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Abstract

We model the decentralised defence choice of agents connected in a directed
graph and exposed to an external threat. The network allows players to receive
goods from one or more producers through directed paths. Each agent is endowed
with a finite and divisible defence resource that can be allocated to their own se-
curity or to that of their peers. The external threat is represented by an intelligent
attacker who aims to maximise the flow-disruption by seeking to destroy one node.
The set of the attacker’s potential targets is a subset of the set of middleman nodes
and producers. These are the critical nodes with highest brokerage power in a
directed network and therefore crucial to the system-flow. We show that a de-
centralised defence allocation is efficient when we assume perfect information: a
centralised allocation of defence resources which minimises the flow-disruption
coincides with a decentralised allocation. On the other hand, when we assume
imperfect information, the decentralised allocation is inefficient and under acyclic
structures involves no reallocation of defence resources between the nodes. Fi-
nally, for a given connected graph, by increasing the link-density we can reduce
the set of middleman nodes and thus the number of potential targets. This also
decreases the probability of a successful attack.
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1 Introduction

Institutions, individuals and countries all derive benefit from being part of an interconnected

system. A network of pipelines allows the spread of energy resources through different coun-

tries; a system of communication channels guarantees a flow of information through mem-

bers of a community; a supply chain helps to create and sustain competitive advantage in

any specific market. In all these cases, as well as in many others, network structures create

"value" for the members composing it. A natural question arises: how would they defend

their network against a potential external threat?

The types of threats that such networks could face are many and varied. Here, we anal-

yse the case of a strategic attacker who targets a single agent of the network. For example,

this could be the case of a war-threat against individual countries which are connected by

trade-paths.1 In particular, we model a sequential game where in the first stage each player

in the network (simultaneously) decides how to allocate between themselves a defence re-

source which is infinitely divisible, rival, and non-transferable to third parties. This resource

monotonically increases a node’s defence ability against an attack. As an example, in the

case of a war or terrorist threat, this could either be the share of a country’s budget ex-ante

allocated to domestic and foreign military infrastructures or a measure of alliance or loyalty

between two countries. In the second stage, the attacker chooses her target-node given the

defence strategy profile chosen by the players in the first stage. The payoff of the attacker is

assumed to increase with the size of the flow-disruption caused by a successful attack.

We study two different scenarios, S0 and S1, which differ in the information available

to the defendants about the attacker’s objectives.2 Under scenario S0, the defendants do not

know the attacker’s payoff or objectives and therefore, they are assumed to believe that each

1Other examples are worth mentioning. As we previously said, a DAG structure could describe a hierarchical
structure such as a criminal organization, and the attacker any institution willing to disrupt it. In a supply chain,
an attacker could be an incumbent firm strategically targeting a market segment to attack.

2Hereafter we define as "defendants" the nodes composing the network to be defended and as "attacker" the
external player attacking one of the defendants.
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node is attacked with uniform probability. We show that the unique possible equilibrium

defence profile implies a inefficient allocation of defence resources irrespective of the net-

work structure considered and, if the network is acyclic, that each node will allocate the

entire individual defence resource entirely to herself. In the second setting, S1, the defen-

dants have perfect information about the attacker’s payoff. In equilibrium, the defendants

share resources between themselves taking into account their location in the network struc-

ture; the nodes which receive positive defence resources from other peers must belong to the

set of the producers and/or middleman nodes. The latter are the nodes which have the highest

brokerage power among the intermediary nodes in a directed network. Interestingly, when

we assume perfect information, the equilibrium profiles turn out to be also efficient: a hypo-

thetical central planner aiming to minimize the expected network disruption of a successful

attack would allocate the defence resources as in the equilibrium decentralised profile.

One of the main results highlighted by the literature on conflicts pointed out how decen-

tralised defence choices could lead to a security race among multiple defenders and conse-

quently to inefficient defence allocations. In particular, this could arise when an increased

defence capability of one location may increase the probability that other locations are at-

tacked.3 We show that in our model this negative externality would not arise. The common

value faced by nodes belonging to a connected path from a producer to themselves aligns

their incentives towards the resilience of the same path and offsets this type of externality.

In this paper we focus attention on directed networks.4 This type of structure is observed

in systems where one or more producers "send" a good across the network through directed

linkages. An example of this could be an arms-trade system; few countries produce arms

3See Bier (2006) and Sandler & Enders (2004) for surveys and the works by Lapan & Sandler (1993), Sandler
et al. (2003), Keohane & Zeckhauser (2003), Kunreuther & Heal (2003), and Heal & Kunreuther (2004) which
describe the strategic interactions arising when multiple defenders allocate defence resources across multiple
locations.

4We also remark the fact that any undirected network structure could be reinterpreted in our setting as a
directed graph where each connected pair (i, j) is linked by a bilateral edge, or ij, ji ∈ L with L the set of
linkages.
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themselves and most therefore rely upon a system of directed trade-paths to receive the prod-

uct. Supply chains display similar characteristics; (directed) connections between firms from

distinct sectors of the economy guarantee the provision of a good to final customers. Finally,

any hierarchical structure can be represented by a directed structure: a directed link from i to

j can describe a hierarchical order between them which follows the direction of the link.5

This paper aims to contribute to the literatures on networks and game theory. To the best

of our knowledge, this is the first work studying the strategic decentralized reallocation of

defence resources across players connected in a directed network structure. Our model in

particular could complement existing ones which study the individual security choices of

agents connected in a network structure. Secondly, the directed nature of the graph could

effectively describe various networks observed in many social and economic environments

where the direction of flows between peers is crucial in defining the value of the same struc-

ture to the peers.

