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ABSTRACT

Hexameric helicases are processive DNA unwinding
machines but how they engage with a replication fork
during unwinding is unknown. Using electron mi-
croscopy and single particle analysis we determined
structures of the intact hexameric helicase E1 from
papillomavirus and two complexes of E1 bound to a
DNA replication fork end-labelled with protein tags.
By labelling a DNA replication fork with streptavidin
(dsDNA end) and Fab (5’ ssDNA) we located the po-
sitions of these labels on the helicase surface, show-
ing that at least 10 bp of dsDNA enter the E1 helicase
via a side tunnel. In the currently accepted ‘steric
exclusion’ model for dsDNA unwinding, the active
3’ ssDNA strand is pulled through a central tunnel
of the helicase motor domain as the dsDNA strands
are wedged apart outside the protein assembly. Our
structural observations together with nuclease foot-
printing assays indicate otherwise: strand separa-
tion is taking place inside E1 in a chamber above the
helicase domain and the 5’ passive ssDNA strands
exits the assembly through a separate tunnel oppo-
site to the dsDNA entry point. Our data therefore sug-
gest an alternative to the current general model for
DNA unwinding by hexameric helicases.

INTRODUCTION

In DNA replication helicases work ahead of the poly-
merase, catalyzing base pair separation to generate single-
stranded nucleic acids from double-stranded precursors
(1,2). Hexameric replicative helicases form rings around
DNA and this topology is likely to favour stable DNA sub-

strate binding, permitting long stretches of DNA to be un-
wound. The eukaryotic hetero-hexameric MCM2-7 com-
plex is a replicative helicase as well as part of the replication
initiation machinery (3,4). Many aspects of the catalytic
mechanism of Minichromosome maintenance (MCM) and
other hexameric helicases in general remain poorly under-
stood (5), although structures of homo-hexameric helicases
and their complexes with single stranded nucleic acid seg-
ments are emerging (6-9). However, there is no information
that would indicate how these helicases bind DNA at the
replication fork junction (RFJ) and how this may influence
DNA unwinding.

The papillomaviruses (PV) are small dSDNA tumour
viruses of significant medical importance (10) and the pro-
totype of the group is bovine PV (BPV-1). PVs encode one
highly conserved replication enzyme, El, an initiator and
helicase that is the viral equivalent of the MCM2-7 com-
plex. The N-terminal half of BPV-1 El consists of a reg-
ulatory domain (residues ~1-158) and a sequence specific
origin of replication (ori) DNA binding domain (ori bind-
ing domain; OBD, residues ~159-300), implicated in repli-
cation initiation (11). The C-terminal half (residues ~301-
605, the E1 helicase domain—E1HD) has helicase activity
(12) and can be sub-divided into the oligomerization do-
main (OD, residues ~308-378) and the AAA+ adenosine
triphosphatase (ATPase) domain that includes a flexible C-
terminal acidic tail (AT, residues 579-605) required for he-
licase processivity (7,13,14) (Figure 1). The superfamily 3
helicase E1 also shares significant sequence and structural
homology with the initiator/helicase SV40 Large-T antigen
(L-Tag) (15,16).

Crystal structures of the EIHD show hexamers with two
tiers formed by the OD and the AAA+ domain. The latter
bears the ATPase catalytic residues and the single-stranded
DNA (ssDNA) binding hairpins that project into a cen-
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Figure 1. Schematic representation of the 605 amino acid BPV-1 El protein and helicase action. (A) The N-terminus (residues 1-300) contains the sequence-
specific dSSDNA ori binding domain (OBD) and an N-terminal regulatory domain. The C-terminal residues 301-605 form the helicase domain module
(E1HD) comprising of the oligomerization domain (OD), AAA+ domain and acidic tail (residues 579-605). (B) Two hexameric helicases are thought to
assemble at ori and drive bidirectional DNA replication. The helicase domain module of El is shown in dark grey (E1IHD) and the N-terminal domains,

including the OBD, in light grey.

tral ssDNA binding tunnel. From these data models for nu-
cleotide dependent translocation on ssDNA have been pro-
posed (7,17), but the mechanism of base pair separation re-
mains unknown. The EIHD structure with ssDNA bound
in the central tunnel (7) fits with a ‘steric exclusion’ model
for dsSDNA unwinding, where active translocation on one
ssDNA strand displaces the second ‘passive’ strand. Bio-
chemical and structural studies support a similar mecha-
nism in prokaryotic DnaB (18) and the dsRNA helicase
Rho (8), among others. However, one important inference
that can be drawn from the EIHD/ssDNA/ADP structure
(7) and its revelation of the protein orientation relative to
the direction of ssDNA translocation (3'-5") (19) is that the
N-terminal half of E1 (~residues 1-300) must face the RFJ.
Accordingly, the N-terminal part of El that includes the
double-stranded DNA (dsDNA) binding OBD could influ-
ence base separation at the RFJ through interactions with
the ss- and dsDNA (2). According to the currently accepted
‘steric exclusion’ mechanism, E1 moves in the 3'-5" direc-
tion along the active ssDNA strand, with the N-terminal
half pushing on the fork to separate dsDNA strands outside
the E1 complex (20). However, the evidence for 5'-strand
exclusion in this model is indirect and the role of individ-
ual E1 domains in unwinding remains ill defined. The lack
of structural data on complexes with DNA replication fork
substrates could be explained by the expected highly dy-
namic and mobile nature of such assemblies and by poten-
tial symmetry perturbations and conformational variation
induced by binding of such DNA, hindering crystalliza-
tion and high-resolution EM reconstruction. Indeed, high-
resolution structural data for hexameric helicases in general
are available only for complexes with short single-stranded

