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A stochastic cure simulation methodology is developed and implemented to investigate the influence of
cure kinetics uncertainty due to different initial resin state on the process of cure. The simulation
addresses heat transfer effects and allows quantification of uncertainty in temperature overshoot during
the cure. Differential Scanning Calorimetry was used to characterise cure kinetics variability of a commer-
cial epoxy resin used in aerospace applications. It was found that cure kinetics uncertainty is associated
with variations in the initial degree of cure, activation energy and reaction order. A cure simulation model
was coupled with conventional Monte Carlo and an implementation of the Probabilistic Collocation
Method. Both simulation schemes are capable of capturing variability propagation, with the collocation
method presenting benefits in terms of computational cost against the Monte Carlo scheme with compa-
rable accuracy. Simulation of the cure of a carbon fibre–epoxy panel shows that cure kinetics uncertainty
can cause considerable variability in the process outcome with a coefficient of variation in temperature
overshoot of about 30%.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Uncertainty in composite manufacture has begun to receive
attention in the last decade as a result of the adoption of advanced
composites as the main material of choice for large aero-structures.
Variability is present in all forms of pre-impregnated and dry tex-
tiles and is mainly associated with in-plane and out-of plane fibre
misalignment generated during production, handling or storage
[1–3]. Experimental results have shown that in-plane fibre mis-
alignment can be represented by a normally distributed variable
[2,4] exhibiting strong spatial autocorrelation over the textile [2].
This type of uncertainty can affect the forming process introducing
considerable variability in defect generation [2]. In addition, fibre
misalignment as well as nesting effects can introduce significant
scatter in permeability contributing to the formation of voids or
dry patches [5–8]. Similarly to fibre misalignment, macroscopic
permeability values can be represented by a normally distributed
random variable [5–8]. However, simulation studies have indicated
that permeability at the meso-scale (unit cell size) shows higher
variations due to local inhomogeneities and cannot be represented
by a normally distributed variable [9], a result that is also valid in
the case of random mats [10]. In addition to variations in fibre
architecture, the cure process can be potentially influenced by
environmental/boundary condition uncertainty as well as resin
behaviour variability due to variation in handling and storage con-
ditions. Naturally these effects can play a role in cure process
defects such as severe temperature overshoots or under-cure and
also introduce variability in residual stresses/shape distortion.

The issue of variability during the cure step has received limited
attention so far in the literature. The effect of cure temperature
variations and cure kinetics uncertainty on cure time has been
investigated in a pure simulation study by coupling a cure kinetics
model with a Latin Hypercube sampling scheme showing that cure
temperature variations tend to dominate cure time variability [11].
Furthermore, taking into account uncertainty in the optimisation
of the cure time, has shown that optimal cure time increases with
increasing variability [12]. These results, which are based on sim-
ulation and hypothesised levels of uncertainty, gain significant
practical importance when their conclusions are combined with
experimental studies of uncertainty in cure kinetics. In addition
to material behaviour and process parameters uncertainty, cure
kinetics can show significant variations due to experimental
characterisation and data reduction discrepancies [13].

This study aims at the quantification of cure kinetics uncertainty
and investigation of its propagation through the manufacturing
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Table 1
Parameter values for glass transition temperature, specific heat and thermal
conductivity sub-models [18,20,21,23].

Parameter Value

Tgo (�C) �11
Tg1 (�C) 206
k 0.435
Afcp

(Jg�1 C�2) 0.0023

Bfcp
(Jg�1 C�2) 0.765

Arcp (Jg�1 C�2) 0.0025
Brcp (Jg�1 C�2) 1.80
Drcp (Jg�1 C�2) �0.25
Crcp (1/�C) 1.10
s (�C) 16.5
Alf (Wm�1 C�2) 0.0074
Blf (Wm�1 C�2) 9.7
Btf (Wm�1 C�2) 0.84
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process. The variability can be due to variable resin handling/
storage conditions, variations in resin formulation and uncertainty
introduced during resin characterisation. A series of experiments
was carried out using Differential Scanning Calorimetry (DSC) to
characterise cure kinetics uncertainty of a commercial epoxy resin
used in aerospace applications. The variability in experimental
behaviour was attributed to certain parameters of cure kinetics as
expressed by a phenomenological model and the corresponding
stochastic object was developed.

The resulting stochastic simulation problem was addressed by
coupling a finite element analysis based cure simulation model
with conventional Monte Carlo (MC) and the Probabilistic Colloca-
tion Method (PCM). The two stochastic simulation approaches
were applied to the cure process of a thick carbon fibre–epoxy lam-
inate to investigate the influence of cure kinetics uncertainty on
variability in temperature overshoot. Temperature overshoot is
defined as the maximum difference between the laminate temper-
ature and mould temperature during the cure cycle. The two
schemes were compared in terms of accuracy and efficiency.

