ON ANALYTICITY OF THE L^{p}-STOKES SEMIGROUP FOR SOME NON-HELMHOLTZ DOMAINS

MARTIN BOLKART, YOSHIKAZU GIGA, TATSU-HIKO MIURA, TAKUYA SUZUKI, AND YOHEI TSUTSUI

Abstract

Consider the Stokes equations in a sector-like C^{3} domain $\Omega \subset$ \mathbf{R}^{2}. It is shown that the Stokes operator generates an analytic semigroup in $L_{\sigma}^{p}(\Omega)$ for $p \in[2, \infty)$. This includes domains where the L^{p}-Helmholtz decomposition fails to hold. To show our result we interpolate results of the Stokes semigroup in $V M O$ and L^{2} by constructing a suitable non-Helmholtz projection to solenoidal spaces.

1. Introduction

In this paper, as a continuation of [5], [6] and [10], we study the Stokes semigroup, i.e., the solution operator $S(t): v_{0} \mapsto v(\cdot, t)$ of the initial-boundary problem for the Stokes system

$$
v_{t}-\Delta v+\nabla q=0, \quad \operatorname{div} v=0 \quad \text { in } \quad \Omega \times(0, \infty)
$$

with the zero boundary condition

$$
v=0 \quad \text { on } \quad \partial \Omega \times(0, \infty)
$$

and the initial condition $\left.v\right|_{t=0}=v_{0}$, where Ω is a domain in \mathbf{R}^{n} with $n \geq 2$. It is by now well-known that $S(t)$ forms a C_{0}-analytic semigroup in $L_{\sigma}^{p}(1<p<\infty)$ for various domains like smooth bounded domains ([21], [35]). Here $L_{\sigma}^{p}=L_{\sigma}^{p}(\Omega)$ denotes the L^{p}-closure of $C_{c, \sigma}^{\infty}(\Omega)$, the space of all solenoidal vector fields with compact support in Ω. More recently, it has been proved in [20] that $S(t)$ always forms a C_{0}-analytic semigroup in $L_{\sigma}^{p}(\Omega)$ for any uniformly C^{2}-domain Ω provided that $L^{p}(\Omega)$ admits a topological direct sum decomposition called the Helmholtz decomposition of the form

$$
L^{p}(\Omega)=L_{\sigma}^{p}(\Omega) \oplus G^{p}(\Omega)
$$

where $G^{p}(\Omega)=\left\{\nabla q \in L^{p}(\Omega) \mid q \in L_{l o c}^{1}(\Omega)\right\}$. In [20] the L^{q} maximal regularity in time with values in $L_{\sigma}^{p}(\Omega)$ was also established.

The Helmholtz decomposition holds for any domain if $p=2$. The L^{p}-Helmholtz decomposition holds for various domains like bounded or exterior domains with

[^0]smooth boundary for $1<p<\infty$ ([19]). However, it is also known ([9], [28]) that there is an improper smooth sector-like planar domain such that the L^{p}-Helmholtz decomposition fails to hold. Let us state one of the results in [28] more precisely. Let $C(\vartheta)$ denote the cone of the form
$$
C(\vartheta)=\left\{x=\left(x^{\prime}, x_{n}\right) \in \mathbf{R}^{n}\left|-x_{n} \geq|x| \cos (\vartheta / 2)\right\},\right.
$$
where $\vartheta \in(0,2 \pi)$ is the opening angle. When $n=2$, we simply say that $C(\vartheta)$ is a sector. We say that a planar domain Ω is a sector-like domain with opening angle ϑ if $\Omega \backslash B_{R}(0)=C(\vartheta) \backslash B_{R}(0)$ for some $R>0$ (up to rotation and translation), where $B_{R}(0)$ is an open disk of radius R centered at the origin.

It is known that the L^{p}-Helmholtz decomposition fails for a sector-like domain Ω when $p>q_{\vartheta}^{\prime}$ or $p<q_{\vartheta}$ with $q_{\vartheta}=2 /(1+\pi / \vartheta), 1 / q_{\vartheta}+1 / q_{\vartheta}^{\prime}=1$ even if the boundary $\partial \Omega$ is smooth [28, Example 2, Fig. 5] while for $p \in\left(q_{\vartheta}, q_{\vartheta}^{\prime}\right)$ the L^{p} Helmholtz decomposition holds. This means that if the opening angle ϑ is larger than π, there always exists $p>2$ such that the L^{p}-Helmholtz decomposition fails.

It has been a longstanding open question whether or not the existence of the L^{p}-Helmholtz decomposition is necessary for L^{p} analyticity of $S(t)$. In this paper, we give a negative answer for this question by proving that there is a domain Ω for which $S(t)$ is analytic in L_{σ}^{p} while the L^{p}-Helmholtz decomposition fails. This is a subtle problem since the existence of the L^{p}-Helmholtz projection is known to be necessary for L^{p} solvability of the resolvent equation ([33]). However, in this statement the external force term is allowed to be in the more general space L^{p} instead of L_{σ}^{p}. Our problem is different from that in [33].

We say that Ω has a C^{k} graph boundary if Ω is of the form

$$
\Omega=\left\{\left(x^{\prime}, x_{n}\right) \in \mathbf{R}^{n} \mid x_{n}>h\left(x^{\prime}\right)\right\}
$$

(up to translation and rotation) with some real-valued C^{k} function h with variable $x^{\prime} \in \mathbf{R}^{n-1}$.

Theorem 1.1. Let Ω be a sector-like domain in \mathbf{R}^{2} having a C^{3} graph boundary. Then $S(t)$ forms a C_{0}-analytic semigroup in $L_{\sigma}^{p}(\Omega)$ for all $p \in[2, \infty)$.

Here is our strategy to prove Theorem 1.1. It is by now well-known that $S(t)$ forms an analytic semigroup in \tilde{L}_{σ}^{p}, i.e., $\tilde{L}_{\sigma}^{p}=L_{\sigma}^{p} \cap L_{\sigma}^{2}(p \geq 2), \tilde{L}^{p}=L_{\sigma}^{p}+L_{\sigma}^{2}(1<$ $p<2$) ([14], [15], [16]). Thus $S(t) v_{0}$ is well-defined for $v_{0} \in C_{c, \sigma}^{\infty}(\Omega)$. To show Theorem 1.1, a key step is to prove the two estimates

$$
\begin{align*}
\left\|S(t) v_{0}\right\|_{p} & \leq C\left\|v_{0}\right\|_{p} \tag{1.1}\\
t\left\|\frac{\mathrm{~d}}{\mathrm{~d} t} S(t) v_{0}\right\|_{p} & \leq C\left\|v_{0}\right\|_{p} \tag{1.2}
\end{align*}
$$

for all $v_{0} \in C_{c, \sigma}^{\infty}(\Omega), t \in(0,1)$, where $\left\|v_{0}\right\|_{p}$ denotes the L^{p}-norm of v_{0}. The constant C should be taken independent of t and v_{0}. We shall establish (1.1) and (1.2) by interpolation since both estimates are known for $p=2$.

We are tempted to interpolate the L^{∞} type result obtained in [5] with the L^{2} result. In fact, in [5] the estimates (1.1) and (1.2) with $p=\infty$ are established for all $v_{0} \in C_{0, \sigma}(\Omega)$, the L^{∞}-closure of $C_{c, \sigma}^{\infty}(\Omega)$ for a C^{2} sector-like domain Ω in \mathbf{R}^{2}. However, it is not clear that the complex interpolation space $\left[L_{\sigma}^{2}, C_{0, \sigma}\right]_{\rho}$ agrees with L_{σ}^{p} with $2 / p=1-\rho$ although it is well-known as the Riesz-Thorin theorem that $\left[L^{2}, L^{\infty}\right]_{\rho}=L^{p}$. To interpolate, we would need a projection to solenoidal spaces
which is almost impossible since such a projection involves the singular integral operator which is not bounded in L^{∞}.

To circumvent this difficulty, we consider the Stokes semigroup $S(t)$ in $B M O-$ type spaces as studied in [10], [11], [12]. For $p \in[1, \infty), \mu \in(0, \infty]$ we define the $B M O$ seminorm

$$
\left[f: B M O_{p}^{\mu}(\Omega)\right]:=\sup \left\{\left(f_{B_{r}(x)}\left|f(y)-f_{B_{r}(x)}\right|^{p} \mathrm{~d} y\right)^{1 / p} \mid B_{r}(x) \subset \Omega, r<\mu\right\},
$$

where $f_{B}=f_{B} f \mathrm{~d} x$, the average of f over B and $B_{r}(x)$ denotes the closed ball of radius r centered at x. It is well-known that one gets an equivalent seminorm when the ball B_{r} is replaced by a cube. We also need to control the boundary behavior. For $\nu \in(0, \infty]$ we define

$$
\left[f: b_{p}^{\nu}(\Omega)\right]:=\sup \left\{\left.\left(\frac{1}{r^{n}} \int_{B_{r}\left(x_{0}\right) \cap \Omega}|f(y)|^{p} \mathrm{~d} y\right)^{1 / p} \right\rvert\, x_{0} \in \partial \Omega, r>0, B_{r}\left(x_{0}\right) \subset U_{\nu}(\partial \Omega)\right\}
$$

where $U_{\nu}(E)$ is a ν-open neighborhood of E, i.e.,

$$
U_{\nu}(E)=\left\{x \in \mathbf{R}^{n} \mid \operatorname{dist}(x, E)<\nu\right\} .
$$

We shall often assume that $\nu<R^{*}$, where R^{*} is the reach from the boundary. The $B M O$ norm we use is

$$
\left\|f: B M O_{b, p}^{\mu, \nu}(\Omega)\right\|=\left[f: B M O_{p}^{\mu}(\Omega)\right]+\left[f: b_{p}^{\nu}(\Omega)\right]
$$

If $p=1$, we often drop p. The $B M O$ space we consider is

$$
B M O_{b, p}^{\mu, \nu}(\Omega)=\left\{f \in L_{l o c}^{1}(\Omega) \mid\left\|f: B M O_{b, p}^{\mu, \nu}(\Omega)\right\|<\infty\right\}
$$

This space is independent of p for sufficiently small ν, i.e., $\nu<R^{*}$ ([11], [12]) and $B M O_{b}^{\infty, \infty}$ agrees with Miyachi $B M O$ space ([29]) for various domains including a half space and bounded C^{2} domains ([12]). Although the $B M O_{b}^{\infty, \nu}(\Omega)$ norm is equivalent to the $B M O_{b}^{\infty},(\Omega)$ norm when Ω is bounded, there are many unbounded domains for which the $B M O_{b}^{\infty, \nu}(\Omega)$ norm is actually weaker than the $B M O_{b}^{\infty, \infty}(\Omega)$ norm when ν is finite. We define the solenoidal space $V M O_{b, 0, \sigma}^{\mu, \nu}$ as the $B M O_{b}^{\mu, \nu}$-closure of $C_{c, \sigma}^{\infty}(\Omega)$. In [10], [11] among other results the analyticity of $S(t)$ in $V M O_{b, 0, \sigma}^{\infty, \nu}$ has been established for a uniformly C^{3} domain which is admissible in the sense of [2] provided that ν is sufficiently small.

Theorem 1.2 ([10], [11]). Let Ω be an admissible uniformly C^{3} domain in \mathbf{R}^{n}. Then $S(t)$ forms a C_{0}-analytic semigroup in $V M O_{b, 0, \sigma}^{\mu, \nu}$ for any $\mu \in(0, \infty]$ and $\nu \in\left(0, \nu_{0}\right)$ with some ν_{0} depending only on μ and regularity of $\partial \Omega$.

Moreover, we obtain not only estimates of the form (1.1) and (1.2), where we replace L^{p} by L^{∞} or $B M O_{b}^{\infty, \nu}$, but even an estimate stronger than (1.2) with $p=\infty$, i.e.,

$$
\begin{equation*}
t\left\|\frac{\mathrm{~d} S(t)}{\mathrm{d} t} v_{0}\right\|_{\infty} \leq C\left\|v_{0}: B M O_{b}^{\mu, \nu}(\Omega)\right\|, \quad \mu, \nu \in(0, \infty] \tag{1.3}
\end{equation*}
$$

which shows a regularizing effect.
It has been proved in [5] that a C^{2} sector-like domain in \mathbf{R}^{2} is admissible and thus Theorem 1.2 applies to the setting of Theorem 1.1. Note that a C^{2} sector-like
domain in \mathbf{R}^{2} is expected to be not strictly admissible in the sense of [3]. In fact, a bounded domain ([2]), a half space ([2]), an exterior domain ([3], [4]) and a bent half space ([1]) are strictly admissible if the boundary is uniformly C^{3}. On the other hand, an infinite cylinder is admissible but not strictly admissible ([6]) and a layer domain with $n \geq 3$ is not admissible ([8]).

In order to get the L^{p} estimates we need an interpolation result. Let $C_{c}(\Omega)$ denote the space of all continuous functions with compact support in Ω.

Theorem 1.3. Let Ω be a Lipschitz half-space in \mathbf{R}^{n}, i.e., a domain having Lipschitz graph boundary. Let T be a linear operator from $C_{c}(\Omega)$ to $L^{2}(\Omega)$. Assume that there is a constant C such that

$$
\begin{gathered}
\|T u\|_{2} \leq C\|u\|_{2} \\
{\left[T u: B M O^{\infty}(\Omega)\right] \leq C\|u\|_{\infty}}
\end{gathered}
$$

for $u \in C_{c}(\Omega)$. Then $\|T u\|_{p} \leq C_{*}\|u\|_{p}$ for $u \in C_{c}(\Omega)$ with C_{*} depending only on C, h and $p \in(2, \infty)$.

There are a couple of such interpolation results between $B M O$ and L^{2}, which go back to Campanato and Stampacchia; in [22, Theorem 2.14] the interpolation between L^{p} and $B M O$ is discussed when Ω is a cube. However, in these results the original inequalities are assumed to hold for $L^{2}(\Omega) \cap B M O(\Omega)$ and not for $C_{c}(\Omega)$. Thus ours are not included in the literature. In [13] Duong and Yan showed a similar result (Theorem 5.2) with $B M O_{A}(\mathcal{X})$, where A is some operator. They worked on metric measure spaces of homogeneous type (\mathcal{X}, d, μ). In particular, in the case $\mathcal{X}=\Omega, d(x, y)=|x-y|$ and $\mu(E)=|E|$, we can see that $B M O_{A}(\Omega) \subset B M O^{\infty}(\Omega)$.

Unfortunately, Theorem 1.2 and Theorem 1.3 are not enough to derive (1.1) and (1.2) by interpolation. Similarly to the L^{∞} case we do not know whether or not the complex interpolation space $\left[L_{\sigma}^{2}, V M O_{b, 0, \sigma}^{\infty, \nu}\right]_{\rho}$ with $2 / p=1-\rho$ agrees with L_{σ}^{p}, although we know that $\left[L^{2}, B M O\right]_{\rho}=L^{p}$ for $\Omega=\mathbf{R}^{n}$ as discussed in [25].

To circumvent this difficulty, we construct the following projection operator.
Theorem 1.4. Let Ω be a Lipschitz half-space in \mathbf{R}^{n}. Assume that $\nu \in(0, \infty]$. There is a linear operator Q from $C_{c}(\Omega)$ to $\operatorname{VMO}_{b, 0, \sigma}^{\infty, \nu}(\Omega) \cap L_{\sigma}^{2}(\Omega)$ such that

$$
\begin{gathered}
\left\|Q u: B M O_{b}^{\infty, \nu}(\Omega)\right\| \leq C\|u\|_{\infty} \\
\|Q u\|_{2} \leq C\|u\|_{2}
\end{gathered}
$$

for all $u \in C_{c}(\Omega)$. Moreover, $Q u=u$ for $u \in C_{c}(\Omega) \cap L_{\sigma}^{2}(\Omega)$.
Since there may be no L^{p}-Helmholtz decomposition our Q should be different from the Helmholtz projection. We shall construct such an operator Q using the solution operator of the equation $\operatorname{div} u=f$ given by Solonnikov [36]. Although deriving the L^{2} estimate is easy, to derive the $B M O$ estimate is more involved since we have to estimate the b^{ν} type seminorm.

