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Abstract

The IEEE 754 standard for floating-point arithmetic is widely used in
computing. It is based on real arithmetic and is made total by adding both
a positive and a negative infinity, a negative zero, and many Not-a-Number
(NaN) states. The IEEE infinities are said to have the behaviour of limits.
Transreal arithmetic is total. It also has a positive and a negative infinity
but no negative zero, and it has a single, unordered number, nullity.

We elucidate the transreal tangent and extend real limits to transreal
limits. Arguing from this firm foundation, we maintain that there are
three category errors in the IEEE 754 standard. Firstly the claim that
IEEE infinities are limits of real arithmetic confuses limiting processes
with arithmetic. Secondly a defence of IEEE negative zero confuses the
limit of a function with the value of a function. Thirdly the definition
of IEEE NaNs confuses undefined with unordered. Furthermore we prove
that the tangent function, with the infinities given by geometrical con-
struction, has a period of an entire rotation, not half a rotation as is
commonly understood. This illustrates a category error, confusing the
limit with the value of a function, in an important area of applied mathe-
matics – trigonometry. We briefly consider the wider implications of this
category error.

Another paper proposes transreal arithmetic as a basis for floating-
point arithmetic; here we take the profound step of proposing transreal
arithmetic as a replacement for real arithmetic to remove the possibility
of certain category errors in mathematics. Thus we propose both theo-
retical and practical advantages of transmathematics. In particular we
argue that implementing transreal analysis in trans-floating-point arith-
metic would extend the coverage, accuracy and reliability of almost all



computer programs that exploit real analysis – essentially all programs in
science and engineering and many in finance, medicine and other socially
beneficial applications.

Keywords: transreal arithmetic, transreal analysis, transreal tangent, nega-
tive zero, NaN.

1 Introduction

Gilbert Ryle introduced the concept of a category mistake [6], now more popu-
larly called a category error. A category error is the ascription to a category of
a property it cannot have. In another paper, in this proceedings, [1], we review
the IEEE 754 standard for floating-point arithmetic and propose a superior,
floating-point arithmetic, based on transreal arithmetic. That paper cites the
relevant literature so we do not rehearse it here. We note only that the set of
transreal numbers is RT = R ∪ {−∞,∞,Φ} where ∞−∞ = Φ. We now move
directly to showing that the IEEE 754 standard has three category errors. The
first is an erroneous definition which has little consequence – claiming that real
arithmetic contains limiting processes. We spend little time on this error. The
second is a fundamental mathematical error: mistaking the limit of a function
for the value of a function. The third is an error only if the reader has shifted to
the transmathematical paradigm, where certain non-finite, mathematical results
are unordered not undefined.

Kahan [4] defends IEEE 754’s negative zero in terms of the limits of func-
tions, making an appeal to the real tangent. This trigonometric function is
geometrically defined everywhere but it is arithmetically undefined at infinity.
In the next section we describe the transreal tangent, which is defined every-
where. We then develop transreal limits as a generalisation of real limits. The
main results are: wherever infinities occur as symbols in extended real limits,
they occur identically in transreal limits but as definite numbers; wherever the
transreal number nullity occurs in transreal limits, the corresponding real limit
is undefined. In a carefully nuanced criticism, we show that the geometrical
definition of the tangent, as the value of a ratio, leads to different results from
the definition of the tangent as the limit of a power series. This example is
central to our criticism of negative zero in the IEEE 754 standard. We conclude
with a statement of the main original contributions of the paper.

2 Transreal Tangent

Figure 1 shows the well known geometrical construction of the tangent, in which
a point, p, lies on a circle, with a unit radius forming the hypotenuse of a right
triangle, whose internal angle is θ. When the sides of the triangle are measured
in Cartesian co-ordinates, the tangent is defined as tanθ = y/x. Part of the
graph of this function, for real θ, is shown in Figure 2, where the discs, •, show
where the tangent arrives exactly at a signed infinity and the annuli, ◦, show
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Figure 1: Geometrical Construction of the Tangent

where the tangent asymptotes to a signed infinity, that is where it approaches
the infinity but does not arrive at it.

