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Abstract. The purpose of this paper is to shed light on the fact that
the global solvability for the quadratically perturbed wave equation with
small initial data in two space dimension can be shown by using only a
restricted set of vector fields associated with the space-time translation
and spatial rotations. As a by-product, we establish almost best possible
decay estimates related to the above vector fields, as well as the tangential
derivatives to the forward light cones.
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1. Introduction

In this paper we consider precise decay property of solutions to the initial
value problem for quasilinear wave equations:

�g(∂u)u ≡ −gαβ(∂u)∂α∂βu = 0, (t, x) ∈ (0,∞) × Rn,(1.1)

where t = x0, x = (x1, . . . , xn), and ∂α (α = 0, 1, . . . , n) denotes the partial
derivative with respect to xα. Throughout this paper we will use the geomet-
ric conventions of raising and lowering indices with respect to the Minkowski
metric m = (mαβ) = diag(−1, 1, . . . , 1). In addition, here and in the following,
we use the summation convention of repeated upper and lower indices. We
denoted by gαβ(∂u) the perturbation of the Minkowski metric m of the type

gαβ(∂u) = mαβ + eαβγ∂γu.(1.2)

Then, denoting F (∂u) := eαβγ∂γu · ∂α∂βu, we can rewrite (1.1) as

−(∂2
t − Δ)u = F (∂u), (t, x) ∈ (0,∞) × Rn.(1.3)

We prescribe the initial condition by

u(0, x) = εφ(x), (∂tu)(0, x) = εψ(x), x ∈ Rn,(1.4)

where φ and ψ are supposed to be compactly supported smooth functions (or
the rapidly decreasing functions), and ε is supposed to be a small positive
parameter.
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In the three space dimensional case, Klainerman [7] introduced the null
condition on the nonlineraity:

eαβγω̂αω̂βω̂γ ≡ 0 for all (ω̂0, ω̂1, ω̂2, ω̂3) ∈ {−1} × S2,(1.5)

in order to solve the problem (1.3)-(1.4). Actually, Christodoulou [2] and
Klainerman [7] independently proved the global existence result, although the
quadratic nonlinearity is on the critical level for the global solvability. We
remark that the null condition (1.5) enables us to rewrite any bilinear form
satisfying (1.5) in terms of the null forms:

Q(u, v) = ∂tu · ∂tv −∇xu · ∇xv,(1.6)

Qαβ(u, v) = ∂αu · ∂βv − ∂βu · ∂αv (α, β = 0, 1, ..., n),(1.7)

where ∇x denotes the spatial gradient, and that the vector-field method due
to [7] works well to deal with the null forms.

For the two space dimensional case, it would be more difficult to show the
global existence result for the quadratically perturbed wave equations, because

the decaying rate for the solution to the linear wave equation is O
(
t−

n−1
2

)
.

Nevertheless, it was shown in Alinhac [1] that (1.1)-(1.4) admits a global
smooth solution, provided that the null condition

eαβγω̂αω̂βω̂γ ≡ 0 for all (ω̂0, ω̂1, ω̂2) ∈ {−1} × S1(1.8)

holds. New ingredient to treat the sub-critical nonlinearity is an improved en-
ergy estimate, which was derived in the framework of the vector-field method.

In the vector-field method, the following vector fields are essentially used:

t∂j + xj∂t (j = 1, 2, ..., n), t∂t + x · ∇x,(1.9)

which are closely related to the invariance of the homogeneous wave equation.
However, if one wishes to handle the system of nonlinear wave equations with
multiple propagation speeds, or the exterior problem for the nonlinear wave
equations, then the above vector fields are unfavorable. Hence one needs to
modify the vector-field method, that is, the full vector fields should be re-
stricted to

∂t, ∇x, xj∂k − xk∂j (1 ≤ j < k ≤ n).

In [5] one can find a review around this issue, and an alternative proof for the
global existence result in three space dimensional case was given, by modifying
the vector-field method. More concretely, it was explored that the lack of the
vector fields (1.9) can be compensated by establishing a better decay estimate
for tangential derivatives to the forward light cones:

Tju(t, x) = ∂ju(t, x) +
xj

|x|∂tu(t, x) (j = 1, ..., n).(1.10)
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In fact, one can associate the null forms with the tangential derivatives as
follows:

|Q(u, v)| +
n∑

α,β=0

|Qαβ(u, v)| ≤ C (|Tu||∂v| + |∂u||Tv|) .(1.11)

The aim of this paper is to give an alternative proof for the work of [1] in the
same spirit as in [5]. To realize this, we derive an improved energy estimate
(3.4) without using the vector fields (1.9). Moreover, we establish pointwise
decay estimates (1.12), by employing an “exchange argument between regular-
ity and decay”. Actually, because the nonlinearity is on the sub-critical level,
we have to start with very rough estimates, and then to improve them until we
arrive at the desired decay estimate (1.12) (see step 2 through the final step
in Section 5 for the details),

The precise statement of our global existence theorem is as follows.