nucleic acid segments bound (7,9), establishing that the ac-
tive strand is pulled through the central tunnel of the C-
terminal motor domain.

To advance understanding of the mechanism of dsDNA
strand separation we have used electron microscopy (EM)
and single particle analysis to obtain structures of the full
length BPV helicase E1 and two complexes of EI bound to
a RFJ end-labelled with protein tags. We have used negative
stain EM that allows imaging of samples with high contrast
to accurately reveal positions of labels that are 20-60 kDa
in size, as employed in this study. The combined approach
of DNA end-tagging and negative stain EM indicated the
dsDNA entrance and passive ssDNA strand exit points in
the helicase-RFJ complex. Structural data correlate with
DNA-protein contact points in RFJ DNA bound E1 com-
plexes determined by nuclease footprinting. Notably, the
data indicate that dSDNA enters the E1 complex through
a tight side tunnel and not along the central axis of the hex-
amer as commonly assumed for E1 and other hexameric
helicases (18,21-23), while the 5" ‘passive’ strand exits the
complex via a channel opposite the dSDNA entry tunnel.
DNA unwinding is therefore taking place at the entrance to
the helicase domain, inside and not outside the hexamer.

MATERIALS AND METHODS

For the full experimental protocol, please see Supplemen-
tary Data.

El proteins were purified as previously described
(12,24). The monomers for assembling the monovalent
tetrameric streptavidin complex (MTS) were expressed
from plasmids pET2la-Streptavidin-Dead and pET2la-
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Streptavidin-Alive (25), which were supplied by Dr Alice
Ting’s Laboratory, MIT, via Addgene.org. Helicase and
OHe footprinting were performed as previously described
(24,26), with minor modifications indicated in the sup-
plementary experimental procedures. Protein—-DNA com-
plexes for EM were prepared by incubating protein and
DNA at a 6:1 molar ratio before size exclusion chromatog-
raphy (SEC) on a Superdex-200 (GE Healthcare) gel fil-
tration column (10 mM Tris—Cl pH 8.0, 225 mM NacCl,
5% v/v glycerol, 2 mM dithiothreitol (DTT) , 0.1 mM
phenylethanesulfonylfluoride (PMSF), 0.1 mM ethylenedi-
aminetetraacetic acid).

Images were recorded using a Tecnai F20 electron mi-
croscope operated at 200 keV, images were recorded using
a Gatan Ultrascan 4000 4k x 4k CCD camera at a nom-
inal magnification of 62 000. Image processing was per-
formed with CTFIT (27) and IMAGIC-5 (28,29), with the
alignment and classification of images performed as pre-
viously described, and references therein. Angular orienta-
tions of class averages were determined by angular reconsti-
tution. Three-dimensional (3D) maps were calculated using
the exact-filter back projection algorithm (29,30) (see Sup-
plementary Table S1). Interpretation and illustrations were
done using Chimera (31).

RESULTS

The full-length E1 helicase preferentially unwinds forked
DNA substrates

El is a 3'-5 helicase that initiates unwinding of dsDNA
substrates with 3" ssDNA tails (19). To establish the basic
configuration of a substrate appropriate for structural anal-
ysis we compared the unwinding of simple linear partially
single- and double-stranded substrates to a forked substrate
with 5" and 3’ ssDNA tails using a radiometric strand dis-
placement assay. In accord with previous observations, a
short double stranded oligonucleotide substrate (30 bp ds-
DNA) with a 3’ T20 but not a 5 C8 ssDNA tail was un-
wound by E1 (Figure 2A, lanes 1-8 compared to 9-15).
However, the extent of unwinding of a forked-substrate with
both 3’ T20 and 5" C8 ssDNA tails increased approximately
three-fold compared to the substrate with only a 3" T20
tail (Figure 2A, lanes 17-24 compared to 9-16). Strand dis-
placement was observed in the presence of ATP/Mg?*, but
not in reactions without nucleotide cofactor or with adeno-
sine diphosphate (ADP) in place of ATP (lanes 25 and 26).

