ON ANALYTICITY OF THE L^p-STOKES SEMIGROUP FOR SOME NON-HELMHOLTZ DOMAINS

MARTIN BOLKART, YOSHIKAZU GIGA, TATSU-HIKO MIURA, TAKUYA SUZUKI, AND YOHEI TSUTSUI

ABSTRACT. Consider the Stokes equations in a sector-like C^3 domain $\Omega \subset \mathbb{R}^2$. It is shown that the Stokes operator generates an analytic semigroup in $L^p_{\sigma}(\Omega)$ for $p \in [2, \infty)$. This includes domains where the L^p -Helmholtz decomposition fails to hold. To show our result we interpolate results of the Stokes semigroup in VMO and L^2 by constructing a suitable non-Helmholtz projection to solenoidal spaces.

1. INTRODUCTION

In this paper, as a continuation of [5], [6] and [10], we study the Stokes semigroup, i.e., the solution operator $S(t) : v_0 \mapsto v(\cdot, t)$ of the initial-boundary problem for the Stokes system

$$v_t - \Delta v + \nabla q = 0$$
, div $v = 0$ in $\Omega \times (0, \infty)$

with the zero boundary condition

$$v = 0$$
 on $\partial \Omega \times (0, \infty)$

and the initial condition $v|_{t=0} = v_0$, where Ω is a domain in \mathbb{R}^n with $n \geq 2$. It is by now well-known that S(t) forms a C_0 -analytic semigroup in L^p_{σ} (1 $for various domains like smooth bounded domains ([21], [35]). Here <math>L^p_{\sigma} = L^p_{\sigma}(\Omega)$ denotes the L^p -closure of $C^{\infty}_{c,\sigma}(\Omega)$, the space of all solenoidal vector fields with compact support in Ω . More recently, it has been proved in [20] that S(t) always forms a C_0 -analytic semigroup in $L^p_{\sigma}(\Omega)$ for any uniformly C^2 -domain Ω provided that $L^p(\Omega)$ admits a topological direct sum decomposition called the Helmholtz decomposition of the form

$$L^p(\Omega) = L^p_{\sigma}(\Omega) \oplus G^p(\Omega)$$

where $G^p(\Omega) = \{ \nabla q \in L^p(\Omega) \mid q \in L^1_{loc}(\Omega) \}$. In [20] the L^q maximal regularity in time with values in $L^p_{\sigma}(\Omega)$ was also established.

The Helmholtz decomposition holds for any domain if p = 2. The L^p -Helmholtz decomposition holds for various domains like bounded or exterior domains with

²⁰¹⁰ Mathematics Subject Classification. Primary: 35Q35; Secondary: 76D07.

Key words and phrases. Stokes equations, non-Helmholtz domain, analytic semigroup.

This work was partly supported by the Japan Society for the Promotion of Science (JSPS) and the German Research Foundation through Japanese-German Graduate Externship and IRTG 1529. The work of Yoshikazu Giga was partly supported by JSPS through the Grants Kiban S (No. 26220702), Kiban A (No. 23244015) and Houga (No. 25610025). The work of Tatsu-Hiko Miura and Takuya Suzuki was supported by the Program for Leading Graduate Schools, MEXT, Japan. The work of Yohei Tsutsui was partly supported by JSPS through Grant-in-Aid for Young Scientists (B) (No. 15K20919) and Grant-in-Aid for Scientific Research (B) (No. 23340034).

smooth boundary for 1 ([19]). However, it is also known ([9], [28]) that $there is an improper smooth sector-like planar domain such that the <math>L^p$ -Helmholtz decomposition fails to hold. Let us state one of the results in [28] more precisely. Let $C(\vartheta)$ denote the cone of the form

$$C(\vartheta) = \{x = (x', x_n) \in \mathbf{R}^n \mid -x_n \ge |x| \cos(\vartheta/2)\}$$

where $\vartheta \in (0, 2\pi)$ is the opening angle. When n = 2, we simply say that $C(\vartheta)$ is a sector. We say that a planar domain Ω is a *sector-like domain* with opening angle ϑ if $\Omega \setminus B_R(0) = C(\vartheta) \setminus B_R(0)$ for some R > 0 (up to rotation and translation), where $B_R(0)$ is an open disk of radius R centered at the origin.

