-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by EPrint Series of Department of Mathematics, Hokkaido University

EQUIVALENCE OF BMO-TYPE NORMS WITH
APPLICATIONS TO THE HEAT AND STOKES
SEMIGROUPS

MARTIN BOLKART, YOSHIKAZU GIGA, TAKUYA SUZUKI,
AND YOHEI TSUTSUI

ABSTRACT. We introduce various spaces of functions of bounded mean
oscillations (BMO) defined in a domain by taking into account the
behavior of functions near the boundary. Then we establish several
equivalences of these spaces. Moreover, we compare our space with a
BMO space introduced by Miyachi. As an application we prove that
the heat and the Stokes semigroup are analytic in such a type of spaces.

1. INTRODUCTION

In this article, we discuss equivalences of BM O-type norms in domains.
Since we will consider the behavior of functions near the boundary, our
BMO norms consist of an interior and a boundary part. The reason we are
interested in such problems is to prove analyticity of the heat and Stokes
semigroup in domains.

The space BMO(R™) has previously been introduced by the seminal pa-
per of John and Nirenberg [22]. Fefferman [11] showed that BMO(R") is
the dual of the Hardy space H'(R") and a decomposition of functions in
BMO(R™) in terms of Riesz transforms. A constructive proof of the last
result was given by Uchiyama [39]. The theory of BMO(R"™) was developed
in the remarkable paper of Fefferman and Stein [12]. BM O spaces play im-
portant roles in harmonic analysis and PDEs, as a substitute of L*>°. Several
operators in these fields are not bounded on L, but from L* to BMO.
Moreover, the real and complex interpolation theories work with BMO. For
example, LP coincides with interpolation spaces with BMO space, [19], [21].

We already know ways to characterize functions in BMO(R"). For in-
stance, Carleson measures ([6], [12], [37]), Ap-weights ([13]) and Littlewood-
Paley decomposition ([38]). The space BMO(R"™) appears in several prob-
lems in harmonic analysis; paraproduct [5], commutator of singular integrals
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[9], T(1) theorem [10], and in PDEs, especially in fluid dynamics; well-
posedness for incompressible Navier-Stokes equations on the whole space
[24] and a blow up criterion for the same equation [26].

If one considers the space BMO in a domain 2, the situation is less
clear compared with the case of the whole space R™. To discuss possible
definitions of BMO in a domain, we will define various types of BM O-type
(semi)norms. Sometimes we have to be careful about the behavior near the
boundary 9. For this purpose we define for f € Li (Q), v € (0,00] and
p € [1,00) the seminorm

1/p
[flpvp := sup <r_”/ \f(y)\pdy> rxed, 0<r<v,,
QNBy(x)

where B,(z) denotes the closed ball of radius r centered at x (cf. Remark
6). For p € (0, 00] we define

1/p
1

f H::SUP _— fy—frmpdy :BTJU CQ,T< 9

[f1BrMOmp <|Br($)| Br(x)| (y) = fB, ()| (z) o

where for any ball B C R",

1
foi= g [ fw)dy
B /"
Then our BMO space is defined by the norm

1/l aroprp = [flBrmonp + [florp.

If one replaces balls by cubes in the above definition for [-|gyonp one gets
an equivalent seminorm. For a proof of this fact for general domains we
refer to [35]. We then let BMO}""(Q) be the space of all functions f €
L () satisfying 1| Baropw < oo. Furthermore, the space VMOgt’OV(Q) is

loc
defined as the closure of C2°(Q) in BMO},"”(Q) and the solenoidal space
VMOyy () is defined as the closure of C2%(Q) in BM Oy (). Similarly,
Co(92) and Cp ,(£2) are defined as the L>°(€2)-closure of C2°(€2) and CZ% (1),
respectively.

There exists a similar definition of the BM Op-norm that was used by A.
Miyachi in [31]. We generalize his norm to p € [1,00) by

1
1 P
[f]BMoMp ‘= sup (M B, (s) |f — fBT(:r:) ’pdy> : Bor(7) C Q

[lyary := sup (wl()‘ /B . !f\pdy> : Byy(2) C Q and By, (2) NQ° £ 0

and
HfHBMOéWp = {f]BMOMp + [f]bMp'

For the case p = 1, we omit p in the definitions above.
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Main results in this paper consist of three types of equivalences for BAMO}""p
norms:

[I] equivalence for any p, v € (0,00] (Theorems 5, 6, 7, 8)
[IT] equivalence for the power p € [1,00) (Theorems 13, 14)

[I11] equivalence to BM O p (Theorems 9, 10)

The main ingredients of the proofs of [I] and [III] are Jones’ extension theo-
rem (Theorem 1) and an L!'-growth estimate for BMO functions (Theorem
3). The proof of [IT] makes use of L'-BMO interpolation in R" (Lemma 5)
and careful investigation of Jones’ construction for his extension operator.

As it is mentioned above, some of our results make use of extension argu-
ments. Although for any domain the extension of L™ functions by 0 does
not cause problems, it is an interesting problem for BM O functions on do-
mains. Jones [23] gave a sufficient condition on domains for the existence of
a bounded extension operator. Since his operator is needed in our aims, we
recall its construction in the next section. But for some domains, the zero
extension of BM O functions is useful, see Lemma 4. One can see that layer
domains do not fulfill the Jones condition and have no extension operator,
see Remark 1.

As the first application we study the analyticity of the heat semigroup,
the solution operator H : ug — H(t)up = u(-,t), where w is the solution to

u—Au = 0 inQx(0,7),
u = 0 ondQ2x(0,7),
ulg = 0 onf

in BM O-type spaces when 2 is a domain in R”. If € is R™, the whole space,
a key estimate

Sup ([u()] prro + tue®)lloo) < Cluolzaro (L.1)

is easily obtained from a corresponding estimate in Hardy spaces and a
duality argument; see Theorem 15 where spatial derivatives up to second
order are also controlled. Note that instead of the BM O-type norm the L™
norm of the time derivative ||u;||oo is controlled and this gives a regularizing
effect from BMO to L. If Q is the half space R"}, then an estimate similar
to (1.1) is obtained by replacing BMO> by BM Oy, i.e.,

sup ([u(t)] paropees + tue(t)llo) < Cluolmyopees: (12

This is obtained by an odd extension and (1.1); see Theorem 16 which

seems to be not included in the literature. In both estimates C' is a positive

constant depending only on the space dimension n. From (1.2) we are able

to prove that H(t) is a (non Cp) bounded analytic semigroup in BMO,™

and a Cjy bounded analytic semigroup in V M ngdoo when ( is the half space.
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For a general uniformly C3-domain © we shall establish a similar estimate
but local-in-time of the form

sup_ ([[u())| pasope + 1721V oo + V()] + lus(t)]oc)
0<t<Top

< Clluoll paror+  (1-3)

with some constants C' and Ty independent of ug € VM Of " when 1 € (0, ]
and v is smaller than the reach of 92 (Theorem 18). The regularity part
(estimate for Vu, V2u, u) is obtained by a blow-up argument similar to the
one developed in [2] while the estimate for u is obtained by an argument
similar to the one in [3]; both papers discuss the Stokes semigroup.

Let us sketch the proof of the bound for ||ul|z moypv, where we invoke

equivalence of BMO;""p for p = 1 and p = 2. The proof consists of four
steps. First, we derive a pointwise mean value estimate of a solution with
respect to the time variables (Lemma 9 (1)). This is obtained by the L>-
BMO type estimate for the gradient. Second and third, we estimate the
BMO#2 seminorm in two ways by using the L>*°-BM O type estimates and
the Poincaré inequality (Lemma 9 (2), (3)). Fourth, we estimate the 5“2
seminorm by a similar argument (Lemma 9 (4)). Here we invoke the equiv-
alence of BMO}" and BMO}"'p. Note that an estimate similar to (1.3)
holds for VM O%(Q). Thus we are able to conclude that H is a Cp-analytic
semigroup in VMO%(Q).