The paper is organised as follows. Section 2 introduces the rest of the literature which is

relevant to the paper. Section 3 and 4 describes the model setting. Section 5 presents the main

results and two examples. Section 6 concludes.

2 Related Literature

The economic literature on conflict is wide. In addition to the works previously mentioned,

we should report Major (2002) and in general the class of models called Colonel Blotto games.

These models describe the zero-sum conflict game between two parties where one party may

find it optimal to leave some locations undefended when they are of sufficiently small value

and therefore never targeted by the rival. Our model shares this feature, and in particular,

due to the fact that our attacker aims to maximise the expected path-disruption, some nodes

5More specifically, any hierarchical structure is a directed acyclic graph (DAG) since it allows for a topological
ordering over the vertices/nodes and thus implying directed linkages and excluding cycles.
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will be naturally "valueless", therefore they will never be attacked and thus defended. Bier

et al. (2007) describe a game with an attacker and both centralised and decentralised defen-

dants. They show how a centralised defence allocation is more efficient than a decentralised

one since it can exploit the negative externalities across multiple locations in order to attract

the attacker toward the least valuable ones; individual defendants fail to internalise the cost

of their defence allocation and thus over-invest in defensive measures. In our model, such

types of inefficiencies do not arise and a decentralised allocation will be inefficient only un-

der imperfect information. The intuitive reasoning behind this is as follows: Each node has

a specific value which is measured in terms of the marginal path-disruption caused by their

elimination. Nodes with zero impact will never be targeted by the attacker, thus being un-

defended would not be enough to attract the attacker to these locations. On the other hand,

nodes with positive impacts will be defended proportionally to their value, in order to make

the attacker indifferent toward attacking any one of them.

Dziubiński & Goyal (2013), Goyal & Vigier (2014) and Cerdeiro et al. (2015) study the im-

pact of the network on the resilience of the structure and on the defence resources allocation.

In the first two works, the authors describe a sequential game in which a “designer” moves

first and chooses both a network and a defence allocation, and in a second stage the “adver-

sary” chooses how to allocate attack-resources across the nodes. In our setting the defence

allocation is decentralised and the attacker can only attack one node with fixed intensity.

Furthermore, in both the works the value of the network relies on the size of the connected

components. In our model the value of the network as perceived by each node is conditional

only on the existence of directed paths from the source(s) to themselves; any modification to

the network which does not involve such paths will be payoff irrelevant.6

Finally, in Cerdeiro et al. (2015) the authors study the decentralised defence investment

choice of players connected in an undirected network structure. A designer chooses a network

6In Goyal & Vigier (2014) the authors also study how successful sequential attacks could allow the attacker
to “conquer” the entire network. Our game terminates with the attack’s target choice.
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architecture and a strategic attacker targets one node in order to minimise the connectivity of

the structure. In particular, they analyse both the centralised and decentralised choice of se-

curity at node-level and show that decentralised security choices could lead to both over and

under-investment in security. Our model differs from theirs in two dimensions. Firstly, we

assume individual defence resource costs as sunk; the quantity of defence resources owned by

each node is given and thus not a choice variable. Secondly, each player can optimally reallo-

cate defence resources to themselves or to any other peer in the network. We argue that while

in some case it could be reasonable to assume the model setting proposed by the authors (e.g.

in the case of a strategic cyber-attack threatening a network of users and the individual choice

to invest or not in computer protection), in others it could be more suitable to assume defence

investments as a sunk cost which can only be reallocated, ex-post, to different locations. This

could be the case for example when the resource is a measure of loyalty between agents, or

when individual investments in security require time to be fully operative.

3 Network preliminaries

A directed graph G(N, L) is a pair (N, L), where N = {1, ..., n} is a finite set of nodes and L

the finite set of directed edges or links ij connecting a node i to a node j.7 Being directed,

it is not necessarily true that if ij ∈ L then ji ∈ L.8 A (directed) path in G is a sequence of

connected nodes Pij(G) = {ik, ik+1..., im} of order |Pij(G)| ≥ 2, where ik = i, im = j, i 6= j, and

ikik+1 ∈ L for every k = 1, ..., m− 1.9 We say that a node j is reachable from a node i if there

is a directed path Pij.10 A directed graph G is connected if the underlying undirected graph

7With abuse of notation, throughout the paper we will use interchangeably the terms network for graph and
player or agent for node.

8We assume no self-loops, or ii /∈ L.
9To simplify the analysis we consider only connected graphs: there exists a path connecting any pair of

nodes. Moreover, in the following analysis we will consider only simple paths, or paths where each node appears
at most once. To simplify the notation we drop the term "simple".

10To ease the notation any elements parametrized to a specific graph G is indicated without specifying G with
exception of cases where it is important to distinguish between two or more distinct graphs.
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obtained by replacing all directed links with undirected ones is a connected graph, while is

strongly connected if there exist directed paths Pij and Pji for any pair of nodes (i, j). Define

Gi ⊆ G = (N′, L′) where N′ = {j ∈ N : Pji 6= ∅} ∪ {i} and L′ = {jl ∈ L : j, l ∈ Pji}.