The reader should examine Figure 2. The abscissa shows the angle in radians;
the ordinate shows the value of the tangent function. At zero radians the value of
the tangent is tan = y/x = 0/1 = 0. As the angle increases: the value increases
until it passes exactly through positive infinity at tan(π/2) = 1/0 =∞; the value
then jumps discontinuously so that it passes through all negative, real numbers,
each of which is finite, until it arrives at tanπ = 0/1 = 0; the value continues
to increase, asymptoting to positive infinity at 3π/(2 − ε) for small, positive ε,
then jumps discontinuously to negative infinity at tan(3π/2) = −1/0 = −∞;
the value of the tangent then increases to zero at tan2π = 0/1 = 0. Notice
that the graph has a least, that is principal, period of 2π, not π as is commonly
understood. The results for negative angles are similar. For integral k the value
of the tangent is positive infinity at θ = 2kπ + π/2 and negative infinity at
θ = 2kπ − π/2. The usual graph for the tangent, computed as the limit of a
power series, is similar to Figure 2 but with the difference that the tangent is
undefined at 2kπ±π/2 for all integral k. Thus the finite values of the geometrical
tangent have period π but the extended-real values have period 2π.

As we lack a geometrical construction for the non-finite, transreal angles, we
define that the value of the transreal tangent, at non-finite angles, is the limit
of the usual power series, evaluated in transreal arithmetic, so that tan(−∞) =
tan∞ = tanΦ = Φ. This is justified by Observation 15 in Section 3.2 Transreal
Sequences below.
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Figure 2: Graph of the Transreal Tangent

We then take the arctangent as usual, for finite values of the tangent, and
augment this with arctan(−∞) = −π/2, arctan∞ = π/2, arctanΦ = Φ.

3 Transreal Analysis

In this section we augment the topology of transreal space, derived transarith-
metically from ε-neighbourhoods [2], with the usual topology of measure theory
and integration theory (anticipating the development of transdifferential and
transintegral calculus, which could be presented in a longer paper). Amongst
other results we show that transreal space is a compact, separable, Hausdorff
space. We then develop transreal sequences and establish the transreal infimum
and supremum. Finally we present fundamental results on the limits and conti-
nuity of transreal functions. Taken together this implies that transreal analysis
contains real analysis.

3.1 Transreal Topology

Transreal arithmetic implies a topology [2], Figure 3, that gives a definite, nu-
merical value to the result of dividing any real number by zero. Infinity, ∞, is
the unique number that results when a positive number is divided by zero; neg-
ative infinity, −∞, is the unique number that results when a negative number
is divided by zero; nullity, Φ, is the unique number that results when zero is
divided by zero. Nullity is not ordered, all other transreal numbers are ordered.
Infinity is the largest number and negative infinity is the smallest number. Any
particular real number is finite; ∞ and −∞ are infinite; Φ is non-finite. The
infinite numbers are also non-finite. The real numbers, R, together with the
infinite numbers, −∞ and∞, make up the extended-real numbers, RE ; the real



numbers, together with the non-finite numbers, −∞,∞ and Φ, make up the
transreal numbers, RT .

Figure 3: Transreal Number-Line.

We now define a topology for the whole of RT = R ∪ {−∞,∞,Φ} which
contains the usual topology on RE = {−∞} ∪ R ∪ {∞} that is used in mea-
sure theory and integration theory. Specifically we note that {−∞}, {∞} and
{Φ} are singleton sets that are not path connected to any other numbers. This
retains compatibility with an older view of the topology of the transreal num-
bers, based on computing ε-neighbourhoods using transreal arithmetic [2]. In
our new topology we have that {−∞} and {∞} are closed and not open, while
{Φ} is both closed and open. We impose neighbourhoods on {−∞} and {∞}
so that the usual topology of measure theory and integration holds, with the
possibility that real and extended-real functions have limits of −∞ and∞. The
number Φ is then left as the unique, isolated point, reflecting its status as the
unique, unordered number, Φ, in transreal arithmetic. We then rehearse various
theorems of sequences, limits and continuity, all of which show that wherever
−∞ and ∞ occur as limits in transreal analysis they occur identically in (ex-
tended) real-analysis, with the difference that −∞ and ∞ are abstract symbols
in (extended) real analysis and are numbers in transreal arithmetic and tran-
sreal analysis. Furthermore 0/0 is undefined in (extended) real analysis but in
transreal arithmetic Φ = 0/0 is a definite number and, in transreal analysis, it
is the limit, for example, of constant, transreal functions of the form f(x) = Φ.
Thus real analysis is extended to transreal analysis and is extended further in
unpublished work that could be presented in a longer version of this paper.

Definition 1. Let A ⊂ RT . We say that x ∈ RT is a transinterior point related
to A if and only if one of the following conditions holds:

1. x ∈ R and there is a positive ε ∈ R such that (x− ε, x+ ε) ⊂ A,

2. x = −∞ and there is b ∈ R such that [−∞, b) ⊂ A,

3. x =∞ and there is a ∈ R such that (a,∞] ⊂ A or

4. x = Φ and {Φ} ⊂ A.