As the second application we study the analyticity of the Stokes semigroup
S, the solution operator of the Stokes equations, in VM Ol’: ’01'7 »(£2) when € is

an uniformly C® and admissible. Such a result was obtained for sufficiently
small v in [3]. By the equivalence result (Theorem 5) one can extend this
result to general u, v € (0, 00] in bounded domains. Furthermore, one is able
to prove that S is bounded in VMO%/’J(Q) for ¢ > 0 when 2 is bounded.
For analyticity in VM Oll;, ’Ol: , one is able to prove that S is analytic if {2 is an

admissible Lipschitz half-space with uniformly C3-boundary including the
case u = v = 0o, which is not included in [3]. This analyticity results also
extends to VMOI])W0 o

Let us review literature concerning BM O type estimates of the heat equa-
tion in R™. A. Carpio [7] and the second author, S. Matsui, Y. Shimizu [16]
established H!-L! estimates which by duality imply L>®-BMO gradient es-
timates: .

t2|[VGy * ugl| oo rny < Cluo] rros rn):

where G; denotes the Gaussian kernel and * the convolution. We remark
that ||G * ug| oo (mr) is N0t bounded by [uo] garomn) Which can be observed
by taking ug constant. Moreover, this L>°-BMO estimate for the gradient
cannot be generalized to the case when a domain has nonempty boundary
under the Dirichlet condition since u may not be spatially constant even if
up is a constant. In [25] and also in [34, Lemma 14.4.1], BM O(R") estimates
and L®-BMO estimates for e!?uy, Vel?ug, VZe!?uy were established:

k
[VketAuo]BMooo(Rn) < Ct 2 [UO]BMOoo(Rn) for k = 0, ]., 2,

k
HvketAU(]HLoo(Rn) § Ct_E[UO]BMOoo(Rn) fOI' k= 1, 2.
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The BMO*(R™) estimates are obtained by HP-H? estimates, see [20], [32],
[33], and a duality argument. L>°-BMO estimates for the gradients are also
obtained by a duality argument.

This paper is organized as follows. In Section 2 we recall several prop-
erties of Jones’ extension. In Section 3 we discuss equivalences of different
BMO}"" by changing p and v for various domains including some domains
which do not allow Jones’ extension. We conclude this section by discussing
the equivalence of BMO}""p when p is different. In Section 4 we discuss
analyticity of the heat semigroup in BM O type spaces and in Section 5 we
discuss the analyticity of the Stokes semigroup in BMO type spaces.

2. JONES’ EXTENSION THEOREM

We will need to consider certain classes of domains in order to compare
different BM O-type norms or to prove embeddings from BM O-type spaces
to LP. For the existence of an extension operator on BMO*(Q2) we will
need the notion of a uniform domain. In some cases we will also need C?-
boundary to get control over the ratio |B,(xo)|/| By (x0) N 2| for small r and
xo € 0). Both properties are crucial in several proofs.

Lemma 1. Let Q be a uniformly C?-domain. Then there exists a constant
R > 0 depending only on C?-regularity of Q such that there is a projection
Pyo : {z € R" : dist(z,09) < R} — 0Q with Pyqr — x = dist(xz,0Q)n,
where n is the exterior normal at 0 in Pyqz if x € Q and the interior
normal of O at Paqx if © ¢ Q. Note that Pyqx is uniquely determined if
d(z,00) < R.

Proof. For a proof see [17, appendix]| and [28, §4.4]. O

We define then for a C?-domain the reach of € denoted by R* > 0 to be
the supremum of all R as in the above Lemma. The reach of €2 then depends
only on C2%-regularity of €.

For several equivalence proofs we will need an extension theorem for BM O
functions on domains that is due to P. W. Jones ([23]). Since the construc-
tion of this extension will be important for our needs, we will give a sketch
of this construction. In order to do so we need to define the dyadic Whitney
decomposition of a set A.

For a set A C R" let A = {Q;};en be a set of dyadic closed cubes with
side length ¢(Q;) contained in A such that

(1) A=U,;Q;
(2) QiNQr=0ifj £k
(3

)1<QJ(’¢)\A<4f(jeN)

(4) § < {8 <4 QN Q #0.

Then A will be called a dyadic Whitney decomposition of A. For the exis-
tence of the Whitney decomposition for open sets we refer to [36, Chapter
VI, Theorem 1].

We define two different distance functions on the Whitney decomposition.
For Q;,Qr € Awe call Q; = Q(0) = Q(1) = Q(2)... = Q(m) = Qi a
Whitney chain of length m connecting @Q; and Q, if Q(I) € A for all 0 <
¢<mand Q()NQ(+1) # 0 for each 0 <1 < m—1. The distance function
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di1(Qj, Qr) will then be defined as the length of the shortest Whitney chain
connecting @); and Q.
For Q;, Q) € A we define the second distance function as

Q) g} d(Qj, Q)
£(Qr) 0Q;) + (Qk)

where d denotes the Euclidean distance between the cubes. Note that d;
and dy are scale invariant.

A domain A C R™ will be called a uniform domain if there is some K > 0
such that

d2(Qj, Qr) = log +lo

+ 2],

di1(Qj, Qr) < Kd2(Qj, Qx) (2.1)

for all Q;,Qr € A and some dyadic Whitney decomposition A. The name
uniform is due to the following equivalent definition of this class of domains
([14]). A domain € is uniform if there exist constants a,b > 0 such that for
all z,y € Q there is a rectifiable curve v C Q of length s(vy) < a|z — y| with
min{s(y(z, 2)), s(v(y, z))} < bdist(z, ), where y(z, z) denotes the part of
~v between x and z. Bounded Lipschitz domains are examples of uniform
domains.

We are now able to formulate the extension theorem for BM O functions.

Theorem 1. Let A C R" be a uniform domain. Then there is a constant
C(K) > 0 such that for each f € BMO®(A) there is an extension f €
BMO®>(R"™) such that

[f1Bro= @) < C(K)[flrmo=(a); (2.2)

where K is the constant in (2.1). In particular, the theorem holds for bounded
Lipschitz domains with a constant only depending on the Lipschitz reqularity
of A. If there exists such an extension for all f € BMO(A), then  is
uniform.

Proof. The theorem is due to [23]. O

We will repeat the explicit construction of f. Let A be the complement
of A and A’ be the Whitney decomposition of its interior. Choose for every
Q; € A’ a corresponding @; € A in the following way. If there are cubes
Qj € A which satisfy £(Q;) > ¢(Q) then choose the nearest cube Q; € A
satisfying £(Q;) > E(Q;-). For all other cubes choose some largest cube
Qo € A and let Qg be the cube corresponing to all Q; € A’ for which there
are no cubes in Q; € A satisfying ¢(Q;) > K(Q;). The second case appears
for example if A is a bounded domain. Then f is defined as

=y | flx) :x€A
f(QU)-—{fQj :er; )

where ); € A is the cube corresponding to Q}. Since by [23, Corollary
2.9] |0€2| = 0 for uniform domains, we can ignore the boundary of € in the
construction.
Furthermore, we will need the following lemma (cf. [23, Lemma 2.10]).
6



Lemma 2. Let A C R" be a uniform domain, A and A’ be the Whitney
decomposition of A and A° respectively and let Q;- e A'. If there exists a
cube Q € A with £(Q) > £(Q), then

d(Qj,Q)) < 65K*1(Q}) < 65K¢(Q;) (2.3)
with K the number obtained in condition (2.1) and Q; the cube corresponding

to Q5.