Theorem 1.1. Let n = 2. Suppose that F (∂u) = eαβγ∂γu · ∂α∂βu satisfies
(1.8). Then for any φ, ψ ∈ C∞

0 (R2), there exists a positive constant ε0 such
that the initial value problem (1.1)-(1.4) admits a unique global solution u ∈
C∞ ([0,∞) × R2) for any ε ∈ (0, ε0]. Moreover, for a positive integer s ≥ 14
and ρ ∈ (0, 1/2) there exists a positive constant M such that

(1 + t+ r)
1
2 (1 + |r − t|)ρ

∑
|I|≤s+1

|ZIu(t, x)|(1.12)

+(1 + r)
1
2 (1 + |r − t|)1+ρ

∑
|I|≤s

|ZI∂u(t, x)|

+(1 + r)
1
2 (1 + r + t)(1 + |r − t|)ρ

∑
|I|≤s−1

|TZIu(t, x)| ≤Mε

holds for ε ∈ (0, ε0].

As is mentioned above, the existence part of the theorem has been shown
in [1]. But, the pointwise decay estimate such as (1.12) was not derived. We
underline that the decaying orders are almost best possible, because even for
the solution to the homogeneous wave equation, one can only show (1.12) with
ρ = 1/2. Moreover, since our proof is free from the vector fields (1.9), we
can extend this result to systems of nonlinear wave equations with multiple
speeds, without any essential difficulty, if the pointwise decay estimates given
by Propositions 4.1 and 4.2 in [3] are adopted. It is also straightforward to
put a semilinear term ẽαβ∂αu ·∂βu on the right hand side of (1.1), if it satisfies
the null condition

ẽαβω̂αω̂β ≡ 0 for (ω̂0, ω̂1, ω̂2) ∈ {−1} × S1.

Concerning the exterior problem, some extra work is necessary and a corre-
sponding result to Theorem 1.1 will be published elsewhere.
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This paper is organized as follows: In Section 2, we introduce notation and
basic lemmas. An improved energy estimate shall be derived in Section 3.
In Section 4, we introduce known pointwise estimates and establish a better
decay estimate for the tangential derivatives in Proposition 4.3. Section 5 is
devoted to the proof of Theorem 1.1.

2. Preliminaries

Let us start with some standard notation.

• We put 〈y〉 :=
√

1 + |y|2 for y ∈ R.
• Let A = A(z) and B = B(z) be two positive functions of some variable
z, such as z = (t, x) or z = x, on suitable domains. We write A � B if
there exists a positive constant C such that A(z) ≤ CB(z) for all z in
the intersection of the domains of A and B.

• We denote by the Lebegue norm on R2 by ‖ · ‖Lp (1 ≤ p ≤ ∞) as usual.
• For a time-space depending function u satisfying u(t, ·) ∈ X for 0 ≤ t < T

with a Banach space X, we put ‖u‖L∞
T X := sup0≤t<T ‖u(t, ·)‖X. For the

brevity of the description, we sometimes use the expression ‖h(s, y)‖L∞
t L∞

with dummy variables (s, y) for a function h on [0, t) × R, which means
sup0≤s<t ‖h(s, ·)‖L∞.

Next we introduce the vector fields:

Z0 := ∂t, Z1 := ∂1, Z2 := ∂2, Z3 ≡ Ω := x1∂2 − x2∂1.

As is well known, we have

[Zα, Zβ] =

3∑
γ=0

cαβγ Zγ (α, β = 0, 1, 2, 3)(2.1)

[∂α, Zβ] =

2∑
γ=0

dαβγ∂γ (α = 0, 1, 2; β = 0, 1, 2, 3)(2.2)

with suitable constants cαβγ , dαβγ, and

[Zα, ∂
2
t − Δ] = 0 (α = 0, 1, 2, 3).(2.3)

Here we denoted [A,B] := AB − BA. We put ∂ = (∂0, ∂1, ∂2), ∇x = (∂1, ∂2),

Z = (Z0, Z1, Z2, Z3), and Z̃ = (Z1, Z2, Z3). The standard multi-index notation
will be used for these sets of vector fields, such as ∂α = ∂α0

0 ∂α1
1 ∂α2

2 with α =
(α0, α1, α2) and Zα = Zα0

0 · · ·Zα3
3 with α = (α0, . . . , α3).

Next we introduce the following Sobolev-type inequality due to Klainerman
[6].