Formation of E1-DNA complexes

Like the E1 helicase domain residues 299-605 (12), puri-
fied full length E1 (E1FL) formed a stable complex with ss-
DNA (T30) in the absence of nucleotide cofactors and the
peak fractions of the complex purified by gel-filtration chro-
matography showed a homogeneous population of hexam-
eric particles when examined by negative stain EM (Sup-
plementary Figure S1A and E). Using RFJ substrates with
dsDNA arms from 10-30 bp and ssDNA arms 3’ T20 and 5’
C8-12, we observed similar stable complexes in gel filtration
chromatography (complex formation with a substrate com-
prising of 10 bp dsDNA and 3’ T20 and 3’ C10 ssDNA arms
is shown in Figure 2B). In all cases, the chromatograms did
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not indicate the presence of intermediate species eluting be-
tween the monomeric and hexameric populations that were
effectively resolved by the chromatography.

Electron microscopy and 3D reconstruction of E1 helicase
complexes

First, a structure of the purified EIFL-T30 complex ex-
amined by negative stain EM (Supplementary Figure S1A
and E) was determined with C6 rotational symmetry im-
posed during the initial structure determination. Having
this restraint we did not expect to reveal the position of the
DNA relative to the individual subunits of the complex. The
E1FL hexamer structure, determined at a resolution of 18
A (Figure 3A), has a maximum diameter of 130 A and a
height of 100 A and can accommodate ~410 kDa of pro-
tein mass, in agreement with the predicted 409 kDa. The
shape of the complex resembles a triple-tiered ring, with the
middle ring having the larger diameter and the upper ring
the smallest (Figure 3A, left). To determine the organiza-
tion of the E1FL particle, as described further below, we
used a comparison of the EM projections of EIHD (Sup-
plementary Figure S2) and E1FL, and domain identifica-
tion using antibody labelling. There is a central tunnel (‘a’)
that varies in diameter along its length: at the bottom of
the structure (C-terminus) the tunnel is ~20 A in diameter;
travelling upwards the tunnel ‘a’ forms a chamber within
the HD area, which expands to 27 A below sub-domain 3
(Figure 3A, middle) and then it narrows to 23 A in diame-
ter at the entrance to the central tunnel formed by the upper
ring. A second chamber is formed by the middle and upper
rings and it is connected to the protein surface via twelve
discernible tunnels (Figure 3A, middle and Supplementary
Figure S2).

After obtaining the structure with symmetry C6 imposed
we verified whether the structure had the same appear-
ance without applying any symmetry during the reconstruc-
tion process. For the asymmetric reconstruction the same
dataset was used and the initial model was obtained using
mostly tilted views and a few end views of the complex.
The structure demonstrated the same general features as
described above for the symmetrized structure but was ob-
tained at a lower resolution of ~23 A. We observed the same
triple-tiered organization with six clearly defined subunits
in the bottom and middle rings (compare Figure 3A-C).
Strikingly however, in the upper ring there was clear asym-
metry revealed by the presence of a bulk of density on the
outer side of the upper ring (right panel, Figure 3B and C).
The size of this bulk, highlighted with the black oval in Fig-
ure 3C, is about 20 x 25 A. The centre of this bulk of den-
sity is located at a distance of ~36 A from the centre of the
opening to central tunnel ‘a’. As expected, the lower reso-
lution of the asymmetrical structure did not allow as clear
definition of the inner channels of the complex compared
to those defined in the symmetrical reconstruction and did
not reveal any densities inside of the inner chamber of the
E1 hexamer that could be reliably identified as ssDNA.

Analysis of the symmetric and asymmetric structures
(Figure 3) has allowed us to identify a single E1 subunit in
the hexameric E1FL structure. A monomer, extracted us-
ing the segmentation function of the molecular modelling
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Figure 2. Helicase activity of E1 and protein—-DNA complex formation. (A) Full length E1 preferentially unwinds forked test substrates with 5 and 3
ssDNA tails. The DNA substrate concentration used was 0.25 nM and the protein titration range was 6.25, 12.5, 25, 50, 100 and 200 nM E1. Heat denatured
substrate is indicated as ‘boil’. No unwinding was observed in reactions containing ADP in place of ATP (lane 25) or without nucleotide cofactor (lane
26). The graph on the right shows the data from three independent repeats (mean and SD). (B) Formation and resolution of E1-DNA complexes by gel
filtration chromatography. E1 (50 wuM) and DNA substrates were mixed at a molar ratio of 6:1 and incubated at room temperature for 15 min before
chromatography. Complex formation is shown for ssDNA T30 and the RFJ like substrate with 10 bp dsDNA, 3’ T20 and 5’ C10 ssDNA arms. Similar
results were obtained with the forked substrate used in the helicase assays (not shown). All DNAs alone eluted late in the chromatogram as illustrated for

the fork dsDNA 10, ssDNA 3'T20 and 5'C10 (‘RFJ’ trace on the right).