We denote the set of all transinterior points related to A as transintA. We
say that a set A ⊂ RT is transopen if and only if A = transintA.



Notice that for every A ⊂ RT it is the case that transintA ⊂ A.

Theorem 2. The class of all transopen sets in RT is a topology on RT . That
is to say:

1. ∅,RT are transopen,

2. Any union of transopen sets is a transopen set and

3. A finite intersection of transopen sets is a transopen set.

Proof. 1. Notice that transint∅ = ∅ and RT ⊂ transintRT follow directly
from the definition of a transopen set.

2. Let I be any set and A =
⋃
α∈I

Aα, where Aα is transopen for all α ∈ I.

If x ∈ A then x ∈ Aα for some α ∈ I, whence x ∈ transintAα. We
have several cases: x ∈ R, whence there is a positive ε ∈ R such that
(x − ε, x + ε) ⊂ Aα ⊂ A; or x = −∞, whence there is b ∈ R such
that [−∞, b) ⊂ Aα ⊂ A; or x = ∞, whence there is a ∈ R such that
(a,∞] ⊂ Aα ⊂ A; or x = Φ, whence {Φ} ⊂ Aα ⊂ A. In every case, x ∈
transintA, whence A ⊂ transintA.

3. Let A1, A2 ⊂ RT be transopen sets. If x ∈ A1 ∩ A2 then x ∈ A1 and
x ∈ A2, whence x ∈ transintA1 and x ∈ transintA2. If x ∈ R then there are
positive ε1, ε2 ∈ R such that (x−ε1, x+ε1) ⊂ A1 and (x−ε2, x+ε2) ⊂ A2.
Taking ε = min{ε1, ε2}, we have (x − ε, x + ε) ⊂ A1 ∩ A2. If x = −∞
then there are b1, b2 ∈ R such that [∞, b1) ⊂ A1 and [−∞, b1) ⊂ A1.
Taking b = min{b1, b2}, we have [−∞, b) ⊂ A1 ∩ A2. If x = ∞ then
there are a1, a2 ∈ R such that (a1,∞] ⊂ A1 and (a2,∞] ⊂ A1. Taking
a = max{a1, a2}, we have (a∞] ⊂ A1∩A2. Finally if x = Φ then {Φ} ⊂ A1

and {Φ} ⊂ A2, whence {Φ} ⊂ A1∩A2. In any case x ∈ transint(A1∩A2),
whence A1 ∩A2 ⊂ transint(A1 ∩A2).

Reverting now to ordinary terminology, we call a transopen set an open set,
we call a transinterior point an interior point, and we denote transintA by int-A.

We recall that a subset of topological space is closed if and only if its com-
plement is open.

Example 3. The sets {Φ}, (−∞, x), (x,∞), [−∞, x), (x,∞], (−∞,∞) = R,
[−∞,∞], [−∞,∞), (−∞,∞] and (x, y) are open on RT where x, y ∈ R and
x < y.

Example 4. The sets {−∞}, {∞}, {x}, [−∞, x], [x,∞], (−∞, x], [x,∞),
(x, y], [x, y) and [x, y] are not open on RT where x, y ∈ R and x < y.

Example 5. The sets {Φ}, {−∞}, {∞}, {x}, [−∞,∞], [−∞, x], [x,∞] and
[x, y] are closed on RT where x, y ∈ R and x < y. In fact, RT \{Φ} = [−∞,∞],



RT \ {−∞} = R ∪ (1,∞] ∪ {Φ}, RT \ {∞} = R ∪ [−∞, 1) ∪ {Φ}, RT \ {x} =
[−∞, x) ∪ (x,∞] ∪ {Φ}, RT \ [−∞,∞] = {Φ}, RT \ [−∞, x] = (x,∞] ∪ {Φ},
RT \ [x,∞] = [−∞, x)∪ {Φ} and RT \ [x, y] = [−∞, x)∪ (y,∞]∪ {Φ} are open.

Example 6. The sets (−∞, x), (x,∞), [−∞, x), (x,∞], (−∞,∞) = R, [−∞,∞),
(−∞,∞], (−∞, x], [x,∞), (x, y), (x, y] and [x, y) are not closed on RT where
x, y ∈ R and x < y .

Proposition 7. RT is a Hausdorff1 space.