In other words, Gi is a connected component composed by i and any node j from whom i

is reachable. The set of all directed paths from a source node s to any other player in N is

Ps, while Pij is the set of all the existing paths from i to j. A directed acyclic graph (DAG) is a

directed graph with no loops. If Pij 6= ∅, then we call descendant nodes of i any k ∈ Pij \ {i}

and i is an ancestor node of k. A direct descendant node of i is a descendant node j ∈ N : ij ∈ L

and a direct ancestor node of i is an ancestor node j ∈ N : ji ∈ L. The sets of descendant and

ancestor nodes of i are Si(G) = {k : Pik 6= ∅} and Fi(G) = {k : Pki 6= ∅} respectively, while

the sets of direct descendant nodes and direct ancestor nodes of i are respectively Sd
i (G) =

{k ∈ Si(G) : ik ∈ L} and Fd
i (G) = {k ∈ Fi(G) : ki ∈ L}. The out-degree of i is given by

η+
i = |Sd

i |, while the in-degree of i by η−i = |Fd
i |. The degree of i is simply ηi = |{Sd

i ∪ Fd
i }|. We

define a node i a source if η−i = 0 and η+
i ≥ 1, a leaf or sink node if η+

i = 0 and η−i ≥ 1, and

intermediary node if η+
i , η−i ≥ 1. We define the set of producer nodes in G by O(G) ⊆ N and

we assume that O(G) 6= ∅. With abuse of notation, we define G− i = (N \ {i}, L− i) with

L− i = {jl ∈ L : j 6= i, i 6= l} as the graph G (not necessarily connected) after the removal

of the node i and any link ij, ji ∈ L. Formally Finally, we indicate with G(N) the set of all

directed graphs over the set of nodes N.

4 Model

Consider a finite set of (n + 1) players M = N ∪ {A}, composed by the set of nodes N =

{1, ..., n} : |N| ≥ 2, and the (unique) attacker A. The nodes in N are connected by a directed

structure G(N, L) and we assume O(G) 6= ∅, or there exists at least one node in G which is a

producer. Moreover, necessary condition for s ∈ N to be a producer is η+
s > 0 (positive out-
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degree). To rule out the possibility of loops, or being a producer and a receiver of one’s own

good, we assume that if there exists a loop Wss, then at least two producers must belong to

Wss.11 Each producer s ∈ O(G) sends a quantity xs > 0 of a good through the network using

the existing directed paths. Each i is endowed with a unit of a divisible defence resource,

d = 1, which can be allocated to herself and/or to any other player in N. Define with Di =

dii + ∑j 6=i dji, the total resources owned by node i where dij indicates the resources allocated

by j to i. For each player i, it must hold the following constraint d ≥ dii + ∑j 6=i dij. Any

resource received from other peers is assumed to be non-transferrable to third nodes, i.e. the

quantity dij > 0 allocated by i to j cannot be reallocated by j to a third node k 6= j.

If attacked, with probability (1− αi(Di)) ∈ (0, 1] a node i is “destroyed” along with any

directed linkages to or from her. αi(Di) : R+ → [0, 1) is a Tullock contest function (Tullock

(2001)), continuous and concave with respect to its argument, described by

αi(Di) =
Dγ

i
βγ + Dγ

i
∈ [0, 1)

where β > 0 is a constant parameter defining the attack resources of A and γ ∈ [0, 1] is a

technology parameter.

As previously introduced, we consider two distinct scenarios, S0 and S1, described as

follows:

S0: Random attack scenario: Player A attacks one of the nodes with equal probability. Pa-

rameters β, γ are common knowledge.

S1: Strategic scenario: Player A attacks strategically. The payoff of A and the parameters

β, γ are known by the defendants.

The two distinct cases allow us to check the impact of a strategic environment on the optimal

individual choices of the defendants. Below, we describe more in detail the game Γ = 〈M, (%
11If there exists a node i ∈ N with η+

i > 0 and η−i = 0, a source node, then it must be a producer.
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)i∈M, δi∈M, SA〉. We focus on subgame perfect equilibria (SPNE) of the game Γ.

Timing: Two-stage sequential game. Under S1, in the first stage the nodes in N simulta-

neously choose their defence allocations, while in the second stage, given the nodes’

choices, the attacker chooses her unique target. Under S0, in the first stage the nodes in

N simultaneously choose their defence allocations, while in the second stage there is a

random attack by A on one of the nodes in N.

Strategies: Each node i ∈ N chooses a strategy which is a vector of n coordinates di =

(di1, ..., din) where dij > 0 and ∑n
j=1 dij = 1 which characterizes i’s defence allocation

among the nodes in G(N, L). All the individual strategies of the nodes determine a

defence profile SD which is a set of vectors composed by all the individual vectors di

for each i. A strategy for the attacker A is a function a : Rn → ∆(N), which for a given

defence profile SD provides a probability distribution ∆(N) over the nodes in N. Under

S0 we indicate with ā the random attack, or the uniform distribution over N. When not

specified otherwise, we assume a S1 scenario. A strategy profile is a pair (SD, a(SD)).

The outcome of a strategy profile (SD, a(SD) = i) is a residual network G̃ ∈ {G, G− i}.

The preferences of the players are determined by the relative utilities from the outcomes

of the strategy profiles as described below.

Payoff: A node i ∈ N consumes the quantity xs sent by the producer s ∈ O(G) if and only

if is reachable from s. In particular, the payoff of each player i ∈ N is defined by a

function Ui : G → R given by Ui(G) ≡ f (Xi), where f (·) is a function increasing in its

argument, and Xi(G) ≡ ∑s∈Gi
xs. We also assume that f (0) = 0 and that the payoff of a

player destroyed by A is 0.

Define the following utilitarian welfare function V : G → R, which we call network

value function, given by

V(G) = ∑
i∈N

f (Xi)
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We also define a node i’s disruption value in a network G as V(G − i). Under strategy

a(SD), attacker A attacks gets payoff which depends of the value of the residual net-

work. In particular her expected payoff is

φ(SD, a(SD); G) = − ∑
i∈N

pi

(
V(G− i)

(
βγ

βγ + Dγ
i

)
+ V(G)

(
Dγ

i
βγ + Dγ

i

))

with pi ∈ [0, 1] and such that ∑i∈N pi = 1 is the A’s probability of attacking node

i ∈ N given strategy a(SD). With abuse of notation we indicate with φ(SD, i; G) as the

expected payoff when A attacks player i with probability equal to one.

