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ON ANALYTICITY OF THE LP-STOKES SEMIGROUP FOR
SOME NON-HELMHOLTZ DOMAINS

MARTIN BOLKART, YOSHIKAZU GIGA, TATSU-HIKO MIURA, TAKUYA SUZUKI,
AND YOHEI TSUTSUI

ABSTRACT. Consider the Stokes equations in a sector-like C? domain Q C
R2. It is shown that the Stokes operator generates an analytic semigroup
in LE(Q) for p € [2,00). This includes domains where the LP-Helmholtz
decomposition fails to hold. To show our result we interpolate results of the
Stokes semigroup in VMO and L2 by constructing a suitable non-Helmholtz
projection to solenoidal spaces.

1. INTRODUCTION

In this paper, as a continuation of [5], [6] and [10], we study the Stokes semigroup,
i.e., the solution operator S(t) : vg — v(-,t) of the initial-boundary problem for the
Stokes system

ve—Av+Vg=0, divv=0 in € x (0,00)
with the zero boundary condition
v=0 on 0 x (0,00)

and the initial condition v|;—g = vy, where Q is a domain in R™ with n > 2. It is
by now well-known that S(t) forms a Cy-analytic semigroup in L2 (1 < p < o0)
for various domains like smooth bounded domains ([21], [35]). Here L2 = LP2(2)
denotes the LP-closure of g% (Q2), the space of all solenoidal vector fields with
compact support in . More recently, it has been proved in [20] that S(¢) always
forms a Cp-analytic semigroup in LE(Q) for any uniformly C2-domain 2 provided
that LP(£2) admits a topological direct sum decomposition called the Helmholtz
decomposition of the form

LP(Q) = L3 (Q2) © GP(Q)
where GP(Q) = {Vq € L?(Q) | ¢ € L},.(Q2)}. In [20] the LY maximal regularity in

loc
time with values in L2 () was also established.

The Helmholtz decomposition holds for any domain if p = 2. The LP-Helmholtz
decomposition holds for various domains like bounded or exterior domains with
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smooth boundary for 1 < p < oo ([19]). However, it is also known ([9], [28]) that
there is an improper smooth sector-like planar domain such that the LP-Helmholtz
decomposition fails to hold. Let us state one of the results in [28] more precisely.
Let C(¢) denote the cone of the form

C(W) ={x=(a,z,) e R" | —z,, > |z|cos(¥/2)},

where ¥ € (0,27) is the opening angle. When n = 2, we simply say that C(9) is a
sector. We say that a planar domain 2 is a sector-like domain with opening angle 9
if O\Bg(0) = C(¢¥)\Bgr(0) for some R > 0 (up to rotation and translation), where
Br(0) is an open disk of radius R centered at the origin.

It is known that the LP-Helmholtz decomposition fails for a sector-like domain
Q when p > ¢}, or p < gy with g9 = 2/(1 + 7/9), 1/q9 + 1/¢}y = 1 even if the
boundary 0f is smooth [28, Example 2, Fig. 5] while for p € (g9,q)) the LP-
Helmholtz decomposition holds. This means that if the opening angle ¥ is larger
than 7, there always exists p > 2 such that the LP-Helmholtz decomposition fails.

It has been a longstanding open question whether or not the existence of the
LP-Helmholtz decomposition is necessary for LP analyticity of S(¢). In this paper,
we give a negative answer for this question by proving that there is a domain
for which S(t) is analytic in LP while the LP-Helmholtz decomposition fails. This
is a subtle problem since the existence of the LP-Helmholtz projection is known to
be necessary for LP solvability of the resolvent equation ([33]). However, in this
statement the external force term is allowed to be in the more general space LP
instead of L2. Our problem is different from that in [33].

We say that  has a C* graph boundary if Q is of the form

Q={(«',z,) € R" | z, > h(z')}

(up to translation and rotation) with some real-valued C* function h with variable
¥ e RPL

Theorem 1.1. Let Q be a sector-like domain in R? having a C® graph boundary.
Then S(t) forms a Cy-analytic semigroup in LE(Q) for all p € [2,00).

Here is our strategy to prove Theorem 1.1. It is by now well-known that S(t)
forms an analytic semigroup in L2, i.e., L2 = LP N L2 (p>2), L’ = [P + L2 (1 <
p < 2) ([14], [15], [16]). Thus S(t)vg is well-defined for vy € C25,(2). To show
Theorem 1.1, a key step is to prove the two estimates

(1.1) 1S@)voll, < Clivolly

< Cljwollp
P
for all vy € C2%, (), t € (0,1), where [[vg]|, denotes the LP-norm of vg. The constant
C should be taken independent of ¢ and vy. We shall establish (1.1) and (1.2) by
interpolation since both estimates are known for p = 2.

We are tempted to interpolate the L type result obtained in [5] with the L2-
result. In fact, in [5] the estimates (1.1) and (1.2) with p = oo are established for
all vg € Co (), the L>®-closure of C2%(2) for a C? sector-like domain Q in R

However, it is not clear that the complex interpolation space [L?,, Co,a} , agrees with

(1.2) t”(iS(t)vo

L2 with 2/p = 1 — p although it is well-known as the Riesz-Thorin theorem that
[L?, Loo]p = LP. To interpolate, we would need a projection to solenoidal spaces
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which is almost impossible since such a projection involves the singular integral
operator which is not bounded in L°.

To circumvent this difficulty, we consider the Stokes semigroup S(t) in BMO-
type spaces as studied in [10], [11], [12]. For p € [1,00), 1 € (0,00] we define the
BMO seminorm

1/p
[ BMOY(©)] = s (f |f(y)—fB,,<$)|pdy> B o, r<nl.
B, (x)

where fp = fB fdx, the average of f over B and B,.(z) denotes the closed ball of
radius r centered at x. It is well-known that one gets an equivalent seminorm when
the ball B, is replaced by a cube. We also need to control the boundary behavior.
For v € (0, 00] we define

1/p
1
[F 5 B(@)] i=sup ( Lo If(y)lpdy>

where U, (F) is a v-open neighborhood of F, i.e.,
U,(E) ={x e R" | dist(z, F) < v}.

We shall often assume that v < R*, where R* is the reach from the boundary. The
BMO norm we use is

|£: BMOL@)|| = (1 BMORQ)] + [£ 4]

xg € 0, v >0, B.(xg) CULOQ) p,

If p=1, we often drop p. The BM O space we consider is
BMOY (@) = {f € L, (@) ||| : BMOL (@) < o0}

This space is independent of p for sufficiently small v, i.e., v < R* ([11], [12]) and
BMO;™ agrees with Miyachi BMO space ([29]) for various domains including
a half space and bounded C? domains ([12]). Although the BMO;*" () norm
is equivalent to the BMO,*"* () norm when € is bounded, there are many un-
bounded domains for which the BM O, () norm is actually weaker than the
BMO;**(©2) norm when v is finite. We define the solenoidal space VMO,
as the BM O} ~closure of C2%(£2). In [10], [11] among other results the analytic-
ity of S(t) in VMO, has been established for a uniformly C® domain which is
admissible in the sense of [2] provided that v is sufficiently small.

Theorem 1.2 ([10], [11]). Let Q be an admissible uniformly C3 domain in R".
Then S(t) forms a Cy-analytic semigroup in VMO%G for any p € (0,00] and
v € (0,v9) with some vy depending only on u and regularity of OS.