programme Chimera (31), is shown in Figure 4 to demon-
strate the overall domain organization. Globular domain 4
shapes a dense ring at the base of the hexamer; domain 3
forms the inner ring that constrains the central tunnel. Do-
main 2 creates the outer rim of the wide middle ring of the
structure. Finally, small domain 1 is located on top, form-
ing the narrowest ring of the complex. Accordingly, the two
sets of six side openings, ‘b’ and ‘c’ to corresponding tun-
nels observed in the EIFL hexamer (Figure 3A, middle)
can be described as follows: tunnel ‘b’ is formed by E1 do-
mains 1 and 2, has a length of ~25 A and a cross-section
of ~18 x 20 A. Therefore, like the central axial tunnel ‘a’,
it is wide enough to accommodate dsDNA. Tunnel ‘¢’ is
formed by domain 4 of one subunit and domains 2 and 4
of the neighbouring subunit and has a cross-section of ~13
x 20 A with a length of ~30 A. Being smaller than tunnel
‘b’ it could accommodate ss- but not dsSDNA. Significantly,
the additional bulk of density observed on the upper tier of
the EIFL-ssDNA complex after asymmetrical reconstruc-
tion (Figure 3B, right panel and Figure 3C) coincides with
a tunnel opening ‘b’.

E1 hexamers translocate 3'-5" on ssDNA and this ‘active’
3’ ssDNA strand, also corresponding to the leading repli-
cation strand in this case, is engaged by the ssDNA binding
segments of the AAA* domain (7,24). The EIFL-ssDNA
structures, revealing previously unidentified tunnels and the

additional asymmetrically positioned density in the upper
tier (Figure 3), led us to determine directly the point of
dsDNA entry into the complex and the path taken by the
second lagging or ‘passive’ 5’ ssDNA strand of an engaged
replication fork.

First, we constructed a synthetic DNA replication fork
with 30 bp dsDNA and 3’ T20 and 5’ C8 ssDNA tails where
the 5 end of the dSDNA was labelled with biotin. After for-
mation of protein-DNA complexes, MTS (25) was bound
and complexes were purified by gel filtration. Although
sodium dodecyl sulphate-polyacrylamide gel electrophore-
sis analysis of the hexameric E1FL fractions clearly showed
the specific incorporation of MTS, we failed to clearly visu-
alize the binding of MTS in the hexameric particles exam-
ined by negative stain EM (not shown). Subsequently, we
adopted a substrate with a shorter dsSDNA sequence, 10 bp
dsDNA and 3’ T20 and 5 C10 ssDNA tails, labelled with
biotin on the 5" end of the dsDNA with or without digox-
igenin on the 5 ssDNA end. Hexameric E1IFL complexes
were first assembled on these substrates before MTS or anti-
digoxigenin Fab were bound, as appropriate, and complexes
purified by gel-filtration chromatography (Supplementary
Figure S3). Purified complexes were then used for negative
stain EM, single particles were aligned, classified and the
3D-structure of the complexes determined without impos-
ing symmetry (Figure 5, Supplementary Figures S1 and S3).
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Figure 3. EM structures of full length E1 bound to ssDNA. The domains of EIFL are numbered: 1, N-terminal residues 1-158; 2, OBD; 3, OD and 4,
AAA+ domain. Atomic structures of the EIHD (2V9P (17)) and the OBD (1KSX, (33)) are docked into the structures. (A) The symmetrized structure
of EIFL-ssDNA. Arrowheads a, b and ¢ indicate openings to tunnels within the EIFL structure. The opening to central tunnel ‘a’ is indicated at the
N-terminus only. (B) The asymmetrical structure of EIFL-ssDNA. The same triple-tiered organization as in (A) was observed with six clear subunits in
the bottom and middle rings. However, asymmetry was observed as the presence of a bulk of density on the outside of the upper ring, outlined by the blue
ellipse. (C) Comparison of the symmetric and asymmetric reconstructions of the EIFL-ssDNA complex. Overlay of the symmetrized and asymmetrical
structures. The upper tier corresponding to N-terminal domain 1 (indicated by a star) is located at the same height in both symmetrized and asymmetric
structures. There are no distortions in that region except for the additional density on the outer side of the N-terminal tier in the asymmetric structure
indicated by the black oval. Areas of overlap between the two structures are shown in green colour.
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90°

Figure 4. Structural organization of one E1 subunit. Atomic structures of EIHD (17) and the OBD (33) docked into one El subunit extracted from the
hexamer. The domains are coloured in different shades and indicated with numbers as in Figure 3. Two views (left and centre) are of a single subunit rotated
by 90° around the central (vertical) axis of the helicase. On the right, the segment indicated by the box in the central panel has been extracted and rotated
90° around the horizontal axis. The DNA binding segments of the OBD are circled in red and their corresponding positions in the EIFL hexamer are near

the opening to the tunnel ‘b’.