Remark 1. Domains of the form Q@ = RF x G with 1 < k < n — 1 and
bounded G C R"* are examples of domains which are not uniform. We
will show that for such domains there is no Jones’ extension. Let f(x) = x4,
then for every cube @ in 2

]acl\ dl‘l

. (Q-t Q2

- ~ ol dy —

|Q!/Qf fal dy Q| /—Z(Q)/2
:ia@).

Thus f € BMO>(2) because the cubes in  have side length of at most
diam(G). This function cannot be extended to a function f € BMO>(R™)
since otherwise BM O (R™) would contain functions of linear growth.

3. EMBEDDINGS AND EQUIVALENCES OF BMO-TYPE NORMS

Theorem 2. Let Q C R" be a domain and p,v € (0,00]. Then the embed-
dings

L®(Q) < BMO!M (Q), (3.1)
Co(Q) = VMOLY (%), (3.2)
Coo(Q) < VMOLY () (3.3)

hold with an embedding constant depending only on n, i.e., independent of
Q, uand v.

Proof. 1t follows from the definition of the norm that || f| 5 mopr < (2 +
wp) |l fllco, where wy, = |B1(0)] is the measure of the unit ball in R". O

Remark 2. It follows from the definition that for 0 < p; < pe < 0o and
0 < 11 <1y < 0 the estimates

[flBmom < [flemorz,  [flon < [floe
and the embedding
BMOU" (Q) < BMOY*"(Q)

hold.
Theorem 3. Let p1 € (0,00] and Q@ C R™ be a domain. Then for all f €
BMO"(),a>1,r >0, x1,x3 € Q with By(z1) C Bgr(x2) C Q and ar < p
the inequality

£ 21 (Bay (22)) < [Bar(x2)|(1+a™)[flapron) + a1 flrr @) — (3-4)

hold. The same statement holds for cubes in ) of side length r and ar,

respectively.
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Proof. Let f = f — fp.(s,)- By JB.(21) F = FBontas) A = —|Br(21)| B, (22)

we obtain

1By (20)]|Fo )| < / 1F — Fou ol dy

By (z1)

and thus

|Bar (22)| [l ar0n > / 1 Foionl dy
Bar (132)

> By (1) fBo (22)]

which can be rewritten as

\me(m)’ < a"[flBmon. (3.5)

Then we are able to estimate

1N L1 (Bay (22))
<If = Bl L (Bar (@) + | Bar (22) |1 fB, (21)]

= Fll 21 (Bar(za)) + | Bar (@2)[1 5, (21)]

Y 3 ‘Bar(x2)|
<Nf = FBar @) 11 (Bur(22)) + | Bar (22)1| B, (20) | + m“f\hl(&(m))

<|Bar(z2)|[flBMO# + | Bar(x2)|a" [f]Bron + a"[| fll L1 (B, (21))
=|Bar(22)[(1 + a")[flzmor + a" || fll L1 (B, (1))

O

Theorem 4. Let Q@ C R™ be an arbitrary domain. Let 0 < p; < pg < 00.
Then the seminorms [-]|paport and [ aore are equivalent.

Proof. We prove this theorem by using cubes instead of balls. Let @Q,(z) be
a cube of side length r < p; centered at x. We will prove that the BMO
seminorm in @Q2,(x) is controlled by the BMO* seminorm and a constant
only depending on the dimension n provided that Qo.(z) C Q. By iteration
and Remark 2 we then get the stated result. Divide Qo,(z) into 2™ cubes
Q; of side length r with disjoint interior such that each cube has one corner
in z.
Assume without loss of generality that fg () =0. Then

£z @@y < [flBMON|Qr ().
8



By using Theorem 3

: /
f - f r(T |dy
|Qar ()] J s, (a) | Parl)

2
<2
ST 1 £11 21 (Qar (2))

2n
2
<> lflve
\er(w)lg bew
271

2

< Ga o 2 (Qi 1+ 29 Tsarom + 21l @, o)
T i=1

<+ 2 flsarom Qe (@)] + 27Q0 ()] [l saron )
|Q2r(m)|

§2(1 +2- 2”)[f]BMou1
and thus

[flBaozer < 2(1+ 2" [flprom -
O

Lemma 3. Let Q C R™ be a bounded domain, p,v € (1,00]. Then there
exists a constant ¢ > 0 only depending on n,u,v and 0 such that for all

f € BMOM(Q)
1) < ellfl Baror (o)-

Proof. Let (B;)ier be a cover of Q) consisting of balls B,.(z) C  with r < u
and balls B,.(z) with z € 0Q and r < v. Then there is a finite subcover of
2 of balls (B;)1<i<n. This subcover contains at least one ball centered at
some point on the boundary. Since there are only finitely many balls in the
subcover the number
ro =  min sup T
BinB;NQ#AD B, (x)c B;NB;NQ
exists and is positive. For the balls centered at the boundary we can estimate
£z (B:ne) < |Bil[f]e» and for all neighboring balls B; that are contained
in Q there is a ball By C B; N Bj of radius 7 with 11l gy < 1Bil[f]oe-
T0
By Theorem 3 we obtain then for the neighboring balls the estimate

Iy <1851 (14 (2)) Ulwson+ (£) 1Bl < llllsarog
0 To

and can continue this strategy until we estimated ||f||z1(p,) on all balls
B; C Q. Thus

N
£z ) < CZ [ fllz1 By < C”fHBMog“”
i—1

with some constant ¢ depending only on n and the subcover (B;)i1<i<n, i.€.,
depending only on n, 4, v and €. O
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Theorem 5. Let Q) be a bounded domain and 1, po,v1,vs € (0,00]. Then
the norms || - HBMoghn and || - HBMO{?” are equivalent.

Proof. Assume that vy < vo. By the boundedness of 2 we have that
[flBMoO== is equal to [f]gpsodiam such that we can assume that pq and
uo are finite. By Theorem 4 we obtain the equivalence of [f]paror and
[flBrvorz. For vy < r < g and zp € 02 we obtain by the inequality
[ fllzr ) < CHfHBMOg‘l’”l of Lemma 3 the estimate

1 —-n
— Lf(Wldy < v fll e
" J By (x0)NQ

< el fllparopr

which completes the proof. O

Example 1. For the unbounded domain R; = (0,00) we will give some
examples that the BM Oy norms may differ for different values of i or v. For
domains which contain arbitrarily large balls similar examples give that the
spaces BM O™ (Q), BMO,™" (), BMO*>(Q) and BMO,;*"*°() for finite
u, v are different because they allow different kinds of growth at infinity.

e Let fi(z) = . Then [fi]» = sv and [fi]pmor = 4. This gives

us that fi € BMO,""(Ry) for p,v < oo but fi ¢ BMO)" (Ry) if
[t = 00 Or V = 00.

o Let fo(x) = log(x + 1). Tt is well known that [fo]prro=~ < o0,
thus [fo]pyor < oo for all p € (0,00]. Furthermore, [fo]pr =
i IVH log(x) dz = log(y—i—l)—l—w—l. Thus fo € BMO>"(R,)
for v € (0,00) but fo ¢ BMO>*°(R}).

o Let
x—2" :1:6[2”,2"4—%2%) (n € Np)

fa(x) = 2"+ 122 —x ixe 20+ 122 27 4 123) (ne N)
0 : otherwise.