To derive (1.1), we actually interpolate

$$
\|S(t) Q u\|_{2} \leq C\|u\|_{2}
$$

and

$$
\left\|S(t) Q u: B M O_{b}^{\infty, \nu}\right\| \leq C\|u\|_{\infty}
$$

for $u \in C_{c}(\Omega)$. Similarly, we derive (1.2) by interpolating the estimate for $t \frac{\mathrm{~d} S}{\mathrm{~d} t} Q$.

This paper is organized as follows. In Section 2, we establish an interpolation inequality of Campanato-Stampacchia type. In Section 3, we construct the projection operator Q. In Section 4, we give a complete proof of Theorem 1.1.

2. $L^{2}-B M O$ interpolation on a Lipschitz half-space

In this section, we give a proof of Theorem 1.3 for a Lipschitz half-space, i.e.,

$$
\Omega:=\left\{\left(x^{\prime}, x_{n}\right) \in \mathbf{R}^{n} \mid x_{n}>h\left(x^{\prime}\right)\right\}
$$

with a Lipschitz function h on \mathbf{R}^{n-1}.
By Q we mean a closed cube with sides parallel to the coordinate axes. Let $\ell(Q)$ be the side length of Q, and for $\tau>0, \tau Q$ a cube with the same center as Q and side length $\tau \ell(Q)$.
2.1. Reduction to the half-space and extension. Here, we prepare lemmas that are basic estimates for the proof. Since h is Lipschitz continuous, $F(x):=$ $\left(x^{\prime}, x_{n}-h\left(x^{\prime}\right)\right)$ is a bi-Lipschitz map from Ω to \mathbf{R}_{+}^{n}. For a function u defined on \mathbf{R}_{+}^{n} the pull-back function $F^{*}(u)$ of u on Ω is defined by $u \circ F$. We start with estimates for $\left(F^{-1}\right)^{*}$ which is the pull-back function $\left(F^{-1}\right)^{*}(v)$ of v on \mathbf{R}_{+}^{n} defined by $v \circ F^{-1}$.

Lemma 2.1. Let Ω be a Lipschitz half-space.
(i):

$$
\left[\left(F^{-1}\right)^{*} v: B M O^{\infty}\left(\mathbf{R}_{+}^{n}\right)\right] \leq c\left[v: B M O^{\infty}(\Omega)\right]
$$

(ii):

$$
\left\|\left(F^{-1}\right)^{*} v\right\|_{L^{2}\left(\mathbf{R}_{+}^{n}\right)} \leq c\|v\|_{L^{2}(\Omega)}
$$

Here c is a constant depending only on Lipschitz bound of h and n.
Proof. (i): Because \mathbf{R}_{+}^{n} is an open subset of \mathbf{R}^{n}, we know that for any $\tau>2$,

$$
\left[\left(F^{-1}\right)^{*} v: B M O^{\infty}\left(\mathbf{R}_{+}^{n}\right)\right] \leq c_{\tau} \sup _{\tau Q \subset \mathbf{R}_{+}^{n}} \inf _{d \in \mathbf{R}} \int_{Q}\left|\left(F^{-1}\right)^{*} v-d\right| \mathrm{d} y
$$

where the supremum is taken over cubes Q, for which τQ is contained in \mathbf{R}_{+}^{n}, see [37]. Since F is a bi-Lipschitz map, it holds

$$
c_{1} \operatorname{dist}\left(y, \partial \mathbf{R}_{+}^{n}\right) \leq \operatorname{dist}\left(F^{-1}(y), \partial \Omega\right) \leq c_{2} \operatorname{dist}\left(y, \partial \mathbf{R}_{+}^{n}\right)
$$

with some constants $c_{1}, c_{2}>0$ for all $y \in \mathbf{R}_{+}^{n}$. Since $(\tau-1) \ell(Q) / 2 \leq \operatorname{dist}\left(Q, \partial \mathbf{R}_{+}^{n}\right)$ for such cubes Q, we have the lower bound

$$
c \tau \ell(Q) \leq \operatorname{dist}\left(F^{-1}(Q), \partial \Omega\right)
$$

with some $c>0$, which depends on n and h. Therefore, taking large τ, we can find cubes $\left\{R_{k}\right\}_{k=1}^{c_{*}} \subset \Omega$, which have no intersection of interiors, so that $\cup_{k=1}^{c_{*}} R_{k}$ is connected and

$$
\left\{\begin{array}{l}
\circ \ell\left(R_{k}\right)=\ell(Q), \\
\circ F^{-1}(Q) \subset \cup_{k=1}^{c_{*}} R_{k}, \text { where } c_{*} \in \mathbf{N} \text { depends only on } h, \text { and } \\
\circ \text { if } R_{j} \cap R_{k} \neq \emptyset, \text { the smallest cube } R_{j, k} \text { including } R_{j} \text { and } R_{k} \text { is in } \Omega .
\end{array}\right.
$$

From these, one obtains that for cubes Q with $\tau Q \subset \mathbf{R}_{+}^{n}$,

$$
\inf _{d \in \mathbf{R}} \frac{1}{|Q|} \int_{Q}\left|\left(F^{-1}\right)^{*} v-d\right| \mathrm{d} y \leq c \sum_{k=1}^{c_{*}} \frac{1}{\left|R_{k}\right|} \int_{R_{k}}\left|v-v_{R_{1}}\right| \mathrm{d} y
$$

It is enough to show that

$$
\begin{equation*}
\frac{1}{\left|R_{k}\right|} \int_{R_{k}}\left|v-v_{R_{j}}\right| \mathrm{d} y \leq c\left[v: B M O^{\infty}(\Omega)\right] \tag{2.1}
\end{equation*}
$$

for the case $R_{j} \cap R_{k} \neq \emptyset$. To do this, we follow the argument of [26, Lemma 2.2 and 2.3]. Let \tilde{R}_{k} and \tilde{R}_{j} be subcubes of R_{k} and R_{j} respectively so that $\ell\left(\tilde{R}_{k}\right)=\ell\left(R_{k}\right) / 2$, $\ell\left(\tilde{R}_{j}\right)=\ell\left(R_{j}\right) / 2$ and they touch each other. Moreover, denote by $\tilde{R}_{j, k}$ a cube satisfying $\ell\left(\tilde{R}_{j, k}\right)=\ell\left(\tilde{R}_{j}\right)+\ell\left(\tilde{R}_{k}\right)$ and $\tilde{R}_{j} \cup \tilde{R}_{k} \subset \tilde{R}_{j, k} \subset R_{j, k}$. Hence, we have

$$
\begin{aligned}
\frac{1}{\left|R_{k}\right|} \int_{R_{k}}\left|v-v_{R_{j}}\right| \mathrm{d} y & \leq \frac{1}{\left|R_{k}\right|} \int_{R_{k}}\left|v-v_{R_{k}}\right| \mathrm{d} y+\left|v_{R_{k}}-v_{R_{j}}\right| \\
& \leq c\left[v: B M O^{\infty}(\Omega)\right]+c\left|v_{\tilde{R}_{j}}-v_{\tilde{R}_{k}}\right| \\
& \leq c\left[v: B M O^{\infty}(\Omega)\right]+c \frac{1}{\left|\tilde{R}_{j, k}\right|} \int_{\tilde{R}_{j, k}}\left|v-v_{\tilde{R}_{j, k}}\right| \mathrm{d} y \\
& \leq c\left[v: \operatorname{BMO}^{\infty}(\Omega)\right] .
\end{aligned}
$$

(ii): This is verified as follows

$$
\left\|\left(F^{-1}\right)^{*} v\right\|_{L^{2}\left(\mathbf{R}_{+}^{n}\right)}^{2}=\int_{\Omega}|v|^{2} J_{F} \mathrm{~d} x \leq c \int_{\Omega}|v|^{2} \mathrm{~d} x
$$

where J_{F} is the modulus of the Jacobian of F which is bounded, because h is Lipschitz continuous.

Next, we consider the even extension of functions on the half space. For a function f on \mathbf{R}_{+}^{n}, we extend f outside \mathbf{R}_{+}^{n} by

$$
E[f]\left(x^{\prime},-x_{n}\right):=f\left(x^{\prime}, x_{n}\right) \text { for } x_{n}>0 .
$$

From elementary geometrical observation, we can see that the extension operator E is a $B M O$-extension operator for \mathbf{R}_{+}^{n}.

Lemma 2.2

$$
\left[E[f]: B M O^{\infty}\left(\mathbf{R}^{n}\right)\right] \leq c\left[f: B M O^{\infty}\left(\mathbf{R}_{+}^{n}\right)\right]
$$

Proof. It is sufficient to consider cubes $Q \subset \mathbf{R}^{n}$ with $Q \cap \mathbf{R}_{+}^{n} \neq \emptyset$ and $Q \cap \mathbf{R}_{-}^{n} \neq \emptyset$. For such Q, let Q^{\prime} be a cube so that its center lies on $\partial \mathbf{R}_{+}^{n}, \ell\left(Q^{\prime}\right)=2 \ell(Q)$ and $Q \subset Q^{\prime}$. Further, let Q^{*} be the smallest cube in \mathbf{R}_{+}^{n} containing the upper half of Q^{\prime}. With these notations, the desired inequality is proved from

$$
\inf _{d \in \mathbf{R}} \frac{1}{|Q|} \int_{Q}|E[f]-d| \mathrm{d} y \leq c \inf _{d \in \mathbf{R}} \frac{1}{\left|Q^{*}\right|} \int_{Q^{*}}|f-d| \mathrm{d} y
$$

2.2. Sharp maximal operator. For the proof of Theorem 1.3, we make use of the sharp maximal operator M^{\sharp} due to Fefferman and Stein ([18]). We define for $x \in \mathbf{R}^{n}$ and $f \in L_{l o c}^{1}\left(\mathbf{R}^{n}\right)$ the function $M^{\sharp} f$ by

$$
M^{\sharp} f(x):=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| \mathrm{d} y .
$$

It is immediate from the definition that $\left[f: B M O^{\infty}\left(\mathbf{R}^{n}\right)\right]=\left\|M^{\sharp} f\right\|_{L^{\infty}\left(\mathbf{R}^{n}\right)}$. It is well-known that if $f \in L^{p_{0}}\left(\mathbf{R}^{n}\right)$ for some $p_{0} \in(1, \infty)$, then for $p \in\left[p_{0}, \infty\right)$

$$
\begin{equation*}
\|f\|_{L^{p}\left(\mathbf{R}^{n}\right)} \leq c\left\|M^{\sharp} f\right\|_{L^{p}\left(\mathbf{R}^{n}\right)}, \tag{2.2}
\end{equation*}
$$

which is applied below. (Both sides of (2.2) may be infinite.) This follows from $\|f\|_{L^{p}\left(\mathbf{R}^{n}\right)} \leq\|M f\|_{L^{p}\left(\mathbf{R}^{n}\right)}$ and $\|M f\|_{L^{p}\left(\mathbf{R}^{n}\right)} \leq c\left\|M^{\sharp} f\right\|_{L^{p}\left(\mathbf{R}^{n}\right)}$, where M is the Hardy-Littlewood maximal operator [18].
2.3. Marcinkiewicz interpolation. Here, we give a variant of the Marcinkiewicz interpolation theorem.

Proposition 2.3. Let D be an open subset of \mathbf{R}^{n} and S a sublinear operator from $C_{c}(D)$ to $L^{2}\left(\mathbf{R}^{n}\right)$. If

$$
\begin{aligned}
\|S[f]\|_{L^{2}\left(\mathbf{R}^{n}\right)} & \leq c\|f\|_{L^{2}(D)} \\
\|S[f]\|_{L^{\infty}\left(\mathbf{R}^{n}\right)} & \leq c\|f\|_{L^{\infty}(D)}
\end{aligned}
$$

for $f \in C_{c}(D)$, then $\|S[f]\|_{L^{p}\left(\mathbf{R}^{n}\right)} \leq C\|f\|_{L^{p}(D)}$ for $f \in C_{c}(D)$ with C depending only on c and $p \in(2, \infty)$.

Proof. For $\lambda>0$ and $\alpha>0$, we decompose f into two parts; $f=f_{2}+f_{\infty}$ where

$$
f_{2}(x)=\left\{\begin{array}{l}
0 \quad \text { if } \quad|f(x)| \leq \alpha \lambda \\
f(x)-\alpha \lambda \operatorname{sign}(f(x)) \quad \text { if } \quad|f(x)|>\alpha \lambda
\end{array}\right.
$$

where $\operatorname{sign} \xi=\xi /|\xi|$ for $\xi \neq 0$ and $\operatorname{sign} \xi=0$ for $\xi=0$. Observe that $f_{2}, f_{\infty} \in$ $B C(D)$, and then $f_{2}, f_{\infty} \in C_{c}(D)$. Therefore, the two inequalities of our assumption hold for f_{2} and f_{∞}, respectively. We set $\alpha=\left(2\|S\|_{L^{\infty}(D) \rightarrow L^{\infty}\left(\mathbf{R}^{n}\right)}\right)^{-1}$ and observe that $\left|\left\{x \in \mathbf{R}^{n} \mid S\left[f_{\infty}\right](x)>\lambda / 2\right\}\right|=0$. We now conclude that

$$
\begin{aligned}
\int_{\mathbf{R}^{n}}|S[f]|^{p} d x & \leq p \int_{0}^{\infty} \lambda^{p-1}\left|\left\{x \in \mathbf{R}^{n}| | S[f](x) \mid>\lambda\right\}\right| \mathrm{d} \lambda \\
& \leq p \int_{0}^{\infty} \lambda^{p-1}\left|\left\{x \in \mathbf{R}^{n}| | S\left[f_{2}\right](x) \mid>\lambda / 2\right\}\right| \mathrm{d} \lambda \\
& \leq p \int_{0}^{\infty} \lambda^{p-1}\left(\frac{2}{\lambda}\|S\|_{L^{2}(D) \rightarrow L^{2}\left(\mathbf{R}^{n}\right)}\left\|f_{2}\right\|_{L^{2}(D)}\right)^{2} \mathrm{~d} \lambda \\
& \leq c \int_{0}^{\infty} \lambda^{p-3} \int_{\{|f|>\alpha \lambda\}}|f(x)|^{2} \mathrm{~d} x \mathrm{~d} \lambda \\
& =2 c \int_{0}^{\infty} \lambda^{p-3}\left(\int_{\alpha \lambda}^{\infty} t\left|\left\{x \in \mathbf{R}^{n}| | f(x) \mid>t\right\}\right| \mathrm{d} t\right) \mathrm{d} \lambda \\
& =2 c \int_{0}^{\infty} t\left|\left\{x \in \mathbf{R}^{n}| | f(x) \mid>t\right\}\right|\left(\int_{0}^{t / \alpha} \lambda^{p-3} \mathrm{~d} \lambda\right) \mathrm{d} t \\
& \leq c\|f\|_{L^{p}(D)}^{p} .
\end{aligned}
$$

2.4. Proof of Theorem 1.3. For simplicity, we write $g:=T f$. By changing variables, one obtains

$$
\int_{\Omega}|g|^{p} \mathrm{~d} x \leq c \int_{\mathbf{R}_{+}^{n}}\left|\left(F^{-1}\right)^{*} g\right|^{p} \mathrm{~d} y \leq c \int_{\mathbf{R}^{n}}\left|E\left[\left(F^{-1}\right)^{*} g\right]\right|^{p} \mathrm{~d} y \leq c \int_{\mathbf{R}^{n}}|\Phi[f]|^{p} \mathrm{~d} y
$$

where $\Phi[f]:=M^{\sharp}\left(E\left[\left(F^{-1}\right)^{*} g\right]\right)$. Here, because $E\left[\left(F^{-1}\right)^{*} g\right] \in L^{2}\left(\mathbf{R}^{n}\right)$, we have applied (2.2) in the third inequality. With the help of Proposition 2.3, it is enough to see $L^{2}(\Omega)-L^{2}\left(\mathbf{R}^{n}\right)$ and $L^{\infty}(\Omega)-L^{\infty}\left(\mathbf{R}^{n}\right)$ estimates for Φ. The former estimate can be seen by L^{2}-boundedness of Hardy-Littlewood maximal operator and (ii) of Lemma 2.1. The later one follows from (i) of Lemma 2.1 and Lemma 2.2. Then the proof of Theorem 1.3 is completed.