Proof. Let there be distinct x, y ∈ RT . If x or y is Φ, say x = Φ, then it is
enough to take A = {Φ}, with B a neighbourhood2 of y, such that Φ /∈ B. If
one of them is equal to −∞ and the other is equal ∞, say x = −∞ and y =∞,
it is enough to take a, b ∈ R such that a < b, A = [−∞, a) and B = (b,∞].
If one of them is equal to −∞ and the other is a real number, say x = −∞
and y ∈ R, it is enough to take a positive ε ∈ R, b ∈ R such that b < y − ε,
A = [−∞, b) and B = (y− ε, y+ ε). If one of them is equal to ∞ and the other
is a real number, say x = ∞ and y ∈ R, it is enough to take a positive ε ∈ R,
a ∈ R such that y + ε < a, A = (a,∞] and B = (y − ε, y + ε). If x, y ∈ R, it is
enough to take a positive ε ∈ R such that 2ε < |x − y|, A = (x − ε, x + ε) and
B = (y−ε, y+ε). In every case, A is a neighbourhood of x, B is a neighbourhood
of y and A ∩B = ∅.

Proposition 8. The topology on R, induced by the topology of RT , is the usual
topology of R. That is if A ⊂ RT is open on RT then A∩R is open (in the usual
sense) on R and if A ⊂ R is open (in the usual sense) on R then A is open on
RT .

Proof. Let A ⊂ RT be an open set on RT . If x ∈ A ∩ R then x ∈ intA because
x ∈ A. This fact, together with x ∈ R, implies that there is a positive ε ∈ R
such that (x−ε, x+ε) ⊂ A, whence (x−ε, x+ε) ⊂ A∩R. Thus x ∈ int(A∩R),
where int(A ∩ R) denotes the interior of A ∩ R in the usual topology on R.

Now let A ⊂ R be open (in usual sense) on R. If x ∈ A then there is a
positive ε ∈ R such that (x− ε, x+ ε) ⊂ A. Thus x ∈ intA.

Corollary 9. If A ⊂ RT is closed on RT then A ∩ R is closed (in the usual
sense) on R.

Proposition 10. RT is disconnected3.

Proof. In fact RT = [−∞,∞]∪{Φ} and the sets [−∞,∞] and {Φ} are open.

Notice that Φ is the unique isolated point4 of RT .

1A topological space, X, is a Haussdorf space if and only if for any distinct x, y ∈ X, there
are open sets U, V ⊂ X such that x ∈ U , y ∈ V and U ∩ V = ∅. See [5].

2A subset U , of a topological space, is a neighbourhood of x if and only if x ∈ U and U is
open.

3A topological space, X, is disconnected if and only if there are non-empty, open sets
U, V ⊂ X such that U ∪ V = X and U ∩ V = ∅. See [5].

4An element, x, of a topological space, X, is said to be an isolated point if and only if
there is a neighbourhood U ⊂ X of x such that U ∩ V = ∅ for all open V ⊂ X with V 6= U .



Proposition 11. RT is a separable5 space.

Proof. Q ∪ {Φ} is dense in RT .

Proposition 12. RT is compact6.

Proof. Let I be any set and {Aα; α ∈ I} be an open covering of RT . We have

that Φ,−∞,∞ ∈
⋃
α∈I

Aα. Thus there are α1, α2, α3 ∈ I such that Φ ∈ Aα1
,

−∞ ∈ Aα2
and ∞ ∈ Aα3

. So {Φ} ⊂ Aα1
and there are a, b ∈ R with a < b

such that [−∞, a) ⊂ Aα2 and (b,∞] ⊂ Aα3 . Furthermore [a, b] ⊂
⋃
α∈I

Aα,

whence [a, b] ⊂

(⋃
α∈I

Aα

)
∩ R =

⋃
α∈I

(Aα ∩ R). So {Aα ∩ R; α ∈ I} is an

open covering of [a, b] on R. As [a, b] is compact on R, there are n ∈ N and

α4, . . . , αn such that [a, b] ⊂
n⋃
i=4

(Aαi ∩ R) =

(
n⋃
i=4

Aαi

)
∩ R ⊂

n⋃
i=4

Aαi . Thus

RT = ([−∞, a) ∪ [a, b] ∪ (b,∞] ∪ {Φ}) ⊂
n⋃
i=1

Aαi
.

Corollary 13. Let A ⊂ RT . It follows that A is compact if and only if A is
closed.

Proof. Let A ⊂ RT . If A is compact, since RT is Hausdorff space, A is closed.
See [5], Theorem 26.3. If A is closed, since RT is compact, A is compact. See
[5], Theorem 26.2.

3.2 Transreal Sequences

We use the usual definition for the convergence of a sequence in a topological
space. That is a sequence, (xn)n∈N ⊂ RT , converges to x ∈ RT if and only if
for each neighbourhood, V ⊂ RT of x, there is nV ∈ N such that xn ∈ V for all
n ≥ nV .