The final resolution of the structures obtained was 20 A.
The structure of the EIFL-RFJ complex with the ds-
DNA end of the RFJ 5'-labelled with MTS has the same
overall triple ring organization as described above. An addi-
tional density at the top of the complex located off the cen-
tral axis of the hexamer was attributed to MTS (Figure 5A,
Supplementary Figures SIC and S1G). Subsequently, we
determined the structure of the double-labelled EIFL-RFJ
complex with MTS on the dsDNA arm (5'-end) and anti-
digoxigenin Fab on the 5 ssDNA arm (‘passive’ strand)
(Figure 5B, Supplementary Figure S1D and H). Only ~30%
of the E1FI-RFJ complex were labelled with MTS and Fab,
so sorting of the particle images using 3D statistical analy-
sis was necessary to extract dual-labelled complexes (30).
The structure of this complex revealed two additional ex-
ternal densities: one at the same position as in the complex
with only the dsDNA labelled with MTS and the second
extra mass located on the side of the complex, nearly op-
posite to MTS, at the level between the high density lower
ring and middle wide ring (Figure 5B). Interestingly, both
structures labelled with MTS on the dsDNA arm (with-
out or with Fab on the 5’ ssDNA arm) were distorted, hav-
ing the upper smallest ring pressed obliquely into the large
ring of the OBD domains beneath the upper, extra, density
(MTS). Overlay of these two structures demonstrated excel-
lent overlapping of the density on the top of the complex,
indicating unambiguously the position of MTS and its link
to the E1 complex. The remaining extra density at the side
of the dual-labelled complex was assigned to the Fab. In the
structure, the Fab label disturbs the position of the OBD do-
mains in the middle ring and appeared to be partially sub-
merged into the complex. The distortions induced by MTS
and Fab therefore demonstrate a degree of flexibility in the
middle and upper tiers of El formed by domains 1 and 2.

Analysis of the E1FL structures

The structural organization of the E1FL hexamers was de-
termined stepwise using three approaches. First we used an-
tibodies (ab) specific to residues 1-129 and negative stain
EM coupled with statistical analysis to determine the posi-
tion of the corresponding N-terminal segment in the EIFL

complex, which was shown to correspond to domain 1 at
the top of the complex (Figure 3 and Supplementary Fig-
ure S2A). .

Second, we aligned the EIFL EM structure with a 19 A
resolution EM structure of EIHD (residues 299-605) that
we obtained using similar methods to the E1FL structure
(Figure 3 and Supplementary Figure S2B). A correlation
analysis revealed that the best alignment was achieved with
the bottom ring of the E1FL structure (cross correlation co-
efficient, CCC of 0.84).

Third, available atomic coordinates of E1 domains were
docked into the EM maps (Figure 3A). Following the an-
tibody labelling experiments and comparison with the EM
projections of EIHD described above, an initial manual fit-
ting of EIHD crystal structures (PDB IDs: 2GXA (7) and
2VOP (17)) in the lower ring (HD) was refined using Veda
software (32) and Chimera (31). The fitting resulted in a
CCC =0.72, which was reduced to ~0.2 for the upper tier of
the complex indicating a better consistency between EIHD
crystal structures and the lower tiers of the EIFL structure.
An automated docking of the atomic structure of the OBD,
residues 159-303 (PDB ID: 1KSX, (33)), into the EIFL
map showed that the wide tier formed by domain 2 cor-
responded well to six OBD domains (Figure 3A, CCC =
0.76, Supplementary Table S2). Importantly, in this docked
model the C-terminal linker connecting the E1 OBD and
HD (amino acids 300-303) overlaps with the correspond-
ing residues at the N-terminus of the EIHD X-ray structure
fitted into the E1FL maps, confidently fixing one point of
alignment. To further verify the assigned OBD orientation
we inserted the HA-epitope sequence into a small surface
loop (residues 225-228) after residue 226. The automated
fitting of the OBD predicted that these residues would be
exposed on the outer surface of EIFL. Again, antibody-
labelling experiments demonstrated, in the presence of anti-
HA antibodies, an additional bulk of density of the size and
shape expected for IgG antibody (Supplementary Figures
S5 and S6) at the position assigned to the OBD. Overall,
the results of fitting the X-ray structure of the OBD into
the EM maps were very similar for all the E1 complexes
analysed, favouring the same orientation of the OBD (Sup-
plementary Table S2). Interestingly, the location and orien-
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entrance

130A

Figure 5. EM structures of E1FL hexamers bound to protein tagged RFJ DNA. (A) Structures of EIFL complexes with monovalent tetrameric streptavidin
(MTS) bound to the 5" end of the dsDNA arm. (B) The structure with anti-digoxigenin Fab bound to the 5" ssDNA arm in addition to MTS bound to the
dsDNA of the RFJ. Subunits of structure are shown in different colours. Side views and cutaway views are shown with atomic models of EIHD and the
OBD docked into EM maps (central column and a column on the right). (C) Cartoon representations of the unlabelled and MTS labelled El structures
with distances and angles between tunnel openings indicated. There is a 15 A gap present between upper part of the hexamer and MTS.

tation assigned to the OBD resulted in the dsDNA binding
face of the OBD, circled with the dashed red line in Figure 4,
being positioned at the outer surface of the E1IFL complex,
at the entrance into the side tunnel ‘b’.