4.1 Efficient allocation and Middleman nodes

In order to compare the equilibrium decentralised defence allocation with a centralised one,

we introduce a similar problem faced by a central planner which aims to minimise the impact

of a graph-disruption by one attacker. Suppose a central planner endowed of D = n defence

resources which chooses a strategy δe which is a defence allocation defined again as a vector

De = (di) of n coordinates with positive elements di which sum at most n. Similarly to the

previous analysis, we assume a two-stage game where the central planner (C) moves first

and the attacker A moves sequentially. Again, we analyse two scenarios, S0 and S1. In the

strategic scenario, the central planner knows the payoff of A and the parameters β, γ while

in S0 C chooses a defence allocation in the first stage given the following random attack. The

expected payoff of C from strategy profile (δe, a(δe)) is −φ(δe, a(δe); G). Under S1, due to the

perfect information environment and the finite extensive form, we expect the zero-sum game

to have an equilibrium in which the absolute payoff from the minmax strategy of C coincides

with the payoff from the maxmin strategy of A.
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Definition 1. Consider S1. An allocation De is efficient if it is a minmax strategy, or

De ∈ arg min
De

max
i∈N

φ(δe, a(δe); G) subject to ∑
i∈N

di = n

Consider S0. An allocation D̄e is constrained efficient if it solves the problem

D̄e ∈ arg min
De ∑

i∈N
piφ(δ

e, i; G) subject to ∑
i∈N

di = n

with pi = 1/n for all i ∈ N.

We can also present the following result.

Lemma 1. The constrained and efficient allocations coincide.

Solving the constrained optimisation problem in order to minimise the expected payoff of

the attacker, we obtain a minimiser vector of defence allocations which is equal to the one

defining the minmax strategy; under random attack scenario, given equal probability for

each node of being attacked, the defence allocation is proportional to the value V(G − i) of

each i ∈ N. Under strategic scenario, the allocation would be equally proportional to the

V(G− i) values and also in order to make the attacker indifferent to attack each one of them.

Since the attacker’s objectives concern the graph-disruption due to a successful attack, it

is important to highlight which node(s) could be more crucial to the structure and whose de-

struction would cause the greatest structural damage. Intuitively, each producer is important

by construction, since she provides a positive quantity of the good. However, there could ex-

ist at least equally crucial intermediary nodes, which are not necessarily producers but that

guarantee the flow of the same good to third peers.

Given the directed nature of the linkages, we borrow and modify the definition of critical

node proposed by Sims & Gilles (2014). They define a node as critical in a given directed
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network, a middleman, if he is essential to connect at least two nodes in a given directed path.

This measure is particularly suitable to our setting since it takes into account the directions

of the links and the existence of alternative “competing” paths to receive the same flow from

two nodes. As extensively discussed by the same authors, these feature are not present in the

most standard measure of centrality in the literature such as the betweenness centrality.

Definition 2. Let G(N, L) be a directed and i, j, h ∈ N be three distinct nodes.

(a) The node h is a (i, j)-middleman if Pij(G) 6= ∅ and h ∈ Pij. We denote by Mij(G) the (i, j)-

middleman set containing (i, j)-middlemen.

(b) The (i, j)-middleman set for G is the set of all middlemen in G given by

M(G) =
⋃

i,j∈N:i 6=j

Mij(G)

Node h is a middleman if h ∈ M(G) and is a non-middleman if h /∈ M(G).

Informally, we define any intermediary node h ∈ Mij(G) a (i, j)-middleman if he belongs to

any directed path from a node i to a node j. Clearly, the set Mij(G) does not necessarily have

to be a singleton set.

5 Results

We are going to characterise the equilibrium strategy profiles (subgame perfect Nash equi-

libria) under the two scenarios considered. We start assuming S1, and then we study S0.

Finally we discuss the equilibrium defence profiles in terms of efficiency. Before presenting

the results we formally define the set of potential targets T(S∗D, a∗; G) as the set of nodes which

in a given equilibrium profile (S∗D, a∗(S∗D)) have positive probability to be attacked by A. In

particular,
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Proposition 1. Consider S1. An equilibrium strategy profile (S∗D, a∗(S∗D)) exists and it is such that

• T(S∗D, a∗; G) ⊆ M(G) ∪O(G)

• d∗ij > 0⇒ j ∈ Msi ∨ j ∈ O(G) for all i ∈ N and s ∈ O(G).

The proposition states that an equilibrium exists and implies that any target chosen by the

attacker will belong to the set of middleman nodes and/or producers. Moreover, the unique

nodes that are expected to receive defence resources also belong to these sets. Under S1, the

equilibrium profile implies that the defendants will optimally allocate resources in order to

make A indifferent to attacking one of the nodes in T(S∗D, a∗; G), which is a subset of nodes

essential to receive units of good from the producer(s). Since each node could have a distinct

disruption value, to make A indifferent, the defence allocation will not necessarily be ho-

mogeneous across the nodes but proportional to the nodes’ disruption values. In particular,

define k = |φ((S∗D, i; G)| for all i ∈ T(S∗D, a∗; G). It must hold for all i

D∗i = β

(
k + V(G− i)

k + V(G)

) 1
γ

where it is clear that D∗i proportionally increases with the node i’s disruption value. Note

that an equilibrium profile will also imply that ∑i∈T Di = | ∪ Si(G)|. In words, the attacker

will target a subset of nodes with the highest disruption value. Any node outside the set

T(S∗D, a∗; G) will have zero defence resources and thus, the aggregate amount of defence

received by the nodes in T(S∗D, a∗; G) is equal to the size of the union of their follower sets.

