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1 Introduction

In a previous paper [2], the author showed that there exists a general mathematical struc-

ture behind the fact [6, Theorem X.46] that the time-zero Hermitian scalar fields of differ-

ent masses as representations of the canonical commutation relations (CCR) over L2
R(R3)

(the real Hilbert space of square integrable functions on R3) are mutually inequivalent, an

interesting fact which may allow one to view the boson masses as objects distinguishing

elements in a family of inequivalent representations of the CCR over L2
R(R3), giving a

representation theoretic meaning to the boson masses. A point in [2] lies in understand-

ing that the family of time-zero Hermitian scalar fields, which is indexed by the mass

parameter, is a special example of a general class of representations of the CCR over an

abstract Hilbert space indexed by a set of (unbounded) self-adjoint operators and the

inequivalence of the time-zero scalar fields of different masses can be derived as a simple

application of a theorem on inequivalence of the representations under consideration in the

abstract framework. Based on this structure, a new class of representations of the CCR

over LR(Rd) with d ∈ N arbitrary, including as a special case the time-zero Hermitian

scalar fields mentioned above, was found [2].

As a next step of research, it is natural to ask if there exist similar structures in the

case of Fermi fields, typically quantum Dirac fields. In this paper, we show that the

answer to the question is in the affirmative.

In Section 2, we introduce a family of irreducible representations of the canonical

anticommutation relations (CAR) over an abstract Hilbert space H , where their rep-

resentation space is taken to be the fermion Fock space over H . To the author’s best

knowledge, this family of representations of CAR may be new. We prove a theorem on

inequivalence of these representations. In Section 3, we construct a free quantum Dirac

field in the (1 + d)-dimensional space-time on the fermion Fock space over L2(Rd∗;Cν),

the Hilbert space of Cν-valued square integrable functions on Rd∗ (the d-dimensional wave
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vector space or the d-dimensional momentum space1), where ν is defined by (3.1) below.

As an application of the inequivalence theorem in Section 2, we prove that the free quan-

tum Dirac fields of different masses as well as interacting ones are inequivalent. In the

last section, we construct a general class of inequivalent representations of the CAR over

L2(Rd∗;Cν), which is a generalization of time-zero quantum Dirac fields.

2 A family of irreducible representations of the CAR

over a Hilbert space

The inner product and the norm of a Hilbert space H are denoted by ⟨·, ·⟩H (antilinear

in the left variable) and ∥ · ∥H respectively. But we sometimes omit the subscript H in

⟨·, ·⟩H and ∥ · ∥H if there is no danger of confusion. For a linear operator A on a Hilbert

space, we denote its domain by D(A). If A is densely defined, then we denote its adjoint

by A∗.

We first recall the concept of representation of CAR:

Definition 2.1 Let F and H be complex Hilbert spaces, and

A(H ) := {ψ(f), ψ(f)∗|f ∈ H }

be a subset of B(F), the Banach space of everywhere defined bounded linear operators

on F.

(1) The pair (F,A(H )) is called a representation of the CAR over H if the following

(a) and (b) hold:

(a) Antilineality : For all f, g ∈ H and α, β ∈ C, ψ(αf+βg) = α∗ψ(f)+β∗ψ(g).

(b) CAR: For all f, g ∈ H ,

{ψ(f), ψ(g)} = 0, {ψ(f), ψ(g)∗} = ⟨f, g⟩ ,

where {X, Y } := XY + Y X.

(2) The representation (F,A(H )) is said to be irreducible if there exist no proper

subspaces of F which remain invariant under the action of all operators ψ(f) and

ψ(f)∗ (f ∈ H ) in A(H ).

1We use the physical unit system where ℏ (the Planck constant divided by 2π) and the light speed c
are equal to 1.
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(3) Let (F′,A′(H )) with A′(H ) := {ψ′(f), ψ′(f)∗|f ∈ H }) be another representa-

tion of the CAR over H . Then the two representations (F′,A′(H )) and (F,A(H ))

are said to be equivalent if there exists a unitary operator U : F → F′ such that, for

all f ∈ H , ψ′(f) = Uψ(f)U∗.

Remark 2.2 Taking the adjoint of the first equation in (b) in Definition 2.1-(1), we have

{ψ(f)∗, ψ(g)∗} = 0, f, g ∈ H .

As is well known, representations of the CAR over a Hilbert space can be constructed

on fermion Fock spaces (e.g., [1, Chapter 5], [3, §5.2], [4] and [8]). For the reader’s

convenience, we first review elementary aspects of fermion Fock spaces.

Let H be a complex Hilbert space. Then the fermion Fock space F(H ) over H is

defined as the infinite direct sum Hilbert space

F(H ) := ⊕∞
n=0 ∧n H

of the n-fold antisymmetric tensor product Hilbert space ∧nH of H with convention

∧0H := C .