Lemma 2.1. For v ∈ C∞
0 (R2), we have

sup
x∈R2

〈r〉1/2 |v(x)| �
∑
|α|≤2

‖Z̃αv‖L2.(2.4)
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Next we derive useful estimates for the nonlinearity F (∂u) = eαβγ∂γu·∂α∂βu,
provided that it satisfies the null condition (1.8).

Lemma 2.2. Let N be a positive integer and let |I| ≤ N . If F (∂u) satisfies
(1.8), then we have∣∣ZIF (∂u) − eαβγ∂γu · ∂α∂βZ

Iu
∣∣(2.5)

�
∑

|J |≤[N−1
2 ]+1, |K |≤N

(|TZJu||∂ZKu| + |∂ZJu||TZKu|).

In particular, ∣∣ZIF (∂u)
∣∣(2.6)

�
∑

|J |≤[N−1
2 ]+1, |K |≤N+1

(|TZJu||∂ZKu| + |∂ZJu||TZKu|).

Proof. As is well-known (see e.g. [7]), (1.8) implies that the bilinear form
eαβγ∂γu · ∂α∂βv can be expressed as a linear combination of the null forms:

eαβγ∂γu · ∂α∂βv = aαβγQβγ(u, ∂αv) + bαQ(u, ∂αv),(2.7)

where aαβγ and bα are suitable constants. Note that for any smooth functions
u = u(t, x) and w = w(t, x), one can show

ZQ(u, w) = Q(Zu, w) +Q(u, Zw),(2.8)

∂Qβγ(u, w) = Qβγ(∂u, w) +Qβγ(u, ∂w),(2.9)

ΩQβγ(u, w) = Qβγ(Ωu, w) +Qβγ(u,Ωw)(2.10)

−mβ1Qγ2(u, w) +mβ2Qγ1(u, w)

+mγ1Qβ2(u, w) −mγ2Qβ1(u, w).

Therefore, for |I| ≤ N , we get from (2.7) with u = v∣∣ZIF (∂u) − (aαβγQβγ

(
u, ZI∂αu

)
+ bαQ

(
u, ZI∂αu

))∣∣(2.11)

�
∑

|J |≤[N−1
2 ]+1, |K |≤N

(
2∑

β,γ=0

∣∣Qβγ

(
ZJu, ZKu

)∣∣ + ∣∣Q (ZJu, ZKu
)∣∣) .

Since Qβγ

(
u, ZI∂αu

) − Qβγ

(
u, ∂αZ

Iu
)

and Q
(
u, ZI∂αu

) − Q
(
u, ∂αZ

Iu
)

are
evaluated by the right hand side of (2.11), we find (2.5) with the help of (2.7)
with v = ZIu.

It is easy to see that (2.6) follows from (2.5). This completes the proof.

3. Energy estimates

In this section we derive an improved energy estimate (3.4). For ρ > 0 we
set a(r) =

∫ r

−∞ 〈r′〉−1−ρ dr′ and A(r, t) = exp[a(r − t)] for t, r ≥ 0. Note that

there exists a constant C such that 1 ≤ A(r, t) ≤ C for all t, r ≥ 0.



6 HIDEO KUBO

Proposition 3.1. For any smooth functions u = u(t, x), v = v(t, x), we have

�g(∂u)v · ∂tv · A(r, t) = ∂tXA + divYA + ZA +RA in (0,∞) ×R2,(3.1)

where we have set

XA = −1

2

(
g00(∂u) · (∂tv)

2 − gjk(∂u) · ∂jv · ∂kv
)
A(r, t),

Y j
A = − (g0i(∂u) · (∂tv)

2 + gjk(∂u) · ∂tv · ∂kv
)
A(r, t), j = 1, 2,

ZA = −1

2
gαβ(∂u) · ∂αv · ∂βv · ∂tA(r, t) + gαβ(∂u) · ∂αv · ∂tv · ∂βA(r, t),

RA = −
(

1

2
∂tg

αβ(∂u) · ∂αv · ∂βv − ∂αg
αβ · ∂tv · ∂βv

)
A(r, t).

The identity (3.1) follows from a direct calculation and yields the following
energy estimate (3.4). Notice that in the course of its proof, the favorable
decay estimates (3.2), (3.3) play an essential role for avoiding the vector fields
(1.9).

Corollary 3.2. Let ρ > 0. Assume that∑
|I|≤1

|∂∂Iu(t, x)| � η 〈r〉−1/2 〈r − t〉−1−ρ ,(3.2)

∑
|I|≤1

|T∂Iu(t, x)| � η(1 + t)−1(3.3)

hold for (t, x) ∈ [0, T ] × R2. If the null condition (1.8) is satisfied, then there
exists η > 0 such that for 0 < η ≤ η0, we have∫

R2

|∂v(t, x)|2 dx+

∫ t

0

∫
R2

〈r − τ〉−1−ρ |Tv(τ, x)|2 dxdτ(3.4)

�
∫

R2

|∂v(0, x)|2 dx+

∫ t

0

∫
R2

η(1 + τ)−1 |∂v(τ, x)|2 dxdτ

+

∫ t

0

∫
R2

η−1(1 + τ)
∣∣�g(∂u)v(t, x)

∣∣2 dxdτ
for t ∈ [0, T ].