2. Deterministic cure simulation model

A simulation of heat transfer effects occurring during the cure
was implemented in the finite element analysis solver MSC.Marc.
The model was three dimensional and transient. The materials
considered were Hexcel G1157 [14] pseudo unidirectional carbon
fibre reinforcement and Hexcel RTM6 [15] epoxy resin. The mate-
rial properties depend on both temperature and degree of cure and
the material sub-models of cure kinetics, specific heat capacity and
thermal conductivity were implemented in user defined subrou-
tines UCURE, USPCHT and ANKOND [16].

2.1. Cure kinetics model

The cure kinetics model used has been developed for the resin
system of this study and is a combination of an nth order model
and an autocatalytic model [17,18].

The cure reaction rate is expressed as follows:

da
dt
¼ k1ð1� aÞn1 þ k2ð1� aÞn2 am ð1Þ

where a is the current degree of cure, k1, k2 the reaction rate con-
stants, and m, n1, n2 the reaction orders. The reaction rate constants
incorporated diffusion rate limitation terms [19]:

1
ki
¼ 1

ki;c
þ 1

kd
i ¼ 1;2 ð2Þ

where ki;c are chemical rate constants following an Arrhenius tem-
perature dependence, and kd is a diffusion rate constant defined as
[19]:

kD ¼ ADeð
�ED
RT Þeð

�b
f Þ ð3Þ

kiC ¼ Aieð
�Ei
RT Þi ¼ 1;2 ð4Þ

here T is the instantaneous temperature, Ei activation energies, Ai

pre-exponential factors, AD and ED the pre-exponential factor and
activation energy of the diffusion process respectively, R the univer-
sal gas constant, b a constant, and f the equilibrium free volume
expressed as [19]:

f ¼ wðT � TgÞ þ g ð5Þ

where w and g are constants, whilst Tg is the instantaneous glass
transition temperature defined as [20]:

Tg ¼ Tgo þ
ðTg1 � TgoÞka
1� ð1� kÞa ð6Þ
where Tgo and Tg1 denote the glass transition temperatures for the
uncured and fully cured material, respectively and k is a fitting
parameter [18]. The parameters of the glass transition development
model are reported in Table 1.

2.2. Specific heat capacity

The composite specific heat capacity is calculated using the rule
of mixtures as follows:

cp ¼ wf cpf þ ð1�wf Þcpr ð7Þ

where wf is the weight fraction of the fibre, cpf the fibre specific heat
capacity and cpr the specific heat capacity of the resin.

The fibre specific heat capacity is a linear function of tempera-
ture and can be expressed as follows [21]:

cpf ¼ Af cp
T þ Bf cp

ð8Þ

where Afcp
is the slope and Bf cp

the intercept of the linear function
[21]. The values of these two coefficients for carbon fibre [21] are
reported in Table 1.

The specific heat capacity of the resin depends on both temper-
ature and degree of cure. The dependence on degree of cure is
expressed using a dependence on the instantaneous glass transition
temperature of the resin (Eq. (6)) as follows:

cpr ¼ Arcp T þ Brcp þ
Drcp

1þ eCrcp ðT�Tg�sÞ ð9Þ

here Arcp and Brcp are constants expressing the linear dependence of
the resin specific heat capacity on temperature for constant mate-
rial state, while Drcp ;Crcp and s are constants referring to the
strength, breadth and temperature shift of the transition around
Tg . The values of the coefficients used in Eq. (9) were estimated
by fitting to experimental data produced by modulated scanning
calorimetry [21] using a Genetic Algorithm and are reported in
Table 1.

2.3. Thermal conductivity tensor

Each composite lamina is considered a transversely isotropic
material.

The thermal conductivity in the longitudinal direction can be
calculated as follows [22]:

K11 ¼ v f Klf þ ð1� v f ÞKr ð10Þ

Klf and Kr are the thermal conductivity of the fibre in the longitudi-
nal direction and of the resin respectively. In the transverse direc-
tion the thermal conductivity can be computed as follows [22]:
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K22 ¼ K33

¼ v f Kr
Ktf

Kr
� 1

� �
þ Kr

1
2
� Ktf

2Kr

� �

þ Kr
Ktf

Kr
� 1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

f � v f þ
Ktf

Kr
þ 1

� �2

2Ktf

Kr
� 2

� �2

vuuuut ð11Þ

where Ktf is the fibre conductivity in the transverse direction. The
fibre conductivity in the longitudinal direction is as follows [23]:

Klf ¼ Alf T þ Blf ð12Þ

while the fibre conductivity in the transverse direction is [23]:

Ktf ¼ Btf ð13Þ

The thermal conductivity of the resin can be expressed as [21]:

Kr ¼ 0:0008Ta2 � 0:0011Ta� 0:0002T � 0:0937a2 þ 0:22a

þ 0:12 ð14Þ

The parameters used in Eqs. (10)–(14) are summarised in Table 1.