Then [f3]garon(r,) < tand [f3lpeor,) < SUDen, 37 ngnH f3(y)dy <
¢ follow from a direct calculation. Thus f3 € BMO}™(R,.) for
p < oo but fz3 ¢ BMO,”™(R) which can be seen by calculating
the mean oscillation in every interval (2", 2" + %2%)

Theorem 6. Let Q C R” be a uniform domain with uniformly C?-boundary
and let 0 < 11 < vy < 00. Then the norms || - HBMOLX”'“ and || - HBMO;OJQ
are equivalent.

Proof. We extend f by Theorem 1 to f € BMO>™(R"). For v := min R %*
and & such that By, (Z) C Bz (zo) N for v1 <1 <13 and 2o € 9Q we obtain
10



by Theorem 3

1
sup — | fldy
V1 §T<V2,I0€89 r Br(mo)ﬂQ

1 _
< sup  — |fldy
V1 §T<V2,I0€89 r Br(fEO)

C C
< s SB[ srom@n + - / £l dy
v <r<vg,xo€d T r By, z)

C
<c[flBmo=() + n/ | fl dy
Vl BV71 (53)
<c|| fllBro=m

and for r < v; the estimate follows directly from the definition. O

Theorem 7. Let Q be a uniformly C%-domain, u € (0,00], v1,vo € (0, R¥]
and v1 < vg < oco. Then | - ||BMO§‘”1 and || - HBMog"’VQ are equivalent.

Proof. By Theorem 4 and Remark 2 we can assume without loss of generality
that 2y = v < pu. Each B,(x0) N Q with g € 9Q and v; <7 < 1y is a
Lipschitz domain with uniform Lipschitz regularity, where [f]pyron (B, (20)n0)
equals [f]pro (B, (@y)ne)- Furthermore, every B;.(xo) N {2 contains a ball
By, /4(z1) such that there is ro < vy with B, /4(z1) C By, (w0). By Theorem
1 we obtain for every Q N B,.(zo) an extension f of f such that

12t (B, @oyne) < 1L (B, o))
< ol Br(2)|(1 + 8")[flBmon + 8" fllLi(s,, a(e1))

with a uniform constant c¢ since we have control on the Lipschitz regularity
of B,(xo) N Q. Thus

[f]b”z < CHfHBMog"”l-
O

Theorem 8. Let Q := G x R" %, where G C R* is a bounded Lipschitz
domain and 1 < k <n —1. Let uy,p2,v1,v2 € (0,00]. Then || - HBMOsl»Vl

and || - HBMO{?“’Z are equivalent.

Proof. Let § := diam(G). The seminorms [-]gapom and [-]garore are equiv-
alent by [|gyos = [-|BMo= for p > ¢ and Theorem 4. We can assume
without loss of generality that 11 < vo. Let {€;};czn-+ be the collection of
domains

G x (ik+15, (ik+1 + 1)(5) X oo X (Zn5, (Zn + 1)(5)

with i € Z" ¥ such that € is the interior of the closure of the disjoint union
of all ;. Each §; is then just the translation of the bounded Lipschitz
domain Qq. Since 9€; N IQ # 0 for every i € Z" ¥ we obtain by a similar
argumentation as in the proof of Theorem 3 that there is a constant C
depending on vy, p1, n and the shape of gy but independent of i such that

”fHLl(Ql) < CHfHBMO{:l’Vl(Q)'
11



The number of Q; for which Q; N (B, (z9) N Q) # 0 is at most (22 )n—k
such that we can estimate for v; < r < vy (where vy = oo is allowed) and
xg € 0N

1 1
e |f(y)ldy < - Z [FAIAYES:
Br(z0)NQ2 QN (Br (20)NQ)£0
(2r + 25)""“

= gn—kpn CHf”BMo{jl"’l
< C(:u’laylan? 5)Hf||BMOgl’V1
and thus

HfHBMOgQ’U2 < C(Mlnu%V17n75)‘|f”BMO£1’V1

which was left to prove. O

We have shown that Jones’ extension theorem does not hold for layer
domains and other domains of the form G x R"*, where G is bounded.
Nevertheless, by the introduction of the BM O norms, which do not allow
the linear growth of f as in Remark 1, we can construct a simple extension
operator for BM Oy functions.

Lemma 4. Let Q := G x R" % with G ¢ R a bounded Lipschitz domain
and p,v € (0,00]. Then there is a constant C' depending only on n,Q, u,v
such that for each f € BMO}"" () the extension by 0 which we will denote
by f € BMO>(R"™) satisfies
[flBro=@n) < CllflBror @)

Proof. By Theorem 8 we can assume that p = v = oo. It is immediate
by construction that if B C Qj then lTlﬂfB |f(y) — fldy < [flmo~(a)
and that for B C Q°f, |—]13|fB |f(y) — fBldy = 0. Thus it is only left to
estimate the mean oscillation in balls which have nonempty intersection

with the boundary. For each B, (z) which satisfies B,(z) N 9Q # () we take
xo € Byp(x) N0, then B,(z) C Bay(z9) and we have

1 2n+1

— I, )| d dy <

[flpoe

O

Theorem 9. Miyachi’s definition of the BMOy norm || - HBMO{;W is equiv-
alent to || - ”BMOZ"" for p,v € (0,00] if Q is a bounded Lipschitz domain.

Proof. The seminorms [f]gaom and [f]pmo= are equivalent by [35, Corol-
lary 2.26].

For z € Q and r > 0 with By,(z) C Q and Bs,(x) N Q¢ # () let 29 €
00N By, (x). Then B, (x) C Bgy(x0) N and

1

d
B@)] Jo Il dy

fldy <
M B i e
12



We have now proved that

Il Baropr < ClliflBrrog== < Cllflparor

where the last inequality follows from Theorem 5.

It is now just left to estimate [-],» by Miyachi’s norm. First note that
[ € BMO""(Q) = BMO;”™(2) can be extended by 0 to f € BMO>(R™)
with [f]BMooo(Rn) < C’||f||BMO£a,u by the same argument as in the proof of
Lemma 4. Since € is a bounded Lipschitz domain there exists a finite cone K
of height h and angle 8 with vertex 0 such that for every xg € 9€2 there exists
a rotation R, such that the cone z¢ + K, := xo + R,,K is contained in €.
By Theorem 5 we can assume that v < h. Then there is a constant 0 < ¢y <
1 such that for all p € 92 and 0 < r < v there is a ball of radius cgr with
center x € xg+ K, such that Bac,,(x) C By(zo) N (zo+ Kzy) C Br(zg) N2
We choose then a possibly larger ball B,,,(z) with radius ry; > cor such
that Be,r(z) C By, (z), B, (z) C Q and Bs,,, (x) N Q¢ # (. Then by
Theorem 3

1 1,z
2 [fldy < 1 Fllz2 (B, (@o))

" J B, (20)NQ2

1 1 - 1
< - (!Br(fvﬂ (1 + cg> [f1BrO=(B, () + Cg‘fHLl(BrM(a:))>

<C ([f]BMOOO(Q) + [ﬂbM(Q))

< Clfl pasoy-
O

Remark 3. If we consider general domains, fs of Example 1 illustrates that
in general BM O} may only correspond to the Miyachi norm if g = v = 0o
or if BMO)"" and BMO,”™ are equivalent. It is easy to see that fo ¢
BMOM(R,).

Theorem 10. Let 0 C R™ be a Lipschitz half-space, i.e., a domain lying
above the graph of some Lipschitz function. Then ||- ||BMOI§” and ||- HBMOZ‘:°’°°
are equivalent.