Proof. Since gαβ(∂u) = mαβ + eαβγ∂γu with m = diag(−1, 1, 1), we get

ZA = −
(

1

2
mαβ · ∂αv · ∂βv · ∂tA(r, t) −mαβ · ∂αv · ∂tv · ∂βA(r, t)

)
−
(

1

2
eαβγ∂γu · ∂αv · ∂βv · ∂tA(r, t) − eαβγ∂γu · ∂αv · ∂tv · ∂βA

)
=: I1 + I2.
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Since ∂tA(r, t) = A(r, t) ·a′(r−t) ·(−1) and ∂jA(r, t) = A(r, t) ·a′(r−t) ·ωj (j =
1, 2), one can show

I1 =
1

2

2∑
j=1

(Tjv)
2 · A(r, t) · a′(r − t).(3.5)

On the other hand, thanks to the null condition (1.8), one can rewrite I2 as

I2 =
1

2
eαβγ (Tγu · ∂αv · ∂βv − ω̂γ∂tu · (Tαv · Tβv − ω̂α∂tvTβv

− ω̂βTαv∂tv))A(r, t) · a′(r − t) · (−1)

−eαβγ(Tγu · ∂αv · ∂tv − ω̂γ∂tu · Tαv · ∂tv)A(r, t)a′(r − t)ω̂β .

Note that 〈r〉−1/2 〈r − t〉−1/2 � (1 + t)−1/2. Indeed, if 0 ≤ t ≤ 2r and r ≥ 1,
then 〈r〉 is equivalent to (1 + t). While, if t ≥ 2r or 0 ≤ r ≤ 1, then 〈r − t〉 is
equivalent to (1 + t). Thus, using the assumptions (3.2) and (3.3), we have

|I2| � η(1 + t)−1|∂v|2 + η|Tv|2a′(r − t)(3.6)

+η(1 + t)−1/2|∂v||Tv|a′(r − t)

� η(1 + t)−1|∂v|2 + η|Tv|2 〈r − t〉−1−ρ .

Similarly, we have

RA · (A(r, t))−1 =
1

2
eαβγTγ∂tu · ∂αv · ∂βv

−1

2
eαβγω̂γ∂

2
t u · (Tαv · Tβv − ω̂α∂tv · Tβv − ω̂βTαv · ∂tv)

−eαβγ∂α∂γu · ∂tv · Tβv

+eαβγω̂β(Tα∂γu− ω̂α∂tTγu)(∂tv)
2,

so that

|RA| � η(1 + t)−1|∂v|2 + η 〈r − t〉−1−ρ |Tv|2(3.7)

+η(1 + t)−1/2 〈r − t〉−1/2−ρ |∂v||Tv|
� η(1 + t)−1|∂v|2 + η 〈r − t〉−1−ρ |Tv|2.

Therefore, integrating (3.1) over [0, t] × R2 and using (3.6) and (3.7), we get∫
R2

XA(t, x)dx−
∫

R2

XA(0, x)dx+

∫ t

0

∫
R2

I1(τ, x)dxdτ

�
∫ t

0

∫
R2

(
η(1 + τ)−1|∂v(τ, x)|2 + η 〈r − t〉−1−ρ |Tv(τ, x)|2) dxdτ

+

∫ t

0

∫
R2

|�g(∂u)v(τ, x)||∂tv(τ, x)|dxdτ.

Since (3.2) yields −g00(∂u) ≥ 1/2 and gjk(∂u) ≥ 1/2 (j, k = 1, 2) for suffi-
ciently small η, we obtain (3.4), in view of (3.5). This completes the proof.
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4. Pointwise estimates

In this section we recall known decay estimates for solutions of the linear
wave equations:

(∂2
t − Δ)v = h, (t, x) ∈ (0, T ) ×R2,

v(0, x) = v0(x), (∂tv)(0, x) = v1(x), x ∈ R2.
(4.1)

We denote by K0[v0, v1](t, x) and L0[h](t, x) the solutions of (4.1) with h = 0
and v0 = v1 ≡ 0, respectively. Then one can show the following estimates from
Proposition 2.1 in [9] and Lemma 2.4 in [3].