For each f ∈ H , the creation operator A†(f) with test vector f acting in F(H ) is

defined by

D(A†(f)) :=

{
Ψ = {Ψ(n)}∞n=0 ∈ F(H )

∣∣ ∞∑
n=1

n∥An(f ⊗Ψ(n−1))∥2 <∞

}
,

(A†(f)Ψ)(0) := 0, (A†(f)Ψ)(n) :=
√
nAn(f ⊗Ψ(n−1)), n ≥ 1,Ψ ∈ D(A†(f)),

where An denotes the antisymmetrization operator on the n-fold tensor product Hilbert

space ⊗nH of H . Since D(A†(f)) includes the finite particle subspace

F0 := {Ψ ∈ F(H )|∃n0 such that, for all n ≥ n0, Ψ
(n) = 0},

which is dense in F(H ), it follows that D(A†(f)) is dense in F(H ). Hence the adjoint

A(f) := (A†(f))∗

of A†(f) exists and is called the annihilation operator with test vector f . It follows that

A(f)∗ = A†(f). We denote by A(f)# either A(f) or A(f)∗.

It is proved (e.g., [1, Chapter 5] and [3, §5.2]) that D(A(f)#) = F(H ) and A(f)# is

bounded satisfying the following anticommutation relations:

{A(f), A(g)} = 0, {A(f), A(g)∗} = ⟨f, g⟩ , f, g ∈ H . (2.1)
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The correspondence: H ∋ f 7→ A(f) (resp. A(f)∗) is complex antilinear (resp. linear).

Thus (F(H ), {A(f), A(f)∗|f ∈ H }) is a representation of the CAR over H , which is

called the Fock representation of the CAR over H . It is well known that it is irreducible

(e.g., [8, Theorem 10.2]).

We now fix an orthogonal decomposition

H = H+ ⊕ H−

of H with H+ and H− being mutually orthogonal nontrivial closed subspaces (H+ ̸=
{0},H ) and a conjugation C on H (C is an antilinear mapping on H satisfying C2 = I

(identity) and ∥Cf∥ = ∥f∥, f ∈ H ). We have

⟨Cf,Cg⟩ = ⟨g, f⟩ , f, g ∈ H . (2.2)

We denote by B± the Banach space of everywhere defined bounded linear operators

from H to H± and introduce a subset of the direct product space B+ ×B−:

T(H ) := {T = (T+, T−) |T± ∈ B±, T
∗
+T+ + T

∗
−T− = I},

where

T− := CT−C.

It is easy to see that T− is a bounded linear operator on H with operator norm ∥T−∥ =

∥T−∥.
Each T ∈ T(H ) defines an element of B(H ) by

Tf := (T+f, T−f), f ∈ H . (2.3)

For each T ∈ T(H ), we define an antilinear mapping ψT : H → B(F) by

ψT (f) := A(T+f, 0) + A(0, T−Cf)
∗, f ∈ H . (2.4)

It is obvious that

ψT (f)
∗ = A(T+f, 0)

∗ + A(0, T−Cf).

Let

AT (H ) := {ψT (f), ψ
∗
T (f)|f ∈ H }. (2.5)

Lemma 2.3 For all f, g ∈ H , the following anticommutation relations hold:

{ψT (f), ψT (g)} = {ψT (f)
∗, ψT (g)

∗} = 0, (2.6)

{ψT (f), ψT (g)
∗} = ⟨f, g⟩ . (2.7)
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Proof. By direct computations using (2.1), we have

{ψT (f), ψT (g)
∗} = ⟨T+f, T+g⟩+

⟨
T−f, T−g

⟩
.

Since T ∗
+T+ + T

∗
−T− = I, we obtain (2.7). Similarly one can prove (2.6).

Lemma 2.3 shows that (F(H ),AT (H )) is a representation of the CAR over H .

Remark 2.4 The standard choice of T = (T+, T−) in the literature is given by T+ = P

and T− = C(I − P )C, where P is the orthogonal projection onto H+(see, e.g., [4, pp.22-

23] and [8, §10.1.3]). In this case, the representation is called a quasi-free representation.

Hence the representation (F(H ),AT (H )) gives a generalization of of the quasi-free rep-

resentation.

To find more detailed properties of the representation (F(H ),AT (H )), we introduce

the following additional conditions (T.1)–(T.3) for T = (T+, T−) ∈ T(H ):

(T.1) T+T
∗
+ = I; (T.2) T−T

∗
− = I; (T.3) T−T

∗
+ = 0.