Proof. By the same arguments as in the proof of Theorem 9 one obtains
that the BMO seminorms are equivalent by [35, Corollary 2.26] and that
[flppr < C[flpee. It is now left to prove that for all f € BMO,”* () the
estimate [flpe < C| fll5 MOM holds. This is done similarly to the argument

of Theorem 9. At first we see that we can extend f € BMO,"™ to a BMO™

function f defined on R™. Since ) is a Lipschitz half-space, there exists an

infinite cone K of angle 6 such that for all x¢ € 02 the relation x¢o + K C Q2

holds. Then there exists a constant ¢y such that for all g € 9 and » > 0

there exists a ball B,,,(x) such that Ba,,, () C Q, Bs,,, () N Q¢ # () and

Beyr(z) C Bry, () N (Byr(z0) N Q) with Bae,r(x) C Br(zo) N (20 + K). Thus
13



by Theorem 3

— | fl dy

B, (Io)ﬂQ

1 1 - 1
< (!Br(w)l <1 + C?)L) [flBro~ (B, (x)) + cg‘fHLl(BrM(x)))

< C ([flBmo() + [flp) -
O

Remark 4. The equivalence proofs of Theorem 9 and Theorem 10 can
be extended to a large class of other domains by using similar ideas. The
equivalence of BM O{)VI and BM Ogo’oo for example also holds in exterior
Lipschitz domains and domains of the form G x R**, where G C R* is a
bounded C2-domain, where the higher boundary regularity is needed since
there is no extension operator from BMO>(Q2) to BMO>(R™) (cf. Remark
1) such that we need to consider extension operators on subsets of 2.

Now, we want to prove an interpolation result that shows that if a function
is in BMO and L', it is also in LP for a large class of domains and that we
can estimate it in a certain way. We will start with the result in R".

Lemma 5. Let f € BMO®(R") N LY(R") and 1 < p < co. Then f €
LP(R™) and the estimate

1

1 1—1
”fHLp(R") S CprH21(Rn)[f]B]\;Ooo(Rn)
holds, where the constant C' > 0 only depends on the dimension n.

Proof. Compare e.g. [19] and [27]. O

We will later use this lemma together with Jones’ extension theorem for
BM O-functions.

Lemma 6. Let A C R™ be a bounded uniform domain, f € L'(A)N
BMO>(A) and 1 < p < co. Let Qo be the largest cube in the Whitney de-
composition A of A used in the Jones’ extension f. Then f — fo, € LP(R")
and

1

— = 1.1-2
1 = faullznen) < CUT 2w + 1Bl foo)* patom a

for any point x € A, where B = B4 /12 diam(a) (2)- If A is a bounded Lip-
schitz domain the constant depends only on n,p and the Lipschitz reqularity

of A.

Proof. We can use Theorem 1 to get f € BMO>(R") with [f]BMooo(Rn) <

C[flBmow=(a)- Furthermore, adding constants will not change the BMO-

seminorm. By condition (3) on the Whitney decomposition we can see that

the ball B contains all cubes in A’ for which there exists a larger cube in A.

Thus if y ¢ B every cube containing y corresponds to Qy. From this we can

see that f is on B¢ constantly equal to fqo- The function f—- fqo has then
14



compact support and is locally integrable, thus f — foo € L'(R™). Lemma
5 then yields

1
P

_ _ 1 _ 1
Hf - fQoHLP(R”) < CHf - fQOHzl(Rn)[f - fQo]BMooo(]Rn)

1
P

_ 1 1
<C|f - fQOHZl(B)[f]BMOoo(Rn)

_ 1 1—1
< CUIF 1) + 1Bl o) 1 ptome (a)-

O

Theorem 11. Let A be a bounded uniform domain, f € L*(A)NBMO>(A)
and 1 < p < oo. Then f € LP(A) with

1 1
diam(A)™ P 1-1 Alr
sy < € ((1+ N Ullscn ) ity + rr s

If A is a bounded Lipschitz domain the constant C > 0 depends only on n,p
and the Lipschitz reqularity of A.

Proof. Note that by Lemma 2 all Q; € A’ that correspond to Q; # Qo are
contained in a cube of side length (130K? + 2)/(Q;) with the same center
as ;. Thus for B := B /n12) diam(4)(¥) We have

I1fllzmy < (130K? +2)" + )| fll £1(a)

because there are at most (130K2+2)" cubes outside of Q;, in which f may
be defined as fq,. By the previous lemma we get

Il e cay
_ 1
<|If = faollzr@n) + 1AI7| foo|

— 114 1
<C (Hf”Ll(B) + |B||fQ0|)p [f]B]\;Ooo(A) =+ |A‘p|fQo|

2 n ‘B| % )
<C( (130K +2)" + 1) || fll pr(ay + meHLl(A) [f1Batos(a)
1
| Al
Jr
Qo] 1 £1lz1a)
1 1
diam(A)" p_ 1-1 Alr
<ctwn) ((1+ S0 ) 1l ) Ulisdomca + g 1100

O

Theorem 12. Let Q C R™ be a bounded uniform domain. Let u,v € (0, 00]
and p € [1,00). Then the embeddings

BMO!M (Q) — LP(9), (3.6)

VMO () < LE() (3.7)

hold.
15



Proof. From Lemma 3 we see that || f|| 11 o) < CHfHBMOZ’j’” and by definition
[flBrmon(@) < ||f”BMO;;"’- By the equivalence result for different finite p of
Theorem 4 we get that we can replace [f]pnon(e) by [f]gpmodiame (@) =
[f1Bmo==(0)- Then we can use Theorem 11 in order to get

111 < € (1900 Ulidon + 111100

< C|f1l paror-

O

Finally we will give an equivalence result of BMO}""p for different p. Our
proof here will be based on Jones’ extension theorem for BM O-functions.
Another proof for this fact can be found in [3].

Theorem 13. Let 1 € (0,00] and @ C R™ be a uniformly C*-domain. Let
ve (0,R*) and p € (1,00). If u < 0o, then we assume additionally v < co.
Then || - ”BMog""p and || - HBMO{:’” are equivalent.

Proof. The seminorms [-]garonp and [-]paror are equivalent by the John-
Nirenberg inequality ([22]) and Holder’s inequality. By Theorem 4 we can
furthermore assume that p > v if v is finite. By Holder’s inequality

1
[flpr = sup  — | fl dy
zo€dr<v T Br(x0)NQ

1/ 1/p
< sup wh | — / |17 dy
o€, r<v r By (z0)NQ2

1

7

= wﬁ [f]b”[r
Thus it is left to show that there is a constant C' > 0 such that for all
zo € 0Q,r < v and f € BMOJ"”(Q) the estimate

1

s P < Ol piomr
™ J g ey BMO"

holds. By the assumption r < v < R* we see that all domains B, (xp) N2
with r < v and ¢ € 9 are Lipschitz domains, where we can estimate
the Lipschitz regularity uniformly in r and x¢. Since we assumed p > v
the seminorms [-] garom (B, (wo)nQ) @A []Baros(B, (zo)n0) coincide. Then for
every f € BMO;""(Q) the restriction f|p, (z0)nq is in BMO> (B, (x0)N2))N
LY(B,(x9) N Q)) such that we can apply Theorem 11 to obtain

Il 2o (B, (wo)ne)

1
rn P 1-1
< C<<<1 + |Q0|> Hf||L1(B7-(xo)ﬁQ))> [f]B]\JpOoo(BT(l.O)mQ)

rs
+ m”ﬂhl(&.(ago)m) .