3. Non-Helmholtz projection

Our goal in this section is to prove Theorem 1.4.
3.1. A solution operator to the divergence problem. As in Section 2, let $\Omega=\left\{\left(x^{\prime}, x_{n}\right) \in \mathbf{R}^{n} \mid x^{\prime} \in \mathbf{R}^{n-1}, x_{n}>h\left(x^{\prime}\right)\right\}$ be a Lipschitz half-space in \mathbf{R}^{n} with a Lipschitz continuous function h on \mathbf{R}^{n-1}. Then, there is a closed cone of the form

$$
C_{1}=\left\{x=\left(x^{\prime}, x_{n}\right) \in \mathbf{R}^{n}\left|x^{\prime} \in \mathbf{R}^{n-1},-x_{n} \geq|x| \cos (2 \theta)\right\}\right.
$$

with an angle $\theta \in(0, \pi / 4)$ (depending on the Lipschitz constant of h) such that

$$
x+C_{1}=\left\{y \in \mathbf{R}^{n} \mid y-x \in C_{1}\right\} \subset \Omega^{c}\left(:=\mathbf{R}^{n} \backslash \Omega\right) \quad \text { for all } \quad x \in \Omega^{c} .
$$

In the notion of the introduction $C_{1}=C(4 \theta)$ so that the opening angle equals 4θ. With this angle we define a closed cone $C_{0}=C(2 \theta)$, i.e.,

$$
C_{0}=\left\{x=\left(x^{\prime}, x_{n}\right) \in \mathbf{R}^{n}\left|x^{\prime} \in \mathbf{R}^{n-1},-x_{n} \geq|x| \cos \theta\right\} .\right.
$$

The closed cone C_{0} also satisfies

$$
\begin{equation*}
x+C_{0} \subset \Omega^{c} \quad \text { for all } \quad x \in \Omega^{c} \tag{3.1}
\end{equation*}
$$

Let $L \in C_{c}^{\infty}\left(\mathbf{R}^{n}\right)$ be a function such that

$$
\begin{equation*}
\operatorname{supp} L \subset\left(B_{2}(0) \backslash B_{1 / 2}(0)\right) \cap\left(-C_{0}\right), \quad \int_{S^{n-1}} L(\sigma) \mathrm{d} \mathcal{H}^{n-1}(\sigma)=1 \tag{3.2}
\end{equation*}
$$

Here $-C_{0}=\left\{-y \mid y \in C_{0}\right\}$ and S^{n-1} is the unit sphere in \mathbf{R}^{n}. Then we define a vector field $K=\left(K_{1}, \ldots, K_{n}\right)$ as

$$
\begin{equation*}
K(x):=\frac{x}{|x|^{n}} L\left(\frac{x}{|x|}\right), \quad x \in \mathbf{R}^{n} \backslash\{0\} \tag{3.3}
\end{equation*}
$$

Definition 3.1. For $f \in C_{c}^{\infty}(\Omega)$, we define a vector field $u=S f$ as

$$
u(x)=S f(x):=(K * \bar{f})(x)=\int_{\mathbf{R}^{n}} K(x-y) \bar{f}(y) \mathrm{d} y, \quad x \in \mathbf{R}^{n}
$$

Here \bar{f} denotes the zero extension of f to \mathbf{R}^{n} given by

$$
\bar{f}(x):= \begin{cases}f(x), & x \in \Omega \\ 0, & x \in \Omega^{c}\end{cases}
$$

This operator was introduced by Solonnikov [36]. For a fixed $x \in \mathbf{R}^{n}$, since

$$
\left.\frac{x-y}{|x-y|} \in \operatorname{supp} L\right|_{S^{n-1}} \subset S^{n-1} \cap\left(-C_{0}\right)
$$

implies $y \in x+C_{0}$, we can write

$$
u(x)=\int_{x+C_{0}} K(x-y) \bar{f}(y) \mathrm{d} y
$$

This formula and the property (3.1) of Ω imply that $u(x)=0$ for all $x \in \Omega^{c}$. In particular, u vanishes on $\partial \Omega$. However, the support of u may become unbounded although f is compactly supported in Ω.

By the change of variables $x-y=r \sigma$ with $r>0$ and $\sigma \in S^{n-1}$ we have

$$
u(x)=\int_{0}^{\infty} \int_{S^{n-1}} L(\sigma) \bar{f}(x-r \sigma) r^{n-1} \mathrm{~d} \mathcal{H}^{n-1}(\sigma) \mathrm{d} r
$$

Hence if $f \in C_{c}^{\infty}(\Omega)$ is supported in $B_{R}(0)$ and $x \in B_{a}(0)(R, a>0)$, then

$$
u(x)=\int_{0}^{R+a} \int_{S^{n-1}} L(\sigma) \bar{f}(x-r \sigma) r^{n-1} \mathrm{~d} \mathcal{H}^{n-1}(\sigma) \mathrm{d} r
$$

which implies that $u=S f$ is smooth in Ω. Moreover, $u=S f$ vanishes near $\partial \Omega$ and thus it is smooth in the whole space \mathbf{R}^{n}, since f is compactly supported in Ω.
Lemma 3.2. Let $p \in(1, \infty)$. There exists a constant $c>0$ such that

$$
\|\nabla u\|_{L^{p}(\Omega)} \leq c\|f\|_{L^{p}(\Omega)}
$$

for all $f \in C_{c}^{\infty}(\Omega)$ and $u=S f$.
Proof. Let u_{i} be the i-th component of u :

$$
u_{i}(x)=\left(K_{i} * \bar{f}\right)(x)=\int_{\mathbf{R}^{n}} K_{i}(z) \bar{f}(x-z) \mathrm{d} z
$$

Differentiating both sides with respect to the j-th variable, we have

$$
\partial_{j} u_{i}(x)=\int_{\mathbf{R}^{n}} K_{i}(z)\left(\partial_{j} \bar{f}\right)(x-z) \mathrm{d} z=\lim _{\varepsilon \rightarrow 0} \int_{\mathbf{R}^{n} \backslash B_{\varepsilon}(0)} K_{i}(z)\left(\partial_{j} \bar{f}\right)(x-z) \mathrm{d} z
$$

and, by changing variables $y=x-z$ and integrating by parts,

$$
\begin{aligned}
& \partial_{j} u_{i}(x)= \\
& \lim _{\varepsilon \rightarrow 0}\left(\int_{\partial B_{\varepsilon}(x)} K_{i}(x-y) \frac{x_{j}-y_{j}}{|x-y|} \bar{f}(y) \mathrm{d} \mathcal{H}^{n-1}(y)+\int_{\mathbf{R}^{n} \backslash B_{\varepsilon}(x)}\left(\partial_{j} K_{i}\right)(x-y) \bar{f}(y) \mathrm{d} y\right) .
\end{aligned}
$$

On the one hand, we change variables $x-y=\varepsilon \sigma$ with $\sigma \in S^{n-1}$ to get

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \int_{|x-y|=\varepsilon} K_{i}(x-y) \frac{x_{j}-y_{j}}{|x-y|} \bar{f}(y) \mathrm{d} \mathcal{H}^{n-1}(y) \\
& =\lim _{\varepsilon \rightarrow 0} \int_{|x-y|=\varepsilon} \frac{x_{i}-y_{i}}{|x-y|} \frac{x_{j}-y_{j}}{|x-y|} L\left(\frac{x-y}{|x-y|}\right) \bar{f}(y) \frac{1}{|x-y|^{n-1}} \mathrm{~d} \mathcal{H}^{n-1}(y) \\
& =\lim _{\varepsilon \rightarrow 0} \int_{S^{n-1}} \sigma_{i} \sigma_{j} L(\sigma) \bar{f}(x-\varepsilon \sigma) \mathrm{d} \mathcal{H}^{n-1}(\sigma) \\
& =\bar{f}(x) \int_{S^{n-1}} \sigma_{i} \sigma_{j} L(\sigma) \mathrm{d} \mathcal{H}^{n-1}(\sigma)
\end{aligned}
$$

where the last equality follows from the fact that L is integrable on S^{n-1} and \bar{f} is continuous at x. On the other hand, we differentiate K_{i} to obtain

$$
\begin{align*}
K_{i j}(z) & :=\partial_{j} K_{i}(z)=\frac{k_{i j}(z /|z|)}{|z|^{n}} \\
k_{i j}(z) & :=\left(\delta_{i j}-n z_{i} z_{j}\right) L(z)+z_{i}\left(\partial_{j} L\right)(z)-z_{i} z_{j} \sum_{\ell=1}^{n} z_{\ell}\left(\partial_{\ell} L\right)(z) \tag{3.4}
\end{align*}
$$

for $z \in \mathbf{R}^{n} \backslash\{0\}$. Then $K_{i j}$ is homogeneous of degree $-n$ and there is a constant $c>0$ such that

$$
\left|K_{i j}(z)\right| \leq \frac{c}{|z|^{n}} \quad \text { for all } \quad z \in \mathbf{R}^{n} \backslash\{0\}
$$

by the smoothness of L on S^{n-1}. Moreover, for every R_{1} and R_{2} with $0<R_{1}<R_{2}$,

$$
\begin{aligned}
& \int_{R_{1}<|z|<R_{2}} K_{i j}(z) \mathrm{d} z=\int_{R_{1}<|z|<R_{2}} \partial_{j} K_{i}(z) \mathrm{d} z \\
& =\int_{|z|=R_{2}} K_{i}(z) \frac{z_{j}}{|z|} d \mathcal{H}^{n-1}(z)-\int_{|z|=R_{1}} K_{i}(z) \frac{z_{j}}{|z|} \mathrm{d} \mathcal{H}^{n-1}(z) \\
& =\int_{|z|=R_{2}} \frac{z_{i}}{|z|} \frac{z_{j}}{|z|} L\left(\frac{z}{|z|}\right) \frac{1}{|z|^{n-1}} \mathrm{~d} \mathcal{H}^{n-1}(z)-\int_{|z|=R_{1}} \frac{z_{i}}{|z|} \frac{z_{j}}{|z|} L\left(\frac{z}{|z|}\right) \frac{1}{|z|^{n-1}} \mathrm{~d} \mathcal{H}^{n-1}(z) \\
& =\int_{S^{n-1}} \sigma_{i} \sigma_{j} L(\sigma) \mathrm{d} \mathcal{H}^{n-1}(\sigma)-\int_{S^{n-1}} \sigma_{i} \sigma_{j} L(\sigma) \mathrm{d} \mathcal{H}^{n-1}(\sigma)=0 .
\end{aligned}
$$

In the fourth equality we changed variables $z=R_{2} \sigma$ and $z=R_{1} \sigma$ with $\sigma \in S^{n-1}$, respectively. This equality is equivalent to

$$
\begin{equation*}
\int_{S^{n-1}} k_{i j}(\sigma) \mathrm{d} \mathcal{H}^{n-1}(\sigma)=0 \tag{3.5}
\end{equation*}
$$

Thus we can apply the Calderón-Zygmund theory (see eg. [23, Theorem 5.2.7 and Theorem 5.2.10]) of singular integral operators to the kernel $K_{i j}$ and obtain the formula

$$
\begin{equation*}
\partial_{j} u_{i}(x)=\bar{f}(x) \int_{S^{n-1}} \sigma_{i} \sigma_{j} L(\sigma) \mathrm{d} \mathcal{H}^{n-1}(\sigma)+\int_{\mathbf{R}^{n}} K_{i j}(x-y) \bar{f}(y) \mathrm{d} y \tag{3.6}
\end{equation*}
$$

where the second integral is considered in the sense of the Cauchy principal value.
Finally, the inequality

$$
\left|\bar{f}(x) \int_{S^{n-1}} \sigma_{i} \sigma_{j} L(\sigma) \mathrm{d} \mathcal{H}^{n-1}(\sigma)\right| \leq|\bar{f}(x)| \int_{S^{n-1}} L(\sigma) \mathrm{d} \mathcal{H}^{n-1}(\sigma)=|\bar{f}(x)|
$$

and the Calderón-Zygmund theory imply that

$$
\left\|\partial_{j} u_{i}\right\|_{L^{p}(\Omega)} \leq c\|\bar{f}\|_{L^{p}\left(\mathbf{R}^{n}\right)}=c\|f\|_{L^{p}(\Omega)}
$$

with a positive constant c independent of f. Hence the lemma follows.
Lemma 3.3. For every $f \in C_{c}^{\infty}(\Omega)$ the vector field $u=S f$ satisfies

$$
\operatorname{div} u=f \quad \text { in } \quad \Omega, \quad u=0 \quad \text { on } \quad \partial \Omega .
$$

Proof. We have already observed that u vanishes on the boundary. Let us compute $\operatorname{div} u=\sum_{i=1}^{n} \partial_{i} u_{i}$ in Ω. By the formula (3.6) in the proof of Lemma 3.2,

$$
\operatorname{div} u(x)=\bar{f}(x) \int_{S^{n-1}} \sum_{i=1}^{n} \sigma_{i}^{2} L(\sigma) \mathrm{d} \mathcal{H}^{n-1}(\sigma)+\int_{\mathbf{R}^{n}} \sum_{i=1}^{n} K_{i i}(x-y) \bar{f}(y) \mathrm{d} y
$$

In this formula, we have

$$
\int_{S^{n-1}} \sum_{i=1}^{n} \sigma_{i}^{2} L(\sigma) \mathrm{d} \mathcal{H}^{n-1}(\sigma)=\int_{S^{n-1}} L(\sigma) \mathrm{d} \mathcal{H}^{n-1}(\sigma)=1
$$

by (3.2) and, for all $z \in \mathbf{R}^{n} \backslash\{0\}$,

$$
\begin{aligned}
\sum_{i=1}^{n} K_{i i}(z)= & \frac{1}{|z|^{n}} L\left(\frac{z}{|z|}\right) \sum_{i=1}^{n}\left(1-n \frac{z_{i}^{2}}{|z|^{2}}\right) \\
& +\frac{1}{|z|^{n}} \sum_{i=1}^{n} \frac{z_{i}}{|z|}\left(\partial_{i} L\right)\left(\frac{z}{|z|}\right)-\sum_{i=1}^{n} \frac{z_{i}^{2}}{|z|^{n+2}} \sum_{k=1}^{n} \frac{z_{k}}{|z|}\left(\partial_{k} L\right)\left(\frac{z}{|z|}\right)=0
\end{aligned}
$$

Hence $\operatorname{div} u(x)=\bar{f}(x)=f(x)$ for all $x \in \Omega$.
Lemma 3.3 means that the operator S is a solution operator to the divergence problem with Dirichlet boundary condition. Note that S is not a unique solution operator because a solution to the divergence problem is not unique.