Moreover, we obtain not only estimates of the form (1.1) and (1.2), where we
replace L? by L or BMO,>", but even an estimate stronger than (1.2) with
p =0, i.e.,

(1.3) t vol| < Cllvg: BMOYY(Q)||, p,v e (0,00

dt
which shows a regularizing effect.

It has been proved in [5] that a C? sector-like domain in R? is admissible and
thus Theorem 1.2 applies to the setting of Theorem 1.1. Note that a C? sector-like

’ dsS(t)

oo
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domain in R? is expected to be not strictly admissible in the sense of [3]. In fact,
a bounded domain ([2]), a half space ([2]), an exterior domain ([3], [4]) and a bent
half space ([1]) are strictly admissible if the boundary is uniformly C3. On the
other hand, an infinite cylinder is admissible but not strictly admissible ([6]) and a
layer domain with n > 3 is not admissible ([8]).

In order to get the L? estimates we need an interpolation result. Let C.(2)
denote the space of all continuous functions with compact support in 2.

Theorem 1.3. Let Q) be a Lipschitz half-space in R™, i.e., a domain having Lip-
schitz graph boundary. Let T be a linear operator from C.(2) to L?(Q2). Assume
that there is a constant C such that

[Tulle < Cllull2
[Tu : BMO™(Q)] < C|lul|o

for uw € C.(Q). Then | Tull, < Cilullp for u € C.(Q) with C\ depending only on
C, h and p € (2,00).

There are a couple of such interpolation results between BMO and L?, which
go back to Campanato and Stampacchia; in [22, Theorem 2.14] the interpolation
between LP and BMO is discussed when (2 is a cube. However, in these results the
original inequalities are assumed to hold for L?(Q) N BMO(Q) and not for C.(2).
Thus ours are not included in the literature. In [13] Duong and Yan showed a similar
result (Theorem 5.2) with BMO4(X), where A is some operator. They worked
on metric measure spaces of homogeneous type (X, d, ). In particular, in the case
X =Q,d(z,y) = |r—y| and pu(E) = |E|, we can see that BMO4(2) C BMO>().

Unfortunately, Theorem 1.2 and Theorem 1.3 are not enough to derive (1.1) and
(1.2) by interpolation. Similarly to the L* case we do not know whether or not

the complex interpolation space {Lg, VM Ogod';} with 2/p = 1 — p agrees with L2,
dp
although we know that [L?, BMO]p = LP for Q = R™ as discussed in [25].

To circumvent this difficulty, we construct the following projection operator.

Theorem 1.4. Let Q be a Lipschitz half-space in R™. Assume that v € (0, 00].
There is a linear operator Q from Ce(Q) to VMO,G" () N L7 () such that

1Qu : BMO™"(Q)]| < Cllull

1Qullz < Cllull2
for all u € C.(Q). Moreover, Qu = u for u € C.(Q) N L2(Q).

Since there may be no LP-Helmholtz decomposition our ) should be different
from the Helmholtz projection. We shall construct such an operator () using the
solution operator of the equation divu = f given by Solonnikov [36]. Although
deriving the L? estimate is easy, to derive the BMO estimate is more involved
since we have to estimate the b” type seminorm.

To derive (1.1), we actually interpolate

15®)Qull2 < Cljulls

and
15(t)Qu : BMO™"|| < Cllul
. . . . . . ds
for u € C.(€2). Similarly, we derive (1.2) by interpolating the estimate for ¢ 57
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This paper is organized as follows. In Section 2, we establish an interpolation in-
equality of Campanato-Stampacchia type. In Section 3, we construct the projection
operator ). In Section 4, we give a complete proof of Theorem 1.1.

2. L?2 — BMO INTERPOLATION ON A LIPSCHITZ HALF-SPACE

In this section, we give a proof of Theorem 1.3 for a Lipschitz half-space, i.e.,
Q:={(«',z,) € R"|z,, > h(2")}

with a Lipschitz function h on R*~1.

By @Q we mean a closed cube with sides parallel to the coordinate axes. Let £(Q)
be the side length of @, and for 7 > 0, 7Q a cube with the same center as @ and
side length 74(Q).

2.1. Reduction to the half-space and extension. Here, we prepare lemmas
that are basic estimates for the proof. Since h is Lipschitz continuous, F(x) :=
(2", 2, — h(z")) is a bi-Lipschitz map from € to R. For a function u defined on
R? the pull-back function F*(u) of v on € is defined by u o F. We start with
estimates for (F~1)* which is the pull-back function (F~!)*(v) of v on R} defined
by vo F~L

Lemma 2.1. Let Q be a Lipschitz half-space.

(i):
(ii):

[(F~")*v: BMO®(R})] < clv: BMO>®(Q)].

H(F_l)*v

’LQ(Ri) < CHU||L2(Q)-
Here ¢ is a constant depending only on Lipschitz bound of h and n.

Proof. (i): Because R’} is an open subset of R", we know that for any 7 > 2,
[(F~")*v: BMO®(R})] <c¢; sup inf / |(F~1)*v —d|dy,
TQCR" d€R Jg

where the supremum is taken over cubes @, for which 7@ is contained in R, see
[37]. Since F' is a bi-Lipschitz map, it holds

c1 dist(y, OR') < dist(F ™' (y), 0Q) < ea dist(y, OR})
with some constants ¢y, cz > 0 for all y € R’} Since (7 —1)4(Q)/2 < dist(Q, ORY})
for such cubes (), we have the lower bound

etl(Q) < dist(F~1(Q), 09)

with some ¢ > 0, which depends on n and h. Therefore, taking large 7, we can
find cubes {Ry};; C €, which have no intersection of interiors, so that Uy, Ry, is
connected and

o l(Ry) = 4(Q),
o F71(Q) C U~ Ry, where ¢, € N depends only on h, and
o if Rj N Ry # 0, the smallest cube Ry, including R; and Ry, is in Q.

From these, one obtains that for cubes @ with 7Q C R,

1 1
inf —/ (FY*v —d|dy <c —/ |[v — vg, |dy.
deR Q] Jq | | kzzl |Br| R, '
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It is enough to show that
1
|R| JR,

for the case R; N Ry, # 0. To do this, we follow the argument of [26, Lemma 2.2 and
2.3]. Let Ry, and R; be subcubes of Ry and R, respectively so that £(Ry) = ¢(Ry)/2,

{(R;) = ((R;)/2 and they touch each other. Moreover, denote by R;; a cube
satisfying £(R; ) = ¢(R;) + £(Ry) and R; U R, C R C R, . Hence, we have

1
|Rr| J R,

(2.1) |v —vg;|dy < clv: BMO™(Q)]

1
ooy < e [ o= vy + o, o,
|Ri| J g,
< cfv: BMO™(Q)] + clvg, —vp,|
1
SC[UBMOOO(Q)]+C~7/ |U_Uﬁik|dy
|Rj k| J Ry "
< cl[v: BMO*(Q)].

(ii): This is verified as follows

I 0l = [ ol pde < c [ o,

where Jr is the modulus of the Jacobian of F which is bounded, because h is
Lipschitz continuous. O

Next, we consider the even extension of functions on the half space. For a
function f on R, we extend f outside R} by

E[f](z', —x,) := f(2',x,) for z, > 0.

From elementary geometrical observation, we can see that the extension operator
E is a BM O-extension operator for R .

Lemma 2.2.
[E[f] : BMO*(R™)] <c¢ [f : BMOm(Rﬁ)} .