16



By the assumption on the Whitney decomposition and r < R* we obtain
G f and thus we can rewrite the above

inequality by

£l e Br(xo nQ))
1—-1
SCHszl(BT(xO)mQ) [f]B]\/Z;OOO(BT(mO)mQ) + Cr P Hf”Ll(Br (20)NK)

1

no 1 1—-= n
<Cr» [f]lfv [f]BA/Z[)ou(Q) + Cre [ fly
from which we can conclude that

flowp =" sup v ?[|fllzo(B,(20))
10€IN,r<v

< C|f1l paror-
U

Remark 5. The function f3 of Example 1 shows that it is in fact necessary
to exclude the case y < oo and v = oo in the case of the half space since

[faleep(r.y) = o0 for p € (1,00).

Theorem 14. Let Q C R™ be an arbitrary domain and let p € (1,00). Then
the norms || - ||BMO{,” and || - ||BMOZJ7WP are equivalent.

Proof. The proof of this theorem uses the same ideas as the proof of Theorem
13. By the John-Nirenberg inequality [-] gpom and [] gpronr, are equivalent
and it follows from Holder’s inequality that [f],m < C[f]yam,. We have now
a look at all balls B := B, (z) such that B, (z) C Q and Bs,(x) N Q¢ # 0.

Since the constant of Theorem 11 and the ratio % are scale invariant and

we are only considering balls here we have

rh % 1-1
Sl < ¢ ((1+ a7 e ) Mlinioaer + o Mm

1 1

< C[f]blv[ [f]B]\JpO]W + C[f]b]\/f.

Thus we have proved that [f]y, < CHfHBMOéW‘ O

Remark 6. Our definition of ”p is slightly different from those in [2], [3],
[4]. In these papers the restriction on B,.(z) centered at z on the boundary
is

B,(x) C U,(09) = {x € R" | dist(x,00) < v}

instead of r < v. If v is smaller than or equal to the reach R*, then this
condition is equivalent to r < v. Otherwise, B,(z) C U,(09) is actually
weaker. For example, consider Q = int B2(0)\B1(0) and v = 1.1 to get
U,(02) = int B31(0). The ball By(x) for x € 9dB;1(0) is still contained in
U, (09) although 2 > v. The definition in the present paper is convenient
to handle the case v > R*.

17



4. THE HEAT SEMIGROUP IN BM O-TYPE SPACES
In this section we will prove several properties of the heat semigroup with

respect to the considered BM O, spaces, i.e., we consider the equation

u—Au = 0 in Q x (0,7),
u = 0 in 002 x (0,7, (4.1)
u(0) = wup.

We will start with the case 2 = R" and T = oo.

Theorem 15. Let ug € BMO>(R"™). Then there is a solution u to (4.1)
which satisfies the estimate

up ([u(t)]saos + 12 V(@)oo + HIV*u(t) oo + ue(t)loe ) < Cluolaro
(4.2)

with a constant C' > 0 just depending on n.

Proof. We will derive the estimate sup,~o[u(t)] paro= < Cluglpro~ by du-
ality. Let ¢ € H(R"), where H!(R") is the Hardy space which is defined
as

{£e @) s 1iba = IsuplGs il < o0}

We define (u(t), p) = (ug, Gy * ) as a pairing of BMO® and H! to get

[(u(t), p)| < [uo] Brmo= |Gt * @3
= [ug|Brpro= sup ||Gs * Gy * ¢|| 11
s>0

< [uo] Bmo= @]l

The desired estimate follows from the duality (#!)* = BMO%. The in-
equality can also be derived from the estimate

[f * glpro= < llgli[flmo~ (f € BMO®(R"), g € L'(R")),

which was proved in [18] (equation (41)) by a similar duality argument.
The derivative estimates are also proved via a duality argument. The
gradient estimate ||[Vu(t)||leo < t'/?[ug]prro= has already been proved in
the appendix of [2]. We will here just prove the estimate for the second
derivative V?u, which is done by using the same ideas as the proof in the
appendix of [2]. The estimate for the first derivative can be proved in a
similar way. The time derivative estimate follows then from the estimate on
the second derivative by u; = Au. As a first step we prove the estimate

tIV2Ge* uollan < Clluolly (4.3)
18



for all ug € LY(R") for the special case t = 1. By the definition of the
H'-norm

||828]G1 * UOH’Hl = H Su}o) |Gs * 8i8jG1 * UO‘ Hl
s>
< [ sup(|9;0;Gsy1| * |uol) 1
s>0
< |[(sup |0;0;Gs11]) * |uol 1
s>0

< |[sup [0;0;Gs11ll[1||uoll1-
s>0

Since 0;0;G; = —(5ij% + xixjfTé, we obtain for o = % the estimate
0;0;G <—ZLJ e o2l — =yl —e 512
0;0;Gi(z)| < 3 a2 0 73 |zt

from which we can conclude that

Co
|8Z8]Gt($)| < ‘l’|”+2 .

0|3

Furthermore, for t > 1 we can estimate |0;0;G¢(x)| < 2(4m)~ 2 such that we

have

0;0;Gsy1(x)| < min < 2(4m *%,& =:a(x) for s > 0,z € R™.
J T s+ |x’n+2

Since a € L'(R™), we get with Cy = [, a(z) dz the estimate
1050;G1 % wollr < Calluoll1,

which is (4.3) for ¢ = 1. In order to generalize this to arbitrary time ¢ > 0
we rescale u by the scaling transformation uy(xz) = A"u(Az) for A > 0. The
norms in L'(R") and H!(R") are invariant under this transformation and
thus we get from the equality (9;0;G1) * (ug)x = A*((0;0;G2) * ug)a and
the estimate for ¢ = 1 that

N[1(9:0;Gxz * uo)llagr < Ciluollr-

We obtain now (4.3) for ¢ > 0 by taking A = t2. Then by duality
||618JGt * u0||oo § Ct_l[UO]BMOoo

for all ¢t > 0. O

Similar estimates can be obtained for the half space via an odd extension
and reduction to the case 2 = R". We will first formulate the extension
argument.

Lemma 7. Let p > 0 andv > 2. Then there exists a dimensional constant
C > 0 such that for all f € BMO)"" (R™) the odd extension f € BMO*(R™)
satisfies

[flBror@ny < CHfHBMO{,"”(R’_f_)v
where the odd extension f is defined by f(x) = f(z) if zn > 0, f(z) =0 if
xn =0 and f(x) = —f(z1,...,2n_1,—xy) if T, <O.
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Proof. Let x € R™ and r < p. We distinguish between two cases. If B, (z) C
RQL_ or B,«(x) C (Rﬁ_)c, then I fBr fB (l‘)i dy < [f]BMO“(]Ri)'
If B, (z) NORY 75 (), then there 1s S B ( ) With %, = 0. Since T € B,(x)
the relation B, ( C Ba,(z) holds and thus by 2r < v

9 _
—f ()| dy < / fly)|dy
|B ; / nwlty< o [ 1)

n+1
2 Fl

<
Wn

O

The conclusion of the lemma holds in particular for the odd extension
from BMO;”*(R%) to BMO®(R"). For the case yu = 0o, v < oo this
extension does not hold. The function f(x) := log|z + (0,...,0,1)| is in
BMO;”" (R%) for finite v but the odd extension is not in BMO>(R™) since
for x with z,, =0

1 _ _ 1
_ dy = ———
B@)] Jow 'Y @Y= 50

Theorem 16. Let ug € BMO,"™(R"). Then there is a solution u to (4.1)
which satisfies the estimate

[f()ldy — 0o (r — o).

sup (Ha(®) | saropee= + /2 Fu() oo + HI V() oo + lue(t) 1

< Clluoll oz (44)

with a constant C just depending on n. In particular, the corresponding
operator H : uy — H(t)uyp = u(-,t) is a bounded analytic semigroup in
BMO;”>™(R?).