The footprint of E1FL bound to a RFJ DNA substrate

Our structural analysis suggests that the E1 N-terminal do-
mains 1 and 2 adopt a configuration that could accom-

modate the RFJ DNA. We tested this by comparing the
hydroxyl radical (OHe) nuclease protection ‘footprints’ of
E1FL and E1IHD bound to a RFJ-like DNA molecule (Fig-
ure 6). The DNA binding substrate used was identical to
the fork substrate used in the helicase assays shown in Fig-
ure 2A, with 30 bp dsDNA, T20 3" active ssDNA strand
and a C8 5 passive ssDNA strand. The OHe is a small, dif-
fusible, nuclease and DNA is protected from cleavage only
where there are very tight contacts with protein (34). We an-
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Figure 6. Hydroxyl radical footprinting of EI-RFJ complexes. (A) Lanes 1-11, 3P 5-end labelled top strand and lanes 12-23 3'-end labelled bottom
strand. Lanes 1, 7, 12, 18, G ladder. Lanes 2, 13 and 19 show unreacted substrate. The protection patterns were analysed using the lane-profiling tool of
the phosphorimaging software (shown below the gel images). A peak height reduction of 80% or more was scored as complete protection (indicated in
black in the annotations on the right of each gel image; partial protections are shown in grey). (B) Projection of the OHe footprinting pattern on the fork
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ticipated that the OHe could diffuse into the protein com-
plex through the well-defined openings and expected that
only segments of RFJ-like DNA that interact tightly with
protein would be protected.

Figure 6A lanes 4-6 show the footprint of the E1IFL com-
plex bound to the top strand of the DNA fork (5’ 3*P-end la-
belled). Near complete protection of ~6 nt at the fork junc-
tion (Figure 6B) indicates the presence of close contacts be-
tween E1FL and DNA. In addition, we observed a weaker
and diminishing protection extending over ~20 bp of ds-
DNA from the junction point and over the entire 3’ and 5’
ssDNA arms. Importantly, the protection pattern over the
dsDNA lacks features such as periodic protection and sus-
ceptibility to cleavage observed for DNA lying on a protein
surface (34) and is best interpreted as encirclement of the
dsDNA in a protein sheath. In comparison, for the EIHD
we observed only partial protection over about 8 nt on each
DNA strand centred over the fork junction (lanes 9-11 and
Figure 6B). Similar patterns of protection to the 5'-end la-
belled top strand were observed for the 3’-end labelled bot-
tom strand for both EIFL and EIHD complexes, respec-
tively (lanes 15-17 and 21-23). These data therefore indicate
that the EIHD makes a limited set of weak protein—-DNA
interactions with the RFJ, while in the intact E1FL complex
there is a more extensive set of interactions with all arms of
the fork.

dsDNA and the 5’ ssDNA strand enter and exit E1 through
opposing side tunnels

The position of the MTS label attached to the dsDNA end
of the DNA fork was identical in the single- and double-
labelled E1 helicase particles. Figure SA shows the structure
of the complex labelled with MTS on the 5 dsDNA end
of the fork, docked with the atomic coordinates for E1 and
MTS (PDB ID: 3RY1, (35)). Figure 5B shows the structure
of the double-labelled E1FL complex and the fitting of the
atomic coordinates for E1, MTS and the anti-digoxigenin
Fab X-ray models (PDB ID: 11GJ, (36)). In each case, the
electron density maps show that the position of the MTS
is not on the top of the central tunnel. Moreover, there is a
significant gap (~15 A) present between the upper part of
the hexamer and MTS makes contact with the E1 surface
at a point that is ~45 A away on the upper side of the com-
plex (Figure SC and Supplementary movie S1). The MTS
contact with E1 is in the vicinity of the dSsSDNA-binding site
of the OBD at the entrance into a side tunnel ‘b’. A clear
region of electron density connects the MTS with the en-
trance to tunnel ‘b’, while the opening to the central tunnel
‘a’ is unobstructed.

Significantly, the electron densities corresponding to the
MTS and Fab labels are at fixed positions on opposing faces
of the E1FL complex separated by a distance of ~120 A
at an angle of ~150° across the central axis of El (Fig-
ure 5B and C). The distance between the MTS and Fab la-
bels (~110 A) measured across the protein complex is in
accord with their length of separation in the fork construct
(Figures 5C and 7). The best explanation for such an ar-
rangement is that the dsDNA enters E1 so that the fork
junction is above the helicase motor unit. Fab makes a con-
tact with the E1 complex in the area of the second tier. It

Nucleic Acids Research, 2015 9

is clear that the two single stranded ends of the unwound
DNA, exiting the E1 hexamer through tunnels ‘a’(3’) and
‘c’(5) would be separated by a path of at least 200 A around
the outside of E1.

DISCUSSION

The X-ray structure of the EIHD/ssDNA/ADP hexamer
showed that the ‘active’ 3’ ssDNA strand, or leading repli-
cation strand, exits along the central axis of the HD (7).
The currently favoured ‘steric exclusion” model of DNA un-
winding for E1 (20), while incorporating 3’ exit at the end
of a central tunnel, is based on exclusion of dsSDNA and the
5" ssDNA strand outside the helicase at the opposite end of
the tunnel and similar steric exclusion models are proposed
for other hexameric helicases (9,18,21-23,37,38). However,
the steric exclusion model is based on indirect observation
and until now has not been validated with structural infor-
mation on complexes with complete replication forks con-
taining dsDNA as well as two single-stranded segments.
One possible reason for this is that these replication com-
plexes are highly dynamic, mobile and demonstrate confor-
mational diversity, so complicating detailed structural anal-
ysis.