Next we define a linear operator that plays a main role in this section.
Definition 3.4. For a vector field $u \in C_{c}^{\infty}(\Omega)$, we define a vector field $T u$ as

$$
T u(x):=\int_{\mathbf{R}^{n}} K(x-y) \overline{\operatorname{div} u}(y) \mathrm{d} y, \quad x \in \mathbf{R}^{n}
$$

Here K is given by (3.3) and $\overline{\operatorname{div} u}$ denotes the zero extension of $\operatorname{div} u$ to \mathbf{R}^{n}.
The above definition means that T is given by $T=S \circ$ div. Since $u \in C_{c}^{\infty}(\Omega)$, its divergence is in $C_{c}^{\infty}(\Omega)$ and thus $T u$ is smooth in the whole space \mathbf{R}^{n} and vanishes outside of Ω, as discussed right after Definition 3.1. Also, by Lemma 3.3 we have

$$
\operatorname{div} T u=\operatorname{div} u \quad \text { in } \quad \Omega, \quad T u=0 \quad \text { on } \quad \partial \Omega .
$$

Clearly $T u=0$ in \mathbf{R}^{n} for $u \in C_{c, \sigma}^{\infty}(\Omega)$. Note that, as in the case of the operator S, the support of $T u$ may be unbounded.

Theorem 3.5. Let Ω be a Lipschitz half-space. Let $p \in(1, \infty)$. There exists a constant $c>0$ such that

$$
\|T u\|_{L^{p}(\Omega)} \leq c\|u\|_{L^{p}(\Omega)}
$$

for all $u \in C_{c}^{\infty}(\Omega)$.
Proof. Let us compute the i-th component $(T u)_{i}$ of $T u$ with $i=1, \ldots, n$ for compactly supported vector field u in Ω. As in the proof of Lemma 3.2, we integrate
by parts to get

$$
\begin{aligned}
(T u)_{i}(x)= & \lim _{\varepsilon \rightarrow 0} \int_{\partial B_{\varepsilon}(x)} K_{i}(x-y) \frac{x-y}{|x-y|} \cdot \bar{u}(y) \mathrm{d} \mathcal{H}^{n-1}(y) \\
& +\lim _{\varepsilon \rightarrow 0} \int_{\mathbf{R}^{n} \backslash B_{\varepsilon}(x)}\left(\nabla K_{i}\right)(x-y) \cdot \bar{u}(y) \mathrm{d} y \\
= & \int_{S^{n-1}} \sigma_{i} L(\sigma)\{\sigma \cdot \bar{u}(x)\} \mathrm{d} \mathcal{H}^{n-1}(\sigma)+\int_{\mathbf{R}^{n}}\left(\nabla K_{i}\right)(x-y) \cdot \bar{u}(y) \mathrm{d} y,
\end{aligned}
$$

or equivalently,

$$
\begin{equation*}
(T u)_{i}(x)=\sum_{j=1}^{n}\left\{a_{i j} \bar{u}_{j}(x)+S_{i j} \bar{u}_{j}(x)\right\}, \quad x \in \mathbf{R}^{n} \tag{3.7}
\end{equation*}
$$

Here u_{j} is the j-th component of u and

$$
a_{i j}=\int_{S^{n-1}} \sigma_{i} \sigma_{j} L(\sigma) \mathrm{d} \mathcal{H}^{n-1}(\sigma), \quad S_{i j} \bar{u}_{j}(x)=\int_{\mathbf{R}^{n}} K_{i j}(x-y) \bar{u}_{j}(y) \mathrm{d} y
$$

where $K_{i j}=\partial_{j} K_{i}$ is given by (3.4). Since $a_{i j}$ is a constant satisfying

$$
\begin{equation*}
\left|a_{i j}\right| \leq \int_{S^{n-1}} L(\sigma) \mathrm{d} \mathcal{H}^{n-1}(\sigma)=1 \tag{3.8}
\end{equation*}
$$

and $S_{i j} \bar{u}=K_{i j} * \bar{u}$ is a singular integral (see the proof of Lemma 3.2), the CalderónZygmund theory yields the boundedness of the operator T on $L^{p}(\Omega)$.

By Theorem 3.5, the operator T extends uniquely to a bounded linear operator on $L^{p}(\Omega)$ with each $p \in(1, \infty)$, which we again refer to as T.

Our next goal is to estimate the $B M O_{b}^{\infty, \nu}(\Omega)$-norm of $T u$ for $u \in C_{c}^{\infty}(\Omega)$ and $\nu \in(0, \infty]$. To this end, we estimate each term of the right-hand side in (3.7) for $u=\left(u_{1}, \ldots, u_{n}\right) \in C_{c}^{\infty}(\Omega)$. By (3.8) we have

$$
\left[a_{i j} \bar{u}_{j}: B M O^{\infty}(\Omega)\right] \leq\left[u_{j}: B M O^{\infty}(\Omega)\right], \quad\left[a_{i j} \bar{u}_{j}: b^{\nu}(\Omega)\right] \leq\left[u_{j}: b^{\nu}(\Omega)\right]
$$

and thus

$$
\left\|a_{i j} \bar{u}_{j}: B M O_{b}^{\infty, \nu}(\Omega)\right\| \leq\left\|u_{j}: B M O_{b}^{\infty, \nu}(\Omega)\right\|
$$

Moreover, since

$$
\left[u_{j}: B M O^{\infty}(\Omega)\right] \leq 2\left\|u_{j}\right\|_{L^{\infty}(\Omega)}, \quad\left[u_{j}: b^{\nu}(\Omega)\right] \leq \omega_{n}\left\|u_{j}\right\|_{L^{\infty}(\Omega)}
$$

where $\omega_{n}=2 \pi^{n / 2} / n \Gamma(n / 2)$ is the volume of the unit ball $B_{1}(0)$ in \mathbf{R}^{n} with the Gamma function $\Gamma(z):=\int_{0}^{\infty} x^{z-1} e^{-x} \mathrm{~d} x$, we have

$$
\begin{equation*}
\left\|a_{i j} \bar{u}_{j}: B M O_{b}^{\infty, \nu}(\Omega)\right\| \leq\left(2+\omega_{n}\right)\left\|u_{j}\right\|_{L^{\infty}(\Omega)} \tag{3.9}
\end{equation*}
$$

Let us estimate $S_{i j} \bar{u}_{j}=K_{i j} * \bar{u}_{j}, i, j=1, \ldots, n$ in $B M O_{b}^{\infty, \nu}(\Omega)$. Recall that the integral kernel $K_{i j}$ is of the form

$$
K_{i j}(x)=\frac{k_{i j}(x /|x|)}{|x|^{n}}, \quad x \in \mathbf{R}^{n} \backslash\{0\}
$$

where $k_{i j} \in C_{c}^{\infty}\left(\mathbf{R}^{n}\right)$ is given by (3.4) and satisfies

$$
\operatorname{supp} k_{i j} \subset\left(B_{2}(0) \backslash B_{1 / 2}(0)\right) \cap\left(-C_{0}\right), \quad \int_{S^{n-1}} k_{i j}(\sigma) \mathrm{d} \mathcal{H}^{n-1}=0
$$

see (3.2) and (3.5). We first estimate the $B M O^{\infty}$-seminorm of $S_{i j} \bar{u}_{j}$.

Lemma 3.6. Let K be a function defined on $\mathbf{R}^{n} \backslash\{0\}$ such that

$$
\begin{equation*}
|K(x-y)-K(x)| \leq A|y|^{\delta}|x|^{-n-\delta} \quad \text { whenever } \quad|x| \geq 2|y|>0 \tag{3.10}
\end{equation*}
$$

for some $A, \delta>0$. Suppose that a convolution operator S with K is bounded on $L^{2}\left(\mathbf{R}^{n}\right)$ with a norm B. Then, there exists a dimensional constant c_{n} such that

$$
\left[S f: B M O^{\infty}\left(\mathbf{R}^{n}\right)\right] \leq c_{n}(A+B)\|f\|_{L^{\infty}\left(\mathbf{R}^{n}\right)}
$$

for all $f \in L^{2}\left(\mathbf{R}^{n}\right) \cap L^{\infty}\left(\mathbf{R}^{n}\right)$.
Proof. See [24, Theorem 3.4.9 and Corollary 3.4.10].
Lemma 3.7. There exists a constant $c>0$ such that

$$
\begin{equation*}
\left[S_{i j} \bar{u}_{j}: B M O^{\infty}(\Omega)\right] \leq c\left\|u_{j}\right\|_{L^{\infty}(\Omega)} \tag{3.11}
\end{equation*}
$$

for all $u=\left(u_{1}, \ldots, u_{n}\right) \in C_{c}^{\infty}(\Omega)$ and $i, j=1, \ldots, n$.
Proof. We shall apply Lemma 3.6 to $S=S_{i j}$. For this purpose it is sufficient to show that the function $K=K_{i j}$ satisfies (3.10), since we already know that the convolution operator $S_{i j}$ is bounded on $L^{2}\left(\mathbf{R}^{n}\right)$, see the proof of Lemma 3.2. To this end, we differentiate $K_{i j}$ to get

$$
\nabla K_{i j}(x)=-\frac{n k_{i j}(x /|x|)}{|x|^{n+1}} \frac{x}{|x|}+\frac{1}{|x|^{n+1}}\left(I_{n}-\frac{1}{|x|^{2}} x \otimes x\right) \nabla k_{i j}\left(\frac{x}{|x|}\right)
$$

for $x \in \mathbf{R}^{n} \backslash\{0\}$, where I_{n} is the identity matrix of size n and $x \otimes x:=\left(x_{i} x_{j}\right)_{i, j}$ is the tensor product of x. Since $k_{i j}$ is smooth on S^{n-1}, we have

$$
\left|\nabla K_{i j}(x)\right| \leq \frac{c}{|x|^{n+1}}, \quad x \in \mathbf{R}^{n} \backslash\{0\} .
$$

Hence, for all $x, y \in \mathbf{R}^{n} \backslash\{0\}$ with $|x| \geq 2|y|>0$,

$$
\begin{aligned}
|K(x-y)-K(x)| & =\left|\int_{0}^{1} \frac{d}{d t}(K(x-t y)) \mathrm{d} t\right|=\left|\int_{0}^{1}(-y) \cdot \nabla K(x-t y) \mathrm{d} t\right| \\
& \leq|y| \int_{0}^{1} \frac{c}{|x-t y|^{n+1}} \mathrm{~d} t \leq|y| \int_{0}^{1} \frac{c}{(|x|-|y|)^{n+1}} \mathrm{~d} t \\
& \leq \frac{c|y|}{(|x|-|x| / 2)^{n+1}}=\frac{2^{n+1} c|y|}{|x|^{n+1}}
\end{aligned}
$$

Thus $K_{i j}$ satisfies (3.10) with $\delta=1$ and we can apply Lemma 3.6 to obtain

$$
\begin{equation*}
\left[S_{i j} \bar{u}_{j}: B M O^{\infty}\left(\mathbf{R}^{n}\right)\right] \leq c\left\|\bar{u}_{j}\right\|_{L^{\infty}\left(\mathbf{R}^{n}\right)}=c\left\|u_{j}\right\|_{L^{\infty}(\Omega)} \tag{3.12}
\end{equation*}
$$

with some constant $c>0$.
By definition of the $B M O^{\infty}$-seminorm, we have

$$
\left[S_{i j} \bar{u}_{j}: B M O^{\infty}(\Omega)\right] \leq\left[S_{i j} \bar{u}_{j}: B M O^{\infty}\left(\mathbf{R}^{n}\right)\right]
$$

Hence the inequality (3.11) follows from (3.12).
Next, let us estimate the b^{ν}-part of $S_{i j} \bar{u}_{j}$. Recall the two closed cones

$$
C_{j}=\left\{x=\left(x^{\prime}, x_{n}\right) \in \mathbf{R}^{n}\left|x^{\prime} \in \mathbf{R}^{n-1},-x_{n} \geq|x| \cos \left(2^{j} \theta\right)\right\}, \quad j=0,1\right.
$$

with opening angle $\theta \in(0, \pi / 4)$. For $r>0$ and $x_{0} \in \mathbf{R}^{n}$, we define

$$
\begin{equation*}
A_{r}\left(x_{0}\right):=\bigcup_{x \in B_{r}\left(x_{0}\right) \cap\left(x_{0}+C_{1}\right)^{c}}\left(x+C_{0}\right) \cap\left(x_{0}+C_{1}\right)^{c} \subset \mathbf{R}^{n} . \tag{3.13}
\end{equation*}
$$

Here $x_{0}+C_{1}=\left\{y \in \mathbf{R}^{n} \mid y-x_{0} \in C_{1}\right\}$ and $x+C_{0}$ is defined similarly.

Lemma 3.8. For all $r>0$ and $x_{0} \in \mathbf{R}^{n}$ we have $A_{r}\left(x_{0}\right) \subset B_{r / \sin \theta}\left(x_{0}\right)$.
Proof. By translation, we may assume that $x_{0}=0$. Let $a:=(0, \ldots, 0, r / \sin \theta) \in$ \mathbf{R}^{n}. Suppose that
(1) $B_{r}(0) \subset a+C_{0}$,
(2) $x+C_{0} \subset a+C_{0}$ for all $x \in a+C_{0}$,
(3) $\left(a+C_{0}\right) \cap C_{1}^{c} \subset B_{r / \sin \theta}(0)$.