Proof. Tt is sufficient to consider cubes @ C R™ with QR # 0 and QNR” # 0.
For such @, let Q' be a cube so that its center lies on OR", £(Q’) = 2¢(Q) and
Q C Q'. Further, let Q* be the smallest cube in R} containing the upper half of
Q’. With these notations, the desired inequality is proved from

1 1
inf—/E —d|d Scinf—/ —d|dy.
i igr VU = dldy < e juf o |15 = dldy

2.2. Sharp maximal operator. For the proof of Theorem 1.3, we make use of
the sharp maximal operator M* due to Fefferman and Stein ([18]). We define for
r€R" and f € L}, (R") the function M*f by

loc

YIRS _
M f(z) : sup Q|/Qf(y) feldy.
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It is immediate from the definition that [f : BMO™(R")] = |M*f| e (mn). It is
well-known that if f € LPo(R™) for some pg € (1,00), then for p € [pg, 00)

(2.2) £l Loy < llMEFl Lorns

which is applied below. (Both sides of (2.2) may be infinite.) This follows from
||f||Lp(Rn) S HMf”Lp(Rn) and ||MfHLp(Rn) S CHMﬁfHLp(Rn), where M is the
Hardy-Littlewood maximal operator [18].

2.3. Marcinkiewicz interpolation. Here, we give a variant of the Marcinkiewicz
interpolation theorem.

Proposition 2.3. Let D be an open subset of R™ and S a sublinear operator from
C.(D) to L*(R"™). If

ISz mny < el fllL2(py

ISTf 1 Loe rmy < ell flle ()
for f € C.(D), then ||S[f]llrrry < Cllfllze(py for f € Co(D) with C depending
only on ¢ and p € (2,00).

Proof. For A > 0 and a > 0, we decompose f into two parts; f = fa + foo Where

0 if [f(z)] <aA
fa(z) = . .
f(z) —adsign(f(z)) if [f(z)] > aA,
where sign € = £/[€| for € # 0 and sign £ = 0 for £ = 0. Observe that fo, fo €
BC(D), and then fo, fo € C.(D). Therefore, the two inequalities of our assump-

tion hold for f and f., respectively. We set o = (2HS||LOO(D)*>LOO(RTL))_1 and
observe that [{z € R™ | S[f](z) > A\/2}| = 0. We now conclude that

[ 1P ds < [0 o € R ST > A

0

< p/o°° N~ {z € R [ [S[f](2)] > A/2} dA

IN

e’} B 2 ?
p/ APt <A|S”L%D)%LQ(R")||f2||L2(D)> dA
0

OOAH 2dz dA
<c / /{ s
—2C/OOOAP3 (/aiot|{xeR”||f(:v)|>t}|dt>d>\

o0 /o
:20/0 iz e R | |f(2)] > )] (/Ot Ap_3d>\>dt

< CHf”Zzp(D)-
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2.4. Proof of Theorem 1.3. For simplicity, we write ¢ := T'f. By changing
variables, one obtains

Jlavar<e [ Eyararse [ EE apase [ et

where ®[f] := M* (E[(F~')*g]). Here, because E[(F~')*g] € L*(R"™), we have
applied (2.2) in the third inequality. With the help of Proposition 2.3, it is enough
to see L2(Q2) — L?(R™) and L>°(Q) — L>°(R") estimates for ®. The former estimate
can be seen by L?-boundedness of Hardy-Littlewood maximal operator and (ii) of
Lemma 2.1. The later one follows from (i) of Lemma 2.1 and Lemma 2.2. Then
the proof of Theorem 1.3 is completed.

3. NON-HELMHOLTZ PROJECTION

Our goal in this section is to prove Theorem 1.4.

3.1. A solution operator to the divergence problem. As in Section 2, let
Q={(,2,) e R" |2/ € R"L, x,, > h(2')} be a Lipschitz half-space in R" with
a Lipschitz continuous function k on R»~!. Then, there is a closed cone of the form

Cy={r=(2",2,) eR" |2/ € R" —x,, > |z|cos(20)}
with an angle § € (0,7/4) (depending on the Lipschitz constant of h) such that
c+Ci={yeR"|y—2zeCi} CQ(=R"\Q) forall zeQ°.

In the notion of the introduction Cy = C(46) so that the opening angle equals 46.
With this angle we define a closed cone Cy = C(20), i.e.,

Co={r=(z",2,) eR" |2/ € R", —z,, > |2| cosh}.
The closed cone Cj also satisfies
(3.1) x4+ CoC Qf forall xeQF.
Let L € C°(R™) be a function such that

(32)  suppL C (Ba(0) \ Bys(0)) N (~Co), [3 L) o) =1

Here —Cy = {—y | y € Co} and S™~! is the unit sphere in R". Then we define a
vector field K = (Ky,...,K,) as

T

(3.3) K(z) = i <|z|) , zeR"\ {0}

Definition 3.1. For f € C°(Q), we define a vector field u = Sf as

u() = 8(r) = (K P)a) = [ K@—n)f)dy, R

Here f denotes the zero extension of f to R™ given by

r . f(x)7 S Qa
’ 0, x € Q°.
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This operator was introduced by Solonnikov [36]. For a fixed € R"™, since

“Y e supp Llgn1 C "IN (=Co)
|z —y|
implies y € x + Cy, we can write
u(z) = K(z —y)f(y) dy.

x+Co

This formula and the property (3.1) of Q imply that u(z) = 0 for all x € Q°. In
particular, u vanishes on 02. However, the support of © may become unbounded
although f is compactly supported in 2.

By the change of variables x —y = 7o with » > 0 and ¢ € S"~! we have

u(z) = /000 /5n—1 L(o)f(x —ro)r" tdH" " (o) dr.

Hence if f € C°(Q) is supported in Br(0) and z € B,(0) (R,a > 0), then

R+a
= o) flz — ro)r™ HdH (o) dr
ww) = [ [ wo)fe = rap i ) an

which implies that v = Sf is smooth in 2. Moreover, v = Sf vanishes near 9f)
and thus it is smooth in the whole space R", since f is compactly supported in €.

Lemma 3.2. Let p € (1,00). There exists a constant ¢ > 0 such that

IVullLe) < cllfllr@
for all f € C*(Q) andu=Sf.

Proof. Let u; be the i-th component of w:

ui(z) = (K; * f)(z) = - Ki(z)f(x — 2)dz.