Lemma 4.1. Let s be a nonnegative integer. For any (v0, v1) ∈ C∞
0 (R2) ×

C∞
0 (R2), it holds that for any μ > 0 we have

〈t+ |x|〉1/2〈t− |x|〉1/2
∑
|I|≤s

|ZIK0[v0, v1](t, x)| � A2+μ,s[v0, v1],

〈t+ |x|〉1/2〈t− |x|〉3/2
∑
|I|≤s

|ZI∂K0[v0, v1](t, x)| � A3+μ,s+1[v0, v1],
(4.2)

for (t, x) ∈ [0, T ) ×R2, where we put

Aρ,s[v0, v1] :=
∑

|I|≤s+1

‖〈·〉ρZ̃Iv0‖L∞ +
∑
|I|≤s

‖〈·〉ρZ̃Iv1‖L∞.

As for the solution to the inhomogeneous wave equation, we have the follow-
ing estimates which can be deduced from [8] and Proposition 4.2 in [3], with
the help of (2.3).

Lemma 4.2. Let s be a nonnegative integer. Then for 0 < ρ < 1/2 and μ > 0,
we have

〈t+ |x|〉1/2 〈t− |x|〉ρ
∑
|I|≤s

|ZIL0[h](t, x)|

�
∑
|I|≤s

‖〈y〉1/2W1+ρ,1+μ(s, y)ZIh(s, y)‖L∞
t L∞ ,(4.3)

〈r〉1/2 〈r − t〉1+ρ
∑

|I|≤s−1

|ZI∂L0[h](t, x)|

�
∑
|I|≤s

‖〈y〉1/2W1+ρ+μ,1(s, y)Z
Ih(s, y)‖L∞

t L∞(4.4)

for (t, x) ∈ [0, T ) ×R2. Here for ν, κ > 0 we put

Wν,κ(t, x) = 〈t+ |x|〉ν (min{〈x〉, 〈t− |x|〉})κ .

Next we evaluate the tangential derivative Tju (j = 1, 2).
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Proposition 4.3. Let N be a positive integer and let |I| ≤ N − 1. If u is the
solution to (1.1), then we have

|TZIu(t, x)| � 〈t+ r〉−1/2 |(∂L(r1/2ZIu))(0, (r + t))ω)|(4.5)

+ 〈t+ r〉−2

∫ t

0

∑
|I|≤N+1

|ZIu(τ, (r + (t− τ))ω)|dτ

+

∫ t

0

∑
|I|≤N−1

|ZIF (∂u(τ, (r + (t− τ))ω))|dτ

+ 〈t+ r〉−1
∑
|I|≤N

|ZIu(t, x)|

for 0 ≤ t ≤ 2r and r ≥ 1. Here we put ∂L = ∂t + ∂r with ∂r = (x/|x|) · ∇x.

Proof. Let |I| ≤ N − 1 and let 0 ≤ t ≤ 2r and r ≥ 1 in the following. Then r
is equivalent to 〈t+ r〉. Therefore, in view of the identities:

T1 = ω1∂L − ω2

r
Ω, T2 = ω2∂L +

ω1

r
Ω,

we see that (4.5) follows from the fact that |(∂t + ∂r)Z
Iu(t, x)| is estimated by

the right hand side of (4.5). Observe that we have

r1/2(∂2
t − Δ)v = ∂L∂L(r1/2v) − r−3/2(v/4 + Ω2v)(4.6)

for any smooth function v = v(t, x), where we put ∂L = ∂t − ∂r. Taking
v = ZIu in (4.6) with u being the solution to (1.1), i.e., (1.3), we get from
(2.3)

∂L∂L(r1/2v) = r−3/2(ZIu/4 + Ω2ZIu) + r1/2ZIF (∂u).(4.7)

Therefore, we get

|∂L∂L(r1/2v)| � 〈t+ r〉−3/2
∑

|I|≤N+1

|ZIu| + 〈t+ r〉1/2
∑

|I|≤N−1

|ZIF (∂u)|.(4.8)

Now, if we fix (t0, x0) = (t0, r0 ω0) so that 0 ≤ t0 ≤ 2r0 and r0 ≥ 1, and
integrate (4.8) along a ray {(τ, (r0 + (t0 − τ))ω0) | τ ∈ [0, t0]}, then we find

|(∂L(r1/2v))(t0, x0)|(4.9)

�|(∂L(r1/2v))(0, (r0 + t0)ω0)|

+ 〈t0 + r0〉−3/2

∫ t0

0

∑
|I|≤N+1

|ZIu(τ, (r0 + (t0 − τ))ω0)|dτ

+ 〈t0 + r0〉1/2

∫ t0

0

∑
|I|≤N−1

|ZIF (∂u(τ, (r0 + (t0 − τ))ω0))|dτ.