Then, the statements (1) and (2) imply

$$
A_{r}(0)=\bigcup_{x \in B_{r}(0) \cap C_{1}^{c}}\left(x+C_{0}\right) \cap C_{1}^{c} \subset\left(a+C_{0}\right) \cap C_{1}^{c}
$$

Hence the statement (3) yields $A_{r}(0) \subset B_{r / \sin \theta}(0)$. Now let us prove the statements (1)-(3). Note that, since $\theta \in(0, \pi / 4)$, the cones C_{0} and C_{1} are represented as

$$
C_{j}=\left\{x=\left(x^{\prime}, x_{n}\right) \in \mathbf{R}^{n}\left|x^{\prime} \in \mathbf{R}^{n-1}, x_{n} \leq 0,\left|x^{\prime}\right| \leq\left(-x_{n}\right) \tan \left(2^{j} \theta\right)\right\}, \quad j=0,1\right.
$$

(1) Let $x=\left(x^{\prime}, x_{n}\right) \in B_{r}(0)$. Then, $x-a=\left(x^{\prime}, x_{n}-r / \sin \theta\right)$ satisfies

$$
(x-a)_{n}=x_{n}-\frac{r}{\sin \theta} \leq r-\frac{r}{\sin \theta}<0
$$

and

$$
\left(\frac{r}{\sin \theta}-x_{n}\right)^{2} \tan ^{2} \theta-\left|x^{\prime}\right|^{2} \geq \frac{\left(r-x_{n} \sin \theta\right)^{2}}{\cos ^{2} \theta}-\left(r^{2}-x_{n}^{2}\right)=\frac{\left(r \sin \theta-x_{n}\right)^{2}}{\cos ^{2} \theta} \geq 0
$$

or equivalently,

$$
\left|x^{\prime}\right| \leq\left(\frac{r}{\sin \theta}-x_{n}\right) \tan \theta=-(x-a)_{n} \tan \theta
$$

Hence $x-a \in C_{0}$, that is, $x \in a+C_{0}$ and the statement (1) holds.
(2) Let $x \in a+C_{0}$. If $y \in x+C_{0}$, then $(y-a)_{n}=(y-x)_{n}+(x-a)_{n} \leq 0$ and

$$
\left|y^{\prime}\right| \leq\left|x^{\prime}\right|+\left|y^{\prime}-x^{\prime}\right| \leq-(x-a)_{n} \tan \theta-(y-x)_{n} \tan \theta=-(y-a)_{n} \tan \theta
$$

which means that $y \in a+C_{0}$. Hence the statement (2) holds.
(3) Let $x \in\left(a+C_{0}\right) \cap C_{1}^{c}$. Then we have

$$
\begin{equation*}
(x-a)_{n}=x_{n}-r / \sin \theta \leq 0, \quad\left|x^{\prime}\right| \leq\left(\frac{r}{\sin \theta}-x_{n}\right) \tan \theta \tag{3.14}
\end{equation*}
$$

Hence

$$
|x|^{2} \leq\left(\frac{r}{\sin \theta}-x_{n}\right)^{2} \tan ^{2} \theta+x_{n}^{2}=: f\left(x_{n}\right)
$$

To estimate the right-hand side in the above inequality for $x \in\left(a+C_{0}\right) \cap C_{1}^{c}$, we derive the range of x_{n} for $x \in\left(a+C_{0}\right) \cap C_{1}^{c}$. If $x_{n} \geq 0$, then $x \in\left(a+C_{0}\right) \cap C_{1}^{c}$ holds if and only if the condition (3.14) is satisfied. Thus x_{n} must satisfy

$$
0 \leq x_{n} \leq \frac{r}{\sin \theta}
$$

On the other hand, if $x_{n}<0$, then $x \in\left(a+C_{0}\right) \cap C_{1}^{c}$ holds if and only if

$$
\left(-x_{n}\right) \tan (2 \theta)<\left|x^{\prime}\right| \leq\left(\frac{r}{\sin \theta}-x_{n}\right) \tan \theta
$$

Hence, in particular, if $x \in\left(a+C_{0}\right) \cap C_{1}^{c}$ and $x_{n}<0$, then x_{n} must satisfy

$$
\left(-x_{n}\right) \tan (2 \theta)<\left(\frac{r}{\sin \theta}-x_{n}\right) \tan \theta
$$

which yields the inequality

$$
-\frac{r}{\cos \theta}<(\tan (2 \theta)-\tan \theta) x_{n}
$$

Since

$$
\begin{aligned}
\tan (2 \theta)-\tan \theta & =\tan (2 \theta)-\frac{1}{2} \tan (2 \theta)\left(1-\tan ^{2} \theta\right) \\
& =\frac{1}{2} \tan (2 \theta)\left(1+\tan ^{2} \theta\right)=\frac{\tan (2 \theta)}{2 \cos ^{2} \theta}>0 \quad\left(0<\theta<\frac{\pi}{4}\right),
\end{aligned}
$$

the above inequality is equivalent to

$$
-\frac{2 r \cos \theta}{\tan (2 \theta)}<x_{n}(<0)
$$

In summary, the range of x_{n} for $x \in\left(a+C_{0}\right) \cap C_{1}^{c}$ is

$$
\alpha:=-\frac{2 r \cos \theta}{\tan (2 \theta)}<x_{n} \leq \frac{r}{\sin \theta}=: \beta
$$

and thus we obtain

$$
|x|^{2} \leq f\left(x_{n}\right) \leq \sup _{s \in(\alpha, \beta]} f(s)=\max \{f(\alpha), f(\beta)\}
$$

where the last equality follows from the fact that $f\left(x_{n}\right)$ is a concave parabola. On the one hand, we have $f(\beta)=\beta^{2}=r^{2} / \sin ^{2} \theta$. On the other hand, since

$$
\alpha=-\frac{2 r \cos \theta \cos (2 \theta)}{\sin (2 \theta)}=-\frac{r \cos (2 \theta)}{\sin \theta}=\frac{r\left(1-2 \cos ^{2} \theta\right)}{\sin \theta}
$$

we have

$$
\begin{aligned}
f(\alpha) & =\left(\frac{r}{\sin \theta}-\frac{r\left(1-2 \cos ^{2} \theta\right)}{\sin \theta}\right)^{2} \tan ^{2} \theta+\frac{r^{2} \cos ^{2}(2 \theta)}{\sin ^{2} \theta} \\
& =\frac{r^{2}}{\sin ^{2} \theta}\left\{4 \tan ^{2} \theta \cos ^{4} \theta+\cos ^{2}(2 \theta)\right\}=\frac{r^{2}}{\sin ^{2} \theta} .
\end{aligned}
$$

Hence $|x|^{2} \leq r^{2} / \sin ^{2} \theta$ and thus $x \in B_{r / \sin \theta}(0)$ for every $x \in\left(a+C_{0}\right) \cap C_{1}^{c}$. Therefore, the statement (3) holds and the lemma follows.

Now we can estimate the b^{ν}-part of $S_{i j} \bar{u}_{j}$.
Lemma 3.9. Let $\nu \in(0, \infty]$. There exists a constant $c>0$ such that

$$
\begin{equation*}
\left[S_{i j} \bar{u}_{j}: b^{\nu}(\Omega)\right] \leq \frac{c}{\sin ^{n / 2} \theta}\left\|u_{j}\right\|_{L^{\infty}(\Omega)} \tag{3.15}
\end{equation*}
$$

for all $u=\left(u_{1}, \ldots, u_{n}\right) \in C_{c}^{\infty}(\Omega)$ and $i, j=1, \ldots, n$.
Proof. First we note that for all $f \in L_{l o c}^{1}(\Omega)$ the inequality

$$
\left[f: b^{\nu}(\Omega)\right] \leq \omega_{n}^{1 / 2}\left[f: b_{2}^{\nu}(\Omega)\right]
$$

holds by Hölder's inequality. Hence, to prove (3.15), it is sufficient to show the inequality

$$
\begin{equation*}
\left[S_{i j} \bar{u}_{j}: b_{2}^{\nu}(\Omega)\right] \leq \frac{c}{\sin ^{n / 2} \theta}\left[u_{j}: b_{2}^{\nu / \sin \theta}(\Omega)\right] \leq \frac{c \omega_{n}^{1 / 2}}{\sin ^{n / 2} \theta}\left\|u_{j}\right\|_{L^{\infty}} \tag{3.16}
\end{equation*}
$$

The second inequality of (3.16) follows from the definition of $\left[\cdot: b_{2}^{\nu / \sin \theta}(\Omega)\right]$. Let us show the first inequality. The singular integral $S_{i j} \bar{u}_{j}$ is of the form

$$
S_{i j} \bar{u}_{j}(x)=\left(K_{i j} * \bar{u}_{j}\right)(x)=\int_{\mathbf{R}^{n}} K_{i j}(x-y) \bar{u}_{j}(y) \mathrm{d} y, \quad x \in \mathbf{R}^{n} .
$$

Since $\operatorname{supp} K_{i j} \subset-C_{0}$ (see (3.4) and (3.2)) and $\operatorname{supp} u \subset \Omega$, we can write

$$
S_{i j} \bar{u}_{j}(x)=\int_{\left(x+C_{0}\right) \cap \Omega} K_{i j}(x-y) \bar{u}_{j}(y) \mathrm{d} y, \quad x \in \mathbf{R}^{n}
$$

Hence, if we set

$$
W_{r}\left(x_{0}\right):=\bigcup_{x \in B_{r}\left(x_{0}\right) \cap \Omega}\left(x+C_{0}\right) \cap \Omega
$$

for each $x_{0} \in \partial \Omega$ and $r>0$ with $B_{r}\left(x_{0}\right) \subset U_{\nu}(\partial \Omega)$, then we have

$$
S_{i j} \bar{u}_{j}(x)=\int_{\left(x+C_{0}\right) \cap \Omega} K_{i j}(x-y)\left(\left.\bar{u}_{j}\right|_{W_{r}\left(x_{0}\right)}\right)(y) d y=\left[K_{i j} *\left(\left.\bar{u}_{j}\right|_{W_{r}\left(x_{0}\right)}\right)\right](x)
$$

for all $x \in B_{r}\left(x_{0}\right) \cap \Omega$, where

$$
\left(\left.\bar{u}_{j}\right|_{W_{r}\left(x_{0}\right)}\right)(x):= \begin{cases}\bar{u}_{j}(x), & x \in W_{r}\left(x_{0}\right), \\ 0, & x \notin W_{r}\left(x_{0}\right)\end{cases}
$$

Since $K_{i j}$ is a singular kernel (see the proof of Lemma 3.2), the Calderón-Zygmund theory implies that

$$
\begin{aligned}
\int_{B_{r}\left(x_{0}\right) \cap \Omega}\left|S_{i j} \bar{u}_{j}(x)\right|^{2} \mathrm{~d} x & =\int_{B_{r}\left(x_{0}\right) \cap \Omega}\left|\left[K_{i j} *\left(\left.\bar{u}_{j}\right|_{W_{r}\left(x_{0}\right)}\right)\right](x)\right|^{2} \mathrm{~d} x \\
& \leq c \int_{\mathbf{R}^{n}}\left|\left(\left.\bar{u}_{j}\right|_{W_{r}\left(x_{0}\right)}\right)(x)\right|^{2} \mathrm{~d} x=c \int_{W_{r}\left(x_{0}\right)}\left|\bar{u}_{j}(x)\right|^{2} \mathrm{~d} x
\end{aligned}
$$

with some constant $c>0$. Now we recall the property of the infinite cone C_{1} :

$$
x+C_{1} \subset \Omega^{c} \Leftrightarrow \Omega \subset\left(x+C_{1}\right)^{c} \quad \text { for all } \quad x \in \Omega^{c} .
$$

By this property we have

$$
W_{r}\left(x_{0}\right) \subset \bigcup_{x \in B_{r}\left(x_{0}\right) \cap\left(x_{0}+C_{1}\right)^{c}}\left(x+C_{0}\right) \cap\left(\left(x_{0}+C_{1}\right)^{c} \cap \Omega\right)=A_{r}\left(x_{0}\right) \cap \Omega
$$

where $A_{r}\left(x_{0}\right)$ is given by (3.13), and thus Lemma 3.8 yields

$$
W_{r}\left(x_{0}\right) \subset A_{r}\left(x_{0}\right) \cap \Omega \subset B_{r / \sin \theta}\left(x_{0}\right) \cap \Omega
$$

Hence we have

$$
\begin{aligned}
& \frac{1}{r^{n}} \int_{B_{r}\left(x_{0}\right) \cap \Omega}\left|S_{i j} \bar{u}_{j}(x)\right|^{2} \mathrm{~d} x \leq \frac{c}{r^{n}} \int_{W_{r}\left(x_{0}\right)}\left|\bar{u}_{j}(x)\right|^{2} \mathrm{~d} x \\
& \leq \frac{c}{r^{n}} \int_{B_{r / \sin \theta}\left(x_{0}\right) \cap \Omega}\left|\bar{u}_{j}(x)\right|^{2} \mathrm{~d} x=\frac{c}{\sin ^{n} \theta}\left(\frac{\sin \theta}{r}\right)^{n} \int_{B_{r / \sin \theta}\left(x_{0}\right) \cap \Omega}\left|u_{j}(x)\right|^{2} \mathrm{~d} x \\
& \leq \frac{c}{\sin ^{n} \theta}\left[u_{j}: b_{2}^{\nu / \sin \theta}(\Omega)\right]^{2}
\end{aligned}
$$

for every $x_{0} \in \partial \Omega$ and $r>0$ with $B_{r}\left(x_{0}\right) \subset U_{\nu}(\partial \Omega)$, which yields

$$
\left[S_{i j} \bar{u}_{j}: b_{2}^{\nu}(\Omega)\right]^{2} \leq \frac{c}{\sin ^{n} \theta}\left[u_{j}: b_{2}^{\nu / \sin \theta}(\Omega)\right]^{2}
$$

The proof is complete.

Now we obtain an estimate for the $B M O_{b}^{\infty, \nu}(\Omega)$-norm of $T u$.
Theorem 3.10. Let $\nu \in(0, \infty]$. There exists a constant $c>0$ such that

$$
\left\|T u: B M O_{b}^{\infty, \nu}(\Omega)\right\| \leq c\|u\|_{L^{\infty}(\Omega)}
$$

for all $u \in C_{c}^{\infty}(\Omega)$.
Proof. Since the i-th component of $T u, i=1, \ldots, n$, is of the form (3.7), we have by (3.9), (3.11) and (3.15) that

$$
\begin{aligned}
& \left\|T u: B M O_{b}^{\infty, \nu}(\Omega)\right\| \\
& \leq c \sum_{i, j=1}^{n}\left(\left\|a_{i j} \bar{u}_{j}: B M O_{b}^{\infty, \nu}(\Omega)\right\|+\left[S_{i j} \bar{u}_{j}: \operatorname{BMO}^{\infty}(\Omega)\right]+\left[S_{i j} \bar{u}_{j}: b^{\nu}(\Omega)\right]\right) \\
& \leq c \sum_{j=1}^{n}\left\|u_{j}\right\|_{L^{\infty}(\Omega)} \leq c\|u\|_{L^{\infty}(\Omega)}
\end{aligned}
$$

with a positive constant c.
3.2. Non-Helmholtz projection. As in the previous subsection, let Ω denote a Lipschitz half-space in \mathbf{R}^{n}.
Definition 3.11. For a vector field $u \in C_{c}^{\infty}(\Omega)$, we define a vector field $Q^{\prime} u$ on \mathbf{R}^{n} as $Q^{\prime} u:=u-T u$. Here the operator T is given in Definition 3.4.

For a vector field $u \in C_{c}^{\infty}(\Omega)$, the vector field $T u$ is smooth in \mathbf{R}^{n} and

$$
\operatorname{div} T u=\operatorname{div} u \quad \text { in } \quad \Omega, \quad T u=0 \quad \text { on } \quad \partial \Omega .
$$

Moreover, $T u=0$ for all $u \in C_{c, \sigma}^{\infty}(\Omega)$, see the argument after Definition 3.4. Thus $Q^{\prime} u=u-T u$ is also smooth in \mathbf{R}^{n} and

$$
\begin{equation*}
\operatorname{div} Q^{\prime} u=0 \quad \text { in } \quad \Omega, \quad Q^{\prime} u=0 \quad \text { on } \quad \partial \Omega \tag{3.17}
\end{equation*}
$$

for all $u \in C_{c}^{\infty}(\Omega)$, and $Q^{\prime} u=u$ for all $u \in C_{c, \sigma}^{\infty}(\Omega)$. Note that Q^{\prime} is not a projection from $C_{c}^{\infty}(\Omega)$ onto $C_{c, \sigma}^{\infty}(\Omega)$, since the support of $T u$ may be unbounded and thus $Q^{\prime} u$ is not in $C_{c, \sigma}^{\infty}(\Omega)$ in general. However, Q^{\prime} maps $C_{c}^{\infty}(\Omega)$ into $L_{\sigma}^{p}(\Omega)$.

Lemma 3.12. For all $u \in C_{c}^{\infty}(\Omega)$ and $p \in(1, \infty)$, we have $Q^{\prime} u \in L_{\sigma}^{p}(\Omega)$.
We shall first prove an auxiliary proposition for the above lemma. For $p \in(1, \infty)$, let $G_{p}(\Omega)=\left\{\nabla q \in L^{p}(\Omega) \mid q \in L_{l o c}^{1}(\Omega)\right\}$.