We define a subset of T(H ):

T∗(H ) := {T ∈ T(H )|(T.1)–(T.3) hold}. (2.8)

Lemma 2.5 Let T ∈ T∗(H ). Then

A(f) = ψT (T
∗
+f+) + ψT (CT

∗
−f−)

∗, f = (f+, f−), f± ∈ H±. (2.9)

Proof. By (T.1) and (T.3), we have

ψT (T
∗
+f+) = A(f+, 0), f+ ∈ H+.

Property (T.3) implies that

T+T
∗
− = 0.

By this fact and (T.2), we obtain

ψT (CT
∗
−f−) = A(0, f−)

∗, f− ∈ H−.

We have

A(f) = A(f+, 0) + A(0, f−).

Thus we obtain (2.9).
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Lemma 2.6 For all T ∈ T∗(H ), (F(H ),AT (H )) is irreducible.

Proof. Let D be a closed subspace which is invariant under the action of all ψT (f) and

ψT (f)
∗ (f ∈ H ). Let Q be the orthogonal projection onto D. Then it follows that, for

all f ∈ H , QψT (f)
# = ψT (f)

#Q. Hence, by (2.9), QA(f)# = A(f)#Q for all f ∈ H . It

is well known (or easy to see) that {A(f), A(f)∗|f ∈ H } is irreducible. Hence Q = αI

for some α ∈ C. But, since Q is an orthogonal projection, it follows that α = 0 or α = 1.

This means that D = {0} or D = F(H ). Thus AT (H ) is irreducible.

Lemmas 2.3 and 2.6 immediately yield the following theorem:

Theorem 2.7 For each T ∈ T∗(H ), (F(H ),AT (H )) is an irreducible representation of

the CAR over H .

Thus we have a family {(F(H ),AT (H )}T∈T∗(H ) of irreducible representations of the

CAR over H .

We next consider equivalence or inequivalence of two representations (F(H ), AT (H ))

and (F(H ),AS(H )) with S ̸= T (S, T ∈ T∗(H )).

For each pair (S, T ) ∈ T∗(H ) × T∗(H ), we define linear operators V and W on H

as follows:

V f := (S+T
∗
+f+, S−T

∗
−f−), Wf := (S+T

∗
−f−, S−T

∗
+f+), f = (f+, f−) ∈ H .

Lemma 2.8 The following equations hold:

V ∗V +W
∗
W = I, (2.10)

V V ∗ +WW ∗ = I, (2.11)

V
∗
W +W ∗V = 0, (2.12)

VW ∗ +WV ∗ = 0. (2.13)

Proof. The operators V and W have the following operator matrix representations:

V =

(
S+T

∗
+ 0

0 S−T
∗
−

)
, W =

(
0 S+T−∗

S−T
∗
+ 0

)
.

Using these representations and properties of S and T , one can easily prove (2.10)–(2.13)

by direct computations.

We define

B(f) := A(V f) + A(WCf)∗, f ∈ H . (2.14)

Then it is easy to see that {B(f), B(f)∗|f ∈ H } is a representation of the CAR over H .
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Lemma 2.9 There exists a unitary operator U on F(H ) such that

A(f) = UB(f)U∗, f ∈ H , (2.15)

if and only if W is Hilbert-Schmidt.

Proof. Since we have (2.10)–(2.13), the lemma follows from the general theory of

Bogoliubov transformations on F(H ) (see, e.g., [8, §10.3]).

Theorem 2.10 Let T and S be in T∗(H ) with T ̸= S. Then the two representations

(F(H ), AT (H )) and (F(H ),AS(H )) are equivalent if and only if S+T
∗
− and S−T

∗
+ are

Hilbert-Schmidt.

Proof. Suppose that (F(H ),AT (H )) and (F(H ),AS(H )) are equivalent. Then there

exists a unitary operator U on F(H ) such that

UψS(f)U∗ = ψT (f), f ∈ H . (2.16)

Then, by (T.1)–(T.3), we have

A(f+, 0) = U
(
A(S+T

∗
+f+, 0) + A(0, S−CT

∗
+f+)

∗)U∗, f+ ∈ H+. (2.17)

and

A(0, f−)
∗ = U

(
A(S+CT

∗
−f−, 0) + A(0, S−T

∗
−f−)

∗)U∗, f− ∈ H−. (2.18)

Hence, adding the first equation to the second one, we obtain (2.15). Therefore, by

Lemma 2.9, W is Hilbert-Schmidt, which is equivalent to that S+T
∗
− and S−T

∗
+ are

Hilbert-Schmidt.