Notice that since RT is a Hausdorff space, the limit of a sequence, when it
exists, is unique.

Observation 14. Let (xn)n∈N ⊂ R and let L ∈ R. Notice that lim
n→∞

xn = L in

RT if and only if lim
n→∞

xn = L in the usual sense in R. Furthermore, (xn)n∈N

5A topological space, X, is said to be separable if and only if it has a dense, countable
subset. A subset D, of a topological space, X, is dense in X if and only if all element of X
are elements or limit points of D. See [5].

6A topological space, X, is said to be compact if and only if, for all classes of open subsets

of X, {Uα; α ∈ I} (where I is an arbitrary set) such that X ⊂
⋃
α∈I

Uα, there is a finite subset

{Uαk ; 1 ≤ k ≤ n} (for some n ∈ N) of {Uα, α ∈ I} such that X ⊂
n⋃
k=1

Uαk . See [5].



diverges, in the usual sense, to negative infinity if and only if lim
n→∞

xn = −∞
in RT . Similarly (xn)n∈N diverges, in the usual sense, to infinity if and only if
lim
n→∞

xn =∞ in RT .

Observation 15. Let (xn)n∈N ⊂ RT . Notice that lim
n→∞

xn = Φ if and only if

there is k ∈ N such that xn = Φ for all n ≥ k.

Proposition 16. Every monotone sequence of transreal numbers is convergent.

Proof. Suppose (xn)n∈N ⊂ RT is increasing. The case for decreasing, transreal
(xn)n∈N ⊂ RT is similar. If xk = Φ, for some k ∈ N, then xn = Φ, for all n ∈ N,
because xi ≤ Φ ≤ xj for all i ≤ k and j ≥ k, whence lim

n→∞
xn = Φ. If xn = −∞,

for all n ∈ N, then lim
n→∞

xn = −∞. If xn 6= Φ, for all n ∈ N, and xk 6= −∞, for

some k ∈ N, then xn > −∞ for all n ≥ k, whence there is s = sup{xn; n ∈ N}
and s ∈ R ∪ {∞}. If s = ∞ then, for each a ∈ R, there is na ∈ N such that
xna

> a. Since xn ≤ xn+1 for all n ∈ N, xn ∈ (a,∞] for all n ≥ na, whence
lim
n→∞

xn = ∞. If s ∈ R then (xk+n)n∈N is a monotone, bounded sequence of

real numbers, thus it is convergent. Hence (xn)n∈N is convergent.

Theorem 17. Every sequence of transreal numbers has a convergent subse-
quence.

Proof. Let (xn)n∈N ⊂ RT . If {n; xn 6= Φ} is a finite set then clearly lim
n→∞

xn =

Φ. If {n; xn 6= Φ} is an infinite set then denote, by (yk)k∈N, the subsequence of
(xn)n∈N of all elements of (xn)n∈N that are distinct from Φ. Let J = {k; yk >
ym for all m > k}. If J is a infinite set, we write J = {k1, k2, . . . }, with
k1 < k2 < · · · . Since for each i ∈ N, ki ∈ J , we have that yki > ykj for all i < j.
Thus (yki)i∈N is a decreasing subsequence of (xn)n∈N. If J is finite, let k1 be
greater than all of the elements of J . Since k1 6∈ J , there is k2 > k1 such that
yk2 ≥ yk1 . Since k2 > k1, it follows that k2 6∈ J . So there is k3 > k2 such that
yk3 ≥ yk2 . By induction we build an increasing subsequence (yki)i∈N of (xn)n∈N.
In both cases, in agreement with Proposition 16, (yki)i∈N is convergent.

Proposition 18. Let x, y ∈ RT and let (xn)n∈N, (yn)n∈N ⊂ RT such that
lim
n→∞

xn = x and lim
n→∞

yn = y. It follows that:

1. If x, y ∈ {−∞,∞} and x + y = Φ do not occur simultaneously then
lim
n→∞

(xn + yn) = x+ y;

2. If x, y ∈ {0,∞,−∞} and xy = Φ do not occur simultaneously then
lim
n→∞

(xnyn) = xy;

3. If y 6= 0 then lim
n→∞

(y−1n ) = y−1 and

4. If y = 0 and there is k ∈ N such that yn < 0 for all n ≥ k then lim
n→∞

(y−1n ) =

−(y−1). If y = 0 and there is k ∈ N, such that yn > 0 for all n ≥ k, then
lim
n→∞

(y−1n ) = y−1.