It is known that the L^p -Helmholtz decomposition fails for a sector-like domain Ω when $p > q'_{\vartheta}$ or $p < q_{\vartheta}$ with $q_{\vartheta} = 2/(1 + \pi/\vartheta)$, $1/q_{\vartheta} + 1/q'_{\vartheta} = 1$ even if the boundary $\partial\Omega$ is smooth [28, Example 2, Fig. 5] while for $p \in (q_{\vartheta}, q'_{\vartheta})$ the L^p -Helmholtz decomposition holds. This means that if the opening angle ϑ is larger than π , there always exists p > 2 such that the L^p -Helmholtz decomposition fails.

It has been a longstanding open question whether or not the existence of the L^p -Helmholtz decomposition is necessary for L^p analyticity of S(t). In this paper, we give a negative answer for this question by proving that there is a domain Ω for which S(t) is analytic in L^p_{σ} while the L^p -Helmholtz decomposition fails. This is a subtle problem since the existence of the L^p -Helmholtz projection is known to be necessary for L^p solvability of the resolvent equation ([33]). However, in this statement the external force term is allowed to be in the more general space L^p instead of L^p_{σ} . Our problem is different from that in [33].

We say that Ω has a C^k graph boundary if Ω is of the form

$$\Omega = \{ (x', x_n) \in \mathbf{R}^n \mid x_n > h(x') \}$$

(up to translation and rotation) with some real-valued C^k function h with variable $x' \in \mathbf{R}^{n-1}$.

Theorem 1.1. Let Ω be a sector-like domain in \mathbb{R}^2 having a C^3 graph boundary. Then S(t) forms a C_0 -analytic semigroup in $L^p_{\sigma}(\Omega)$ for all $p \in [2, \infty)$.

Here is our strategy to prove Theorem 1.1. It is by now well-known that S(t) forms an analytic semigroup in \tilde{L}^p_{σ} , i.e., $\tilde{L}^p_{\sigma} = L^p_{\sigma} \cap L^2_{\sigma}$ $(p \ge 2)$, $\tilde{L}^p = L^p_{\sigma} + L^2_{\sigma}$ $(1 ([14], [15], [16]). Thus <math>S(t)v_0$ is well-defined for $v_0 \in C^{\infty}_{c,\sigma}(\Omega)$. To show Theorem 1.1, a key step is to prove the two estimates

(1.1)
$$||S(t)v_0||_p \le C ||v_0||_p$$

(1.2)
$$t \left\| \frac{\mathrm{d}}{\mathrm{d}t} S(t) v_0 \right\|_p \le C \|v_0\|_p$$

for all $v_0 \in C^{\infty}_{c,\sigma}(\Omega)$, $t \in (0,1)$, where $||v_0||_p$ denotes the L^p -norm of v_0 . The constant C should be taken independent of t and v_0 . We shall establish (1.1) and (1.2) by interpolation since both estimates are known for p = 2.

We are tempted to interpolate the L^{∞} type result obtained in [5] with the L^2 result. In fact, in [5] the estimates (1.1) and (1.2) with $p = \infty$ are established for all $v_0 \in C_{0,\sigma}(\Omega)$, the L^{∞} -closure of $C_{c,\sigma}^{\infty}(\Omega)$ for a C^2 sector-like domain Ω in \mathbb{R}^2 . However, it is not clear that the complex interpolation space $[L^2_{\sigma}, C_{0,\sigma}]_{\rho}$ agrees with L^p_{σ} with $2/p = 1 - \rho$ although it is well-known as the Riesz-Thorin theorem that $[L^2, L^{\infty}]_{\rho} = L^p$. To interpolate, we would need a projection to solenoidal spaces which is almost impossible since such a projection involves the singular integral operator which is not bounded in L^{∞} .