3. Analysis of cure kinetics uncertainty

Investigation of cure kinetics uncertainty is based on a series of
DSC tests. Here, the aim is to quantify cure kinetics uncertainty
by fitting the experimental data with the cure kinetics model
described in Section 2.1.

3.1. Experimental results

DSC tests were carried out at a heating rate of 1 �C/min from
80 �C to 240 �C after equilibration at the initial temperature.
Samples from four different batches were tested. All batches were
within their shelf life at the time of testing. Tests were duplicated
within each batch. Integration of the heat flow versus time data
using an iterative baseline [24] allows calculation of the degree
of cure evolution and the corresponding reaction rate. Fig. 1 illus-
trates the results expressed as reaction rate versus temperature for
the eight tests carried out. All curves have the same qualitative
characteristics with a peak at intermediate temperatures and a
shoulder towards the end of the reaction. The main peak of the
reaction tends to be slightly asymmetric and ends with a plateau
at a low reaction rate. This is followed by a drop to negligible reac-
tion at very high temperatures. The repeatability within the same
batch is very high with curves being almost identical. In particular,
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Fig. 1. Evolution of reaction rate as a function of temperature during dynamic cure
at 1 �C/min. Letters denote the different batches of resin and numbers different
samples within the same batch.
the absolute differences between curves of the same batch for val-
ues of degree of cure of 20%, 40%, 60% and 80% varied from 8E�06
to 2E�05 [1/s], which is more than one order lower than the values
of cure reaction rate obtained by the experiments. This shows that
the experimental and signal analysis method related to sample
preparation, measurement quality and baseline decision induces
negligible variations to the results. In contrast, significant variabil-
ity can be observed in the comparison between batches, implying
that variation in cure behaviour is attributed to batch to batch var-
iability caused by variations in thermal history related to different
resin handling/storage conditions. This variability is manifested in
the maximum reaction rate, the position of the maximum, the
temperature at which the reaction starts and the temperature of
the high temperature shoulder.
3.2. Quantification of cure kinetics uncertainty

The procedure for the estimation of the cure kinetics model
parameters for the different tests is shown schematically in
Fig. 2. The parameters in Eqs. 1–5 were estimated using the hybrid
Genetic Algorithm implemented in the Solver of Microsoft Excel
[25]. In addition to these parameters the procedure estimates the
initial degree of cure which is involved in the kinetics model as
the initial condition of the integration. The overall model for the
kinetics parameters is obtained by carrying out an overall fitting
based on published values for the resin system [17–19] in order
to define relatively narrow ranges for the search. The mean value
of the total heats of reaction computed after integration of each
experimental curve was used to obtain an initial guess for the
initial degree of cure. The determination of the cure model param-
eters and initial degree of cure for each sample then follows by
fitting each experimental curve to the cure kinetics model. This
procedure estimates the mean value l and standard deviation r
of each parameter. This procedure can potentially be influenced
by the non-linearity of the cure kinetics problem and the interde-
pendencies of some of the fitting parameters making subsequent
analysis steps phenomenological.
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Fig. 2. Schematic representation of methodology for quantification of cure kinetics
uncertainty.



Table 2
Estimated kinetics parameters, standard deviation of kinetics parameters, coefficient
of variation of kinetics parameters, sensitivity analysis results.

Parameter Value r l=r [%] Relative difference (%)

E2 (J/mol) 57,820 600 1 11
m 1.29 0.094 7 10
ao 0.033 0.006 19 4
A1 (1/s) 19,000 677 3.5 0.4
A2 (1/s) 22,080 583 2.6 1.7
AD (1/s) 6.76E+18 2.75E+17 4 0.02
E1 (J/mol) 72,900 897 1 2.5
ED (J/mol) 138,000 3155 2 0.5
n1 1.97 0.18 9 0.2
n2 1.53 0.09 6 2
b 0.4524 0.05 11 0.7
w (1/K) 0.00047 8.3E-5 9 0.5
g 0.029 0.006 19 0.4
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Table 2 reports the values of the kinetics parameters estimated
following this procedure. A sensitivity analysis was carried out by
using the cure kinetics model described in Section 2.1 to determine
which of the parameters should be considered as stochastic. Each
parameter was varied by one positive standard deviation and one
negative and the average relative absolute differences of predicted
reaction rates from the cure kinetics model using the estimated
parameter value was computed. The mean between these two val-
ues was used as an indication of the model sensitivity to the level
of variability of each of the model parameters (Table 2). It should
be noted that this relative difference corresponds to increments
equal to one standard deviation around the mean, i.e. a 68% prob-
ability assuming a normal distribution of the variables.