Conversely, suppose that S+T
∗
− and S−T

∗
+ are Hilbert-Schmidt. Then W is Hilbert-

Schmidt. Hence, by Lemma 2.9, there exists a unitary operator U on F(H ) such that

(2.15) holds. Then (2.17) and (2.18) hold. Using the property that T ∗
+T+ + T

∗
−T− = I,

we obtain (2.16).

The contraposition of Theorem 2.10 gives an inequivalence theorem on the two repre-

sentations (F(H ), AT (H )) and (F(H ), AS(H )):

Theorem 2.11 Let T and S be in T∗(H ) with T ̸= S. Then the two representations

(F(H ), AT (H )) and (F(H ),AS(H )) are inequivalent if and only if S+T
∗
− or S−T

∗
+ is

not Hilbert-Schmidt.
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3 Inequivalence of quantum Dirac fields of different

masses

In this section, we consider a free quantum Dirac field on the (1 + d)-dimensional space-

time and an interacting one as well. We take the space dimension d ∈ N to be arbitrary,

because we want to see the dependence or independence of properties of the Dirac field

on d. The main purpose of this section is to show by applying Theorem 2.11 that the

time-zero quantum Dirac fields of different masses, which are representations of the CAR

over a Hilbert space, are mutually inequivalent. This implies that the time-t quantum

Dirac fields of different masses (t ∈ R) also are mutually inequivalent.

3.1 The d-dimensional free Dirac operator

For each d ∈ N, we define ν ∈ N as follows:

ν :=

{
2(d+1)/2 if d is odd

2d if d is even
. (3.1)

It is well known that there exist ν × ν Hermitian matrices {αj}dj=1and β satisfying the

following anticommutation relations (a representation of the Clifford algebra associated

with the Euclidean vector space R1+d):

{αj, αk} = 2δjkIν , j, k = 1, . . . , d, (3.2)

{αj, β} = 0, j = 1, . . . , d, (3.3)

β2 = Iν , (3.4)

where δjk is the Kronecker delta and In (n ∈ N) is the n× n identity matrix.

The free Dirac equation with mass m ≥ 0 in the (1 + d)-dimensional space-time

R1+d := {(t, x)|t ∈ R, x = (x1, . . . , xd) ∈ Rd} is of the form:

i
∂ψ(t, x)

∂t
= Hmψ(t, x), (3.5)

where ψ : R1+d → Cν (or a ν component distribution on R1+d ), i is the imaginary unit

and

Hm :=
d∑

j=1

αjpj +mβ

with pj := −iDj (Dj is the generalized partial differential operator in the variable xj).
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We use the symbol Rd∗ = {k = (k1, . . . , kd)|kj ∈ R, j = 1, . . . , d} for the dual space of

Rd (the space of d-dimensional wave vectors) and denote by Fd : L2(Rd) → L2(Rd∗) the

d-dimensional Fourier transform:

(Fdf)(k) :=
1

(2π)d/2

∫
Rd

f(x)e−ikxdx, f ∈ L2(Rd), k ∈ Rd∗,

in the L2-sense, where kx :=
∑d

j=1 kjxj.

In what follows, we treat Hm as an operator acting in

HD := L2(Rd;Cν) = {f = (fr)
ν
r=1|fr ∈ L2(Rd), r = 1, . . . , ν},

the Hilbert space of Cν-valued square integrable functions on Rd. We set

ĤD := FdHD = L2(Rd∗;Cν).

For each k ∈ Rd∗, we define a ν × ν Hermitian matrix hm(k) by

hm(k) := αk +mβ,

where αk :=
∑d

j=1 αjkj, and denote the multiplication operator by the matrix-valued

function hm(·) on ĤD by Ĥm:

D(Ĥm) :=

{
f ∈ ĤD |

∫
Rd∗

∥hm(k)f(k)∥2Cν dk <∞
}
,

Ĥmf(k) := hm(k)f(k), f ∈ D(Ĥm), a.e.k ∈ Rd∗.

By the theory of Fourier transform, we have FdpjF
−1
d = kj (j = 1, . . . , d), where the

right hand side denotes the multiplication operator by the variable kj. Hence it follows

that

FdHmF−1
d = Ĥm. (3.6)

Using (3.2), one has

(αk)2 = k2, k ∈ Rd∗. (3.7)

By this fact, (3.3) and (3.4), one obtains that

∥hm(k)f(k)∥2Cν = (k2 +m2)∥f(k)∥2Cν , k ∈ Rd∗.

Hence

D(Ĥm) =

{
f ∈ ĤD |

∫
Rd∗

k2∥f(k)∥2Cνdk <∞
}
.