To circumvent this difficulty, we consider the Stokes semigroup S(t) in *BMO*-type spaces as studied in [10], [11], [12]. For $p \in [1, \infty)$, $\mu \in (0, \infty]$ we define the *BMO* seminorm

$$\left[f:BMO_p^{\mu}(\Omega)\right] := \sup\left\{ \left(\oint_{B_r(x)} \left| f(y) - f_{B_r(x)} \right|^p \mathrm{d}y \right)^{1/p} \middle| B_r(x) \subset \Omega, \ r < \mu \right\},\$$

where $f_B = \int_B f dx$, the average of f over B and $B_r(x)$ denotes the closed ball of radius r centered at x. It is well-known that one gets an equivalent seminorm when the ball B_r is replaced by a cube. We also need to control the boundary behavior. For $\nu \in (0, \infty]$ we define

$$\left[f:b_p^{\nu}(\Omega)\right]:=\sup\left\{\left(\frac{1}{r^n}\int_{B_r(x_0)\cap\Omega}|f(y)|^p\mathrm{d}y\right)^{1/p}\,\middle|\,x_0\in\partial\Omega,\ r>0,\ B_r(x_0)\subset U_{\nu}(\partial\Omega)\right\},$$

where $U_{\nu}(E)$ is a ν -open neighborhood of E, i.e.,

 $U_{\nu}(E) = \left\{ x \in \mathbf{R}^n \mid \operatorname{dist}(x, E) < \nu \right\}.$

We shall often assume that $\nu < R^*$, where R^* is the reach from the boundary. The *BMO* norm we use is

$$\left\|f:BMO_{b,p}^{\mu,\nu}(\Omega)\right\| = \left[f:BMO_p^{\mu}(\Omega)\right] + \left[f:b_p^{\nu}(\Omega)\right].$$

If p = 1, we often drop p. The BMO space we consider is

$$BMO_{b,p}^{\mu,\nu}(\Omega) = \left\{ f \in L^1_{loc}(\Omega) \mid \left\| f : BMO_{b,p}^{\mu,\nu}(\Omega) \right\| < \infty \right\}.$$

This space is independent of p for sufficiently small ν , i.e., $\nu < R^*$ ([11], [12]) and $BMO_b^{\infty,\infty}$ agrees with Miyachi BMO space ([29]) for various domains including a half space and bounded C^2 domains ([12]). Although the $BMO_b^{\infty,\nu}(\Omega)$ norm is equivalent to the $BMO_b^{\infty,\infty}(\Omega)$ norm when Ω is bounded, there are many unbounded domains for which the $BMO_b^{\infty,\nu}(\Omega)$ norm is actually weaker than the $BMO_b^{\infty,\infty}(\Omega)$ norm when ν is finite. We define the solenoidal space $VMO_{b,0,\sigma}^{\mu,\nu}$ as the $BMO_b^{\mu,\nu}$ -closure of $C_{c,\sigma}^{\infty}(\Omega)$. In [10], [11] among other results the analyticity of S(t) in $VMO_{b,0,\sigma}^{\infty,\nu}$ has been established for a uniformly C^3 domain which is admissible in the sense of [2] provided that ν is sufficiently small.

Theorem 1.2 ([10], [11]). Let Ω be an admissible uniformly C^3 domain in \mathbb{R}^n . Then S(t) forms a C_0 -analytic semigroup in $VMO_{b,0,\sigma}^{\mu,\nu}$ for any $\mu \in (0,\infty]$ and $\nu \in (0,\nu_0)$ with some ν_0 depending only on μ and regularity of $\partial\Omega$.