Differentiating both sides with respect to the j-th variable, we have

Oju;i(x) = Ki(2)(0;f)(x — z)dz = lim K;(2)(0;f)(z — z)dz

Rn =0 Jrn\ B, (0)

and, by changing variables y = z — z and integrating by parts,

Ojui(r) =
i Yi—Y ¢ n—1 _
lim (/ Ki(r —y)—— f(y)dH (y)—i—/ (8;K:)(x —y) f(y) dy>
e—0 9B (x) |3? — y‘ R\ B. ()
On the one hand, we change variables z — y = eo with o0 € S"7! to get
i (x — i —Yif n—1
lim | Kie—y) @) dH )
lz—yl=¢
=1l Ti Z Vil — Y (f—y)— 1 n—1
= I L fy)——=dH y
e0 Jjg—yj=e [T =yl | — 9| |z — y| ( )|x_y‘n—1 (y)
= hm UinL(U)f($ — 60’) dr}_[nfl(o,)
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where the last equality follows from the fact that L is integrable on S~ ! and f is
continuous at x. On the other hand, we differentiate K; to obtain

K;j(z) == 0;K;(z) = kl]|(§|/7L|2|)a

(3.4)
kij(2) = (9i5 = nzizj) L(2) + 2zi(9;L)(2) — 2 Zze (0eL)(2

for z € R™\ {0}. Then Kj;; is homogeneous of degree —n and there is a constant
¢ > 0 such that

|Kij(2)] < ﬁ forall zeR™\ {0}

by the smoothness of L on S®~!. Moreover, for every R, and Rs with 0 < R; < Rs,

/ KU(Z)dZ:/ @Kz(z) dz

R1<|z|<R2 R1<|z|<R2

- [ K@Zare@- [ KEZaee
[2|=R2 |z|=R1

2| ||

Zi Zj z 1 n—1 Zi Zj < 1 n—1
_ S Y N B S —/ FE () dH 1 (2)
/|z|_R2 2] |2] <Z|> |2t lej=ry |2 1217 \[2] /) [2]"7}

= / oi0;L(0)dH" (o) — / oi0;L(c)dH" (o) = 0.
Sn—1 Sn—1

In the fourth equality we changed variables z = Roo and z = Ryo with o € S"~ 1,
respectively. This equality is equivalent to

(3.5) [SH kij(o)dH" (o) = 0.

Thus we can apply the Calderén-Zygmund theory (see eg. [23, Theorem 5.2.7 and
Theorem 5.2.10]) of singular integral operators to the kernel K;; and obtain the
formula

(3.6) Oju;(x) = f(x) /Sn_l o;0;L(0)dH"™ L /W Kij(x—y )V f(y) dy,

where the second integral is considered in the sense of the Cauchy principal value.
Finally, the inequality

< |f(@)l L(o) dH" " (o) = | f(x)]

Sn—l

‘f o;0;L(c) dH" (o)
Sn—1

and the Calderén-Zygmund theory imply that
10;uill ey < el fllLemey = cllfllLe)
with a positive constant ¢ independent of f. Hence the lemma follows. O

Lemma 3.3. For every f € C°(§2) the vector field w = Sf satisfies
divu=f in Q, u=0 on 0Q.
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Proof. We have already observed that u vanishes on the boundary. Let us compute
divu = Y1, d;u; in Q. By the formula (3.6) in the proof of Lemma 3.2,

div u(x / ZO’QL yAH™Y( / ZK“ f(y)dy.
stio " i=1

In this formula, we have

/S,L . ZUZL )dH" (o) = /S”i1 L(o)dH" o) =1

i=1

by (3.2) and, for all z € R™\ {0},

)= et () 2 (=)

i=1
s (@) - Z\WZ @ () o
Hence divu(z) = f(z) = f(x) for all x € Q. O

Lemma 3.3 means that the operator .S is a solution operator to the divergence
problem with Dirichlet boundary condition. Note that S is not a unique solution
operator because a solution to the divergence problem is not unique.

Next we define a linear operator that plays a main role in this section.

Definition 3.4. For a vector field u € C¢°(2), we define a vector field Tu as

Tu(x) := K(x —y)divu(y)dy, x€R".
Rn

Here K is given by (3.3) and div u denotes the zero extension of divu to R™.

The above definition means that 7' is given by T' = Sodiv. Since u € C°(Q), its
divergence is in C2°(€2) and thus T is smooth in the whole space R™ and vanishes
outside of €2, as discussed right after Definition 3.1. Also, by Lemma 3.3 we have

divTiu=divuy in £, Tu=0 on 0.

Clearly Tu = 0 in R” for u € C’SOJ(Q) Note that, as in the case of the operator .5,
the support of T'u may be unbounded.

Theorem 3.5. Let Q be a Lipschitz half-space. Let p € (1,00). There exists a
constant ¢ > 0 such that

1 Tul| ey < cllull L)
for all u € CX ().

Proof. Let us compute the i-th component (T'u); of Tu with ¢ = 1,...,n for com-
pactly supported vector field u in Q. As in the proof of Lemma 3.2, we integrate



12 M. BOLKART, Y. GIGA, T.-H. MIURA, T. SUZUKI, AND Y. TSUTSUI

by parts to get

. r—y — n—1
(Tu)i(z) = lim oo Kilw =y ty) 41 (y)
+ lim (VE;)(z —y) - uly) dy

€20 JRm\B. ()

— [ sl a@yan o)+ [ (VK@) al)
Sn—l

n

or equivalently,
(3.7) (Tw)i(x) =Y {aijuj(x) + Siju;(z)}, =e€R"
j=1

Here u; is the j-th component of u and

o= [ ool o), Synie) = [ Kl - pus )

where K;; = 0;K; is given by (3.4). Since a;; is a constant satisfying

(3.8) lay| < /SH Lio)dH" (o) = 1

and ;4 = K,;* is a singular integral (see the proof of Lemma 3.2), the Calderén-
Zygmund theory yields the boundedness of the operator T on LP(f2). ([l

By Theorem 3.5, the operator T' extends uniquely to a bounded linear operator
on LP () with each p € (1,00), which we again refer to as T.

Our next goal is to estimate the BMO;"(Q)-norm of Tu for u € C°(?) and
v € (0,00]. To this end, we estimate each term of the right-hand side in (3.7) for
u=(u1,...,u,) € CX(Q). By (3.8) we have

[aijﬂj . BMOOO(Q)] S [’u]‘ . B]\iOOO(Q)]7 [aijl_bj : by(Q)] S [u]' . by(Q)]
and thus
llasjti; : BMOZ™ (Q)|| < [lu; : BMOZ=(Q)]-
Moreover, since
[uj : BMO™(Q)] < 2||uj|lpe),  [uy : 07(D)] < wallujllpe @),

where w,, = 27™/2/nT'(n/2) is the volume of the unit ball B;(0) in R™ with the
Gamma function I'(z) := [~ 2*~1e™" dz, we have

(3.9) laiju; : BMOy™ ()] < (2 + wn)llujll e )

Let us estimate S;;u; = K;j *@j, 4,5 = 1,...,n in BMO;”"(€). Recall that the
integral kernel K;; is of the form

Kij(z) = M’ zeR™\ {0},
where k;; € C2°(R") is given by (3.4) and satisfies
suppkij C (B2(0) \ By 2(0)) N (—Co), / kij (o) dH1 = 0,
S‘nfl

see (3.2) and (3.5). We first estimate the BAM O>-seminorm of .S;;1,;.