Proposition 3.13. Let $p \in(1, \infty)$. For every $\nabla q \in G_{p}(\Omega)$, there exists a sequence $\left\{q_{k}\right\}_{k=1}^{\infty}$ of functions in $C_{c}^{\infty}\left(\mathbf{R}^{n}\right)$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\nabla q-\nabla q_{k}\right\|_{L^{p}(\Omega)}=0 \tag{3.18}
\end{equation*}
$$

Proof. Since the restriction of $C_{c}^{\infty}\left(\mathbf{R}^{n}\right)$ on Ω is dense in $W^{1, p}(\Omega)$, it is sufficient to show that for every $\nabla q \in G_{p}(\Omega)$ there is a sequence $\left\{q_{k}\right\}_{k=1}^{\infty}$ of functions in $W^{1, p}(\Omega)$ such that (3.18) holds. Let us prove this claim.
(1) First we assume that the claim is valid for the half space \mathbf{R}_{+}^{n} and show the claim for general Lipschitz half-spaces $\Omega=\left\{\left(x^{\prime}, x_{n}\right) \in \mathbf{R}^{n} \mid x_{n}>h\left(x^{\prime}\right)\right\}$. As in Section 2, let $F(x):=\left(x^{\prime}, x_{n}-h\left(x^{\prime}\right)\right)$ be a bi-Lipschitz map from Ω to \mathbf{R}_{+}^{n}. Let $\nabla q \in$ $G_{p}(\Omega)$ and $\widetilde{q}:=q \circ F^{-1}$, where $F^{-1}(y):=\left(y^{\prime}, y_{n}+h\left(y^{\prime}\right)\right)$ is the inverse mapping of F. Then, since $\nabla \widetilde{q}(y)=\nabla F^{-1}(y) \nabla q\left(F^{-1}(y)\right)$ for $y \in \mathbf{R}_{+}^{n}$ and each component
of ∇F^{-1} is bounded (because h is Lipschitz continuous), we have $\nabla \widetilde{q} \in G_{p}\left(\mathbf{R}_{+}^{n}\right)$. Hence, by our assumption that the claim is valid for \mathbf{R}_{+}^{n}, there is a sequence $\left\{\widetilde{q}_{k}\right\}_{k=1}^{\infty}$ of functions in $W^{1, p}\left(\mathbf{R}_{+}^{n}\right)$ such that $\lim _{k \rightarrow \infty}\left\|\nabla \widetilde{q}-\nabla \widetilde{q}_{k}\right\|_{L^{p}\left(\mathbf{R}_{+}^{n}\right)}=0$.

Let $q_{k}:=\widetilde{q}_{k} \circ F$ for each $k \in \mathbf{N}$. Then, since

$$
\nabla q(x)=\nabla F(x) \nabla \widetilde{q}(F(x)), \quad \nabla q_{k}(x)=\nabla F(x) \nabla \widetilde{q}_{k}(F(x)), \quad x \in \Omega
$$

and each component of ∇F is bounded, we have $q_{k} \in W^{1, p}(\Omega)$ and

$$
\left\|\nabla q-\nabla q_{k}\right\|_{L^{p}(\Omega)} \leq c\left\|\nabla \widetilde{q}-\nabla \widetilde{q}_{k}\right\|_{L^{p}\left(\mathbf{R}_{+}^{n}\right)} \rightarrow 0
$$

as $k \rightarrow \infty$. Thus the claim is valid for general Lipschitz half-spaces Ω.
(2) Now we prove the claim for $\Omega=\mathbf{R}_{+}^{n}$. We follow the idea of the proof of the claim in the case $\Omega=\mathbf{R}^{n}$, see [34, Lemma 2.5.4]. Let $\varphi \in C_{c}^{\infty}\left(\mathbf{R}^{n}\right)$ be a function such that

$$
0 \leq \varphi \leq 1 \quad \text { in } \mathbf{R}^{n}, \quad \varphi=1 \quad \text { in } B_{1}(0), \quad \varphi=0 \quad \text { in } \mathbf{R}^{n} \backslash B_{2}(0)
$$

and $\varphi_{k}(x):=\varphi\left(k^{-1} x\right)$ for $k \in \mathbf{N}$ and $x \in \mathbf{R}^{n}$. Then, $\lim _{k \rightarrow \infty} \varphi_{k}(x)=1$ for all $x \in \mathbf{R}^{n}$ and $\operatorname{supp} \varphi_{k} \subset B_{2 k}(0), \operatorname{supp} \nabla \varphi_{k} \subset B_{2 k}(0) \backslash B_{k}(0)$ for $k \in \mathbf{N}$.

Let $\nabla q \in G_{p}\left(\mathbf{R}_{+}^{n}\right)$. Then $q \in W_{l o c}^{1, p}\left(\overline{\mathbf{R}_{+}^{n}}\right)$, that is, $q \in W^{1, p}(U)$ for every bounded subset U of \mathbf{R}_{+}^{n}; see the proof of [31, Theorem 7.6 in Chapter 2]. Hence by setting $G_{k}:=\mathbf{R}_{+}^{n} \cap\left(B_{2 k}(0) \backslash B_{k}(0)\right)$ for $k \in \mathbf{N}$, we have $q \in W^{1, p}\left(G_{k}\right)$ and thus there is a constant a_{k} such that $\int_{G_{k}}\left(q-a_{k}\right) d x=0$ for each $k \in \mathbf{N}$. From this equality and the change of variables $x=k y$ for $x \in G_{k}$ and $y \in G_{1}$ we have

$$
\int_{G_{1}}\left(q(k y)-a_{k}\right) \mathrm{d} y=k^{-n} \int_{G_{k}}\left(q(x)-a_{k}\right) \mathrm{d} x=0 .
$$

Hence we can apply Poincaré's inequality to $q(k y)-a_{k}$ on G_{1} and get

$$
\left(\int_{G_{1}}\left|q(k y)-a_{k}\right|^{p} \mathrm{~d} y\right)^{1 / p} \leq c\left(\int_{G_{1}}|\nabla(q(k y))|^{p} \mathrm{~d} y\right)^{1 / p}
$$

with a constant $c>0$ independent of k. In this inequality, we observe that

$$
\begin{gathered}
\int_{G_{1}}\left|q(k y)-a_{k}\right|^{p} \mathrm{~d} y=k^{-n} \int_{G_{k}}\left|q(x)-a_{k}\right|^{p} \mathrm{~d} x \\
\int_{G_{1}}|\nabla(q(k y))|^{p} \mathrm{~d} y=k^{p} \int_{G_{1}}|(\nabla q)(k y)|^{p} \mathrm{~d} y=k^{p-n} \int_{G_{k}}|\nabla q(x)|^{p} \mathrm{~d} x
\end{gathered}
$$

by the change of variables $x=k y$ and thus

$$
\begin{equation*}
\left\|q-a_{k}\right\|_{L^{p}\left(G_{k}\right)} \leq c k\|\nabla q\|_{L^{p}\left(G_{k}\right)}, \quad k \in \mathbf{N} . \tag{3.19}
\end{equation*}
$$

For each $k \in \mathbf{N}$, let $q_{k}:=\varphi_{k}\left(q-a_{k}\right)$ on \mathbf{R}_{+}^{n}. Then since $\operatorname{supp} q_{k} \subset \mathbf{R}_{+}^{n} \cap B_{2 k}(0)$ holds by the relation $\operatorname{supp} \varphi_{k} \subset B_{2 k}(0)$, it follows that $q_{k} \in W^{1, p}\left(\mathbf{R}_{+}^{n}\right)$ and

$$
\begin{equation*}
\left\|\nabla q-\nabla q_{k}\right\|_{L^{p}\left(\mathbf{R}_{+}^{n}\right)} \leq\left\|\nabla q-\varphi_{k} \nabla q\right\|_{L^{p}\left(\mathbf{R}_{+}^{n}\right)}+\left\|\left(\nabla \varphi_{k}\right)\left(q-a_{k}\right)\right\|_{L^{p}\left(\mathbf{R}_{+}^{n}\right)} \tag{3.20}
\end{equation*}
$$

Since $0 \leq \varphi_{k}(x) \leq 1$ and $\lim _{k \rightarrow \infty} \varphi_{k}(x)=1$ for all $x \in \mathbf{R}_{+}^{n}$ and $\nabla q \in L^{p}\left(\mathbf{R}_{+}^{n}\right)$, the dominated convergence theorem yields

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\nabla q-\varphi_{k} \nabla q\right\|_{L^{p}\left(\mathbf{R}_{+}^{n}\right)}=0 \tag{3.21}
\end{equation*}
$$

On the other hand, since $\nabla \varphi_{k}=k^{-1}(\nabla \varphi)_{k}$ and $\left.\operatorname{supp} \nabla \varphi_{k}\right|_{\mathbf{R}_{+}^{n}} \subset \overline{G_{k}}$ for each $k \in \mathbf{N}$, it follows from (3.19) and the dominated convergence theorem that

$$
\begin{equation*}
\left\|\left(\nabla \varphi_{k}\right)\left(q-a_{k}\right)\right\|_{L^{p}\left(\mathbf{R}_{+}^{n}\right)} \leq c k^{-1}\left\|q-a_{k}\right\|_{L^{p}\left(G_{k}\right)} \leq c\|\nabla q\|_{L^{p}\left(G_{k}\right)} \rightarrow 0 \tag{3.22}
\end{equation*}
$$

as $k \rightarrow \infty$. Applying (3.21) and (3.22) to (3.20) we have

$$
\lim _{k \rightarrow \infty}\left\|\nabla q-\nabla q_{k}\right\|_{L^{p}\left(\mathbf{R}_{+}^{n}\right)}=0
$$

where $q_{k} \in W^{1, p}\left(\mathbf{R}_{+}^{n}\right)$ for all $k \in \mathbf{N}$. Hence the claim is valid when $\Omega=\mathbf{R}_{+}^{n}$ and the proposition follows.

Proof of Lemma 3.12. Let $u \in C_{c}^{\infty}(\Omega)$ and $p \in(1, \infty)$. Then, since $T u \in L_{p}(\Omega)$ by Theorem 3.5, we have $Q^{\prime} u=u-T u \in L^{p}(\Omega)$. To show $Q^{\prime} u \in L_{\sigma}^{p}(\Omega)$, we employ a characterization of elements of $L_{\sigma}^{p}(\Omega)\left(\left[19\right.\right.$, Lemma III.2.1]): a vector field $v \in L^{p}(\Omega)$ is in $L_{\sigma}^{p}(\Omega)$ if and only if

$$
\int_{\Omega} v \cdot \nabla q \mathrm{~d} x=0 \quad \text { for all } \quad \nabla q \in G_{p^{\prime}}(\Omega)\left(p^{\prime}:=\frac{p}{p-1}\right) .
$$

Let ∇q be any element of $G_{p^{\prime}}(\Omega)$. From Proposition 3.13, there is a sequence $\left\{q_{k}\right\}_{k=1}^{\infty}$ of functions in $C_{c}^{\infty}\left(\mathbf{R}^{n}\right)$ such that the equality (3.18) with p replaced by p^{\prime} holds. Since $Q^{\prime} u$ is defined and smooth in \mathbf{R}^{n} for $u \in C_{c}^{\infty}(\Omega)$ and $q_{k} \in C_{c}^{\infty}\left(\mathbf{R}^{n}\right)$, integration by parts yields

$$
\int_{\Omega} Q^{\prime} u \cdot \nabla q_{k} \mathrm{~d} x=-\int_{\Omega} q_{k} \operatorname{div} Q^{\prime} u \mathrm{~d} x+\int_{\partial \Omega} q_{k} Q^{\prime} u \cdot \nu \mathrm{~d} \mathcal{H}^{n-1}
$$

for all $k \in \mathbf{N}$, where ν denotes the unit outer normal vector field of $\partial \Omega$. We apply (3.17) to the right-hand side of this equality to get $\int_{\Omega} Q^{\prime} u \cdot \nabla q_{k} d x=0$ for all $k \in \mathbf{N}$. Since $Q^{\prime} u \in L^{p}(\Omega)$ and (3.18) with p replaced by p^{\prime} holds, the above equality implies that

$$
\int_{\Omega} Q^{\prime} u \cdot \nabla q \mathrm{~d} x=\lim _{k \rightarrow \infty} \int_{\Omega} Q^{\prime} u \cdot \nabla q_{k} \mathrm{~d} x=0 .
$$

Hence by the characterization of elements of $L_{\sigma}^{p}(\Omega)$ we conclude that $Q^{\prime} u \in L_{\sigma}^{p}(\Omega)$ for all $u \in C_{c}^{\infty}(\Omega)$. The proof is complete.

Remark 3.14.

(1) Let $p \in(1, \infty)$. By Theorem 3.5 and Lemma 3.12, we have $Q^{\prime} u \in L_{\sigma}^{p}(\Omega)$ and $\left\|Q^{\prime} u\right\|_{L^{p}(\Omega)} \leq c\|u\|_{L^{p}(\Omega)}$ for all $u \in C_{c}^{\infty}(\Omega)$. Moreover, $Q^{\prime} u=u$ holds for all $u \in C_{c, \sigma}^{\infty}(\Omega)$. Hence, by the density argument, Q^{\prime} extends uniquely to a bounded linear operator on $L^{p}(\Omega)$ that is a projection onto $L_{\sigma}^{p}(\Omega)$.
(2) The projection onto $L_{\sigma}^{p}(\Omega)$ given as above is NOT the Helmholtz projection. Indeed, if it were the Helmholtz projection, then for each $u \in C_{c}^{\infty}(\Omega)$ there would exist $\pi \in L_{\text {loc }}^{1}(\Omega)$ such that $\left(I-Q^{\prime}\right) u=\nabla \pi$ holds. Since $\left(I-Q^{\prime}\right) u=T u=K * \operatorname{div} u$ for $u \in C_{c}^{\infty}(\Omega)$, the existence of such π would imply that $\partial_{j}\left(K_{i} * \operatorname{div} u\right)=\partial_{i}\left(K_{j} * \operatorname{div} u\right)$ for all $i, j=1, \ldots, n$. For each $f \in C_{c}^{\infty}(\Omega)$ with $\int_{\Omega} f \mathrm{~d} x=0$ there is $u \in C_{c}^{\infty}(\Omega)$ satisfying $f=\operatorname{div} u$. This is possible since we are able to apply Bogovskiî's lemma to a bounded Lipschitz domain $D \subset \Omega$ containing the support of f (see [19, Theorem III.3.3]). Thus the above equality would imply that $\partial_{j} K_{i}=\partial_{i} K_{j}+c$ with some constant c for all $i, j=1, \ldots, n$ as a distribution. This contradicts the fact that $\partial_{j} K_{i} \neq \partial_{i} K_{j}+c$ for $i \neq j$ as observed in (3.4).
(3) It is possible to prove the characterization

$$
L_{\sigma}^{p}(\Omega)=\left\{u \in L^{p}(\Omega) \mid \operatorname{div} u=0 \text { in } \Omega, u \cdot \nu=0 \text { on } \partial \Omega\right\}
$$

if we use Proposition 3.13 and an integration by parts formula. This characterization is well-known for bounded ([17]), exterior and other domains
(see [19, Section III.2]). However, for a Lipschitz half-space, it is less popular. A proof can be found in [30, Lemma 2.1].
The linear operator Q^{\prime} also maps $C_{c}^{\infty}(\Omega)$ into $V M O_{b, 0, \sigma}^{\infty, \nu}(\Omega)$.
Lemma 3.15. Let Ω be a Lipschitz half-space. For all $u \in C_{c}^{\infty}(\Omega)$ and $\nu \in(0, \infty]$, we have $Q^{\prime} u \in V M O_{b, 0, \sigma}^{\infty, \nu}(\Omega)$.