10



Let

Em(k) :=
√
k2 +m2, k ∈ Rd∗

and

dm(k) :=
m+ Em(k) + βαk√
2Em(k)(m+ Em(k))

(the case m > 0), (3.8)

d0(k) :=

{
1√
2

(
1 + β αk

|k|

)
for k ̸= 0

Iν for k = 0
(the case m = 0) . (3.9)

As in the case d = 3 (e.g., [8, §1.4]), one can show that dm(k) is unitary and

dm(k)hm(k)dm(k)
−1 = Em(k)β, k ∈ Rd∗. (3.10)

We denote by D̂m the multiplication operator by dm(·). The operator

Um := D̂mFd

is a unitary operator from HD to ĤD. By (3.6) and (3.10), we have

UmHmU
−1
m = Emβ. (3.11)

Namely Hm is unitarily equivalent to Emβ. It is obvious that Emβ is self-adjoint. Hence

Hm is self-adjoint. Thus, for each ψ0 ∈ D(Hm), the free Dirac equation (3.5) with initial

condition ψ(0, ·) = ψ0 has the unique solution

ψ(t, ·) = e−itHmψ0, t ∈ R.

Relation (3.11) clarifies spectral properties of Hm too. For a linear operator A on a

Hilbert space, we denote by σ(A) (resp. σp(A)) the spectrum (resp. the point spectrum)

of A. By the unitary invariance of spectra, (3.11) implies that

σ(Hm) = σ(Emβ), σp(Hm) = σp(Emβ).

It follows from (3.4) and β ̸= ±Iν that σ(β) = σp(β) = {±1}. Hence σ(Emβ) =

{Em(k)|k ∈ Rd∗}∪{−Em(k)|k ∈ Rd∗} = (−∞,−m]∪[m,∞) and σp(Emβ) = ∅. Therefore

σ(Hm) = (−∞,−m] ∪ [m,∞), σp(Hm) = ∅.
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3.2 Eigenvectors of hm(k) and some operators

One can easily show that dimker(β ± 1) = ν/2. Hence, by diagonalization (if necessary),

we can assume without loss of generality that

β =

(
Iν/2 0
0 −Iν/2

)
.

We denote by {er}νr=1 the standard basis of Cν : er = (δrr′)
ν
r′=1. For all k ∈ Rd∗ and

s = 1, . . . , ν/2, we define the following vectors in Cν :

um(k, s) := dm(k)
−1es ∈ Cν , vm(k, s) := dm(k)

−1es+(ν/2) ∈ Cν . (3.12)

By (3.10), we have

hm(k)um(k, s) = Em(k)um(k, s), hm(k)vm(k, s) = −Em(k)vm(k, s).

Namely um(k, s) (resp. vm(k, s)) is an eigenvector of hm(k) with positive (resp. negative)

energy Em(k) (resp. −Em(k)). Since dm(k)
−1 is unitary, it follows that, for each k ∈ Rd∗,

the set {um(k, s), vm(k, s)|s = 1, . . . , ν/2} is a complete orthonormal basis of Cν . Hence

⟨um(k, s), um(k, s′)⟩Cν = δss′ , (3.13)

⟨vm(k, s), vm(k, s′)⟩Cν = δss′ , (3.14)

⟨um(k, s), vm(k, s′)⟩Cν = 0, s, s′ = 1, . . . ,
ν

2
. (3.15)

and

ν/2∑
s=1

(umr(k, s)umr′(k, s)
∗ + vmr(k, s)vmr′(k)

∗) = δrr′ , r, r′ = 1, . . . , ν, (3.16)

where umr(k, s) (resp. vmr(k, s)) is the rth component of the vector um(k, s) (resp.

vm(k, s)) and, for a complex number z ∈ C, z∗ denotes the complex conjugate of z.

The Hilbert space ĤD has the orthogonal decomposition

ĤD = ĤD+ ⊕ ĤD− (3.17)

with

ĤD± := L2(Rd∗;Cν/2).

We define linear operators Tm± : ĤD → ĤD± by

Tm+f := (um(·, s)∗f)ν/2s=1 ∈ ĤD+, (3.18)

Tm−f := (ṽm(·, s)f̃)ν/2s=1 ∈ ĤD−, f ∈ ĤD, (3.19)
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where, for w = (wr)
ν
r=1 : Rd∗ → Cν ,

(wf)(k) :=
ν∑

r=1

wr(k)fr(k), f = (fr)
ν
r=1 ∈ ĤD, k ∈ Rd∗

and

w̃(k) := w(−k), k ∈ Rd∗.

It follows that Tm± are bounded with ∥Tm±∥ ≤
√

ν
2
.

It is easy to see that

(T ∗
m+f+)r =

ν/2∑
s=1

umr(·, s)f+s, f+ = (f+s)
ν/2
s=1 ∈ ĤD+, (3.20)

(T ∗
m−f−)r =

ν/2∑
s=1

vmr(·, s)∗f̃−s, f− = (f−s)
ν/2
s=1 ∈ ĤD−, r = 1, . . . , ν. (3.21)

We denote by C the complex conjugation on ĤD:

Cf := (f ∗
r )

ν
r=1.

