,

$ � u$P5$ � g , (27)

subject to the boundary conditions u$P 5 g at the

ground and lateral boundaries and a fixed P at the flat

upper boundary. The upper boundary value of P is it-

eratively adjusted to get P5 1 at z5 0. This is found to

be more stable and reliable than setting P 5 1 at z 5 0.

For test cases with prescribed u, one solution of Eq. (27)

is needed per value of P at the upper boundary. One of

the test cases specifies uniform T, so outer iterations are

needed, setting u 5 T/P between each solution of the

Poisson equation.

For some of the test cases, results on different grids

are compared. For example, solutions are compared

with high-resolution reference solutions. This is done by

mapping the reference solution onto the target grid as-

suming that the reference solution is piecewise constant

on each cell and using volume weighting. This requires

calculating overlapping volumes between the two grids.

This is done using the OpenFOAM mapFields utility.

a. Resting atmosphere

1) TEST CASE SETUP

We start with the simulation of a resting stratified

atmosphere over a range of hills (Schär et al. 2002) using
the test case setup of Klemp (2011). The lower boundary

takes the form used by Schär et al. (2002):

h(x)5hm exp

�
2
�x
a

�2�
cos2

px

l
, (28)

where a5 5km, l5 4km, and hm5 1000m.By specifying

the Brunt–Väisälä frequency, we can set u:

N5

�
0:01 s21 0# z# 2 km and 3# z# 20 km

0:02 s21 2# z# 3 km

and u(z 5 0) 5 288K. Through initialization, P is in dis-

crete hydrostatic balance. The resolution is set to Dx 5
500m and Dz5 500m away from the terrain. The depths

of the terrain-following layer are set in two ways to

compare with the results of Klemp (2011). First, the z

coordinates of the gridpoint locations are set using the

basic terrain-following (BTF) coordinate definition:

z5 (zt 2 h)
z

zt
,

where zt is the domain top and z is the layer height be-

fore orography is added. Next, the layer depths are set to

follow the SLEVE vertical coordinate (Schär et al. 2002)
with decay functions specified following Leuenberger

et al. (2010) with s1 5 4 km and s2 5 1 km and n 5 1.35.

The BTF and SLEVE grids are shown in Fig. 3. The

domain is 20 km in the x direction and 20 km in the

z direction with rigid boundaries at the top, bottom, and

sides. This domain is smaller than that used by Klemp

(2011) in the x direction to reduce run times and the
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boundaries are rigid rather than open for simplicity. No

sponge layer or diffusion is used. All test case results

shown have implicit treatments of gravity waves, but for

the time step used, the results are almost indistinguish-

able when using the explicit gravity wave formulation.

2) TEST CASE RESULTS

Potential temperature contours after 5h from the

model using the new H formulation and the model using

the ›p/›x formulation on the BTF and SLEVE grids are

presented in Fig. 3, all with implicit treatment of gravity

waves. The advection scheme is not very diffusive and no

explicit diffusion is used, so the simulation on the BTF grid

using the ›p/›x formulation has distorted u contours. The

distortions can be reduced by either using the H formu-

lation or by using the SLEVE grid and using both makes

the contours very flat. This demonstrates the improved

hydrostatic balance from using the H model formulation.

Themaximum (spurious) vertical velocities generated

for each of the model runs are shown in Fig. 4, where

they are compared with the maximum vertical velocity

from Fig. 4 of Klemp (2011) (note different y scales).