Proposition 2. Consider S0 and O(G) ⊂ N. Then, any equilibrium configuration implies S∗D :

D∗i = 1 for all i ∈ N and V(G − i) = V(G − q) > V(G − j) for all i, q ∈ T(S∗D; ā, G) and

j /∈ T(S∗D; ā, G). Moreover, if G is acyclic, S∗D : d∗ii = 1 for all i ∈ N.
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The proposition states that the unique equilibrium profile we expect in S0 implies that each

node will get identical defence resource and if the graph is acyclic, this also implies that each

node allocates full resources to himself. This result is mainly driven by the concavity of the

contest function and by the ordering of the nodes implied by any directed structure. Note that

when choosing the optimal allocation, the nodes take into account only their own probability

of being disrupted if attacked by A and not the nodes’ general disruption values. Indeed, this

will be the main difference with the problem faced by the central planner under S0.

Having characterised the equilibrium profiles under the two different scenarios, we can

check whether these profiles are efficient. In other words, we can state under which condi-

tions a centralised allocation coincides with a decentralised one.

Proposition 3. Under S1, the equilibrium defence profile S∗D is efficient while under S0, S∗D is never

constrained efficient.

Under S1, the objective of each player is aligned with that of the central planner. In particular,

the common goal of each node is to ensure that the path essential for receiving a good from a

source is as reliable as possible. Since the objectives of the attacker and the network itself are

known by each defendant, they can non-cooperatively coordinate to the efficient allocation

which is Pareto optimal. In contrast to one of the common results in the literature, we do not

observe a security race in this setting. This usually arises when individual security choices

create negative externalities on the rest of the peers: an increase in my defence makes other

peers of my component relatively more attractive to the attacker. This does not happen in

our model since the relatively higher defence capacity of third nodes could increase a node’s

chance of receiving the good by a path passing through them.

The following remark is worth mentioning. The source nodes do not necessarily receive

higher protection than the middleman nodes. For example, imagine two sources connected

to a common middleman node which is as sole responsibility for conveying their goods to
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the rest of the network. In such a case, this middleman node will have the largest disruption

value and therefore he is expected to receive relatively higher defence resources than the two

sources.

5.1 Example

(a) (b)

(c)

Figure 1: Crossed nodes are potential targets (with equal chance of being attacked) under S1 scenario. The
white nodes are the producers, the light blue are intermediary nodes, and the dark blue are sink nodes.

Consider the graph in Figure 1a. The presence of the loop {13, 31} implies that the nodes 1, 3 ∈

O(G), i.e. they are both producer and intermediary nodes. The set of middlemen is M(G) = {1, 3} =

O(G). The disruption value of each node is given by V(G − 1) = 4, V(G − 2) = 0, V(G − 3) =

3, V(G − 4) = 0. Assume for simplicity β = γ = 1. The equilibrium strategy profile implies
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D∗1 = 2.3; D∗3 = 1.7; D∗2 = D∗4 = 0 and a∗ = {1, 3, p1 = p3 = 0.5}. Consider the tree graph

(DAG) in Figure 1b. The set of producer is singleton, O(G) = {1}, the set of middleman nodes is

M(G) = {1, 2, 3, 5, 6}, but T = {1, 2}. In fact, any equilibrium needs to satisfy the following defence

and attack profiles: S∗D = (D∗1 = 5.4, D∗2 = 2.6, D∗i = 0 : i = {3, 4, 5, 6, 7, 8}) and a∗ = {1, 2, p1 =

p2 = 0.5}. Finally, the star graph in Figure 1c implies S∗D = (D∗1 = 8, D∗i = 0 ∀i 6= 1) and

a∗ = {1, p1 = 1}.

5.2 Impact of a marginal link

In this section we study the impact of a marginal link in a given connected G(N, L) on the

set of potential targets of A. Intuitively, the activation of an extra link in a given connected

structure strictly increases the number of existing paths and therefore a node which previ-

ously was uncontested may end up to be contested due to the creation of a new path(s): All

things being equal, we expect the set M(G) to be weakly smaller for higher network density.

Eventually, if each node is directly linked to a source, M(G) = O(G), or the only possible

targets of A are the source node(s).

Consider two connected directed graphs G(N, L) and G′(N, L′) such that G′ = G + ij

with ij /∈ L. Define (S∗D, a∗) and (S′D, a′) the equilibrium profiles in G and G′ respectively.

Recall that h ∈ M(G) ⇐⇒ h ∈ Pij for at least one pair (i, j) ∈ N. This directly implies that

M(G′) 6= M(G) ⇐⇒ ∃h ∈ M(G) : h /∈ Pij(G′) ∨ ∃h ∈ M(G′) : h /∈ Pij(G); In words, the

sets of middleman nodes in G and G′ differ if and only if there exists at least one node which

is a middleman in G but not in G′ or vice versa. We can state the first result.

Lemma 2. Suppose a connected G and G′ = G + ij with ij /∈ L. Then, |M(G′)| ≤ |M(G)|.

Moreover, for each i ∈ T(S∗D, a∗; G), the probability α(D∗i , β) decreases with |T(S∗D, a∗; G)|.