Since ∂L(r1/2v(t, x)) = r1/2∂LZ
Iu(t, x) + (1/2)r−1/2ZIu(t, x), we have

|∂LZ
Iu(t, x)| ≤ 〈t+ r〉−1/2 |∂L(r1/2v(t, x))| + 〈t+ r〉−1 |ZIu(t, x)|.
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Thus we obtain the needed estimate. This completes the proof.

5. Proof of Theorem 1.1

Since the local existence for the initial value problem (1.1) can be proved
by a standard argument, we have only to deduce a suitable apriori estimate.
Let u be a smooth solution to (1.1) on [0, T )×R2 and let ρ ∈ (1/2, 1). In the
following, we always assume (t, x) ∈ [0, T ) ×R2.

For a nonnegative integer s ≥ 14, we set

es[u](t, x) =
∑

|I|≤s+1

〈t+ r〉1/2 〈r − t〉ρ |ZIu(t, x)|

+
∑
|I|≤s

〈r〉1/2 〈r − t〉1+ρ |ZI∂u(t, x)| +
∑

|I|≤s−1

〈r〉1/2 〈r + t〉 〈r − t〉ρ |TZIu(t, x)|.

Assume that

‖es[u]‖L∞
T L∞ ≤Mε(5.1)

holds for some large M(> 1) and small ε(> 0) such that Mε is sufficiently
small. Our aim is to show that we can replace M by M/2 in (5.1), provided
that the null condition (1.8) is satisfied. Once such an estimate is derived, we
find from the so-called bootstrap argument that ‖es[u]‖L∞

T L∞ stays bounded
as far as the solution exists.

Step 1. We evaluate
∑

|I|≤2s−3 ‖∂ZIu(t)‖L2. Since (5.1) implies∑
|I|≤s−1

|ZI∂u(t, x)| � Mε 〈r〉−1/2 〈r − t〉−1−ρ ,(5.2)

∑
|I|≤s−1

|TZIu(t, x)| � Mε(1 + t)−1(5.3)

with s ≥ 15, we can apply (3.4) as η = Mε and v = ZIu with |I| ≤ 2s − 3.
Note that by (2.3) and (1.1) we have

�g(∂u)Z
Iu = ZIF (∂u) − eαβγ∂γu · ∂α∂βZ

Iu,

so that for |I| ≤ 2s− 3, (2.5), (5.2), and (5.3) yield

|�g(∂u)Z
Iu| �Mε(1 + t)−1

∑
|I|≤2s−3

|∂ZIu(t, x)|

+Mε(1 + t)−1/2 〈r − t〉−(1/2)−ρ
∑

|I|≤2s−3

|TZIu(t, x)|.
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Thus, choosing Mε is suitably small, we get∑
|I|≤2s−3

‖∂ZIu(t)‖2
L2 +

∫ t

0

∫
R2

〈r − τ〉−1−ρ
∑

|I|≤2s−3

∣∣TZIu(τ, x)
∣∣2 dxdτ

� ε2 +

∫ t

0

Mε(1 + τ)−1
∑

|I|≤2s−3

‖∂ZIu(τ)‖2
L2dτ.

Now, the Gronwall inequality leads to∑
|I|≤2s−3

‖∂ZIu(t)‖2
L2 � ε2 exp(C∗Mε log(1 + t))

where C∗ is a positive constant, independent of M and ε. Putting δ = C∗Mε
which is assumed to be sufficiently small, we obtain∑

|I|≤2s−3

‖∂ZIu(t)‖L2 � Mε(1 + t)δ.(5.4)

Step 2. We evaluate
∑

|I|≤2s−6 |ZIu(t, x)| and
∑

|I|≤2s−7 |ZI∂u(t, x)|. For |I| ≤
N − 1, by the Leibniz rule, we have

|ZIF (∂u(t, x))| �
∑

|J |≤[N/2]

|ZJ∂u(t, x)|
∑

|K |≤N

|ZK∂u(t, x)|.(5.5)

Therefore, for |I| ≤ 2s− 6, we see from (5.1), (2.4), and (5.4) that

|ZIF (∂u(t, x))|
�Mε 〈r〉−1/2 〈t+ r〉−1/2 (〈r − t〉−1−ρ + 〈r〉−1−ρ)

∑
|K |≤2s−3

‖ZK∂u(t)‖L2

�M2ε2 〈r〉−1/2 〈t+ r〉−1/2 (〈r − t〉−1−δ + 〈r〉−1−δ) 〈t+ r〉δ ,
because we may assume δ < ρ. Then we get from (4.3) and (4.4) with ρ =
μ = δ,