This shows that the ›p/›x formulation on the BTF grid

generates the largest spurious vertical velocities, and in

the first hour, the erroneous velocities are higher than

those of Klemp (2011). This could be due to different

FIG. 3. Potential temperature contours (black, every 1K) after 5 h for the resting stratified atmosphere over Schär et al.’s (2002)

orography on two grids—(left) BTF and (right) SLEVE— using two model formulations. The grids are shown in red. All simulations use

the formulation with implicit gravity waves, Dt 5 100 s, and a maximum NDt 5 2. (Underground contours are created by the plotting

package.)
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initializations or to the higher-order treatment of

boundaries byKlemp (2011). However, on the BTF grid,

the Klemp (2011) errors grow, unlike the ›p/›x and H

errors on both grids. Use of either the SLEVE grid or the

H version reduces the errors to a level similar to the re-

sults of Klemp (2011) on the SLEVE grid. The H model

results are less sensitive to the choice of grid than are the

›p/›x results or the results of Klemp (2011), again dem-

onstrating the value of the H model formulation.

The discretization described in this paper does not

give exact energy conservation; therefore, it is worth

examining the energy conservation and the influence of

using the H operator on energy conservation. The nor-

malized energy changes from the initial conditions

(normalized by the initial total energy) for the simula-

tions using the BTF grid and the SLEVE grid and for the

simulations using the ›p/›x formulation and the H op-

erator are shown in Fig. 5. The energy conservation

using theH formulation is at least an order of magnitude

better than that using the ›p/›x version on the BTF grid.

The dashed lines on the left of Fig. 5 show negative

changes, which implies that the H formulation mostly

loses energy, which is desirable for stability. On the BTF

grid, the contributing terms to the energy conservation

are shown for both model versions in Fig. 5. Although

the H version does not conserve energy to machine

precision, the transfers between internal and potential

energy on short time scales are represented whereas

they both increase and decrease in tandem for the ›p/›x

version, leading to large energy changes.

There are a few reasons why energy is not conserved

precisely in any of the models presented. We are solving

the flux form rather than a vector-invariant momentum

equation and so the transfer between potential and ki-

netic energy is not conservative; the advection scheme is

upwind biasedwith an amplification factor less than 1 and

so destroys kinetic energy and there are inconsistencies

between the u that is advected by a conservative advec-

tion scheme and the u that appears in the pressure gra-

dient term, cpru$P, of the momentum equation.

b. Schär et al.’s (2002) mountain waves test case

1) TEST CASE SETUP

The test case described by Schär et al. (2002) simulates

flow over mountains with small and large features that

are lower and less steep in comparison to those de-

scribed in section 3a. The lower boundary has the same

form [Eq. (28)] and again uses a 5 5 km and l 5 4 km,

but for this test case hm 5 250m. The initial conditions

are set using N 5 0.01 s21 and a mean wind of U 5
10m s21. We follow Schär et al. (2002) and Klemp et al.

(2003) and use a time step of 8 s. Following Melvin et al.

(2010), we use a domain of 100 km 3 30 km, Dx 5
0.5 km, Dz 5 300m, surface temperature of 288K, and

an absorbing layer in the top 10 km of the domain with

mDt5 1:2. The terrain is followed using both the BTF

grid and the SLEVE grid. The top and bottom bound-

aries are rigid with zero flow. The inlet boundary has the

prescribed u profile and winds of 10m s21, and the outlet

FIG. 4. Maximum vertical velocity for the resting stratified atmosphere over (left) the Schär et al. (2002) orography on both grids and

(right) using both model formulations in comparison to Fig. 4 from Klemp (2011) (note different y scales).
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boundary is zero gradient. The boundary condition for

P is hydrostatic all around.

This is not a good case for testing the implementation

of the implicit gravity waves since NDt 5 0.08, which is

stable even if gravity waves are treated explicitly (Cullen

1990). The time step could be increased to around 40 s

while treating advection explicitly, but this would still

not raise NDt above 1.

2) TEST CASE RESULTS

The vertical velocities generated by the mountain are

shown in Fig. 6 using both model versions (›p/›x andH)

with implicit gravity waves on the BTF and SLEVE

grids. These are comparedwith the simulations using the

H model version at 4 times the resolution, a quarter the

time step on the SLEVE grid, and with result from

Melvin et al. (2010). The four simulations using the ›p/

›x andHmodels on both grids are similar. The results on

both grids are similar because the advection scheme

used accounts properly for the distortions in the grid.