We shall prove two auxiliary propositions for the above lemma. For $p \in(1, \infty)$, let $W_{0, \sigma}^{1, p}(\Omega)$ be the $W^{1, p}$-closure of $C_{c, \sigma}^{\infty}(\Omega)$.
Proposition 3.16. Let Ω be a Lipschitz half-space. For all $p \in(1, \infty)$ we have $L_{\sigma}^{p}(\Omega) \cap W_{0}^{1, p}(\Omega) \subset W_{0, \sigma}^{1, p}(\Omega)$. Thus $L_{\sigma}^{p}(\Omega) \cap W_{0}^{1, p}(\Omega)=W_{0, \sigma}^{1, p}(\Omega)$.
Proof. Let $\rho \in C_{c}^{\infty}\left(\mathbf{R}^{n}\right)$ be a function such that

$$
0 \leq \rho \leq 1 \quad \text { in } \mathbf{R}^{n}, \quad \operatorname{supp} \rho \subset B_{1}(0), \quad \int_{B_{1}(0)} \rho \mathrm{d} x=1
$$

and $\rho_{\delta}(x):=\delta^{-n} \rho\left(\delta^{-1} x\right)$ for $\delta>0, x \in \mathbf{R}^{n}$. Let $u \in L_{\sigma}^{p}(\Omega) \cap W_{0}^{1, p}(\Omega)$. Then there is a sequence $\left\{u_{k}\right\}_{k=1}^{\infty}$ of functions in $C_{c, \sigma}^{\infty}(\Omega)$ such that $\lim _{k \rightarrow \infty}\left\|u-u_{k}\right\|_{L^{p}(\Omega)}=0$. For $a>0$, we define a vector field u^{a} on Ω as

$$
u^{a}(x):= \begin{cases}u\left(x^{\prime}, x_{n}-a\right), & x_{n}>h\left(x^{\prime}\right)+a \\ 0, & h\left(x^{\prime}\right)<x_{n} \leq h\left(x^{\prime}\right)+a\end{cases}
$$

and $u_{k}^{a}=\left(u_{k}\right)^{a}$ similarly. Then it is clear that $u^{a} \in W_{0}^{1, p}(\Omega)$ and $u_{k}^{a} \in C_{c, \sigma}^{\infty}(\Omega)$ for all $a>0$. Moreover, we have

$$
\left\|u^{a}-u_{k}^{a}\right\|_{L^{p}(\Omega)}=\left\|u-u_{k}\right\|_{L^{p}(\Omega)} \quad \text { for all } \quad a>0, \quad \lim _{a \rightarrow 0}\left\|u-u^{a}\right\|_{W^{1, p}(\Omega)}=0
$$

By the second equality and the fact that $W_{0, \sigma}^{1, p}(\Omega)$ is closed in $W^{1, p}(\Omega)$, it is sufficient for showing $u \in W_{0, \sigma}^{1, p}(\Omega)$ to prove $u^{a} \in W_{0, \sigma}^{1, p}(\Omega)$ for all $a>0$.

For each $a>0$, there is a constant $d=d(a)>0$ such that dist(supp $\left.u_{k}^{a}, \partial \Omega\right) \geq d$ for all $k \in \mathbf{N}$. Then, for a given $\varepsilon>0$, we can take $\delta \in(0, d / 2)$ so small that

$$
\left\|u^{a}-u^{a} * \rho_{\delta}\right\|_{W^{1, p}(\Omega)}<\frac{\varepsilon}{2}
$$

since $u^{a} \in W_{0}^{1, p}(\Omega)$. Also, since $\nabla \rho_{\delta}=\delta^{-1}(\nabla \rho)_{\delta}$, we have

$$
\begin{aligned}
& \left\|u^{a} * \rho_{\delta}-u_{k}^{a} * \rho_{\delta}\right\|_{W^{1, p}(\Omega)} \\
& \leq c\left(\left\|u^{a} * \rho_{\delta}-u_{k}^{a} * \rho_{\delta}\right\|_{L^{p}(\Omega)}+\left\|u^{a} * \nabla \rho_{\delta}-u_{k}^{a} * \nabla \rho_{\delta}\right\|_{L^{p}(\Omega)}\right) \\
& =c\left(\left\|\left(u^{a}-u_{k}^{a}\right) * \rho_{\delta}\right\|_{L^{p}(\Omega)}+\delta^{-1}\left\|\left(u^{a}-u_{k}^{a}\right) *(\nabla \rho)_{\delta}\right\|_{L^{p}(\Omega)}\right) \\
& \leq c\left(1+\delta^{-1}\right)\left\|u^{a}-u_{k}^{a}\right\|_{L^{p}(\Omega)}=c\left(1+\delta^{-1}\right)\left\|u-u_{k}\right\|_{L^{p}(\Omega)}
\end{aligned}
$$

with a constant $c>0$ independent of ε and δ. Hence by taking $k \in \mathbf{N}$ so large that

$$
\left\|u-u_{k}\right\|_{L^{p}(\Omega)}<\frac{\varepsilon}{2 c\left(1+\delta^{-1}\right)},
$$

we have $\left\|u^{a} * \rho_{\delta}-u_{k}^{a} * \rho_{\delta}\right\|_{W^{1, p}(\Omega)}<\varepsilon / 2$ and thus

$$
\left\|u^{a}-u_{k}^{a} * \rho_{\delta}\right\|_{W^{1, p}(\Omega)} \leq\left\|u^{a}-u^{a} * \rho_{\delta}\right\|_{W^{1, p}(\Omega)}+\left\|u^{a} * \rho_{\delta}-u_{k}^{a} * \rho_{\delta}\right\|_{W^{1, p}(\Omega)}<\varepsilon
$$

On the other hand, since $\operatorname{dist}\left(\operatorname{supp} u_{k}^{a}, \partial \Omega\right)>d$ and $\delta \in(0, d / 2)$, the function $u_{k}^{a} * \rho_{\delta}$ is smooth and compactly supported in Ω. Moreover, we have

$$
\operatorname{div}\left(u_{k}^{a} * \rho_{\delta}\right)=\left(\operatorname{div} u_{k}^{a}\right) * \rho_{\delta}=0 \quad \text { in } \quad \Omega .
$$

Thus $u_{k}^{a} * \rho_{\delta} \in C_{c, \sigma}^{\infty}(\Omega)$ and u^{a} is approximated by elements of $C_{c, \sigma}^{\infty}(\Omega)$ in $W^{1, p}(\Omega)$, which means that $u^{a} \in W_{0, \sigma}^{1, p}(\Omega)$. Hence $u \in W_{0, \sigma}^{1, p}(\Omega)$ and the proof is now complete.

Proposition 3.17. Let $\nu \in(0, \infty]$. If $p>n$, then $W_{0, \sigma}^{1, p}(\Omega) \subset \operatorname{VMO}_{b, 0, \sigma}^{\infty, \nu}(\Omega)$.
Proof. Let $u \in W_{0, \sigma}^{1, p}(\Omega)$ and $u_{k} \in C_{c, \sigma}^{\infty}(\Omega)$ such that $\lim _{k \rightarrow \infty}\left\|u-u_{k}\right\|_{W^{1, p}(\Omega)}=0$. Since $p>n$ and $u, u_{k} \in W_{0}^{1, p}(\Omega)$, Morrey's inequality (see e.g. [7, Theorem 4.12]) implies

$$
\left\|u-u_{k}\right\|_{L^{\infty}(\Omega)} \leq c\left\|u-u_{k}\right\|_{W^{1, p}(\Omega)}
$$

with a positive constant c independent of u and u_{k}. Thus we have

$$
\left\|u-u_{k}: B M O_{b}^{\infty, \nu}(\Omega)\right\| \leq\left(2+\omega_{n}\right)\left\|u-u_{k}\right\|_{L^{\infty}(\Omega)} \leq c\left\|u-u_{k}\right\|_{W^{1, p}(\Omega)} \rightarrow 0
$$

as $k \rightarrow \infty$. Hence $u \in \operatorname{VMO}_{b, 0, \sigma}^{\infty, \nu}(\Omega)$ and the proof is now complete.
Proof of Lemma 3.15. Since $u \in C_{c}^{\infty}(\Omega)$ and thus $\partial_{i} u \in C_{c}^{\infty}(\Omega)$ for all $i=1, \ldots, n$, it follows from Lemma 3.12 that $Q^{\prime} u \in L_{\sigma}^{r}(\Omega)$ and $\partial_{i} Q^{\prime} u=Q^{\prime}\left(\partial_{i} u\right) \in L^{r}(\Omega)$ for all $r \in(1, \infty)$ and $i=1, \ldots, n$. From this fact and the equality (3.17), we have $Q^{\prime} u \in L_{\sigma}^{r}(\Omega) \cap W_{0}^{1, r}(\Omega)$ for all $r \in(1, \infty)$. Hence, by taking $r>n$, we can apply Proposition 3.16 and Proposition 3.17 to obtain $Q^{\prime} u \in V M O_{b, 0, \sigma}^{\infty, \nu}(\Omega)$.

Remark 3.18. Let $\nu \in(0, \infty]$. Theorem 3.10 and Lemma 3.15 imply that $Q^{\prime} u \in$ $V M O_{b, 0, \sigma}^{\infty, \nu}(\Omega)$ and $\left\|Q^{\prime} u: B M O_{b}^{\infty, \nu}(\Omega)\right\| \leq c\|u\|_{L^{\infty}(\Omega)}$ for all $u \in C_{c}^{\infty}(\Omega)$. Also, we have $Q^{\prime} u=u$ for all $u \in C_{c, \sigma}^{\infty}(\Omega)$. Hence Q^{\prime} extends uniquely to a bounded linear operator (again referred to as Q^{\prime}) from $C_{0}(\Omega)$, which is the L^{∞}-closure of $C_{c}^{\infty}(\Omega)$, into $V M O_{b, 0, \sigma}^{\infty, \nu}(\Omega)$ that satisfies $Q^{\prime} u=u$ for all $u \in C_{0, \sigma}(\Omega)$.

Now let us extend Q^{\prime} to a linear operator that gives the projection mentioned in Theorem 1.4. For $p \in(1, \infty)$, we define a Banach space X_{p} and its norm as

$$
X_{p}:=L^{p}(\Omega) \cap C_{0}(\Omega), \quad\|u\|_{X_{p}}:=\max \left\{\|u\|_{L^{p}(\Omega)},\|u\|_{L^{\infty}(\Omega)}\right\}
$$

Note that the Banach space $C_{0}(\Omega)$ consists of all continuous functions f on Ω such that the set $\{x \in \Omega||f(x)| \geq \varepsilon\}$ is compact in Ω for every $\varepsilon>0$ (see e.g. [32, Theorem 3.17]).

Lemma 3.19. For each $p \in(1, \infty)$, the linear subspace $C_{c}^{\infty}(\Omega)$ is dense in X_{p}.
Proof. The proof is more or less standard (see e.g. [27, Corollary 19.24]). We give it for completeness. Let $u \in X_{p}$ and $\Omega_{k}:=\{x \in \Omega| | x \mid \leq k$, $\operatorname{dist}(x, \partial \Omega) \geq 1 / k\}$ for $k \in \mathbf{N}$. For any given $\varepsilon>0$, the set $\{x \in \Omega||u(x)| \geq \varepsilon / 2\}$ is compact in Ω since $u \in C_{0}(\Omega)$. Moreover, since $u \in L^{p}(\Omega)$, we can take $k \in \mathbf{N}$ so large that

$$
\begin{equation*}
\|u\|_{L^{p}\left(\Omega \backslash \Omega_{k}\right)}<\frac{\varepsilon}{2}, \quad\|u\|_{L^{\infty}\left(\Omega \backslash \Omega_{k}\right)}<\frac{\varepsilon}{2} . \tag{3.23}
\end{equation*}
$$

Let $\varphi \in C_{c}^{\infty}(\Omega)$ be a continuous cut-off function such that

$$
0 \leq \varphi \leq 1 \quad \text { in } \Omega, \quad \varphi=1 \quad \text { in } \Omega_{k}, \quad \varphi=0 \quad \text { in } \Omega \backslash \Omega_{2 k} .
$$

Since $u-\varphi u=0$ in Ω_{k} and $|u-\varphi u| \leq|u|$ in $\Omega \backslash \Omega_{k}$, it follows from (3.23) that

$$
\begin{equation*}
\|u-\varphi u\|_{L^{p}(\Omega)} \leq\|u\|_{L^{p}\left(\Omega \backslash \Omega_{k}\right)}<\frac{\varepsilon}{2}, \quad\|u-\varphi u\|_{L^{\infty}(\Omega)} \leq\|u\|_{L^{\infty}\left(\Omega \backslash \Omega_{k}\right)}<\frac{\varepsilon}{2} . \tag{3.24}
\end{equation*}
$$

Let ρ_{δ} be a mollifier as in the beginning of the proof of Proposition 3.16. Since

$$
\varphi u \in L^{p}(\Omega), \quad \operatorname{dist}(\operatorname{supp}(\varphi u), \partial \Omega) \geq \frac{1}{2 k}
$$

we can take $\delta \in(0,1 / 4 k)$ so small that

$$
\begin{equation*}
u_{\delta}:=\rho_{\delta} *(\varphi u) \in C_{c}^{\infty}(\Omega), \quad\left\|\varphi u-u_{\delta}\right\|_{L^{p}(\Omega)}<\frac{\varepsilon}{2} \tag{3.25}
\end{equation*}
$$

On the other hand, since φu is uniformly continuous on $\Omega_{4 k}$, we can again choose $\delta \in(0,1 / 4 k)$ so small that $\left\|\varphi u-u_{\delta}\right\|_{L^{\infty}\left(\Omega_{4 k}\right)}<\varepsilon / 2$. Moreover, since $\operatorname{supp}(\varphi u) \subset$ $\Omega_{2 k}$ and $\delta \in(0,1 / 4 k)$, we have $\varphi u=u_{\delta}=0$ outside of $\Omega_{4 k}$ and thus

$$
\begin{equation*}
\left\|\varphi u-u_{\delta}\right\|_{L^{\infty}(\Omega)}=\left\|\varphi u-u_{\delta}\right\|_{L^{\infty}\left(\Omega_{4 k}\right)}<\frac{\varepsilon}{2} \tag{3.26}
\end{equation*}
$$

Combining (3.24), (3.25) and (3.26), we obtain $u_{\delta} \in C_{c}^{\infty}(\Omega)$ and

$$
\left\|u-u_{\delta}\right\|_{X_{p}}=\max \left\{\left\|u-u_{\delta}\right\|_{L^{p}(\Omega)},\left\|u-u_{\delta}\right\|_{L^{\infty}(\Omega)}\right\}<\varepsilon .
$$

Hence the lemma follows.
Let $Y_{p}:=L_{\sigma}^{p}(\Omega) \cap \operatorname{VMO}_{b, 0, \sigma}^{\infty, \nu}(\Omega)$ for $p \in(1, \infty), \nu \in(0, \infty]$. Since $L_{\sigma}^{p}(\Omega)$ and $V M O_{b, 0, \sigma}^{\infty, \nu}(\Omega)$ are closed in $L^{p}(\Omega)$ and $B M O_{b}^{\infty, \nu}(\Omega)$, respectively, Y_{p} becomes a Banach space under the norm $\|v\|_{Y_{p}}:=\max \left\{\|v\|_{L^{p}(\Omega)},\left\|v: B M O_{b}^{\infty, \nu}(\Omega)\right\|\right\}$.