The activation energy E2, the reaction order m and the initial
degree of cure ao introduced the highest discrepancies, presenting
a relative difference of 11%, 10% and 4%, respectively. Conse-
quently, the main sources of uncertainty in the experimental
results are the variability in the initial degree of cure ao, activation
energy E2 and reaction order m.

The initial degree of cure can influence the temperature of reac-
tion onset introducing a shift to the cure reaction rate - tempera-
ture curve. The reaction order m and the activation energy E2

mainly affect the height and the position of the main reaction rate
peak. The nth order term parameters in Eq. (1), especially E1, influ-
ence the height of the main reaction rate peak as well; however,
given the observed spread of values, they introduce relatively
lower discrepancies compared to E2, m and ao (Table 2), and there-
fore can be considered as deterministic.

3.3. Statistical properties of cure kinetics

The basic statistical properties of the three stochastic variables
are summarised in Table 2. The initial degree of cure shows the
highest level of variation among the three stochastic variables. This
can be attributed to thermal history variations between the differ-
ent batches during their storage and transport. Due to the limited
number of experimental data, the Kolmogorov–Smirnov goodness
of fit test was carried out to investigate which statistical distribu-
tion is suitable to fit the stochastic variables. It was suggested that
all variables can be represented by a normally distributed random
variable with 99% level of confidence. The activation energy E2 and
Table 3
Correlation matrix of uncertain parameters.

Parameter ao E2 (J/mol) m

ao 1 �0.09 0.55
E2 �0.09 1 �0.84
m 0.55 �0.84 1
the reaction order m are strongly correlated, while ao and m show
moderate correlation (Table 3).

4. Stochastic simulation approach

Two stochastic simulation approaches were developed based on
conventional Monte Carlo (MC) and the Probabilistic Collocation
Method (PCM), respectively. The two stochastic simulation models
were coupled with the finite element based cure simulation model.
The Monte Carlo method presents a robust but usually computa-
tionally expensive solution. The main concept of PCM is to
construct a response surface for every output parameter, as a func-
tion of uncertain parameters in the form of orthogonal polynomi-
als, termed as the polynomial chaos [26]. An uncertainty analysis
is then carried out to quantify output parameters uncertainty using
this surrogate representation of the response surface. Following
this strategy, the stochastic problem is reduced to calculating the
unknown polynomial chaos coefficients, which are computed
using the probabilistic collocation approach [27,28]. The colloca-
tion points are the roots of the next higher order orthogonal poly-
nomial than the order of the response surface and are chosen so
that the residuals between each response surface and the corre-
sponding model output are zero, implying that the collocation
points are selected from regions of high probability. Consequently,
a system of linear equations is obtained to calculate the polynomial
chaos coefficients for every output parameter [27,28].

4.1. Representation of input parameters

Cholesky decomposition was implemented in both stochastic
simulation schemes to generate realisations of the stochastic vari-
ables. The Cholesky method decomposes the covariance matrix, C
as follows [29]:

C ¼ LLT ð15Þ

here L is a lower triangular matrix and is the Cholesky root. The
product of the Cholesky root with the vector Y of independent iden-
tically distributed standard normal variables is a vector V with the
desired statistical properties of the stochastic variables, and is
defined as follows [29]:

V ¼ LY ð16Þ

Evaluation of Eq. (15) has relatively high computational cost;
however, it needs to be executed only once. Realisations of the
random vector Y are generated and transformed to realisations of
0.0

0.1

100
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Fig. 3. Prescribed temperature boundary condition, evolution of laminate temper-
ature at centre of laminate, nominal degree of cure, degree of cure at centre of
laminate. Deterministic model results.
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the vector V using Eq. (16). This step is computationally inexpen-
sive and is executed as many times as the number of required
realisations of the stochastic variables.