Here, we produced stable hexameric complexes of full
length E1 with ssDNA and intact replication forks bound,
determined structures at 18-23 A resolution and localized
DNA replication fork entrance and exit points at the hex-
amer surface by direct visualization of DNA ends labelled
with MTS and Fab. The atomic structures of the E1 helicase
domain determined without (17) and with ssDNA and nu-
cleotide cofactor bound (7) are virtually identical with the
C-a r.m.s. deviation of 0.35 A. In these crystal structures,
the E1 OD (residues 308-378) is highly symmetrical, while
the ATP binding sites are found at the interfaces between
adjacent AAA+ domains (residues 379-578) that show po-
sitional variations of up to 7.5 A. It is possible therefore
that the helicase domain could impose asymmetry on the
N-terminal portion of the molecule mediated through the
AAA+ domain positional asymmetry, but it is unlikely that
protein—nucleic acid interactions are significantly different
within the N-terminal half (residues 1-307) of the complex,
with and without nucleotide cofactor bound. Together with
DNA footprinting experiments, our structural observations
indicate, first, that at least 10 bp of dsDNA enters inside
the intact helicase complex and that unwinding most likely
takes place at the entrance to the helicase domain (Figure 7).
Second, labelling with M TS suggests, unexpectedly, that ds-
DNA enters not along the central tunnel but through the
side tunnel ‘b’. We favour this interpretation because we ob-
serve clear density linking the MTS to the entrance of tun-
nel ‘b’, while the entrance to tunnel ‘a’ is unobstructed and
there is a complete absence of density between E1 entrance
‘a’” and MTS in our models. However, we acknowledge that
higher resolution data would be required to completely ex-
clude an axial path for dSSDNA entry. Third, labelling of the
5" ssDNA end with Fab indicates that the lagging (5’ pas-
sive) strand exits the E1 complex on an opposing side to ds-
DNA entry via the narrower tunnel ‘c’. The negative stain
EM benefits from excellent contrast, that is important for
initial analysis of dynamic systems (39) and the resolutions
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‘a’) by the ATP-fuelled HD motor. The ‘passive’ ssDNA strand exits via tunnel ‘¢’. (B) Model of DNA unwinding by a double hexamer of E1. dsDNA is
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obtained are more than sufficient for deducing DNA end-
label locations (MTS and Fab) on the molecular surface of
El, that are separated by at least 200 A.

Our observations therefore suggest a revision of the steric
exclusion model proposed for E1 (20) where, alternatively,
DNA strands are wedged apart within the hexameric as-
sembly and not outside. The El helicase domain (residues
~300-608) forms stable hexamers (12) with the active ss-
DNA strand bound in the central tunnel (7) and these com-
plexes can unwind helicase substrates (12). In the absence
of the N-terminal half of the protein (domains 1 and 2),
and therefore the absence of additional channels that could
accommodate DNA, these assemblies are likely to be op-
erating by a strict steric exclusion mechanism. As such, the
entrance to the helicase domain acts to wedge DNA strands
apart while the passive sSDNA strand is excluded from the
HD complex. Together with previous data locating the ac-
tive ssDNA strand (7), our new structural data show that all
DNA replication fork arms in the full length E1 hexamer are
entering or leaving via well-defined openings that may be
fixed for the duration of translocation. Thus, our model en-
visions the same wedging mechanism at that entrance to the
helicase domain (Figure 7), but with all arms of the repli-
cation fork passing through discrete conduits. This could
modify our understanding of the mechanism of DNA un-
winding, since direct interactions with the dSDNA ahead of
the fork and also the passive ssDNA strand could influence
the efficiency of the unwinding process (2). The anatomy
of EI-RFJ DNA engagement deduced suggests that the
El hexamer may be operating like the heterotrimeric E.
coli RecBCD helicase whose structure has also been de-
termined in complex with a fork-like DNA molecule (40).
In RecBCD, several DNA base pairs enter a short tunnel
formed between the RecB and C subunit and an ‘arm’ of
the RecB subunit contacts dSDNA 12 bp from the fork junc-
tion. DNA strands are split across a protein ‘pin’ provided
by RecC, as the ssDNA tails are pulled through discrete
channels by the RecB and D motors. It is likely that a spe-
cific protein segment corresponding to a ‘pin’ is involved in
wedging DNA strands apart at the entrance to the E1 heli-
case domain.