Proof. By Lemma 7 we can extend ug to g € BMO>(R"), which is a
function that is odd with respect to the last component. We can now use
Theorem 15 to get a solution @ to (4.1) with Q2 = R™ and initial data wg. The
solution @ then is also an odd function in the last component and satisfies
the estimate

1o _ _

St1>lp <i u(t)] Brrooe (rr) + 12| Va(t)|| poo mny + tHVQU(t)HLOO(Rn) + tiiut(t>”L°°(R“)>
< Claol pro= @y < Clluoll proge=wn)-

Then u(t) := u(t)|rn satisfies (4.1) with initial data uo. The boundary

condition is satisfied because @ is an odd function in the last component.

It is immediate from the definition that [u(t)]BMOoo(Ri) < [a(t)] Bmooe (rr)-

Furthermore, we obtain for > 0 and zg € OR"}

1 1
— lu(y, t)| dy = -— [u(y,t)| dy
rm By (z0)NR% 2rn By (z0)

1

S |@(y,t) = g, (a) (V)] dy
B (



and thus [u(t)]yee®n) < Clluoll parogo=®n)- 0

If the underlying geometry of the domain is more complicated or one of the
parameters is finite, we need a different method to prove similar estimates.

Lemma 8. Let n < p < oo. If ug € CX(Q) and Q is a uniformly C3-
domain, then there is a solution u of (4.1) with u(t) € C*(Q)N Wol’p(Q) for
all t > 0 satisfying
1
sup (IIU(t)lloo + 12 [ Vu(t)|loo + | V2u(t)||oo + tHut(t)Hoo) <oo  (4.5)
0<t<Typ

for every 0 < T < 0.

Proof. By Theorem 3.1.2 in [30] there exists an analytic semigroup H in
LP(Q) to (4.1). We define u(t) := H(t)up. We argue in a similar way as in
the proof of Proposition 5.2 in [1], where a similar property was shown for
the Stokes semigroup. By the semigroup properties we obtain an estimate

sup ([[u(t)|pa,) + tlu®)llpea,)) < Cnlluollpea,),
0<t<To

where || f[|p(a,) = [Ifllp + [Afllp- This norm is equivalent to || f||y2» and
thus we have by ug € C°(Q2) C D(A)

1
sup [[u(t)[lp + 2| Vu(?)
0<t<Top

l1p+ tllue(t)|1p < o0.

For estimating ||V?ul|;1.» we note that u solves the equation Au = u; in
with © = 0 on 0. Since € is a C3-domain we obtain by higher regularity
theory for elliptic systems as in Theorem 8.13 of [17] for ¢t < Ty

[u()l3.p < C (llue(®)ll1p + lu@)]p)

1
< ZCTOHUOHD(AP)-
In summary we have that

1
sup ([l oo + 13 [ Vu(®) oo + ¢ V2u(t) oo + tlue(t) | )
0<t<Ty
l,p)

< sup(Jlu(®)l
u(t) € C?(Q) by the Sobolev embedding theorem and u(t) € Wol’p(Q) by
the boundary conditions on u. O

1
1+ 12 [ Vu®)ll1p + tIVu(t)1p + tlue(?)]

Theorem 17. Let Q be a domain with uniformly C3-boundary. Let p,v €
(0,00]. Then there exist constants C > 0 and Ty > 0 such that for all
ug € VMO, (Q) there is a solution u to (4.1) satisfying

1
sup (13 ]190(t) oo + HIV2u(®)lloc + tlue(t) ) < Clluoll pasope- (4.6)
0<t<To

Proof. The proof is similar to the proof of the same estimate for the Stokes
equations (cf. [1], [2]). By Lemma 8 there are solutions satisfying (4.5) for
every ug € C°(Q). Let

N (u) (2, ) = 13V, )] + HV2u(w, 1) + tug(x, 1)].
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We assume for these solutions that the estimate does not hold. Then there
is a sequence of solutions u to initial data uf* € C2°(€2) and a sequence
t;m — 0 such that

IN (™) tm)lloo > mllug' | Barop-»-
We normalize u™ by @™ := u" /(supg;q,, | N(u™)(-,1)||oo) and thus obtain

sup [|N(a@™)(-; t)]loo =1 (4.7)
0<t<tm

and
45" | paropr < 1/m. (4.8)

Thus there exist z,,, € Q and 7, < t,, such that N(a")(zy,, 7m) > 1/2.
Then we rescale the solution with respect to (2, T,) by

0™, t) = (T 2 4 T, Tint) 0T () = W (22 + ) (4.9)

and obtain by (4.7)

sup [[N(0™)(-,1)]loc = 1 (4.10)
0<t<1
and
N((©™)(0,1) > 1/2. (4.11)
Furthermore, by (4.8)
106" | Baropmvm (q,,) = 0 (m — o0), (4.12)
where fi,, = TT;UQ;L, Um = 7_77—11/2V and

Q= {l‘ERn:$:<y—$m)/7'7}1/2,y69}.

Then v™ solves the heat equation (4.1) in the rescaled domain Q,,.

Now let ¢, = dist(xy,,08)/ (Tgl/ 2) = dist(0,0€,). We distinguish
between the two cases limsup,,_,., ¢m =00 and limsup,, ., ¢m < oo. If
lim sup,,,_,o Cm = 00 We can take a subsequence such that lim,, . ¢, = 00.
Then €2, expands to R™. Thus we obtain for every function ¢ € C°(R™ x

0,1))
1
| [ omn et + alot)dedt = - [ (a)ola,0)ds
O n

n

and the same equality for the partial derivatives

1
/ 0iv™ (z,t) (Ap(x,t) + @i(x,t)) de dt = / vy (z)05(x,0) dz,
0 Rn n
(4.13)

where the right-hand side converges to zero by (4.12) and [, 0;¢(,0) dx =

0. By local Holder estimates (cf. [29, Chapter IV, Theorem 10.1]) we obtain

that v™ satisfies not only (4.10) but also Holder estimates in the second

derivative and time derivative. Therefore, we can obtain a subsequence
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again denoted by v™ such that Vo™, V20™, v converge locally uniformly
to some g, Vg, h. In the limit the equation (4.13) becomes

1
/0 /ng(ASO(x’t)+<Pt(l“,t))dxdt:0

with t1/2|g[lsc < ¢ by (4.10). By the uniqueness result of Chung on the heat
equation (cf. [8, Theorem 3.1 and Theorem 3.2]) we get that g = 0. Then
Vg = 0 as well. By lim,, oo V20™ = Vg = 0 and v]" = Av™ we see that
h needs to vanish, too. We now have proved that N(v™) converges locally
uniformly to 0 which is a contradiction to (4.11).

Now we have to consider the case limsup,,_ ., ¢m < 00. Then there is
a subsequence satisfying lim,, oo ¢y = ¢o € [0,00). Then Q,, expands to
a half space R} _, = {z € R" : 2, > —co} (cf. [1] and [2]). Again, by
local Holder estimates we obtain that v™ satisfies Holder estimates in the
second derivative and time derivative together with (4.10). Furthermore, by
the boundary condition and (4.10) we can see that v™ is locally bounded
and we thus get that v™, Vo™, V2u™ ™ converge locally uniformly to some

v, Vv, V2, v;. The limit v then satisfies for all ¢ € C°(R% _, % [0,1)) the
equation
1
/ / v(z,t) (Ap(z,t) + @iz, t)) de dt
o Jrr
= — lim vy (z,t)p(x,0) dx,

m—0o0 n
R+1760

where the right-hand side is equal to 0 by (4.12). Thus v satisfies the homo-
geneous heat equation (4.1) in R _ . . By (4.10) and the boundary condition
we know that v is bounded by CtY/2(z,, 4 co). If we take the odd extension
v of v to R™, the extension still satisfies the heat equation with initial data
Ty = 0 and the estimate o(x,t) < Ct'/?(|z,| + ¢). By the uniqueness result
of Chung (cf. [8, Theorem 3.1 and Theorem 3.2]) we obtain that v = 0.
Thus v and its derivatives converge locally uniformly to 0 which is again a
contradiction to (4.10).