For a linear operator A on ĤD, we define A by

A := CAC.

We regard ĤD± as subspaces of ĤD in the natural way so that C acts also on ĤD±.

Remarkable properties of Tm± are summarized in the following lemma:

Lemma 3.1

T ∗
m+Tm+ + T

∗
m−Tm− = I, (3.22)

Tm±T
∗
m± = I, (3.23)

Tm+T
∗
m− = 0, Tm−T

∗
m+ = 0. (3.24)

Proof. Throughout the proof, we write T± (resp. u(k, s), v(k, s)) for Tm± (resp.

um(k, s), vm(k, s)). Let f, g ∈ ĤD. Then

⟨T+f, T+g⟩+
⟨
T−f, T−g

⟩
=

ν/2∑
s=1

∫
Rd

{(u(·, s)f ∗)(k)(u(·, s)∗g)(k) + (v(·, s)f ∗)(k)(v(·, s)∗g)(k)} dk

=
ν∑

r,r′=1

∫
Rd

fr(k)
∗gr′(k)

 ν/2∑
s=1

(ur(k, s)ur′(k, s)
∗ + vr(k, s)vr′(k, s)

∗)

 dk

=
ν∑

r=1

∫
Rd

fr(k)
∗gr(k)dk,
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where we have used (3.16) to obtain the last equality. Hence

⟨T+f, T+g⟩+ ⟨T−f, T−g⟩ = ⟨f, g⟩ .

This implies (3.22).

We have by (3.20)

⟨
T ∗
+f, T

∗
+g
⟩
=

ν∑
r=1

ν/2∑
s,s′=1

⟨ur(·, s)fs, ur(·, s′)gs′⟩

=

∫
Rd∗

⟨u(k, s), u(k, s′)⟩ fs(k)∗gs′(k)dk

= ⟨f, g⟩ ,

where we have used (3.13). Hence T+T
∗
+ = I. Similarly, using (3.21), one can show that

T−T
∗
− = I. One can see that orthogonality (3.15) implies (3.24).

Lemma 3.1 immediately yields the following result:

Lemma 3.2 For all m ≥ 0,

Tm := (Tm+, Tm−)

is an element of T∗(ĤD).

It follows from (3.23) that ∥T ∗
m±∥ = 1 and hence

∥Tm±∥ = 1. (3.25)

3.3 A free quantum Dirac field

We construct a free quantum Dirac field on the fermion Fock space F(ĤD) over ĤD.

Note that we work with momentum representation. We denote by a(f) (f ∈ ĤD) the

annihilation operator on F(ĤD).

For each f ∈ ĤD, we define

ψ̂m(f) := a(Tm+f, 0) + a(0, Tm−f
∗)∗, f ∈ ĤD (3.26)

and set

ρ̂m := {ψ̂m(f), ψ̂m(f)
∗|f ∈ ĤD}). (3.27)
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Remark 3.3 A free quantum Dirac field on the (1+ d) (resp. 4)-dimensional space-time

was considered in [5] (resp. [7]). In these papers (also in [8, §10.1]), the projection

method as mentioned in Remark 2.4 is used. But we find that the projection method is

somewhat inconvenient to discuss a family of quantum Dirac fields indexed by mass m,

since the orthogonal decomposition of HD in the projection method depends on m. Thus

we take a slightly different approach in which the orthogonal decomposition (3.17) is fixed

independently of m.

By Lemma 3.2 and an application of Theorem 2.7, we obtain the following proposition:

Proposition 3.4 For each m ≥ 0, (F(ĤD), ρ̂m) is an irreducible representation of the

CAR over ĤD.

Let

ψm(t, f) := ψ̂m(e
itĤm f̂), t ∈ R, f ∈ D(Hm),

and

ρm(t) := {ψm(t, f), ψm(t, f)
∗|f ∈ HD}. (3.28)

Since eitĤm is unitary for all t ∈ R, Proposition 3.4 yields the following result:

Proposition 3.5 For each m ≥ 0 and t ∈ R, (F(ĤD), ρm(t)) is an irreducible represen-

tation of the CAR over HD.

The following proposition shows that ψm(t, f) is a free quantum Dirac field on the

(1 + d)-dimensional space-time and hence ψm(f̂) = ψm(0, f) is the time-zero field of it.

Proposition 3.6 Let m ≥ 0 and f ∈ D(Hm). Then the operator-valued function: t 7→
ψm(t, f) ∈ F(ĤD) on R is differentiable in the operator norm topology and obeys the free

functional Dirac equation

i
dψm(t, f)

dt
= ψm(t,Hmf).