〈t+ |x|〉1/2 〈t− |x|〉δ
∑

|I|≤2s−6

|ZIL0[F (∂u)](t, x)|

�
∑

|I|≤2s−6

‖〈y〉1/2W1+δ,1+δ(s, y)Z
IF (∂u(s, y))‖L∞

t L∞

� M2ε2 〈t+ r〉(1/2)+2δ ,

and

〈r〉1/2 〈r − t〉1+δ
∑

|I|≤2s−7

|ZI∂L0[F (∂u)](t, x)|

�
∑

|I|≤2s−6

‖〈y〉1/2W1+2δ,1(s, y)Z
IF (∂u(s, y))‖L∞

t L∞

� M2ε2 〈t+ r〉(1/2)+3δ .
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Combining these estimates with (4.2), we get∑
|I|≤2s−6

|ZIu(t, x)| � Mε 〈t + r〉2δ ,(5.6)

and if 0 ≤ t ≤ 2r and r ≥ 1, then∑
|I|≤2s−7

|ZI∂u(t, x)| � Mε 〈t+ r〉3δ 〈r − t〉−1−δ ,(5.7)

while, if t ≥ 2r or 0 ≤ r ≤ 1, then∑
|I|≤2s−7

|ZI∂u(t, x)| � Mε 〈t+ r〉−(1/2)+2δ 〈r〉−1/2 .(5.8)

Step 3. We evaluate
∑

|I|≤2s−8 |TZIu(t, x)|. Let |I| ≤ 2s− 8. From (5.5) with

N = 2s− 7, (5.1), and (5.7) we get

|ZIF (∂u(t, x))| � M2ε2 〈t+ r〉−(1/2)+3δ 〈r − t〉−2−ρ−δ

for 0 ≤ t ≤ 2r and r ≥ 1. Since we assumed that the initial data φ, ψ are
compactly supported (or rapidly decreasing), we see that (∂L(r1/2ZIu))(0, (r+

t))ω) can be estimated by Cε 〈t+ r〉−3/2. Therefore, using (4.5) with N =
2s− 7 and (5.6), we get

|TZIu(t, x)| �ε 〈t+ r〉−2 +Mε 〈t+ r〉−2

∫ t

0

〈t+ r〉2δ dτ

+

∫ t

0

M2ε2 〈t+ r〉−(1/2)+3δ 〈r + t− 2τ〉−2−ρ−δ dτ

+Mε 〈t+ r〉−1+2δ ,

which yields ∑
|I|≤2s−8

|TZIu(t, x)| � Mε 〈t + r〉−(1/2)+3δ(5.9)

for 0 ≤ t ≤ 2r and r ≥ 1.

Step 4. We shall improve the estimate in the previous step, by using the null
structure. Let |I| ≤ 2s− 9. From (2.6), (5.1), (5.7), (5.9), we get

|ZIF (∂u(t, x))| � M2ε2 〈t+ r〉−1+3δ 〈r − t〉−1−δ

for 0 ≤ t ≤ 2r and r ≥ 1. Repeating the argument for getting (5.9), we obtain∑
|I|≤2s−9

|TZIu(t, x)| � Mε 〈t+ r〉−1+3δ(5.10)

for 0 ≤ t ≤ 2r and r ≥ 1.

Step 5. We shall improve the estimates (5.6) through (5.8), by using the null
structure. Let |I| ≤ 2s− 10. From (2.6), (5.1), (5.7), (5.10), we get

|ZIF (∂u(t, x))| � M2ε2 〈t+ r〉−(3/2)+3δ 〈r − t〉−1−δ
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for 0 ≤ t ≤ 2r and r ≥ 1. On the other hand, it follows from (5.5) with
N = 2s− 9, (5.1), and (5.8) that

|ZIF (∂u(t, x))| � M2ε2 〈r〉−1−ρ 〈t+ r〉−(3/2)+2δ

for t ≥ 2r or 0 ≤ r ≤ 1. Then we get∑
|I|≤2s−10

|ZIF (∂u(t, x))| � M2ε2〈r〉−1/2 〈t+ r〉−1+3δ (〈r − t〉−1−δ + 〈r〉−1−δ).

Therefore, applying (4.3) and (4.4) with ρ = μ = δ, we obtain

〈t+ |x|〉1/2 〈t− |x|〉δ
∑

|I|≤2s−10

|ZIL0[F (∂u)](t, x)| � M2ε2 〈t+ r〉4δ ,

and

〈r〉1/2 〈r − t〉1+δ
∑

|I|≤2s−11

|ZI∂L0[F (∂u)](t, x)| � M2ε2 〈t+ r〉5δ .