ANALYTICITY OF THE LP-STOKES SEMIGROUP 13

Lemma 3.6. Let K be a function defined on R™ \ {0} such that
(3.10) |K(x—y) — K(z)| < Aly|°|lz| "%  whenever |z|>2]y| >0

for some A;§ > 0. Suppose that a convolution operator S with K is bounded on
L?(R™) with a norm B. Then, there exists a dimensional constant ¢, such that

[Sf: BMO™(R")] < co(A+ B)|If|l L~ mn)
for all f € L>(R™) N L=®(R").
Proof. See [24, Theorem 3.4.9 and Corollary 3.4.10]. O
Lemma 3.7. There exists a constant ¢ > 0 such that
for allu = (u1,...,u,) €CX(Q) and i,j=1,...,n
Proof. We shall apply Lemma 3.6 to S = S;;. For this purpose it is sufficient to
show that the function K = K; satisfies (3.10), since we already know that the
convolution operator S;; is bounded on L?(R"), see the proof of Lemma 3.2. To
this end, we differentiate K;; to get

nk;i(z/|z|) x 1 1 x
Kij(r) = ——2-2 L, - kij \ 7=
VE) =~ g e (e @) Ve (g

for x € R™ \ {0}, where I,, is the identity matrix of size n and x @ = := (z;x;);,; is
the tensor product of z. Since k;; is smooth on S"~!, we have

c n

Hence, for all z,y € R™\ {0} with |z| > 2|y| > 0,

1
K@) - K@) = | [ i(K(:c - )] -

1
C
Iyl/ dt < Iyl/ T dt
I’”rl o (lz[—ly[)n*?

1
; (—y) - VK(z —ty)dt

CIy\ _ 2"y
I e ) K
Thus K;; satisfies (3.10) with § = 1 and we can apply Lemma 3.6 to obtain
(3.12) [Sijuj : BMO™(R")] < cl|tj|| oo (rn) = clluglle ()

with some constant ¢ > 0.
By definition of the BM O -seminorm, we have

Hence the inequality (3.11) follows from (3.12). O
Next, let us estimate the b”-part of S;;u;. Recall the two closed cones
Cj={z=(2,2,) eR" |2/ € R"}, —z,, > |z[cos(270)}, j=0,1
with opening angle 6 € (0,7/4). For r > 0 and zo € R”, we define
(3.13) A (xo) := U (x4 Co) N (zog+Cy)° CR™
z€By(z0)N(x0+C1)°
Here 29 + C1 = {y € R" | y —xo € C1} and = + Cy is defined similarly.



14 M. BOLKART, Y. GIGA, T.-H. MIURA, T. SUZUKI, AND Y. TSUTSUI

Lemma 3.8. For allr >0 and zo € R" we have A.(x9) C B,/ sino(T0).
Proof. By translation, we may assume that zo = 0. Let a := (0,...,0,7/sinf) €
R™. Suppose that

(1) BT(O) C a+ Cy,

(2) 2+ Co Ca+Cp for all z € a+ Cy,

(3) (a + C()) n Cf C Br/sin9(0)~
Then, the statements (1) and (2) imply

A4,0)= | (@+C)NCfC(atCo)NCy.
z€B,(0)NC§

Hence the statement (3) yields A,(0) C By in(0). Now let us prove the statements
(1)-(3). Note that, since 0 € (0,7/4), the cones Cjy and C; are represented as

C;={z=(,2,) eR" |2 e R" ! 1z, <0, |2/| < (—z,)tan(20)}, j=0,1.
(1) Let = (2',zy,) € B,(0). Then, z — a = (2/,x, — r/sin ) satisfies

; =T s
sin 6 sin 6

(x—a), =x, —

and

(r — x, sin6)?

r 2 2 /12
— — 1, ) tan“f0 —|2/|* >
sin 6

or equivalently,

cos2

|z| < (L — xn) tanf = —(x — a),, tan 6.

Hence z — a € Cy, that is, z € a + Cy and the statement (1) holds.
(2) Let z € a+ Cy. If y € 2 + Cp, then (y —a)p, = (y — ) + (. — a), <0 and

ly'| <|2'|+ |y —2'| < —(x —a)ptanf — (y — x)p tand = —(y — a), tan 6,

which means that y € a + Cy. Hence the statement (2) holds.
(3) Let « € (a + Cp) N C§. Then we have
. —Q)p = Ln — i < 1< (L - n) .
(3.14) (x —a) Tp —r/sing <0, |2 < il tané
Hence
|lz|? < (L -z >2tan29+x2 =: f(xn)
~ \sing " nooaanr
To estimate the right-hand side in the above inequality for x € (a + Cy) N C¥, we
derive the range of x,, for z € (a + Cy) N CY. If z,, > 0, then x € (a + Cp) N CS
holds if and only if the condition (3.14) is satisfied. Thus x,, must satisfy

0<x, <

sinf’

On the other hand, if z,, < 0, then = € (a + Cp) N Cf holds if and only if
—,) tan(26 ’<(L— n)t 6.
(—xn) tan(20) < |2'| < = Zn ) tan

Hence, in particular, if € (a + Cy) N C§ and z,, < 0, then x,, must satisfy

(—x,) tan(20) < ( - J}n) tané,

sin 0
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which yields the inequality

7“
s < (tan(20) — tan ) a,.

Since

tan(20) — tan 6 = tan(260) — %tan(%)(l — tan? 0)

— %tan(%)(l + tan?6) = ;ai)(;oe) >0 (o <0< %) :
the above inequality is equivalent to
2r cos
~ tan(20) < n(<0).
In summary, the range of z,, for z € (a + Cp) N CY is
2r cosf r
= an20) < S g P

and thus we obtain

j2f* < f(zq) < sup f(s) = max{f(a), f(B)},

s€(a,p]

where the last equality follows from the fact that f(z,) is a concave parabola. On
the one hand, we have f(3) = 82 = r?/sin?#. On the other hand, since

_ 2rcosfcos(20) _ rcos(20)  r(1l-— 2cos? )

4= sin(20) B sinf sin 0 ’
we have
r r(1 — 2cos? f) 2 9 r2 cos?(20)
= - tan® 6 + —————
fle) (sin 0 sin 0 ) o sin? @
_ {4tan? 6 cos® O + cos?(26)} = i
 sin?6  sin?6
Hence [z[? < r?/sin®6 and thus © € B, 4n0(0) for every z € (a + Cp) N CK.
Therefore, the statement (3) holds and the lemma follows. O

Now we can estimate the b”-part of S;;u;.

Lemma 3.9. Let v € (0,00]. There ezists a constant ¢ > 0 such that

(3.15) [Sij; = b¥(Q)] < T/QQH%‘HLMQ)
Sin

for allu= (u1,...,u,) €CX(Q) andi,j=1,...,n.
Proof. First we note that for all f € L{ (Q) the inequality

loc
[f 07 ()] < wl/2[f - b5()]

holds by Holder’s inequality. Hence, to prove (3.15), it is sufficient to show the
inequality
c cwi/?

— v . v/ sin@
(316)  [Sym O] < ——a fus 85 Q)] < S ug e

sin
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The second inequality of (3.16) follows from the definition of [- : bg/ Sine(Q)]. Let
us show the first inequality. The singular integral S;;u; is of the form

Sijtg(x) = (Kij = a;)( / K;j(z )u;(y)dy, x€R"™
Since supp K;; C —Cjy (see (3.4) and (3.2)) and suppu C €2, we can write
Sijﬁj(x) = Kij(x — y)ﬂj(y) dy, r e R™
(z+Co)NQ

Hence, if we set
W (xo) := U (x+Co)NQ
ZEGBT»(ZEo)ﬁQ
for each zg € 92 and r > 0 with B, (z¢) C U, (99), then we have

Sytsa) = [ Kiglo = )05l ) dy = (K5 = (2] (0)
(z+Co)N2

for all x € B,(xzg) N, where
7. o ’ELJ('T>7 HAS Wr(x0)7
(Uj|w, (20)) (@) == {0, ¢ W (o).