The H and ›p/›x model versions give similar results for

this test case because the small-scale gravity waves

generated by the orography are evanescent and so their

structure, whether realistic or not, is not present at a few

kilometers above the ground.

Differences with the high-resolution solution are not

presented because the differences are dominated by

boundary reflections and the varying strength of the sponge

layer with the time step. This case demonstrates that the

advection scheme accounts properly for the grid distortions

but is not useful for testing the curl-free pressure gradients

or for the implicit treatment of gravity waves.

c. Linear hydrostatic flow over a hill

1) TEST CASE SETUP

To demonstrate the value of having implicit gravity

waves, it is necessary to go to coarser horizontal

resolution to allow for running with a longer time step

and hence achieving larger NDt. Decreasing the hori-

zontal resolution brings the resolved flow closer to hy-

drostatic. The simulations of near-hydrostatic flow are

done with the same nonhydrostatic model. The test case

of hydrostatic mountain waves from Skamarock and

Doyle (2013) and used by Melvin et al. (2010) has

a witch of Agnesi hill profile:

h(x)5
hma

2

x2 1 a2

with hm 5 1m (to ensure that the solution is close to

linear), a 5 10 km, a mean wind speed of 20m s21, and

an initial isothermal temperature of T 5 250K in dis-

crete hydrostatic balance. Following Melvin et al.

(2010), an absorbing layer is applied in the top 20 km

with mDt5 0:3. The domain is 240 km wide, centered on

the hill, and 50 km deep with grid spacing Dx5 2 km and

Dz5 250m. This resolution is used with time steps of 20

and 50 s, giving Courant numbers of 0.2 and 0.5 andNDt
of 0.4 and 1. Coarser resolutions are also usedwith larger

time steps. The boundary conditions for all simulations

are as described in section 1.

2) TEST CASE RESULTS

Vertical velocity contours for the near-hydrostatic

flow over a hill are shown in Fig. 7 for model formula-

tions using explicit and implicit gravity waves and the

different time steps and spatial resolutions. The H and

›p/›x versions of the model are almost identical for this

test case because the grids are practically orthogonal,

with a hill height of only 1m. The well-resolved nu-

merical solutions are similar to the linear analytic, an-

elastic, nonhydrostatic solution (from Melvin et al.

2010). The version with explicit gravity waves is stable

for a time step of 20 s (corresponding to Co 5 0.2,

FIG. 5. (left) Normalized energy change for the resting stratified atmosphere over the Schär et al. (2002) orography on both grids and

using both model formulations. Negative energy changes on the log scale are dashed. Changes in kinetic, internal, potential, and total

energy for (middle) the ›p/›x and (right) H formulations on the BTF grid.
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maximum NDt 5 0.4) but, unlike the version with im-

plicit gravity waves, is not quite stable for a time step of

50 s (corresponding to Co 5 0.5, maximum NDt 5 1).

The version with implicit gravity waves can be run stably

at much longer time steps at coarser resolution so that

the advection Courant number remains below 1 but with

NDt5 2,NDt5 4, andNDt5 10. (Larger values have not

been tried.) For the coarser resolutions the accuracy is

FIG. 6. Vertical velocity after 5 h for the flow over a Schär et al. (2002)mountain on (left) the BTF and (right) SLEVE grids using both

model versions with implicit gravity waves: (top) ›p/›x and (middle) H versions, and (bottom) reference. Contours are 5 3 1022m s21,

negative contours are dashed, are there is no zero contour. Here, Dt5 8 s,NDt5 0.08. Comparison with a high-resolution solution (Dx5
125m, Dz 5 75m, Dt 5 2 s) and with the semi-implicit, semi-Lagrangian solution presented by Melvin et al. (2010).
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reduced but, as long as gravity waves are treated im-

plicitly, the simulations remain stable.