Moreover, we obtain not only estimates of the form (1.1) and (1.2), where we replace L^p by L^{∞} or $BMO_b^{\infty,\nu}$, but even an estimate stronger than (1.2) with $p = \infty$, i.e.,

(1.3)
$$t \left\| \frac{\mathrm{d}S(t)}{\mathrm{d}t} v_0 \right\|_{\infty} \le C \left\| v_0 : BMO_b^{\mu,\nu}(\Omega) \right\|, \quad \mu,\nu \in (0,\infty]$$

which shows a regularizing effect.

It has been proved in [5] that a C^2 sector-like domain in \mathbb{R}^2 is admissible and thus Theorem 1.2 applies to the setting of Theorem 1.1. Note that a C^2 sector-like domain in \mathbb{R}^2 is expected to be not strictly admissible in the sense of [3]. In fact, a bounded domain ([2]), a half space ([2]), an exterior domain ([3], [4]) and a bent half space ([1]) are strictly admissible if the boundary is uniformly C^3 . On the other hand, an infinite cylinder is admissible but not strictly admissible ([6]) and a layer domain with $n \geq 3$ is not admissible ([8]).

In order to get the L^p estimates we need an interpolation result. Let $C_c(\Omega)$ denote the space of all continuous functions with compact support in Ω .

Theorem 1.3. Let Ω be a Lipschitz half-space in \mathbb{R}^n , i.e., a domain having Lipschitz graph boundary. Let T be a linear operator from $C_c(\Omega)$ to $L^2(\Omega)$. Assume that there is a constant C such that

$$||Tu||_2 \le C ||u||_2$$

$$[Tu: BMO^{\infty}(\Omega)] \le C \|u\|_{\infty}$$

for $u \in C_c(\Omega)$. Then $||Tu||_p \leq C_* ||u||_p$ for $u \in C_c(\Omega)$ with C_* depending only on C, h and $p \in (2, \infty)$.

There are a couple of such interpolation results between BMO and L^2 , which go back to Campanato and Stampacchia; in [22, Theorem 2.14] the interpolation between L^p and BMO is discussed when Ω is a cube. However, in these results the original inequalities are assumed to hold for $L^2(\Omega) \cap BMO(\Omega)$ and not for $C_c(\Omega)$. Thus ours are not included in the literature. In [13] Duong and Yan showed a similar result (Theorem 5.2) with $BMO_A(\mathcal{X})$, where A is some operator. They worked on metric measure spaces of homogeneous type (\mathcal{X}, d, μ) . In particular, in the case $\mathcal{X} = \Omega, d(x, y) = |x - y|$ and $\mu(E) = |E|$, we can see that $BMO_A(\Omega) \subset BMO^{\infty}(\Omega)$.

Unfortunately, Theorem 1.2 and Theorem 1.3 are not enough to derive (1.1) and (1.2) by interpolation. Similarly to the L^{∞} case we do not know whether or not the complex interpolation space $\left[L^2_{\sigma}, VMO^{\infty,\nu}_{b,0,\sigma}\right]_{\rho}$ with $2/p = 1 - \rho$ agrees with L^p_{σ} , although we know that $\left[L^2, BMO\right]_{\rho} = L^p$ for $\Omega = \mathbf{R}^n$ as discussed in [25].

To circumvent this difficulty, we construct the following projection operator.

Theorem 1.4. Let Ω be a Lipschitz half-space in \mathbb{R}^n . Assume that $\nu \in (0, \infty]$. There is a linear operator Q from $C_c(\Omega)$ to $VMO_{b,0,\sigma}^{\infty,\nu}(\Omega) \cap L^2_{\sigma}(\Omega)$ such that

$$\|Qu: BMO_b^{\infty,\nu}(\Omega)\| \le C \|u\|_{\infty}$$

 $\|Qu\|_2 \le C \|u\|_2$

for all $u \in C_c(\Omega)$. Moreover, Qu = u for $u \in C_c(\Omega) \cap L^2_{\sigma}(\Omega)$.

Since there may be no L^p -Helmholtz decomposition our Q should be different from the Helmholtz projection. We shall construct such an operator Q using the solution operator of the equation div u = f given by Solonnikov [36]. Although deriving the L^2 estimate is easy, to derive the *BMO* estimate is more involved since we have to estimate the b^{ν} type seminorm.