5. Stochastic cure simulation

The cure of a 30 mm thick carbon fibre–epoxy laminate fabri-
cated by infusion was modelled by coupling the two stochastic
simulation schemes with the finite element based cure simulation
model. The applied cure profile is illustrated in Fig. 3. The lay-up
sequence of the laminate was [0�/90�/90�/0�]25. The initial temper-
ature was set at 15 �C and was applied to all the nodes of the
model. A prescribed temperature boundary condition defined by
the cure profile was applied to the nodes in contact with the
mould, whereas natural air convection with a surface heat transfer
coefficient of 5 W/(m2 K) was applied on the surface in contact
with the vacuum bag. In the collocation method implementation
a second order response surface was constructed to represent the



Table 4
Stochastic cure simulation results; temperature overshoot, time of temperature
overshoot.

Process output Statistical
moments

Monte
Carlo

Collocation

Temperature overshoot l (�C) 23.2 23.2
r (�C) 7.3 6.6
l=r (%) 31.4 28.6

Time of temperature overshoot l (s) 6937 6906
r (s) 119 107
l=r (%) 1.7 1.6
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output parameters and a modified regression-based collocation
approach was implemented to improve accuracy. In this case, the
number of collocation points used is larger than the number of
the unknown polynomial chaos coefficients, implying that the
effect of each collocation point is reduced. In particular, the num-
ber of the unknown coefficients for a three dimensional second
order polynomial chaos is 10 [27] and 21 collocation points were
used in this study, leading to 21 deterministic model runs. This
was followed by Monte Carlo simulation using the surrogate
model.
5.1. Stochastic cure simulation results

As shown in Fig. 3, the temperature at the centre of the laminate
is initially lower than the prescribed temperature, whereas a
temperature overshoot occurs at the beginning of the second dwell
due to high exothermic heat. This is followed by a decrease until
the end of the cycle. Similarly, the degree of cure at the centre of
the laminate is lower than the nominal value at the initial stage
of the process, whilst it increases abruptly at the time of tempera-
ture overshoot. This is attributed to the large out of plane temper-
ature gradients, in this case 1.5 �C/mm, due to the low thermal
conductivity of the material in the through the thickness direction.

Satisfactory convergence behaviour was obtained for the first
and second statistical moments of temperature overshoot after
2000 Monte Carlo iterations for both stochastic simulation
schemes (Fig. 4). A very good agreement is achieved between MC
and the collocation method. The results suggest that temperature
overshoot presents a coefficient of variation of 31%. Examination
of the probability distribution of temperature overshoot shown
in Fig. 4 indicates that temperature overshoot can be considered
a normally distributed random variable. Fig. 5 illustrates the
results regarding for the time of temperature overshoot. Similarly
to temperature overshoot the simulation converges after 2000
Monte Carlo iterations, with the two stochastic models presenting
satisfactory agreement. The time at which temperature overshoot
occurs exhibits a coefficient of variation of 1.7%, and can be repre-
sented by a normally distributed variable, as illustrated in Fig. 5.
The stochastic cure simulation results are summarised in Table 4.

Both MC and PCM have the capability of capturing variability
propagation, with the MC presenting a computationally expensive
and rich solution and the PCM offering an efficient approximation
(e.g. for the given case, the computational cost of the PCM is 1.5% of
that of the MC), with comparable accuracy. The results presented
here show that cure kinetics uncertainty can introduce significant
variability in temperature overshoot with considerable cost impli-
cations in industrial practice, especially in the case of ultra-thick
complex geometry components where exothermic effects can be
severe. Consequently, variability effects should be incorporated
in cure profile optimisation to minimise the probability of resin
degradation due to temperature overshoot variations while using
a process design as efficient as possible in terms of duration and
energy consumption.
6. Concluding remarks

The methodologies developed in this work allow the quantifica-
tion of the influence of variability on the cure process outcome. The
experimental results show that the cure behaviour of high specifi-
cation thermosets involves uncertainty related to variations in resin
thermal history due to different resin transport, handling and stor-
age conditions, variations in resin formulation and characterisation
uncertainty, which in turn can introduce significant variability to
the process outcome. It is found that majority of uncertainty can
be represented by variations in the initial degree of cure, activation
energy and reaction order. The stochastic simulation results suggest
that temperature overshoot can present a coefficient of variation of
about 30%, with potential implications in the amount of scrap
during the manufacturing process of composite materials. Further-
more, the time of temperature overshoot has a coefficient of varia-
tion of 1.7%.

The modelling approaches presented in this work can be
extended to investigate the effect of other sources of uncertainty
such as heat convection coefficient and thermal boundary condi-
tions variations as well as fibre misalignment on both heat transfer
and process stress effects taking place during the cure. The outcome
of this work will allow incorporation of variability in process design/
optimisation to address robustness – performance trade-offs. In
addition, development and incorporation of stochastic simulation
schemes in existing commercial process simulation tools will lead
to efficient and robust process designs.
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