Since K;; is a singular kernel (see the proof of Lemma 3.2), the Calderén-Zygmund
theory implies that

[ issm@Pde= [ Ky (@) @) P do
B, (20)NS2 B, (z0)NS

s;cj/ Math4x0n<xn2da:::cj/ 1 ()| d
R” W, (10)

with some constant ¢ > 0. Now we recall the property of the infinite cone C;:
r+C CAeQC (x+Cy)° forall ze Q.
By this property we have
W, (x0) C U (x4 Co)N (o +C1)°NQ) = Ap(z0) N A,
z€B, (zo)N(zo+C1)°
where A,.(z¢) is given by (3.13), and thus Lemma 3.8 yields
Wi(x0) C Ap(20) NQ C Byyging(w0) N

Hence we have

1 _ _
— |Sl]u]( z) de < 7 |a; (z)]? dz
T T Wv-(wo)

sinf\"
<f/ wPd= o () [ @) dz
B/ sin 0(0)NQ sin” ¢ r B/ sin 6 (20)NQ

. qv/sing 2
~ sin” 0 [uj 0y (Q)}
for every z¢ € 002 and r > 0 with B,(z¢) C U, (99), which yields

(Sigty SO < o [ 08 (@)

The proof is complete. O



ANALYTICITY OF THE LP-STOKES SEMIGROUP 17

Now we obtain an estimate for the BAMO,*" (Q)-norm of T'u.
Theorem 3.10. Let v € (0,00]. There exists a constant ¢ > 0 such that
|Tw: BMOS" (Q)] < cllull (o)
for allu e C(Q).

Proof. Since the i-th component of Tw, ¢ = 1,...,n, is of the form (3.7), we have
by (3.9), (3.11) and (3.15) that

ITu: BMORE ()]

<e Y (llasa; : BMOZY (Q)[| + [Siju; : BMO™(Q)] + [Siju; : " (2)))

4,5=1

n
<) il < cllulle e
j=1

with a positive constant c. ([

3.2. Non-Helmholtz projection. As in the previous subsection, let 2 denote a
Lipschitz half-space in R".

Definition 3.11. For a vector field u € C°(Q), we define a vector field Q'u on
R™ as Q'u := u — Tu. Here the operator T is given in Definition 3.4.

For a vector field u € C2°(2), the vector field T'u is smooth in R™ and
diviu=dive in Q, Tu=0 on 9.

Moreover, Tu = 0 for all u € CZ%(2), see the argument after Definition 3.4. Thus
Q'u = u — Tu is also smooth in R™ and

(3.17) divQu=0 in Q Qu=0 on 90

for allu € C2°(Q2), and Q"u = u for all u € CZ% (2). Note that Q' is not a projection
from C2°(£2) onto C%,(€2), since the support of Tu may be unbounded and thus
Q'u is not in O (2) in general. However, Q" maps C°(Q) into LE ().

Lemma 3.12. For allu € C°(Q) and p € (1,0), we have Q'u € LE(Q).

We shall first prove an auxiliary proposition for the above lemma. For p € (1, 00),
let G,(Q) ={Vqe LP(Q) | q€ L}, . ()}

loc

Proposition 3.13. Letp € (1,00). For every Vq € G,(RY), there exists a sequence
{@x}52, of functions in C°(R™) such that

(3.18) Vg = Vak||Lr (o) = 0.

lim
k— o0
Proof. Since the restriction of C°(R™) on € is dense in WHP(Q), it is sufficient
to show that for every Vg € G,() there is a sequence {gi}72, of functions in
W1P(Q) such that (3.18) holds. Let us prove this claim.

(1) First we assume that the claim is valid for the half space R’ and show the
claim for general Lipschitz half-spaces Q@ = {(«/,z,) € R"™ | z,, > h(z’)}. Asin
Section 2, let F'(x) := (2, x, —h(z')) be a bi-Lipschitz map from € to R"}. Let V¢ €
G,(Q) and ¢ := go F~!, where F~'(y) := (v, yn + h(y')) is the inverse mapping
of F. Then, since Vq(y) = VF~!(y)Vq(F~!(y)) for y € R" and each component
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of VF~! is bounded (because h is Lipschitz continuous), we have Vq € G,(R%).
Hence, by our assumption that the claim is valid for R, there is a sequence {gx }72;
of functions in W'?(R%) such that limy_,« [|[Vq — Vil e @en) =0.

Let g := qx o F' for each k € N. Then, since

Vq(z) = VE(@)Vq(F(z)), Va(z)=VF(@)Va(F(z)), z€Q
and each component of VF is bounded, we have g, € W1P(Q) and
IVa = Varlle) < cllVa = VrllLowy) — 0

as k — oco. Thus the claim is valid for general Lipschitz half-spaces (2.

(2) Now we prove the claim for @ = R’'. We follow the idea of the proof of the
claim in the case Q = R", see [34, Lemma 2.5.4]. Let ¢ € C°(R") be a function
such that

0<p<1 imR" =1 inB1(0), =0 inR"\ By(0)
and @i (z) = @(k~1x) for k € N and z € R™. Then, limj_, px(z) = 1 for all

x € R™ and supp @i C Ba(0), supp Vi, C Bak(0) \ Bi(0) for k € N.
Let Vg € Gp(R"}). Then g € VVlf)’p(Rii), that is, ¢ € WP(U) for every bounded

C

subset U of R ; see the proof of [31, Theorem 7.6 in Chapter 2]. Hence by setting
G, := R N (B2 (0) \ Bi(0)) for k € N, we have ¢ € W#(G},) and thus there is a
constant aj such that ka (¢ — ag)dx = 0 for each k € N. From this equality and
the change of variables © = ky for x € Gy and y € G; we have

/ (q(ky) —ar)dy = kﬁ"/ (q(z) — ag) dz = 0.
G1 Gx
Hence we can apply Poincaré’s inequality to ¢(ky) — ar on G; and get

(f k) - ak|pdy)1/p ([ | |V<q<ky>>|de)1/p

with a constant ¢ > 0 independent of k. In this inequality, we observe that

/G Jalky) el dy = £ /G o) - al?d
/G Vlalky) dy = 47 / (V) (ky)PP dy = k> /G Va(o)l de

1

by the change of variables x = ky and thus

(3.19) g — arllr () < cklIVallrcy), k€N.

For each k € N, let gy := ¢r(¢ — ar) on R%}. Then since supp g C R’} N By (0)
holds by the relation supp @i C Ba(0), it follows that ¢, € W'?(R’) and

(3.20) Vg — VQkHLp(Rg) <|[|Vq - ‘PkVQHLP(Ri) +1(Ver) (g — ak)HLv(Riy
Since 0 < @p(x) < 1 and limy o @ (z) = 1 for all z € R’} and Vg € LP(RY), the
dominated convergence theorem yields

(3.21) IVa = 0xVall Loy = 0.

lim
k—o0
On the other hand, since Vi, = k=1(V);, and supp V(pk|Ri C Gy, for each k € N,
it follows from (3.19) and the dominated convergence theorem that

(3.22) 1(Ver)(a = ar)llzemr) < k™ g = arllLocn) < el Vallore,) = 0
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as k — oo. Applying (3.21) and (3.22) to (3.20) we have
i [1Vg = V|| owr) =0,

where ¢, € W'P(R") for all k € N. Hence the claim is valid when Q@ = R’} and
the proposition follows. ([

Proof of Lemma 8.12. Let u € C2°(2) and p € (1,00). Then, since Tu € L,() by
Theorem 3.5, we have Q'u = u — Tu € LP(Q). To show Q'u € LE(f), we employ a
characterization of elements of L2 (£2) ([19, Lemma II.2.1]): a vector field v € LP(2)
is in LP(Q) if and only if

/ v-Vgdex=0 forall VgeGy(Q) (p' = p) )

Q p—1

Let Vg be any element of Gp/(€2). From Proposition 3.13, there is a sequence
{qr}72, of functions in CZ°(R") such that the equality (3.18) with p replaced by p’
holds. Since Q'u is defined and smooth in R™ for u € C°(Q2) and ¢ € C°(R"),
integration by parts yields

/Q'u~qudw:—/ qkdiVQ’udx—l—/ gr Qu-vdH !
Q Q

a0
for all kK € N, where v denotes the unit outer normal vector field of 9Q2. We apply
(3.17) to the right-hand side of this equality to get [, Q'u - Vgrdx = 0 for all
k € N. Since Qu € LP(Q) and (3.18) with p replaced by p’ holds, the above
equality implies that

/Q'u-qux: lim /Q'U-qudx:O.
Q k—oo Q

Hence by the characterization of elements of L2 (Q2) we conclude that Q'u € LE(2)
for all u € C¢°(€2). The proof is complete. O

Remark 3.14.