Theorem 3.20. Let $p \in(1, \infty)$ and $\nu \in(0, \infty]$. The linear operator Q^{\prime} given in Definition 3.11 extends uniquely to a bounded linear operator Q_{p} from X_{p} into Y_{p}. Moreover, there exists a constant $c>0$ such that

$$
\begin{equation*}
\left\|Q_{p} u\right\|_{L^{p}(\Omega)} \leq c\|u\|_{L^{p}(\Omega)}, \quad\left\|Q_{p} u: B M O_{b}^{\infty, \nu}(\Omega)\right\| \leq c\|u\|_{L^{\infty}(\Omega)} \tag{3.27}
\end{equation*}
$$

for all $u \in X_{p}$ and $Q_{p} u=u$ holds for all u in the X_{p}-closure of $C_{c, \sigma}^{\infty}(\Omega)$.
Proof. Let $u \in C_{c}^{\infty}(\Omega)$. Then we have $Q^{\prime} u \in Y_{p}$ by Lemma 3.12 and Lemma 3.15. Moreover, by Theorem 3.5 and Theorem 3.10, there is a constant $c>0$ independent of u such that

$$
\begin{equation*}
\left\|Q^{\prime} u\right\|_{L^{p}(\Omega)} \leq c\|u\|_{L^{p}(\Omega)}, \quad\left\|Q^{\prime} u: B M O_{b}^{\infty, \nu}(\Omega)\right\| \leq c\|u\|_{L^{\infty}(\Omega)} . \tag{3.28}
\end{equation*}
$$

Hence we have $Q^{\prime} u \in Y_{p}$ and $\left\|Q^{\prime} u\right\|_{Y_{p}} \leq c\|u\|_{X_{p}}$ for all $u \in C_{c}^{\infty}(\Omega)$. Since $C_{c}^{\infty}(\Omega)$ is dense in X_{p} by Lemma 3.19, the operator Q^{\prime} extends uniquely to a bounded linear operator Q_{p} from X_{p} into Y_{p}. Also, it follows from (3.28) that the inequality (3.27) holds for all $u \in X_{p}$. Since $Q^{\prime} u=u$ holds for all $u \in C_{c, \sigma}^{\infty}(\Omega)$ as observed after Definition 3.11, by the density argument we have $Q_{p} u=u$ for all u in the X_{p}-closure of $C_{c, \sigma}^{\infty}(\Omega)$. The proof is complete.

Finally, Theorem 1.4 follows from Theorem 3.20 with $p=2$, that is, the linear operator Q in Theorem 1.4 is given by $Q=Q_{2}$.

4. Analyticity in L^{p}

In this section we shall give a complete proof of Theorem 1.1.
Proof of Theorem 1.1. Let $S(t)$ be the Stokes semigroup in \tilde{L}_{σ}^{p} constructed by [14], [16]. To show that $S(t)$ forms an analytic semigroup in $L_{\sigma}^{p}(2 \leq p<\infty)$ it suffices to prove that there exists a constant C that

$$
\begin{equation*}
\left\|S(t) v_{0}\right\|_{p} \leq C\left\|v_{0}\right\|_{p} \tag{4.1}
\end{equation*}
$$

$$
\begin{equation*}
\left\|t \frac{\mathrm{~d}}{\mathrm{~d} t} S(t) v_{0}\right\|_{p} \leq C\left\|v_{0}\right\|_{p} \tag{4.2}
\end{equation*}
$$

for all $v_{0} \in C_{c, \sigma}^{\infty}(\Omega)$ and for all $t \in(0,1)$. Let Q be the operator in Theorem 1.4. Since Q is bounded in L^{2} and maps L^{2} to L_{σ}^{2} and $S(t)$ fulfills (4.1) and (4.2) for $p=2$, we have

$$
\begin{align*}
\|S(t) Q u\|_{2} & \leq C\|u\|_{2} \tag{4.3}\\
\left\|t \frac{\mathrm{~d}}{\mathrm{~d} t} S(t) Q u\right\|_{2} & \leq C\|u\|_{2}
\end{align*}
$$

for all $u \in C_{c}(\Omega)$ and $t \in(0,1)$. Since Ω is admissible as proved in [5], $S(t)$ forms an analytic semigroup in $V M O_{b, 0, \sigma}^{\infty, \nu}$ by Theorem 1.2. We conclude that

$$
\begin{gather*}
\left\|S(t) Q u: B M O_{b}^{\infty, \nu}(\Omega)\right\| \leq C\|u\|_{\infty} \tag{4.5}\\
\left\|t \frac{\mathrm{~d}}{\mathrm{~d} t} S(t) Q u: B M O_{b}^{\infty, \nu}(\Omega)\right\| \leq C\|u\|_{\infty} \tag{4.6}
\end{gather*}
$$

for all $u \in C_{c}(\Omega)$ and $t \in(0,1)$ since Q fulfills

$$
\left\|Q u: B M O_{b}^{\infty, \nu}(\Omega)\right\| \leq C\|u\|_{\infty}, Q u \in V M O_{b, 0, \sigma}^{\infty, \nu}
$$

for all $u \in C_{c}(\Omega)$ by Theorem 1.4. (Note that we have a stronger statement than (4.6) by replacing the $B M O_{b}$ type norm by the L^{∞} norm since we have the regularizing estimate (1.3).) We apply an interpolation result (Theorem 1.3) to (4.3) and (4.5) and to (4.4) and (4.6) to get, respectively

$$
\begin{equation*}
\|S(t) Q u\|_{p} \leq C\|u\|_{p} \tag{4.7}
\end{equation*}
$$

$$
\begin{equation*}
\left\|t \frac{\mathrm{~d}}{\mathrm{~d} t} S(t) Q u\right\|_{p} \leq C\|u\|_{p} \tag{4.8}
\end{equation*}
$$

for all $u \in C_{c}(\Omega)$ and for all $t \in(0,1)$. Since $Q u=u$ for $u \in C_{c, \sigma}^{\infty}(\Omega)$ this yields (4.1) and (4.2).

It remains to prove that $S(t)$ is a C_{0}-semigroup in L_{σ}^{p}. Since $C_{c, \sigma}^{\infty}(\Omega)$ is dense in L_{σ}^{p}, for $v_{0} \in L_{\sigma}^{p}$ there is $v_{0 m} \in C_{c, \sigma}^{\infty}$ such that $\left\|v_{0}-v_{0 m}\right\|_{p} \rightarrow 0$ as $m \rightarrow \infty$. By (4.1) we observe that

$$
\begin{aligned}
\left\|S(t) v_{0}-v_{0}\right\|_{p} & \leq\left\|S(t)\left(v_{0}-v_{0 m}\right)\right\|_{p}+\left\|S(t) v_{0 m}-v_{0 m}\right\|_{p}+\left\|v_{0 m}-v_{0}\right\|_{p} \\
& \leq C\left\|v_{0}-v_{0 m}\right\|_{p}+\left\|S(t) v_{0 m}-v_{0 m}\right\|_{p}
\end{aligned}
$$

Sending $t \downarrow 0$, we get

$$
\varlimsup_{t \downarrow 0}\left\|S(t) v_{0}-v_{0}\right\|_{p} \leq C\left\|v-v_{0 m}\right\|_{p}
$$

since $S(t) v_{0 m} \rightarrow v_{0 m}$ in \tilde{L}_{σ}^{p} as $t \downarrow 0$ by [14], [16]. Sending $m \rightarrow \infty$, we conclude that $S(t) v_{0} \rightarrow v_{0}$ in L_{σ}^{p} as $t \downarrow 0$.

Remark 4.1. In a similar way as we derived (4.5) and (4.6) we are able to derive from the $L^{\infty}-B M O$ estimates in [10] that

$$
\begin{gathered}
t\left\|\nabla^{2} S(t) Q u: B M O_{b}^{\infty, \nu}(\Omega)\right\| \leq C\|u\|_{\infty} \\
t^{1 / 2}\left\|\nabla S(t) Q u: B M O_{b}^{\infty, \nu}(\Omega)\right\| \leq C\|u\|_{\infty}
\end{gathered}
$$

for all $u \in C_{c}(\Omega)$ and $t \in(0,1)$.

Note that L^{2} results

$$
\begin{gathered}
t\left\|\nabla^{2} S(t) Q u\right\|_{2} \leq C\|u\|_{2} \\
t^{1 / 2}\|\nabla S(t) Q u\|_{2} \leq C\|u\|_{2}
\end{gathered}
$$

easily follow from the analyticity of $S(t)$ in L_{σ}^{2} and L^{2}-boundedness of Q if one observes that $\|\nabla u\|_{2}^{2}=(A u, u)_{L^{2}}$ and

$$
\left\|\nabla^{2} u\right\|_{2} \leq C\left(\|A u\|_{2}+\|\nabla u\|_{2}+\|u\|_{2}\right)
$$

(see e.g. [34, Chapter III, Theorem 2.1.1 (d)]), where A is the Stokes operator in L_{σ}^{2}.

Interpolating the L^{2} results and the above $L^{\infty}-B M O$ results, we are able to prove that there is $C_{p}>0$ satisfying

$$
\begin{gathered}
t\left\|\nabla^{2} S(t) v_{0}\right\|_{p} \leq C_{p}\left\|v_{0}\right\|_{p} \\
t^{1 / 2}\left\|\nabla S(t) v_{0}\right\|_{p} \leq C_{p}\left\|v_{0}\right\|_{p}
\end{gathered}
$$

for all $v_{0} \in L_{\sigma}^{p}(\Omega)$ and $t \in(0,1)$ with $p \in(2, \infty)$.

References

[1] K. Abe, The Stokes semigroup on non-decaying spaces, PhD thesis, The University of Tokyo, 2014.
[2] K. Abe and Y. Giga, Analyticity of the Stokes semigroup in spaces of bounded functions, Acta Math. 211 (2013), 1-46.
[3] , The L^{∞}-Stokes semigroup in exterior domains, J. Evol. Equ. 14 (2014), no. 1, 1-28.
[4] K. Abe, Y. Giga, and M. Hieber, Stokes resolvent estimates in space of bounded functions, Annales scientifiques de l'ENS 48 (2015), 537-559.
[5] K. Abe, Y. Giga, K. Schade, and T. Suzuki, On the Stokes semigroup in some non-Helmholtz domains, Arch. Math. (Basel) 104 (2015), 177-187.
[6] , On the Stokes resolvent estimates for cylindrical domains, in preparation.
[7] R. A. Adams and J. J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003.
[8] L. von Below, The Stokes and Navier-Stokes equations in layer domains with and without a free surface, PhD thesis, Technische Universität Darmstadt, 2014.
[9] M. E. Bogovskiǐ, Decomposition of $L^{p}\left(\Omega ; \mathbf{R}^{n}\right)$ into a direct sum of subspaces of solenoidal and potential vector fields, Dokl. Akad. Nauk SSSR 286 (1986), no. 4, 781-786 (Russian); English transl., Soviet Math. Dokl. 33 (1986), 161-165.
[10] M. Bolkart and Y. Giga, On $L^{\infty}-B M O$ estimates for derivatives of the Stokes semigroup, Hokkaido University Preprint Series in Math. (2015), no. 1067.
[11] M. Bolkart, Y. Giga, and T. Suzuki, Analyticity of the Stokes semigroup in BMO type spaces, Hokkaido University Preprint Series in Math. (2015), no. 1078.
[12] M. Bolkart, Y. Giga, T. Suzuki, and Y. Tsutsui, Equivalence of BMO type norm with applications to the heat semigroup, in preparation.
[13] X. T. Duong and L. Yan, New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications, Comm. Pure Appl. Math. 58 (2005), 1375-1420.
[14] R. Farwig, H. Kozono, and H. Sohr, An L^{q}-approach to Stokes and Navier-Stokes equations in general domains, Acta Math. 195 (2005), 21-53.
[15] , On the Helmholtz decomposition in general unbounded domains, Arch. Math. (Basel) 88 (2007), 239-248.
[16] , On the Stokes operator in general unbounded domains, Hokkaido Math. J. 38 (2009), no. 1, 111-136.
[17] D. Fujiwara and H. Morimoto, An L_{r}-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 3, 685-700.
[18] C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), 137193.
[19] G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems, 2nd ed., Springer Monographs in Mathematics, Springer, New York, 2011.
[20] M. Geissert, H. Heck, M. Hieber, and O. Sawada, Weak Neumann implies Stokes, J. Reine Angew. Math. 669 (2012), 75-100.
[21] Y. Giga, Analyticity of the semigroup generated by the Stokes operator in L_{r} spaces, Math. Z. 178 (1981), 297-329.
[22] E. Giusti, Direct methods in the calculus of variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003.
[23] L. Grafakos, Classical Fourier analysis, 3rd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2014.
[24] , Modern Fourier analysis, 3rd ed., Graduate Texts in Mathematics, vol. 250, Springer, New York, 2014.
[25] S. Janson and P. W. Jones, Interpolation between H^{p} spaces: the complex method, J. Funct. Anal. 48 (1982), 58-80.
[26] P. W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), 41-66.
[27] J. Jost, Postmodern analysis, 3rd ed., Universitext, Springer-Verlag, Berlin, 2005.
[28] V. N. Maslennikova and M. E. Bogovskiǐ, Elliptic boundary value problems in unbounded domains with noncompact and non smooth boundaries, Rend. Sem. Mat. Fis. Milano 56 (1986), 125-138.
[29] A. Miyachi, H^{p} spaces over open subsets of R^{n}, Studia Math. 95 (1990), 205-228.
[30] Y. Maekawa and H. Miura, On isomorphism for the space of solenoidal vector fields and its application to the Stokes problem, Hokkaido University Preprint Series in Math. (2015), no. 1076.
[31] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French).
[32] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987.
[33] Y. Shibata, Generalized resolvent estimates of the Stokes equations with first order boundary condition in a general domain, J. Math. Fluid Mech. 15 (2013), 1-40.
[34] H. Sohr, The Navier-Stokes equations: An elementary functional analytic approach, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2001.
[35] V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math. 8 (1977), 467-529.
[36] , Stokes and Navier-Stokes equations in domains with noncompact boundaries, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. IV (Paris, 1981/1982), Res. Notes in Math. 84 (1983), 240-349. Pitman, Boston, MA.
[37] S. G. Staples, L^{p}-averaging domains and the Poincaré inequality, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 103-127.

Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstrasse
7, 64289 Darmstadt, Germany
E-mail address: bolkart@mathematik.tu-darmstadt.de
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba
Meguro-ku Tokyo 153-8914, Japan
E-mail address: labgiga@ms.u-tokyo.ac.jp
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914, Japan

E-mail address: thmiura@ms.u-tokyo.ac.jp
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914, Japan

E-mail address: tsuzuki@ms.u-tokyo.ac.jp
Department of Mathematical Sciences, Faculty of Science, Shinshu University, Asahi 3-1-1 Matsumoto Nagano 390-8621, Japan

E-mail address: tsutsui@shinshu-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary: 35Q35; Secondary: 76D07.
 Key words and phrases. Stokes equations, non-Helmholtz domain, analytic semigroup.
 This work was partly supported by the Japan Society for the Promotion of Science (JSPS) and the German Research Foundation through Japanese-German Graduate Externship and IRTG 1529. The work of Yoshikazu Giga was partly supported by JSPS through the Grants Kiban S (No. 26220702), Kiban A (No. 23244015) and Houga (No. 25610025). The work of Tatsu-Hiko Miura and Takuya Suzuki was supported by the Program for Leading Graduate Schools, MEXT, Japan. The work of Yohei Tsutsui was partly supported by JSPS through Grant-in-Aid for Young Scientists (B) (No. 15K20919) and Grant-in-Aid for Scientific Research (B) (No. 23340034).