Results of this test case demonstrate that gravity

waves are treated implicitly, as required, and the model

is stable in the presence of strong stratification.

d. Rising bubble over orography

To test the model in nonlinear flow regimes and to

further test the representation of orography, we use the

rising bubble test case of Bryan and Fritsch (2002),

modified by Good et al. (2013) so that the bubble is

rising over orography. This tests the representation of the

nonhydrostatic buoyancy and pressure gradient terms on

distorted grids such as those associated with terrain-

following layers. The nonlinear terms are more impor-

tant in this case than those with orographically produced

gravity waves since there is no mean wind.

1) TEST CASE SETUP

The rising bubble test case of Bryan and Fritsch (2002)

consists of an initially stationary atmosphere with no

stratification (u 5 300K) with pressure in hydrostatic

FIG. 7. Vertical velocity after 15 000 s for near-hydrostatic flow over a hill using the H model formulations with explicit and implicit

gravity waves (gw) for different Dt, Co, and NDt values. (bottom left) The analytic solution is taken from Fig. 4e in Melvin et al. (2010).

Contours are 5 3 1024m s21, negative contours are dashed, and the zero contour is dotted.
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balance with this temperature profile. A warm bubble

is then placed, centered at (xc, yc) with temperature

perturbation

u0 5

8<
:
2 cos2

�pr
2

�
r# 1

0 otherwise

, (29)

where r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 xc)2/A2

x 1 (z2 zc)2/A2
z

q
and Ax 5 Az 5

2 km. Good et al. (2013) place the bubble higher than do

Bryan and Fritsch (2002) to allow for the orography

under the initial bubble. The bubble is placed at (xc, yc)5
(0, 4.5 km), directly above the orography. The domain is

20 km wide and 20 km high with Dx 5 Dz 5 100m. For

this resolution, a time step of 2 s is used, which gives

a final (maximum) Courant number of 0.47 and NDt of
0.03, and themodel is run for 1000 s. Free-slip boundaries

are placed all around [unlike Good et al. (2013), but

this is not expected to be critical]. Themodel is run with

both no orography and also with a witch of Agnesi hill

profile:

h(x)5
hma

2

x21 a2
,

with hm 5 1000m and a 5 1000m. A BTF grid is used

over the orography in order to accentuate the differ-

ences between the models with and without orography

and to accentuate the differences between theH and ›p/

›xmodel versions. The hill is sufficiently far beneath the

flow generated by the rising bubble that it should not

significantly affect the bubble (Good et al. 2013). The

no-orography case is compared with a high-resolution

simulation that uses Dx 5 Dz 5 31.25m and Dt 5 0.5 s.

FIG. 8. (top) Potential temperature contours (colored) and vertical velocity (contoured every 0.1m s21) for a bubble rising over (left) flat

ground and over a hill using (middle) the ›p/›x and (right) H model versions. (bottom) Potential temperature errors for the (right) no-

orography case in comparison to (left) a very high-resolution reference solution and (middle) for the bubbles rising over orography in

comparison to the no-orography case.
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2) TEST CASE RESULTS

The potential temperature and contours of vertical

velocity for the rising bubble over flat terrain and over

orography using both model versions (H and ›p/›x) are

shown in the top row of Fig. 8. The potential tempera-

ture and vertical velocity are similar to those shown in

Bryan and Fritsch (2002). In particular, the levels of

unboundedness (values less that 300K and greater than

302K) are similar to those of Bryan and Fritsch (2002).