In words, for a given connected network structure G, a marginal link ij weakly reduces the

size of the set of middleman nodes since a new linkage can only create new paths between
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a source and other nodes. Moreover, in a connected network an extra link could only either

keep the previous middleman nodes uncontested, or make one or more of them contested and

therefore not middleman. This happens since the set of all paths existing between two nodes

in G is a subset of the set of paths existing between the same nodes in G′. Thus, increasing

the density of a given connected structure, we expect the number of middleman nodes, and

therefore the set of potential target of A, to weakly decrease. Finally, the attacker could benefit

from a greater set of potential targets. This happens since a larger set T(S∗D, a∗; G) implies a

spread of defence resources across more players, and therefore each potential target will be

individually weaker in T(S∗D, a∗; G) than in T′(S∗D, a∗; G′) ( T(S∗D, a∗; G).

5.3 Welfare Analysis: impact of higher |T(S∗D, a∗; G)|.

We analyse the impact of increasing the size of the set T(S∗D, a∗; G) on the sum of the defen-

dants’ utilities. Without loss of generality, suppose a graph G(N, L) such that |N| = n ≥ 2,

O(G) = {s} and M(G) = ∅. We know that this setting implies T = {s}, i.e. the attacker

attacks the producer s with probability equal to one. Given the strategy profile (S∗D, s), the

expected network value is

W = E[V(G̃)] = αs(Ds, β)n f (xs) (1)

In words, since the attacker will attack the producer s with certainty, the utility of each

player in G fully depends on the survival of such node. Consider now an alternative graph

G′(N′, L) such that again O(G) = {s} and |N′| = n, but |M(G′)| ≥ 1 and in particular,

|T(S∗D, a∗; G)| = k > 1; there exists at least one middleman distinct from the producer such

that the potential target set is not singleton. Assume for simplicity that each middleman has

the same disruption value. We know that S∗D will be such that A will be indifferent to attack-

ing any of the nodes in this set. Define the constant probability of being attacked for each
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player in T(S∗D, a∗; G) as p = 1/|T(S∗D, a∗; G)|. It is easy to see that the expected welfare now

is

W ′ = pn f (xs)
[
αs(D′s, β) + (k− 1)αj(Dj, β)

]
+ p(k− 1)(1− αj(Dj, β))m f (xs) (2)

where j ∈ M(G) and m ≡ n− |Sj|. Therefore, W ≥W ′ if and only if

∆W = n[αs(Ds, β)− pαs(D′s, β)− p(k− 1)αj(Dj, β)]− p(k− 1)m(1− αj(Dj, β)) ≥ 0 (3)

Note that

d(∆W)

dβ
≤ 0 ⇐⇒

(
dαs(Ds, β)

dβ
− p

dαs(D′s, β)

dβ

)
≤ (n−m)

n
p(k− 1)

dαj(Dj, β)

dβ

or for m close enough to n, ∆W monotonically decrease with respect to β for some large

enough β value. Moreover, for m large enough, if β → 0 then ∆W > 0, while if β → ∞

then ∆W < 0. Therefore, we can find a value, β∗ > 0, which reduces ∆W = 0. In other

words, there exists an attacker’s resource level β∗ such that for any β < β∗, network G leads

to higher welfare than G′, while for any β > β∗ the opposite is true.

We remark that this result hold for any graph G with one producer and k− 1 middleman

nodes which are part of the potential targets of A, and which have identical disruption value.

In particular, the specific architecture of G does not affect the qualitative result of the analysis.

In the plot of Figure 2, we show as example the ∆W function for G the star graph of n = 8

peripheral nodes and one producer in Figure 1c and G′ is a tree graph as the one in Figure

1b. In the Appendix section A2 we propose a similar welfare comparison between a star

graph and a very common network structure, the core-periphery graph. There, we aim to

study under which conditions it may be beneficial to spread the production evenly among
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more than one producers. In equilibrium we expect a lower individual defence ability of the

potential targets but also a lower impact of a successful attack in terms of network disruption.

Figure 2: The threshold β level is β∗ ≈ 6.8; for β < β∗ the star graph guarantees higher welfare than the tree
structure, while the opposite is true for β > β∗.

6 Conclusion

We study the decentralised defence resources allocation by players connected in a directed

network structure. The players face the threat of a strategic attacker aiming to maximally

disrupt the flow from the producer(s) to the rest of the peers. In particular, we consider two

scenarios which differ in the information owned by the defendants. We find that, under per-

fect information (S1), the nodes optimally share resources between them as function of their

relative location in the network. In particular, the nodes which receive positive defence re-

sources belong to the subset of middleman nodes and producers. These are the nodes whose

location is critical to the flows of goods through the network. On the other hand, under

imperfect knowledge (S0), players do not necessarily share defence resources and instead if

the network structure is acyclic they allocate their entire defence endowment to themselves.

Interestingly, under S1 the decentralised allocation is also efficient: the equilibrium defence

profile coincides with that of a central planner aiming to minimise the potential flow disrup-
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tion.

In the model proposed we consider an attacker which is able to attack only one node and

with fixed intensity. Further extensions could relax this assumption allowing the attacker to

allocate attack-resources to multiple locations. Moreover, in our setting the network structure

is given. Many applications could ask to relax this assumption and analyse the consequences

of a strategic rewiring of nodes’ linkages. This extension in particular could open interesting

new research questions. Intuitively, the nodes could face a trade-off between the marginal

benefit from activating an extra link in order to decrease their dependency on middleman

nodes and its marginal cost given by a maintenance price per link. Finally, a natural exten-

sion of the model could study the problem of a central planner choosing both the optimal

defence allocation across the nodes and the architecture of the graph. This could help to mea-

sure potential inefficiencies between the decentralised and centralised allocation of defence

resources.
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A Appendix

A.1 Proofs of the results

Proof of Proposition 1. The existence of an equilibrium profile is guaranteed by the finite

and sequential nature of the game and by the perfect information scenario. To see that d∗ij >

0 ⇒ j ∈ Msi ∨ j ∈ O(G) with s ∈ O(G), suppose d∗ij > 0 and j /∈ Msi ∧ j /∈ O(G). Then

the difference Ui(G − j) − Ui(G − q) = 0 for any Dj ≥ 0 and q 6= j, thus d∗ij would be

ineffective. We know that for any player i ∈ N there always exists at least one player q such

that Ui(G − q)−Ui(G − t) > 0 with t 6= q. This means that i could improve her chance of

receiving a good by transferring defence resources from j to q, thus d∗ij = 0.