To derive (1.1), we actually interpolate

$$||S(t)Qu||_2 \le C||u||_2$$

and

$$||S(t)Qu: BMO_b^{\infty,\nu}|| \le C ||u||_{\infty}$$

for $u \in C_c(\Omega)$. Similarly, we derive (1.2) by interpolating the estimate for $t \frac{dS}{dt}Q$.

This paper is organized as follows. In Section 2, we establish an interpolation inequality of Campanato-Stampacchia type. In Section 3, we construct the projection operator Q. In Section 4, we give a complete proof of Theorem 1.1.

2. $L^2 - BMO$ interpolation on a Lipschitz half-space

In this section, we give a proof of Theorem 1.3 for a Lipschitz half-space, i.e.,

$$\Omega := \{ (x', x_n) \in \mathbf{R}^n | x_n > h(x') \}$$

with a Lipschitz function h on \mathbf{R}^{n-1} .

By Q we mean a closed cube with sides parallel to the coordinate axes. Let $\ell(Q)$ be the side length of Q, and for $\tau > 0$, τQ a cube with the same center as Q and side length $\tau \ell(Q)$.

2.1. Reduction to the half-space and extension. Here, we prepare lemmas that are basic estimates for the proof. Since h is Lipschitz continuous, $F(x) := (x', x_n - h(x'))$ is a bi-Lipschitz map from Ω to \mathbf{R}^n_+ . For a function u defined on \mathbf{R}^n_+ the pull-back function $F^*(u)$ of u on Ω is defined by $u \circ F$. We start with estimates for $(F^{-1})^*$ which is the pull-back function $(F^{-1})^*(v)$ of v on \mathbf{R}^n_+ defined by $v \circ F^{-1}$.

Lemma 2.1. Let Ω be a Lipschitz half-space.

(i):

(ii):

$$\left\| (F^{-1})^* v \right\|_{L^2(\mathbf{R}^n)} \le c \|v\|_{L^2(\Omega)}.$$

 $\left[(F^{-1})^* v : BMO^{\infty}(\mathbf{R}^n_+) \right] \le c \left[v : BMO^{\infty}(\Omega) \right].$

Here c is a constant depending only on Lipschitz bound of h and n.

Proof. (i): Because \mathbf{R}^n_+ is an open subset of \mathbf{R}^n , we know that for any $\tau > 2$,

$$\left[(F^{-1})^* v : BMO^{\infty}(\mathbf{R}^n_+) \right] \le c_\tau \sup_{\tau Q \subset \mathbf{R}^n_+} \inf_{d \in \mathbf{R}} \int_Q \left| (F^{-1})^* v - d \right| \mathrm{d}y,$$

where the supremum is taken over cubes Q, for which τQ is contained in \mathbb{R}^n_+ , see [37]. Since F is a bi-Lipschitz map, it holds

$$c_1 \operatorname{dist}(y, \partial \mathbf{R}^n_+) \le \operatorname{dist}(F^{-1}(y), \partial \Omega) \le c_2 \operatorname{dist}(y, \partial \mathbf{R}^n_+)$$

with some constants $c_1, c_2 > 0$ for all $y \in \mathbf{R}^n_+$. Since $(\tau - 1)\ell(Q)/2 \leq \operatorname{dist}(Q, \partial \mathbf{R}^n_+)$ for such cubes Q, we have the lower bound

$$c\tau\ell(Q) \leq \operatorname{dist}(F^{-1}(Q),\partial\Omega)$$

with some c > 0, which depends on n and h. Therefore, taking large τ , we can find cubes $\{R_k\}_{k=1}^{c_*} \subset \Omega$, which have no intersection of interiors, so that $\bigcup_{k=1}^{c_*} R_k$ is connected and

$$\begin{cases} \circ \ell(R_k) = \ell(Q), \\ \circ F^{-1}(Q) \subset \bigcup_{k=1}^{c_*} R_k, \text{ where } c_* \in \mathbf{N} \text{ depends only on } h, \text{ and} \\ \circ \text{ if } R_j \cap R_k \neq \emptyset, \text{ the smallest cube } R_{j,k} \text{ including } R_j \text{ and } R_k \text{ is in } \Omega. \end{cases}$$