We have now proved that the statement holds for all ug € C°(€2). By
density we can extend the estimate to V.M Ol’: o O

We will now present the key steps for proving the boundedness of
lu(®llparo-
Lemma 9. Let Q be a domain with uniformly C3-boundary. Let p,v €

(0,00]. Then there exist constants C > 0 and Ty > 0 such that for all
ug € VMOL'Y (Q) there is a solution u to (4.1) such that

(1) For allx € Q, r > 0 with By(x) C Q and t € (0,Tp)

t2
}UBT(J:) (t) — UOBT(J:)‘ < C?HUOHBMOS’”'
(2) Forallz € Q, 0 <1 < p with By(z) CQ and t € (0,Tp)
]_ 2 t 2
Bl fo o 1000 = w5y <€ (145 ) Iolarop-
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(3) Forallz € Q,0<r < p with By(z) CQ and t € (0,Tp)

1 2 T2 2
1B.(2)| /Br(z) ’U(yat) - uBr(a:)(t)} dy < CTHUOHBMOE,"-
(4) If v < R*, then for all zg € 0, 0 <r < v and t € (0,Tp)

1 / 9 9
— u(y,t)|” dy < C'(||ug v+ [uglpra ) -
o Br(ro)ﬁQ| (y,1)] (|| HBMO;; [uo] )

Proof. We will only give the key steps of the proof since the statements
mainly follow from Theorem 17 and standard calculations. In Section 3 of
[3] this argument has been carried out in detail for the Stokes equations and
by ignoring the pressure term there one gets the result for the heat equation.

For proving (1) we use the equality fot us(s)ds —ug = u(t), (4.1)1, inte-
gration by parts and the estimate of Theorem 17 on Vu.

For proving (2) we again use the equality fot us(s)ds —ug = u(t), (4.1)1,
integration by parts and the estimate of Theorem 17 on Vu and combine it
with the estimate of (1). The statement (3) follows directly from Poincaré’s
inequality.

In order to prove (4) we use again the equality fg us(s)ds —ug = u(t),
(4.1)1, integration by parts and the estimate of Theorem 17 on Vu. Com-
pared to Theorem 3.4 in [3], where the estimate was proved for the Stokes
equations and the smallness assumption on v was also necessary for obtain-
ing control on the constants that appear in estimating the pressure term,
the assumption here is only necessary for ensuring that integration by parts
is possible. Thus v can be taken larger if for all B, (xzg) N with z¢g € 002
and r < v integration by parts is possible.

O

By the equivalence between BMO;" and BMO}"*2 of Theorem 13 the
following theorem follows.

Theorem 18. Let Q be a domain with uniformly C3-boundary. Let p €
(0,00], v € (0, R*]. Let v be finite if  is finite. Then there exist constants
C >0 and Ty > 0 such that for all ug € VMO, (Q) there is a solution u
to (4.1) satisfying

1
sup (J[u(®)l| pasop + 5 1Vu®)llow + V() oo + tue(t) o
0<t<Top

< Clluollparop-

By Lemma 8 we can see that u(t) € W, (Q) C VMOI’i’OV(Q) with p > n such
that we can choose an arbitrary Ty € (0,00) by iteration and get the same
estimate with a different constant Cr,. In particular, the solution operator
H is a Cy analytic semigroup in VMOZ’S’(Q).

Remark 7. If one replaces V MO} (Q) by VMO}((Q) in the above theo-

rem the statement still holds.
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5. APPLICATIONS TO THE STOKES SEMIGROUP

In this section we will give some applications of the results for the Stokes
semigroup which is the solution operator S : uy — S(t)ug = u(t) of the
equation

u—Au+Vr = 0 in Qx(0,7),
divu = 0 in Qx(0,7), (5.1)
u = 0 on 9Nx(0,7), '
u(0) = wup.

It was proved in [3] that in bounded domains the Stokes semigroup is an-
alytic in VMOJY _(Q) for sufficiently small v. By the equivalence result of

Theorem 5 we can extend this result to general u,v € (0,00]. We can fur-
ther prove by the embedding theorem that the semigroup has the following

property.

Theorem 19. Let Q be a bounded C3-domain, pu,v € (0,00]. Let S be the
Stokes semigroup on VMO;;’OVU(Q). Then S is a bounded semigroup.

Proof. For every Ty € (0,00) there is some constant Cg;, such that

sup |u(t)[| prropr < Cmylluollparopr
0<t<To

by [3, Theorem 3.5] and the equivalence result of Theorem 5. Thus we can
now assume t > 1. Let p > n. By the embedding of Theorem 12 we obtain
that ug € VMOZ’()Z:U(Q) C L5 (Q). Let u(t) := S(t)up be the solution to the
homogeneous Stokes equations with initial data ug. By LP-theory (see e.g.
[15]) we obtain for ¢ > 1

(@)l < llu(®llp + /2 V(@)

< Clluolly

< Clluoll parop-
By the embedding WP () < L>(2) — BMO."(Q) we can conclude

lu(®)ll prropr < Clluoll parop-
U

We can further extend the main result of [3] to the analyticity of the
Stokes semigroup S in VM O% , in a suitable class of domains.

Theorem 20. Let Q be a uniformly C3-domain that is admissible in the
sense of [1]. Then the solution operator S to (5.1) is a Cy analytic semigroup

n VMOI%J(Q).

Proof. The proof can be copied almost verbatim from [3]. We will just give a
short sketch on the main ideas and main differences. The gradient and time
derivative estimate with respect to the BM Oé\/f -norm have been proved in
Remark 6.4 of [2]. For the estimate Hu(t)||BMO£4 < CH’U/()HBMOIJ)VI for t < Tj
we use similar ideas to those of Section 4 and [3], i.e., integrating by parts,
fundamental theorem of calculus, using the gradient estimate and applying
an equivalence result as well as an estimate for controlling the pressure

term. The equivalence result we need to apply in this case is the statement
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of Theorem 14. The pressure estimate needs then only to be considered in
balls since all subdomains of 2 appearing in the definition of the BM Oé”
norm are balls. The constant in this estimate (cf. Theorem 2.1 in [3]) is
scale invariant such that we have suitable control on the pressure term in
every ball. O

Remark 8. (1) This theorem avoids the previously necessary assump-

tion to consider only small domains in the boundary seminorm,
which in [3] was ensured by taking v small.

(2) By Theorem 10 one obtains that if € is a Lipschitz half space that
is admissible and uniformly C?2, then S is an analytic semigroup in
VMO, ;7 (). Except for the case of the half-space this result was

not included in the main result of [3] since in all other cases v needed
to be finite.

(3) The analyticity in VM O;%’;O(Q) for a sector-like domain lying above
a O3-graph boundary as considered in [4] provides another approach
to the proof of the LP-analyticity for p € (2, 00) in this domain. This
was done there by interpolating L?*-L? estimates with L>-BMO;>"
estimates for S(t)Quo and %S (t)Quq. Here, v could be chosen ar-
bitrarily, up € C.(2) and Q is a projection operator from L2 N L>
onto L2 NV MO, . For the proof in [4] it was assumed that v is
sufficiently small. 7 By using the analyticity result of Theorem 20 one
can now also assume v = oo in the proof. Note that for some of these

domains for sufficiently large p the LP-Helmholtz decomposition fails
to hold.
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