We can show that S∗D is such that T(SD, a(SD); G) is as large as possible. Suppose that there

exists a defence allocation SD satisfying the condition stated above and such that φ(SD, i; G) =

K > 0 for all i ∈ T. For simplicity and without loss of generality, suppose |T| > 1. It is clear

that any deviation from this allocation will imply a singleton set T̃ 6= T. Suppose i ∈ T and a

deviation by a node j : dji > 0 which consists in a reduction of defence sent to i, say d′ji < dji,

and thus φ(S̃D, i; G) > K. Then, the best response of A would be a∗(S̃D) = i with probability

one, or T̃ = {i}. Then node j could optimally reallocate resources to i in order to increase i’s

probability of surviving the attack until we again obtain φ(SD, i; G) = K, and thus i ∈ T.

Proof of Proposition 2. We start showing that the profile S∗D : d∗ii = 1 for all i ∈ N, and

a∗(S∗D) such that V(G− i) = V(G− q) > V(G− j) for all i, q ∈ T and j /∈ T is indeed a SPNE.

Suppose node i deviates from this profile and thus dii < 1 and dij > 0 for some j 6= i. Then,

since djj = 1, Dj > 1 > Di. Given the concavity of the Tullock function assumed and the

equal chance for each node of being attacked, the deviation is not profitable, thus d∗ii = 1.

Suppose G is acyclic. First note that if there exists a source s and a sink node q, then

dss = dqq = 1. This is a consequence of the fact that d∗ij > 0 ⇒ j ∈ Fi(G) for all i ∈ N, j 6= i.
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Therefore, we only need to check if dii < 1 for at least one intermediary node i ∈ N. Suppose

an intermediary node i with the sink node q ∈ SD
i as direct follower. Then i will also allocate

dii = 1 since dqi = 0. Moreover, any acyclic structure has a partial order ≥ on its nodes, thus

for the same argument any intermediary node k, ancestor of i will choose dkk = 1. In the case

that there are no sink and source nodes, the assumption which excludes the possibility for

any producer of receiving his good in a loop allows for a partial order of the nodes, and for

the same reason previously stated d∗ii = 1.

However, suppose G is cyclic. The equilibrium configuration can only guarantee the more

general condition D∗i = 1 for all i ∈ N. To see this, consider a cycle graph of n ≥ 4 nodes and

thus at least two producers. It is easy to see that d∗ij = 1 for all i, j such that j is the ancestor

node of i is indeed an equilibrium defence profile; any deviation implies that a path from

one producer to other nodes is not optimally defended and therefore the deviation cannot be

profitable. This concludes the proof.

Proof of Proposition 3. The case under S0 is trivial and therefore omitted. Consider the

scenario S1. Suppose an equilibrium profile (S∗D, a∗). We know that |T| ≥ 1, ∑i∈T Di = n,

the expected payoff of A is φ(S∗D, a∗(S∗D); G) with pi = 1/|T| ∀i ∈ T, and finally V(G− i) >

V(G − k) and D∗i > D∗k ∀i ∈ T, k 6= i. Suppose by contradiction that there exists another

equilibrium profile (S̃D, ã) 6= (S∗D, a∗), which is efficient. This means that φ(S̃D, ã(S̃D); G) <

φ(S∗D, a∗(S∗D); G). Since in equilibrium it must be that φ(S∗D, i; G) = q ∀i ∈ T and φ(S̃D, j; G) =

t ∀j ∈ T̃ with q and t positive real numbers, we can rewrite the condition simply as t < q.

Initially we stated that (S∗D, a∗) implies V(G− i) > V(G− k) ∀i ∈ T , k /∈ T, thus since (S̃D, ã)

is an equilibrium profile, it must be that T̃ ⊆ T or T̃ ⊇ T.

We are going to prove that T = T̃, or T̃ 6⊂ T and T̃ 6⊃ T. Suppose T̃ ( T. This means

that there exists a player w ∈ T and w /∈ T̃. However, this also implies that φ(S̃D, q; G) <

φ(S̃D, j; G) < q where Dq = 0 and therefore q /∈ T, which is a contradiction. Thus, T̃ 6( T.

Suppose T̃ ) T. Then there exists some node who belongs to T̃ but not to T. Define the
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nodes w such that w ∈ T̃ \ T and nodes k such that k ∈ T̃ ∩ T. We know that for any

node j ∈ T̃, it must be that φ(S̃D, j; G) = t and Dj > 0. Thus, φ(S̃D, w; G) > φ(S̃D, j; G)

where Dw = 0 and Dj > 0. The initial equilibrium profile implies that any node w is such

that φ(S̃D, w; G) < φ(S̃D, k; G) where Dw = 0 and D − k > 0 which contradicts the last

expression for any node j ∈ T̃. Thus, T̃ 6) T. Therefore, it must be that T̃ = T, or that

(S̃D, ã) = (S∗D, a∗).

Proof of Lemma 1. Under δe we know that φ(δe, i; G) = k > φ(δe, j; G) for all i ∈ T and j /∈

T. Similarly, under δ̃e, the allocation across the nodes must be proportional to their disruption

value and such that φ(δ̃e, i; G) are the smallest possible for each node i. In particular, suppose

δ̃e such that φ(δ̃e, i; G) = z > φ(δ̃e, j; G) for all i ∈ N′ ( N and j ∈ N \ N′ with z a positive

real number. We are going to show that it must be that N′ = T. Suppose it is not true.