Proof. Let ε ∈ R \ {0} and

ϕε :=
ψm(t+ ε, f)− ψm(t, f)

ε
− ψm(t,Hmf).

Then we have

ϕε = ψ̂m(e
itĤmgε),
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where

gε :=

(
−i(e

iεĤm − 1)

ε
− Ĥm

)
f̂ .

We have for all h ∈ ĤD

∥ψ̂m(h)∥ ≤ ∥Tm+h∥+ ∥Tm−h
∗∥ ≤ 2∥h∥,

where we have used (3.25). Hence ∥ϕε∥ ≤ 2∥gε∥. Since f̂ ∈ D(Ĥm), it follows that

limε→0 ∥gε∥ = 0. Hence limε→0 ∥ϕε∥ = 0.

One can show that, for all f ∈ HD,

ψ0,m(t, f) = eitH0,mψ̂m(f̂)e
−itH0,m , t ∈ R, (3.29)

where H0,m := dΓ(Em) is the second quantization of the multiplication operator Em (e.g.,

[3, p.8]). The operator H0,m is the Hamiltonian of the free quantum Dirac field with mass

m in momentum representation.

We now state and prove one of the main results in this paper:

Theorem 3.7 Let m1 ̸= m2 (m1,m2 ≥ 0). Then (F(ĤD), ρm1) and (F(ĤD), ρm2) are

inequivalent.

Proof. By Theorem 2.11, we need only to prove that, if m1 ̸= m2, then Tm1+T
∗
m2− or

Tm1−T
∗
m2+

is not Hilbert-Schmidt. It is easy to see that

(Tm1+T
∗
m2−f)r(k) =

ν/2∑
s=1

Krs(k)f̃s(k), f = (fs)
ν/2
s=1 ∈ ĤD−, r = 1, . . . ,

ν

2
, (3.30)

where

Krs(k) := ⟨um1(k, r), vm2(k, s)⟩Cν , k ∈ Rd∗, r, s = 1, . . . ,
ν

2
.

By (3.12), we have Krs(k) =
⟨
er, dm1(k)dm2(k)

∗es+ν/2

⟩
. Using (3.8), (3.9), (3.3), (3.7) and

the orthogonality
⟨
er, es+ν/2

⟩
= 0 (r, s = 1, . . . , ν/2), we obtain

Krs(k) = (m2 −m1)Fm1,m2(k)
⟨
er, αkes+ν/2

⟩
, r, s = 1, . . . ,

ν

2
,

where

Fm1,m2(k) :=
1

2
√
Em1(k)Em2(k)(m1 + Em1(k))(m2 + Em2(k))

×
(
1 +

m1 +m2

Em1(k) + Em2(k)

)
.
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It follows from (2.6) that αkes+ν/2 ∈ ker(β − 1), s = 1, . . . , ν/2. Hence

ν/2∑
r=1

|
⟨
er, αkes+ν/2

⟩
|2 = ∥αkes+ν/2∥2 = k2,

where we have used (3.7). Therefore

ν/2∑
r=1

|Krs(k)|2 = (m2 −m1)
2Fm1,m2(k)

2k2. (3.31)

Let m1 ̸= m2. Suppose that Tm1+T
∗
m2− were Hilbert-Schmidt. Denote by K̂rs the

multiplication operator by the functionKrs(k) on L
2(Rd∗). Then, by (3.30), K̂rs is Hilbert-

Schmidt. Hence L :=
∑ν/2

r=1 K̂
∗
rsK̂rs is Hilbert-Schmidt. By (3.31), L is the multiplication

operator by the function (m2−m1)
2Fm1,m2(k)

2k2. This function is continuous on Rd∗ and

positive for all |k| > 0. Hene σ(L) includes an open interval in [0,∞). Hence L is not

Hilbert-Schmidt, since the spectrum of a Hilbert-Schmidt operator is purely discrete in

C \ {0}. Therefore we have a contradiction. Thus Tm1+T
∗
m2− is not Hilbert-Schmidt.

3.4 An interacting quantum Dirac field

Let Hm be a self-adjoint operator on F(ĤD) which may depend on m. Then the time-t

quantum Dirac field of mass m with Hamiltonian Hm is defined by

ψm(t, f) := eitHmψ̂m(f̂)e
−itHm , f ∈ HD, t ∈ R.

This is a general form of interacting quantum Dirac fields whose time-zero field is taken

to be ψ̂m(f̂). The time-t free quantum Dirac field ψ0,m(t, f) is given by the case where

Hm = H0,m (see (3.29)).