Combining these estimates with (4.2), we get∑
|I|≤2s−10

|ZIu(t, x)| � Mε 〈t+ r〉−(1/2)+4δ ,(5.11)

and if 0 ≤ t ≤ 2r and r ≥ 1, then∑
|I|≤2s−11

|ZI∂u(t, x)| � Mε 〈t+ r〉−(1/2)+5δ 〈r − t〉−1−δ ,(5.12)

while, if t ≥ 2r or 0 ≤ r ≤ 1, then∑
|I|≤2s−11

|ZI∂u(t, x)| � Mε 〈t+ r〉−1+4δ 〈r〉−1/2 .(5.13)

Step 6. We shall further improve the estimate (5.10). Let |I| ≤ 2s−12. From
(2.6), (5.1), (5.12), and (5.10), we get

|ZIF (∂u(t, x))| � M2ε2 〈t+ r〉−(3/2)+5δ 〈r − t〉−1−δ

for 0 ≤ t ≤ 2r and r ≥ 1. Using (4.5), (5.11), we obtain∑
|I|≤2s−12

|TZIu(t, x)| � Mε 〈t+ r〉−(3/2)+5δ(5.14)

for 0 ≤ t ≤ 2r and r ≥ 1.

Step 7. We shall further improve the estimates (5.11) through (5.13). Let
|I| ≤ 2s− 13. From (2.6), (5.1), (5.12), and (5.14), we get

|ZIF (∂u(t, x))| � M2ε2 〈t+ r〉−2+5δ 〈r − t〉−1−δ

for 0 ≤ t ≤ 2r and r ≥ 1. On the other hand, it follows from (5.5) with
N = 2s− 12, (5.1), and (5.13) that

|ZIF (∂u(t, x))| � M2ε2 〈r〉−1−ρ 〈t+ r〉−2+4δ
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for t ≥ 2r or 0 ≤ r ≤ 1. Then we get∑
|I|≤2s−13

|ZIF (∂u(t, x))| � M2ε2〈r〉−1/2 〈t+ r〉−(3/2)+5δ (〈r − t〉−1−δ + 〈r〉−1−δ).

Using (4.3) and (4.4) with ρ = (1/2) − 6δ, μ = δ, we get

〈t+ |x|〉1/2 〈t− |x|〉(1/2)−6δ
∑

|I|≤2s−13

|ZIL0[F (∂u)](t, x)| � M2ε2,

and

〈r〉1/2 〈r − t〉(3/2)−6δ
∑

|I|≤2s−14

|ZI∂L0[F (∂u)](t, x)| � M2ε2.

Now we fix δ so small that (1/2) − 6δ > ρ. Then, combining these estimates
with (4.2), we get

〈t+ r〉1/2 〈r − t〉ρ
∑

|I|≤2s−13

|ZIu(t, x)| � ε+M2ε2(5.15)

and

〈r〉1/2 〈r − t〉1+ρ
∑

|I|≤2s−14

|ZI∂u(t, x)| � ε+M2ε2(5.16)

for all (t, x) ∈ [0, T ) × R2.

Final step. We shall finalize the improvement on the estimate (5.14). Let
|I| ≤ 2s− 15. From (2.6), (5.1), (5.16), and (5.14), we get

|ZIF (∂u(t, x))| � Mε2 〈t+ r〉−2+5δ 〈r − t〉−1−δ

for 0 ≤ t ≤ 2r and r ≥ 1. Using (4.5), (5.15), we obtain

|TZIu(t, x)| �ε 〈t+ r〉−2 +Mε 〈t+ r〉−(5/2)

∫ t

0

〈r + t− 2τ〉−ρ dτ

+M2ε2 〈t + r〉−2+5δ

∫ t

0

〈r + t− 2τ〉−1−δ dτ

+Mε 〈t+ r〉−(3/2) 〈r − t〉−ρ

�ε 〈t+ r〉−2 +Mε 〈t+ r〉−(3/2)−ρ +M2ε2 〈t+ r〉−2+5δ

+Mε 〈t+ r〉−(3/2) 〈r − t〉−ρ

for 0 ≤ t ≤ 2r and r ≥ 1. Since ρ < (1/2) − 5δ, we thus get

〈t+ r〉3/2 〈r − t〉ρ
∑

|I|≤2s−15

|TZIu(t, x)| � ε+M2ε2

for 0 ≤ t ≤ 2r and r ≥ 1. Combing this with (5.16), we get

〈r〉1/2 〈t+ r〉 〈r − t〉ρ
∑

|I|≤2s−15

|TZIu(t, x)| � ε+M2ε2(5.17)



MODIFICATION OF THE VECTOR-FIELD METHOD FOR WAVE EQUATIONS 15

for all (t, x) ∈ [0, T ) × R2. Now, from (5.15), (5.16), and (5.17), we find

es[u](t, x) ≤ C(ε+M2ε2)

for all (t, x) ∈ [0, T ) × R2, because s ≥ 14. Here C is a positive constant,
independent M and ε. Finally, if we fix M large enough to satisfy C ≤ M/4
and choose ε to be sufficiently small so that CM2ε ≤ 1/4, then the desired
estimate follows. This completes the proof of Theorem 1.1.
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