(1) Let p € (1,00). By Theorem 3.5 and Lemma 3.12, we have Q'u € L2(Q)
and [|Q"ul| Ly (o) < cllullLr(q) for all u € C°(2). Moreover, Q"u = u holds
for all u € CZ%,(Q2). Hence, by the density argument, Q" extends uniquely
to a bounded linear operator on LP(2) that is a projection onto L2 ().

(2) The projection onto L2 () given as above is NOT the Helmholtz projection.
Indeed, if it were the Helmholtz projection, then for each v € Cg°(Q)
there would exist 7 € L; () such that (I — Q')u = Vr holds. Since
(I —Q)u=Tu=K xdivu for u € C2°(Q), the existence of such 7 would
imply that 0; (K * divu) = 0;(K; = divu) for all ¢, = 1,...,n. For each
[ e CX(Q) with [, fdz = 0 there is u € C®(Q) satisfying f = divu.
This is possible since we are able to apply Bogovskii’s lemma to a bounded
Lipschitz domain D C  containing the support of f (see [19, Theorem
II.3.3]). Thus the above equality would imply that 0, K; = 9;,K; + ¢ with
some constant ¢ for all 4,5 = 1,...,n as a distribution. This contradicts
the fact that 0; K, # 0; K, + ¢ for i # j as observed in (3.4).

(3) It is possible to prove the characterization

L2(Q)={ue LP(Q) |divu=01in Q, u-v =0 on 09}

if we use Proposition 3.13 and an integration by parts formula. This char-
acterization is well-known for bounded ([17]), exterior and other domains
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(see [19, Section II.2]). However, for a Lipschitz half-space, it is less popu-
lar. A proof can be found in [30, Lemma 2.1].
The linear operator Q" also maps C2°(Q) into VMO, ().
Lemma 3.15. Let Q be a Lipschitz half-space. For allu € C°(2) and v € (0, ],
we have Q'u € VMO, (Q).
We shall prove two auxiliary propositions for the above lemma. For p € (1, 00),
let Wol(f(Q) be the WhP-closure of CZ% (Q).
Proposition 3.16. Let Q be a Lipschitz half-space. For all p € (1,00) we have
L2(Q) N Wy P(Q) € WoZ(Q). Thus LE(Q) N W, P (Q) = Wy P(9).
Proof. Let p € C°(R™) be a function such that

0<p<1 inR" suppp C B1(0), / pdx =1
B1(0)

and ps(x) := 6 "p(6~'x) for § > 0, 2 € R"™. Let u € L2(2) NWyP(Q). Then there
is a sequence {ug}32; of functions in C2%, () such that limy oo ||t — ug||Lr () = 0.
For a > 0, we define a vector field u® on €2 as
() = w(@',zy —a), x, > h() +a,
0, hz') <xp, <h(@)+a
and u¢ = (uy,)® similarly. Then it is clear that u® € Wy?(Q) and uf € Ceo,(Q) for
all @ > 0. Moreover, we have

[u® = uille@) = lu—uklLr) forall a>0, limfju—u®|wisq) =0

By the second equality and the fact that Wol)’f () is closed in WP (Q), it is sufficient
for showing u € WOI;)(Q) to prove u® € Wolf(Q) for all a > 0.
For each a > 0, there is a constant d = d(a) > 0 such that dist(supp ug, 90) > d
for all kK € N. Then, for a given € > 0, we can take ¢ € (0,d/2) so small that
€

lu® = u® % psllwrr(e) < 3,
since u® € Wy (). Also, since Vps = d~1(Vp)s, we have
[u® * ps — uit * psllwre (o)
< c(|[u” * ps — uj * ps|lLe(o) + [u” * Vs — ui * Vps|| o))
= (| (u = ug) * psll o) + 07 I(u® = uf) x (Vo)slLr(s))
<1+ 67N [u = uflle) = e(1 + 67 [lu = ugl| Loy
with a constant ¢ > 0 independent of € and J. Hence by taking & € N so large that

llu = urllLe) < m,
we have [[u® * ps — uf * ps||w1.r(0) < /2 and thus

[u® = ujy * psllwre) < [lu® —u® = psllwre) + [u® * ps — ui * psllwre) <e.
On the other hand, since dist(supp uf, 9Q) > d and § € (0,d/2), the function uf * ps
is smooth and compactly supported in 2. Moreover, we have

div(ug * ps) = (divug) *ps =0 in Q.
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Thus uf * ps € C2% () and u® is approximated by elements of C2%, (€2) in W' (1),

which means that u® € Wolf(Q) Hence u € Wolf(Q) and the proof is now complete.
(]

Proposition 3.17. Let v € (0,00]. If p > n, then Wolf(Q) C VMO, (9).

Proof. Let u € W()lf(Q) and uy € C2%,(52) such that limg o [lu — ug|lwrr) = 0.
Since p > n and u,u; € Wol’p(Q)7 Morrey’s inequality (see e.g. [7, Theorem 4.12])
implies
lu = ukl Lo () < cllu — urllwre(o)
with a positive constant ¢ independent of v and ug. Thus we have
Hu — Uk - BMOZO’V(Q)H < (2 + wn)||u — ’U,kHLoo(Q) < c||u — ukHWl,p(Q) —0
as k — oco. Hence u € VMO, () and the proof is now complete. O

Proof of Lemma 3.15. Since u € C°(Q2) and thus Oju € C° () for alli =1,...,n,
it follows from Lemma 3.12 that Q'u € LL(R2) and 0;Q'v = Q' (0;u) € L"(Q) for
all » € (1,00) and ¢ = 1,...,n. From this fact and the equality (3.17), we have
Qu e LL(Q) NW, " (Q) for all » € (1,00). Hence, by taking r > n, we can apply
Proposition 3.16 and Proposition 3.17 to obtain Q'u € VMO;?&;(Q). O

Remark 3.18. Let v € (0,00]. Theorem 3.10 and Lemma 3.15 imply that Q'u €
VMO () and [|Q"u : BMOZ™" ()| < cllul| Lo (o) for all u € C°(Q). Also, we
have Q'u = u for all u € C2%,(2). Hence Q' extends uniquely to a bounded linear
operator (again referred to as Q') from Cy(2), which is the L>-closure of C°(1),
into VMO, (Q) that satisfies Q'u = u for all u € Cp ,(Q2).