It is unclear whether other hexameric helicases unwind
dsDNA as proposed for E1. However, there are biochemical
data widely supporting a steric exclusion model and struc-
tural data indicating multiple channels for DNA entry and
exit in other hexameric helicases including T7 gp4 (37), bac-
terial DnaB (18), SV40 LTag (38), archaecal MCM (22,41)
and the eukaryotic MCM2-7 complexes (42,43). Such data
are not incompatible with our model incorporating inclu-
sion of the RFJ within the hexamer, now proposed on the
basis of the structural observations of EIFL-RFJ complex.
Failure of these replicative hexameric helicases to displace
a biotin-mediated streptavidin ‘roadblock’ on the passive
ssDNA strand is frequently taken as evidence of its steric
exclusion (e.g. refs. 20 and 38). However, SV40 L-Tag hex-
amers have been shown to bypass a covalently linked bulky
adduct even on the active translocation strand, even though
it is pulled through the motor domain of the toroid (38). A
ring-opening mechanism was suggested, akin to that previ-
ously demonstrated in T7 gp4 (44). Given the similarities
between E1 and L-Tag it is likely that the hexameric El
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protein ring can also open in a dynamic engagement with
the RFJ. Notably, opening of only the upper N-terminal
ring would be needed to by-pass obstacles such as DNA
secondary structure or bound proteins on the lagging (pas-
sive) DNA replication strand. Indeed, the distortions ob-
served in the protein-tagged RFJ complexes (Figure 5) in
close proximity to streptavidin and Fab in particular which
is submerged into the complex, not only demonstrate that
the bound replication fork is intact but indicate that N-
terminal domains 1 and 2 (~residues 1-300) are flexible.
Two independent rings (HD and the N-terminal-OBD ring
in the case of El), each engaging DNA and that can each
open and close, could facilitate by-pass while ensuring that
the helicase remains stably associated with its substrate.

In a toroidal protein—-DNA complex the nucleic acid can
be internal and completely surrounded by protein or lie on
its surface. In the latter case only one face of a dsDNA
helix would contact protein leaving the outer surface sus-
ceptible to nuclease cleavage. In OHe footprinting exper-
iments such interactions produce very characteristic peri-
odic cutting pattern progressing through protection to no
protection with centres spaced 10-11 bases apart (one heli-
cal turn), as illustrated by lambda repressor and Cro pro-
teins (34). The densitometry traces of EIFL-RFJ com-
plexes (Figure 6A) show no evidence of periodicity but in-
stead a uniform protection approaching two turns of the
dsDNA helix. This is best interpreted as E1 completely en-
circling the DNA, forming a ‘sheath’. Furthermore, since
we only observe hexamers of E1FL (Figure 2) or EIHD
(12) in the presence of DNA it is unlikely that the observed
protections are representative of partial EI-DNA complex
formation. A corollary to this and consistent with our struc-
tural observations is that the RFJ is inside the complex in a
chamber at the entrance to the helicase motor domain. The
complete protection observed over the first five bases of the
5> passive ssDNA are also consistent with their inclusion
within the complex and exit most likely via a side tunnel
‘c’. Likewise, the DNA protection pattern for the 3’ ‘active’
strand is in agreement with its known passage through the
central tunnel of the helicase motor domain bearing the ss-
DNA binding sites (7,24). Direct visualization of the paths
taken by the replication fork strands will ultimately require
higher resolution structures of intact EI-RFJ complexes
that have thus far proven difficult to obtain for this class of
helicase and, indeed, small asymmetric structures in general
that do not lend themselves readily to cryo-EM (39,45,46).
However, our structural data identifying the positions of
the DNA ends with surface labels are in accord with the
arrangement and dimensions of the tunnels in E1 with re-
spect to the proposed path of the occupying DNA and the
DNA protections we observe in footprinting experiments.
Furthermore, our data do not exclude the possibility that an
extended part of the lagging strand ssDNA is wrapped on
the outer surface of E1, as in Sulfolobus solfataricus MCM,
to enhance the unwinding process (22).

Our results, defining the structural arrangement of an in-
tact E1 helicase complex and its orientation with respect to
the RFJ, are consistent with recent FRET data that suggest
the RFJ is located nearer the OBD and away from the HD
(20). Furthermore, while we do not consider the continu-
ity of the unwinding process here, our proposition that the
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fork junction is occluded within the E1 hexamer could ex-
plain the unevenness of unwinding of dsDNA observed for
E1HD, which is ameliorated by the presence of the OBD
domain (20), and is likely to be unperturbed in the case of
full length E1 at the RFJ in vivo. Our model for dsDNA
unwinding shown in Figure 7B also incorporates two El
helicases acting in unison, consistent with the assembly of
double hexamers at the origin of DNA replication (47).

The helicase-catalyzed DNA processing events in DNA
replication are conserved and, like E1 (47), highly dynamic
particles of Drosophila melanogaster and yeast MCM com-
plexes, that incorporate ring opening and closing mecha-
nisms, have also been observed during establishment of bi-
directional DNA replication (39,48-51). Observations in ar-
chaeal systems also indicate that DNA can take alternative
paths in associated hexameric MCM complexes, exempli-
fied by the wrapping of dsDNA around the external sur-
face of the putative Methanothermobacter thermoautotroph-
icus MCM pre-replication complexes (52). The new insights
into E1 and how it engages the RFJ presented here there-
fore have broader implications for understanding how DNA
processing machines work.
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