Theorem 19 (Sandwiches). Let L ∈ RT and let (xn)n∈N, (yn)n∈N, (zn)n∈N ⊂
RT such that lim

n→∞
xn = L and lim

n→∞
zn = L. If there is N ∈ N, such that

xn ≤ yn ≤ zn for all n ≥ N , then lim
n→∞

yn = L.

Proof. Let L ∈ RT , let (xn)n∈N, (yn)n∈N, (zn)n∈N ⊂ RT and let N ∈ N such
that lim

n→∞
xn = L, lim

n→∞
zn = L and xn ≤ yn ≤ zn for all n ≥ N .

If L = Φ, the result follows immediately from Observation 15.
If L ∈ R, let there be an arbitrary, positive ε ∈ R. Since lim

n→∞
xn = lim

n→∞
zn =

L, there are N1, N2 ∈ N such that L − ε < xn for all n ≥ N1 and zn < L + ε
for all n ≥ N2. Taking N3 = max{N,N1, N2}, we have that L− ε < xn ≤ yn ≤
zn < L+ ε for all n ≥ N3.

If L = −∞, let there be an arbitrary b ∈ R. Since lim
n→∞

zn = L, there is

N1 ∈ N such that zn ∈ [−∞, b) for all n ≥ N1. Taking N2 = max{N,N1}, we
have that yn ≤ zn < b for all n ≥ N2, whence yn ∈ [−∞, b) for all n ≥ N2.

If L =∞, the result follows similarly to the previous case.

Definition 20. Let (xn)n∈N ⊂ RT \ {Φ} = RE. Let vn = inf{xk, k ≥ n} and
let un = sup{xk, k ≥ n}. We define and denote the lower limit and the upper
limit of (xn)n∈N, respectively, by

lim inf
n→∞

xn := lim
n→∞

vn and lim sup
n→∞

xn := lim
n→∞

un.

Notice that (vn)n∈N is increasing and (un)n∈N is decreasing, whence lim
n→∞

vn =

sup
n∈N

(vn) and lim
n→∞

un = inf
n∈N

(un). Therefore the notations sup
n∈N

inf
k≥n

(xk) and

inf
n∈N

sup
k≥n

(xk) denote, respectively, the lower limit and the upper limit.

Proposition 21. Let (xn)n∈N ⊂ RE. It follows that there is a limit lim
n→∞

xn

if and only if lim inf
n→∞

xn = lim sup
n→∞

xn. In this case, lim
n→∞

xn = lim inf
n→∞

xn =

lim sup
n→∞

xn.

3.3 Limit and Continuity of Transreal Functions

We remember that if X is a topological space then x0 ∈ A ⊂ X is a limit point of
A if and only if for every neighbourhood V of x0 it follows that V ∩(A\{x0}) = ∅.
The set of all limit points of A is denoted as A′.

We use the usual definition of the limit of functions in a topological space.
That is, if A is a subset of RT , f : A → RT is a function, x0 is a limit point
of A and L is a transreal number, we say that lim

x→x0

f(x) = L if and only if,

for each neighbourhood V of L, there is a neighbourhood U of x0 such that
f(A ∩ U \ {x0}) ⊂ V .

Observation 22. Notice that given x0, L ∈ R, the transreal limit lim
x→x0

f(x) = L

in RT exists if and only if the real limit lim
x→x0

f(x) = L exists in the usual



sense in R. The same can be said about lim
x→x0

f(x) = −∞, lim
x→x0

f(x) = ∞,

lim
x→−∞

f(x) = L, lim
x→−∞

f(x) = −∞, lim
x→−∞

f(x) = ∞, lim
x→∞

f(x) = L,

lim
x→∞

f(x) = −∞ and lim
x→∞

f(x) =∞.

Observation 23. Let x0 ∈ RT , notice that lim
x→x0

f(x) = Φ if and only if there

is a neighbourhood U of x0 such that f(x) = Φ for all x ∈ U \ {x0}.

Proposition 24. Let A ⊂ RT , f : A → RT , x0 ∈ A′ and L ∈ RT . The
following two statements are equivalent:

1. lim
x→x0

f(x) = L,

2. lim
n→∞

f(xn) = L for all (xn)n∈N ⊂ A \ {x0} such that lim
n→∞

xn = x0.