Now let us extend Q' to a linear operator that gives the projection mentioned
in Theorem 1.4. For p € (1,00), we define a Banach space X, and its norm as
Xp = LP(Q) N Co(Q),  lullx, :=max{|[ullLr ), [[ull L~ (@) }-

Note that the Banach space Cp(£2) consists of all continuous functions f on
such that the set {z € Q| |f(x)| > e} is compact in Q for every £ > 0 (see e.g.
[32, Theorem 3.17]).

Lemma 3.19. For each p € (1,00), the linear subspace C° () is dense in X,,.

Proof. The proof is more or less standard (see e.g. [27, Corollary 19.24]). We give
it for completeness. Let u € X, and Q := {z € Q| |z| < k, dist(z,00Q) > 1/k} for
k € N. For any given € > 0, the set {x € Q| |u(z)| > ¢/2} is compact in § since
u € Cp(£2). Moreover, since u € LP(f2), we can take k € N so large that

€ €

(3.23) [ull e \05) < > [ull L (04 < 3

Let ¢ € C2°(£2) be a continuous cut-off function such that
0<p<1l inQ, =1 inQy, =0 inQ\ Q.

Since u — pu =0 in Q and |u — pu| < |u| in Q\ Qy, it follows from (3.23) that
€
27

e

(3.24) |lu — pullro) < llullzr@\ap) < [w = pullLe() < ullL= @) < 5
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Let ps be a mollifier as in the beginning of the proof of Proposition 3.16. Since

1
ou € LP(Q2), dist(supp (pu), 00Q) > 2%
we can take § € (0,1/4k) so small that
o €
(3.25) us = ps * (pu) € CF(Q),  lpu —usllri) < 5-

On the other hand, since yu is uniformly continuous on {24, we can again choose
d € (0,1/4k) so small that |[¢u — us|| L (q,,) < €/2. Moreover, since supp (pu) C
Qg and 6 € (0,1/4k), we have pu = us = 0 outside of 4 and thus

€
(3.26) lpu = usll e (@) = llou — usllL~ i) < 5-
Combining (3.24), (3.25) and (3.26), we obtain us € C°(2) and

lu = usl|x, = max{[u — us|r (), [lu = usllL= (@)} <&
Hence the lemma follows. O
Let Y, := LE(Q) N VMO () for p € (1,00), v € (0,00]. Since L5 () and
VMO () are closed in LP(2) and BMO,™"(12), respectively, Y, becomes a
Banach space under the norm |||y, := max{[|v||z»(q), v : BMO,>"(Q)]|}.
Theorem 3.20. Let p € (1,00) and v € (0,00]. The linear operator Q' given in

Definition 3.11 extends uniquely to a bounded linear operator Q, from X, into Y.
Moreover, there exists a constant ¢ > 0 such that

(3.27) 1@pullzr (@) < cllullLe), 1Qpu: BMOT"(Q)| < cllullL=(q)
for all uw € X, and Q,u = u holds for all u in the X,-closure of C>° (Q2).
p p p c,o

Proof. Let u € C°(€). Then we have Q'u € Y, by Lemma 3.12 and Lemma 3.15.
Moreover, by Theorem 3.5 and Theorem 3.10, there is a constant ¢ > 0 independent
of u such that

(3.28) 1Qullr(0) < cllullLee), 1Qu: BMO®(Q)| < cllull=(q)-

Hence we have Q'u € Y, and [|Q"ully, < cl|lul|x, for all u € CZ°(Q). Since C2°(0)
is dense in X, by Lemma 3.19, the operator @)’ extends uniquely to a bounded
linear operator @, from X, into Y},. Also, it follows from (3.28) that the inequality
(3.27) holds for all u € X),. Since Q'u = u holds for all u € C25,(£2) as observed
after Definition 3.11, by the density argument we have Q,u = u for all u in the
Xp-closure of €%, (€2). The proof is complete. O

Finally, Theorem 1.4 follows from Theorem 3.20 with p = 2, that is, the linear
operator @ in Theorem 1.4 is given by @ = Qs.
4. ANALYTICITY IN LP

In this section we shall give a complete proof of Theorem 1.1.

Proof of Theorem 1.1. Let S(t) be the Stokes semigroup in D; constructed by [14],
[16]. To show that S(¢) forms an analytic semigroup in L2 (2 < p < 00) it suffices
to prove that there exists a constant C' that

(4.1) [1S@)voll, < Clivollp
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d
(12) |eis@u| < clul,

for all vg € C25,(2) and for all ¢ € (0,1). Let @ be the operator in Theorem 1.4.
Since @ is bounded in L? and maps L? to L2 and S(t) fulfills (4.1) and (4.2) for
p =2, we have

(4.3) 15(H)Qully < Cllulls

(4.4) H (t)Qu S Cllullz

for all u € C.(Q) and t € (0,1). Smce Qs adm1331ble as proved in [5], S(t) forms
an analytic semigroup in VM Ob 0.0 by Theorem 1.2. We conclude that

(4.5) 1S(#)Qu : BMO™"(Q)|| < Cllullo

(4.6) H (H)Qu : BMOW(Q)H < Clluflo

for all u € C.(2) and ¢ € (0, 1) since @ fulfills
1Qu : BMO®"(Q)|| < Cllulloe, Qu e VMOyGT

for all uw € C.(2) by Theorem 1.4. (Note that we have a stronger statement than
(4.6) by replacing the BM Oy, type norm by the L* norm since we have the reg-
ularizing estimate (1.3).) We apply an interpolation result (Theorem 1.3) to (4.3)
and (4.5) and to (4.4) and (4.6) to get, respectively

(4.7) 1S@)Qull, < Cllull,

(4.8) Ht(iS(t)Qu

< Cllullp
p
for all u € C.(22) and for all ¢ € (0,1). Since Qu = u for u € C5, () this yields
(4.1) and (4.2).

It remains to prove that S(t) is a Cp-semigroup in Lb. Since Cg%(€2) is dense
in L, for vy € L} there is vy, € C25, such that [[vg — vom|, — 0 as m — oo. By
(4.1) we observe that

15 @)vo = wollp <[1S(#)(vo = vom)llp + [15(E)vom = vomllp + [[vom = vollp
<Cllvo = vomllp + 1S(t)vom — vom|lp-
Sending ¢ | 0, we get

%HS@)UO = vollp < Cllv = vomllp,

since S(t)vom — vom in LE as t | 0 by [14], [16]. Sending m — oo, we conclude
that S(t)vg — v in L2 as t | 0. O
Remark 4.1. In a similar way as we derived (4.5) and (4.6) we are able to derive
from the L*°-BM O estimates in [10] that

t||V*S(t)Qu : BMO"(Q)| < Cllullo

2 VS()Qu : BMOF" ()| < Cllull
for all u € C.(R2) and ¢ € (0,1).
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Note that L? results

t|[V2S6)Qull, < Clullz
2V S()Qully < Cllullz

easily follow from the analyticity of S(¢) in L2 and L2-boundedness of @ if one
observes that ||Vu|3 = (Au,u)r: and

IV2ullz < C ([l Aullz + [[Vullz + [[ull2)

(see e.g. [34, Chapter I, Theorem 2.1.1 (d)]), where A is the Stokes operator in

L2.

Interpolating the L? results and the above L>®°-BMO results, we are able to
prove that there is Cp > 0 satisfying

t[[V2S@oll, < Cyllvolly

t/2|VS(8)voll, < Cyllvoll

for all vg € L2(Q2) and t € (0,1) with p € (2, 00).
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