Then, it is easy to see that N′ 6= T ⇒ N′ ( T ∨ N′ ) T. Suppose N′ ( T. This means that

∃i ∈ T \N′ : Di = 0 and φ(δ̃e, i; G) < φ(δ̃e, j; G) with j ∈ N′ such that Dj > 0. This contradicts

δe since it required that φ(δe, i; G) > φ(δe, j; G) for any i, j ∈ T such that Di = 0 and Dj > 0.

The same argument is valid for the case N′ ) T. Thus, N′ = T and therefore δe = δ̃e.

Proof of Lemma 2. It is trivial to see that there exists a player q ∈ N such that |P′sq| > |Psq|,

with P′sq and Psq respectively the sets of directed paths from s to q under G′ and G and in

particular P′sq ) Psq. Suppose Msq(G) 6= ∅. We can show that |Msq(G)| ≥ |Msq(G′)|, or

there is no player h such that h /∈ Msq(G)∧ h ∈ Msq(G′). Suppose by contradiction that there

exists such player h. This means that h ∈ P′sq ∧ h /∈ Psq, which is not possible since Psq ( P′sq.

Therefore, there is no such player h. Finally, since for any node k ∈ N such that |P′sk| = |Psk|

it must be that Msk(G) = Msk(G′), we obtain that |M(G)| ≥ |M(G′)|.

To see why a greater number of potential targets decreases αi(Di, β) for all i ∈ T, suppose a

graph G and an equilibrium profile such that |T| = m > 1. We know that φ(S∗D, i; G) = z > 0

for all i ∈ T. Suppose we activate a new link obtaining G′(N, L′) and T′ ⊆ T. If T′ = T,
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the probability αi(D′i , β) = αi(Di, β) with D′i ∈ S∗
′

D and for all i ∈ T′. Suppose T′ 6= T

and such that |T′| < m. We know that T ) T′ and that D′i > Di by Proposition 1, thus

αi(Di, β) < αi(D′i β).
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A.2 Star Vs Core-Periphery

Suppose n players in a star G(N, L) with one producer and n− 1 non-producers players. The

producer produces one unit of good. In particular, the node O(G) = {i} and i is also the

center or hub of the star network, Moreover L is composed only by links ij with j 6= i. It is

easy to check that the equilibrium profile is such that the unique target of A is i, i.e. T = {i}

is singleton or i is attacked by A with certainty. The expected welfare when i is the unique

target of A is simply

W = α(n, β)n f (1)

The following trade-off is intuitive. A structure with a unique potential target concentrates

all the defence resources on a unique player making him particularly resilient to attacks. On

the other hand, a network such as a star where all the flows depend on the existence of the

hub leads to a maximal disruption, in the case of a successful attack.

Figure 3: A star-shaped structure (left) and a core-periphery one (right). The producers are white colored while
the peripheral non-producers are black. In the star T = {1} and D∗1 = 9 while in the core-periphery structure

T = {1, 2, 3} and D∗i = 3 for all i ∈ T.

We can now compare W to the welfare level when we assume a core-periphery graph

where the same unit of good is produced in equal share by 1 < m < n producers. In par-
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ticular, we define with core-periphery structure a directed network where the core is com-

pletely connected (there exists a bilateral link for each pair of nodes in the core), and n− m

nodes receive only one link from one of the nodes in the core (peripheral nodes). We as-

sume that the n − m non-producers are equally connected to one of the producers so that

each producer is directly connected to (n−m)/m non-producers. This structure makes each

producer j ∈ O(G) a potential target of A and in equilibrium we expect D∗j = n/m for each

j. Intuitively, each producer disruption value is smaller than the previous case. However, the

total defence resources are now spread across all the m producers instead of being concen-

trated in one and thus each individual target’s probability of survival is smaller than in a star

structure. The expected welfare is

W ′ = α(n/m, β)n f (1) + (1− α(n/m, β))(m− 1) f
(

m− 1
m

)( n
m

)

Therefore, W ≥W ′ if and only if

n f (1)(α− α′)− (1− α′)(m− 1) f
(

m− 1
m

)( n
m

)
≥ 0 (4)

where α ≡ α(n, β) and α′ ≡ α(n/m, β). It is easy to check that the function on the left hand

side of (4) is strictly concave with respect to β given n and m such that n > m, and positive

for relatively low β values. In words, the star structure is preferred to the core-periphery

one only for β ≤ β∗ values. The threshold level β∗(n) increases with n for a given number

of producers m: By increasing n, the hub producer in the star graph increases her defence

capability and therefore a star structure is beneficial despite the certain attack on the unique

producer.

This finally suggests that under this setting a complete network with a directed path be-

tween any pair of nodes is the structure maximizing the welfare for any β > 0 level.12

12Loosely speaking, we can always obtain a complete network with such characteristics by increasing the core
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Figure 4: ∆W(β; n, m) function against β, assuming γ = 1 and linear f (·). For the blue function we assume
n = 9 and m = 3, while for the yellow one n = 9 and m = 6.

In the plot of Figure 4, we compare the cases n = 9 and m = 3 (blue function), with

n = 9 and m = 6 (yellow function). For relatively low attack intensity β, the star structure is

favorite. However, all thing being equal, increasing n, the intersection happens for relatively

higher β levels.

with respect to the peripheral to the limit where m = n, or each node is a producer of 1/n fraction of good and
is connected to the rest of the players.
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