Let

ρm(t) := {ψm(t, f), ψ(t, f)
∗|f ∈ HD}

Then (F(ĤD), ρm(t)) is an irreducible representation of the CAR over HD. Since e
itHm is

unitary, the following corollary immediately follows from Theorem 3.7:

Corollary 3.8 Let m1 ̸= m2. Then, for all t ∈ R, (F(ĤD), ρm1(t)) and (F(ĤD), ρm2(t))

are inequivalent.
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4 A generalization

In this section we briefly describe a generalization of the time-zero quantum Dirac field

ψ̂(f̂) (f ∈ HD).

Let U be the set of pairs (u, v) of Cν-valued Borel measurable functions u and v

on Rd∗ × {1, . . . , ν/2} such that, for a.e. k ∈ Rd∗, {u(k, s), v(k, s)|s = 1, . . . , ν
2
} is an

orthonormal basis of Cν . For each (u, v) ∈ U , we define T+(u) : ĤD → ĤD+ and

T−(v) : ĤD → ĤD− as follows (cf. (3.18) and (3.19)):

T+(u)f := (u(·, s)∗f)ν/2s=1 ∈ ĤD+,

T−(v)f :=
(
ṽ(·, s)f̃

)ν/2
s=1

∈ ĤD−, f ∈ ĤD.

Then, in the same way as in the proof of Lemma 3.1, one can prove the following relations:

T+(u)
∗T+(u) + T−(v)

∗T−(v) = I,

T+(u)T+(u)
∗ = I, T−(v)T−(v)

∗ = I

T+(u)T−(v)
∗
= 0, T−(v)T+(u)

∗
= 0.

Hence (T+(u), T−(v)) is an element of T∗(ĤD). Therefore, introducing the operators

ψ̂u,v(f) := a(T+(u)f, 0) + a(0, T−(v)f
∗)∗, f ∈ ĤD

and

ρ̂(u, v) := {ψ̂u,v(f), ψ̂u,v(f)
∗|f ∈ ĤD},

we see that (F(ĤD), ρ̂(u, v)) is an irreducible representation of the CAR over ĤD. Clearly

this class of representations includes (F(ĤD), ρ̂m), hence being a generalization of it.

As for the family {(F(ĤD), ρ̂(u, v))|(u, v) ∈ U } of representations of the CAR over

ĤD, we have the following inequivalence theorem:

Theorem 4.1 Let (u1, v1) and (u2, v2) be in U . Then the two representations (F(ĤD), ρ̂(u1, v1))

and (F(ĤD), ρ̂(u2, v2)) are inequivalent if and only if, for some (r, s), there exists a

non-null Borel set B ⊂ Rd∗ such that, for all k ∈ B, ⟨u1(k, r), v2(k, s)⟩Cν ̸= 0 or

⟨u2(k, r), v1(k, s)⟩Cν ̸= 0.

Proof. By Theorem 2.11, the two representations under consideration are inequivalent

if and only if T+(u1)T−(v2)
∗
or T−(v1)T+(u2)

∗
is not Hilbert-Schmidt.

In the same way as in the case of (3.30), one can show that

(T+(u1)T−(v2)
∗
f)r(k) =

ν/2∑
s=1

Grs(k)fs(k), f ∈ ĤD, r = 1, . . . ,
ν

2
, a.e.k,
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where

Grs(k) := ⟨u1(k, r), v2(k, s)⟩Cν .

It is easy to see that T+(u1)T−(v2)
∗
is not Hilbert-Schmidt if and only if, for some (r, s),

the multiplication operator Ĝrs by the function Grs is not Hilbert-Schmidt. In general,

the multiplication operator on L2(Rd∗) by a function F is Hilbert-Schmidt if and only

if F (k) = 0 a.e.k ∈ Rd∗. Hence Ĝrs is not Hilbert-Schmidt if and only if there exists a

non-null Borel set B ⊂ Rd∗ such that, for all k ∈ B, Grs(k) ̸= 0. Thus T+(u1)T−(v2)
∗

is not Hilbert-Schmidt if and only if, for some (r, s), there exists a non-null Borel set

B ⊂ Rd∗ such that, for all k ∈ B, Grs(k) ̸= 0.

Note that T−(v1)T+(u2)
∗
is not Hilbert-Schmidt if and only if T+(u2)T−(v1)

∗
is not

Hilbert-Schmidt. Hence one can apply the preceding result to the case (u1, v2) replaced

by (u2, v1) to conclude that T−(v1)T+(u2)
∗
is not Hilbert-Schmidt if and only if, for some

(r, s), there exists a non-null Borel set B ⊂ Rd∗ such that, ⟨u2(k, r), v1(k, s)⟩Cν ̸= 0.
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