Proof. Let A ⊂ RT , f : A → RT , x0 ∈ A′ and L ∈ RT . Suppose that
lim
x→x0

f(x) = L. Let (xn)n∈N ⊂ A \ {x0} such that lim
n→∞

xn = x0. Let V be

an arbitrary neighbourhood of L. Then there is a neighbourhood, U , of x0 such
that f(A∩U \ {x0}) ⊂ V . Since lim

n→∞
xn = x0 there is an nU such that xn ∈ U

for all n ≥ nU . Thus f(xn) ∈ f(A ∩ U \ {x0}) ⊂ V for all n ≥ nU .
Now suppose lim

x→x0

f(x) 6= L. Then there is a neighbourhood, V , of L such

that, for each n ∈ N, there is xn ∈ A such that 0 < |xn − x0| <
1

n
(if x0 ∈ R)

or xn ∈ (−∞,−n) (if x0 = −∞) or xn ∈ (n,∞) (if x0 = ∞), and f(xn) /∈ V .
Hence (xn)n∈N ⊂ A \ {x0}, lim

n→∞
xn = x0 and lim

n→∞
f(xn) 6= L.

Proposition 25. Let L,M ∈ RT , A ⊂ RT , with functions f, g : A → RT , and
x0 ∈ A′ such that lim

x→x0

f(x) = L and lim
x→x0

g(x) = M . It follows that:

1. If L,M ∈ {−∞,∞} and L + M = Φ do not occur simultaneously then
lim
x→x0

(f + g)(x) = L+M ;

2. If L,M ∈ {0,∞,−∞} and LM = Φ do not occur simultaneously then
lim
x→x0

(fg)(x) = LM ;

3. If M 6= 0 then lim
x→x0

(
1

f

)
(x) =

1

M
and

4. If M = 0 and there is a neighbourhood, U , of x0, such that g(x) < 0 for

all x ∈ U \ {x0}, then lim
x→x0

(
1

g

)
(x) = −(M−1). If M = 0 and there is

a neighbourhood, U , of x0, such that g(x) > 0 for all x ∈ U \ {x0}, then

lim
x→x0

(
1

g

)
(x) = M−1.



We use the usual definition of continuity in a topological space. That is if
A ⊂ RT , f : A → RT is a function and x0 ∈ A, we say that f is continuous in
x0 if and only if, for each neighbourhood V of f(x0), there is a neighbourhood
U of x0 such that f(A ∩ U) ⊂ V .

Observation 26. Notice that given x0 ∈ R, f is continuous in x0 in RT if and
only if f is continuous in x0 in the usual sense in R.

Observation 27. Notice that if Φ ∈ Dm(f) (Dm(f) denote the domain of f)
then f is continuous in Φ.

Proposition 28. Let A ⊂ RT , f : A → RT and x0 ∈ A. The following two
statements are equivalent:

1. f is continuous in x0,

2. lim
n→∞

f(xn) = f(x0) for all (xn)n∈N ⊂ A and lim
n→∞

xn = x0.

Proposition 29. Let A ⊂ RT ; f, g : A → RT and x0 ∈ A such that f and g
are continuous in x0. It follows:

1. If f(x0), g(x0) ∈ {−∞,∞} and (f + g)(x0) = Φ do not occur simultane-
ously then f + g is continuous in x0;

2. If f(x0), g(x0) ∈ {0,∞,−∞} and (fg)(x0) = Φ do not occur simultane-
ously then fg is continuous in x0;

3. If g(x0) 6= 0 then
1

g
is continuous in x0 and

4. If g(x0) = 0 and there is a neighbourhood, U , of x0, such that g(x) ≥ 0

for all x ∈ U , then
1

g
is continuous in x0.

Notice that if g(x0) = 0 and there is no neighbourhood, U , of x0, such that

g(x) ≥ 0 for all x ∈ U , then
1

g
is not continuous in x0.

Proposition 30. Let A,B ⊂ RT , f : A → RT and g : B → RT such that
f(A) ⊂ B. If f is continuous in x0 and g is continuous in f(x0) then g ◦ f is
continuous in x0.

Proposition 31. Let A be an open set such that A ⊂ RT and let f : A→ RT .
It follows that f is continuous in A if and only if f−1(B) is open, for all open
B ⊂ RT .



4 Category Errors

The IEEE 754 standard [3] (page 34, section 6.1) says, “The behaviour of infinity
in floating-point arithmetic is derived from the limiting case of real arithmetic
with operands of arbitrarily large magnitude, when such a limit exists. Infinities
shall be interpreted in the affine sense, that is: −∞ < {everyfinitenumber} <
∞.” This is erroneous. There are no limiting cases in real arithmetic; to think
otherwise is a category error which confuses real arithmetic with real analysis.
It is also back to front. Transreal arithmetic is total and can be used to derive
limits, as above. Crucially these limits are a superset of real limits so transreal
arithmetic cannot be derived from real limits. Also the property −∞ < r <∞,
for all real r, is a theorem of transreal arithmetic not an axiom (See citations
in [1]) so it need not be stated. Attempting to derive a total arithmetic from
real analysis is unlikely to succeed and in the case of IEEE 754 floating point
arithmetic it fails, as shown in [1] and next.