However, the central vertical jet is not as sharp as that of

Bryan and Fritsch (2002) and the bubble is developing

a nipple (it is beginning to burst), unlike that of Bryan

and Fritsch (2002). The differences are not surprising

since Bryan and Fritsch (2002) use fifth-order spatial de-

rivatives for the advection terms whereas our advection

scheme is second order with cubic interpolations. The

differences between the results using Dx 5 Dz 5 100m

(without orography) and the results using Dx 5 Dz 5
31.25m (without orography) also shown Fig. 8, bottom

left). The differences are between20.7 and 0.5 K. The

inclusion of orography below the bubble makes very

little difference when using the H model version, but

differences from the no-orography case ranging from

20.3 to 0.2K yield larger differences when using the

›p/›x model (21 to 0.3K). The extrema are not much

altered by the orography but the maximum u are now

on either side of the center for the ›p/›x model. The

differences between cases with and without orography

are larger than those presented by Good et al. (2013)

when they used cut cells but smaller than their dif-

ferences when they used a terrain-following grid (er-

rors up to 1.67K). Our terrain-following model results

are likely better than theirs because we are using an

improved advection scheme and curl-free pressure

gradients.

FIG. 9. (top) Convergence with (left) spatial and (right) temporal resolution for the bubble rising over flat ground and

(bottom) the (left) maximum u and (right) vertical velocity per time step for a range of spatial resolutions.
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For the rising bubble test case, we have also inspected

convergence with space and time steps. Normalized

‘2(u) and ‘‘(u) errors are calculated for a range of spatial

and temporal resolutions in comparison to reference

solutions. The error norms are defined as

‘2(u)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

c2all cells
(uc 2 uT)

2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

c2all cells
u2T

r and (30)

‘‘(u)5
max

c2all cells
juc 2 uT j

max
c2all cells

juT j
, (31)

where uT is the reference solution. When looking at

convergence with spatial resolution, the reference so-

lution uses Dx 5 Dz 5 31.25m and Dt 5 0.5 s. When

looking at convergence with the time step, all solutions

use Dx 5 100m and the reference solution uses Dt 5
0.1 s. Convergence with spatial resolution is shown in the

top left of Fig. 9 at 400 s after initialization for simula-

tions using Dx 5 250m, Dt 5 4 s; Dx 5 125m, Dt 5 2 s;

and Dx 5 62.5m, Dt 5 1 s. Convergence is second order

at 400 s after initialization but drops to first order at

1000 s (not shown). The drop to first order is likely to be

due to the insufficient resolution of the very sharp gradi-

ents, meaning that the theoretical convergence is not met.

The convergence with time step (Fig. 9, top right) also

mostly shows second-order convergence apart from at the

longest time step, where insufficient temporal resolution

reduces the accuracy more sharply. This reduced accuracy

at the longest time step is the reason why the simulations

presented above did not use the longest stable time step.

For the rising bubble test case, Norman et al. (2011)

also show the maximum u and vertical velocity for each

time step as a function of resolution. Similar plots to

theirs are shown in the bottom of Fig. 9, using the same

spatial resolutions but with much longer time steps be-

cause Norman et al. (2011) use entirely explicit time

stepping. There are similarities between our results: for

the finer resolutions, the maximum u increases toward

the end of the simulation and, after about 800 s, there is

a dramatic acceleration in the maximum vertical veloc-

ity as the bubble starts to burst.

Results for this test case demonstrate the second-

order accuracy of the model and the benefits of the H

model formulation.

4. Discussion and conclusions

A new semi-implicit model of the fully compressible

Euler equations has been presented that offers an implicit

treatment of gravity waves and the use of covariant com-

ponents of velocity over orography that permits the cal-

culation of curl-free pressure gradients. This is achieved by

solving all of the flux form equations in a finite-volume

model without mean and perturbation variables. These

properties have enabled the following test case results:

d Simulation of a resting, stratified atmosphere over

steep terrain with covariant rather than contravariant

prognostic velocities has led to smaller spurious

velocities, better energy conservation, and a realistic

transfer between potential and internal energy.
d Simulations of nonhydrostatic gravity waves over

orography are not dependent on the type of terrain-

following grid.
d Simulations with strong stratification and long time

steps using a formulation applicable to arbitrary grids,

which are not necessarily aligned in the vertical.
d An insensitivity to grid distortions when simulating

a rising warm bubble is seen
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