Kahan defends IEEE 754’s negative zero in a paper which deals with the
solution of complex functions defined as the limits of power series. Within that
setting, Kahan’s treatment is valid but problems arise when he considers the
calculation of (real) functions that have an alternative, geometrical definition as
the value, not the limit, of some expression. Commenting on the APL language
standard that specifies an unsigned zero, he says [4] (page 186), “... like zero,
1/0 has no sign and therefore arctan(1/0) has to be either undefined or else
chosen arbitrarily from {±π/2}.” But, as shown in section 2, above, transreal
arithmetic has an unsigned zero but 1/0 is positive (since 0 is not negative it
cannot toggle the sign of 1) and arctan = π/2 is uniquely determined in the
principal range, all other positive infinities of tanθ occurring at θ = 2kπ + π/2
for all integers k. Kahan maintains the thesis that negative zero, produced by
underflow from a negative number, preserves information about the limit of a
function and that this leads to the correct calculation of the function’s value.
But this is contradicted by the geometrical construction of the tangent. Suppose
we calculate tanθ = 1/(−ε) for some small, positive ε that underflows to IEEE
754’s negative zero then tanθ = −1/0 = −∞. This is correct at θ = 2kπ − π/2
and is wrong at θ = 2kπ + π/2 for all integers k. The limit at θ = 2kπ ± π/2
indicates only the infinite magnitude of the tangent at the given angle and gives
no information about its sign, despite the fact that both the magnitude and
sign of the value of the function are completely determined for all integral k.
Believing that the value of a function can always be computed from its limit is a
category error. Conversely believing that where the limit is not uniquely defined
the value of the function must be undefined or arbitrary is also a category error.
The limit and value of a function are in fundamentally different categories of
mathematical object – they exist, or else do not exist, entirely independently of
each other.

Kahan defines many complex functions in terms of principal functions involv-
ing the complex logarithm. We conjecture that real and complex trigonometric
identities allow the geometrical specification of functions, such as the tangent,
to spread to all trigonometrical functions so that their behaviour is completely



determined. This is a matter for future research.
We have already criticised the IEEE 754 NaNs [1] but we take up this issue

again. The tangent is defined, geometrically, for all right triangles with a unit
hypotenuse. It is mapped to other strictly positive hypotenuses by dilatation
but what of zero, infinite and nullity hypotenuses? A triangle with hypotenuse
zero or nullity has all sides, respectively, zero or nullity, whence all geometrically
defined trigonometric ratios are nullity. When the hypotenuse is infinity, at least
one other side is infinity and the remaining side may be finite or infinity. The
trigonometric ratios are then one of zero, nullity, positive or negative infinty as
the case may be. In every case the geometrically defined trigonometric ratios
have a completely determined transreal value. In particular 0/0 = Φ is an
unordered number not an undefined NaN. This matter is taken further in the
development of transcomplex numbers in polar form where angle and radius
are first-class citizens from which non-bijective Cartesian tangents and other
non-bijective functions may arise [1].

We have shown in [1] that trans-floating-point arithmetic is more accurate
than IEEE 754 arithmetic. Here we have introduced transreal analysis with a
wider coverage than real analysis and have shown how to perform calculations
more reliably than with IEEE 754’s negative zero. We expect many computer
applications to benefit from transmathematics.

5 Conclusion

We add the usual topology of measure theory and integration theory to the
space of transreal numbers and prove that this space is a compact, separable,
Hausdorff space. Using these results we extend the limit and continuity of real
functions to transreal functions. Separately we show that the usual geometrical
construction of the tangent is defined for infinite values of the function when
it is calculated using transreal arithmetic. We introduce the transreal tangent
and transreal arctangent as total functions of transreal numbers. We show that
while the finite values of the transreal tangent have a primitive period of π, the
function has a primitive period of 2π when the infinite values are considered be-
cause the transreal tangent alternately asymptotes to and arrives at an infinity
on alternate periods of π. We use this result to show that IEEE 754’s negative
zero computes the wrong result for alternate periods of the transreal tangent
and diagnose this fault to a category error where the limit of a function is con-
fused with the value of a function. We propose that all trigonometric functions,
including complex trigonometric functions, could be totalised by forcing their
power series definitions to be faithful to the boundary conditions demanded
by geometrical constructions, such as the geometrical construction of the tan-
gent. We believe that adopting transreal arithmetic, in place of real arithmetic,
would increase the coherence of mathematics and would bring both theoretical
and practical advantages to computing.
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