From these, one obtains that for cubes Q with $\tau Q \subset \mathbf{R}^n_+$,

$$\inf_{d \in \mathbf{R}} \frac{1}{|Q|} \int_{Q} \left| (F^{-1})^* v - d \right| \mathrm{d}y \le c \sum_{k=1}^{c_*} \frac{1}{|R_k|} \int_{R_k} |v - v_{R_1}| \mathrm{d}y.$$

It is enough to show that

(2.1)
$$\frac{1}{|R_k|} \int_{R_k} |v - v_{R_j}| \mathrm{d}y \le c[v : BMO^{\infty}(\Omega)]$$

for the case $R_j \cap R_k \neq \emptyset$. To do this, we follow the argument of [26, Lemma 2.2 and 2.3]. Let \tilde{R}_k and \tilde{R}_j be subcubes of R_k and R_j respectively so that $\ell(\tilde{R}_k) = \ell(R_k)/2$, $\ell(\tilde{R}_j) = \ell(R_j)/2$ and they touch each other. Moreover, denote by $\tilde{R}_{j,k}$ a cube satisfying $\ell(\tilde{R}_{j,k}) = \ell(\tilde{R}_j) + \ell(\tilde{R}_k)$ and $\tilde{R}_j \cup \tilde{R}_k \subset \tilde{R}_{j,k} \subset R_{j,k}$. Hence, we have

$$\begin{split} \frac{1}{|R_k|} \int_{R_k} |v - v_{R_j}| \mathrm{d}y &\leq \frac{1}{|R_k|} \int_{R_k} |v - v_{R_k}| \mathrm{d}y + |v_{R_k} - v_{R_j}| \\ &\leq c[v: BMO^{\infty}(\Omega)] + c|v_{\tilde{R}_j} - v_{\tilde{R}_k}| \\ &\leq c[v: BMO^{\infty}(\Omega)] + c\frac{1}{|\tilde{R}_{j,k}|} \int_{\tilde{R}_{j,k}} |v - v_{\tilde{R}_{j,k}}| \mathrm{d}y \\ &\leq c[v: BMO^{\infty}(\Omega)]. \end{split}$$

(ii): This is verified as follows

$$\|(F^{-1})^*v\|_{L^2(\mathbf{R}^n_+)}^2 = \int_{\Omega} |v|^2 J_F \mathrm{d}x \le c \int_{\Omega} |v|^2 \mathrm{d}x,$$

where J_F is the modulus of the Jacobian of F which is bounded, because h is Lipschitz continuous.

Next, we consider the even extension of functions on the half space. For a function f on \mathbf{R}^n_+ , we extend f outside \mathbf{R}^n_+ by

$$E[f](x', -x_n) := f(x', x_n) \text{ for } x_n > 0.$$

From elementary geometrical observation, we can see that the extension operator E is a *BMO*-extension operator for \mathbf{R}^{n}_{+} .

Lemma 2.2.

$$[E[f]: BMO^{\infty}(\mathbf{R}^n)] \le c \left[f: BMO^{\infty}(\mathbf{R}^n_+) \right].$$

Proof. It is sufficient to consider cubes $Q \subset \mathbf{R}^n$ with $Q \cap \mathbf{R}^n_+ \neq \emptyset$ and $Q \cap \mathbf{R}^n_- \neq \emptyset$. For such Q, let Q' be a cube so that its center lies on $\partial \mathbf{R}^n_+$, $\ell(Q') = 2\ell(Q)$ and $Q \subset Q'$. Further, let Q^* be the smallest cube in \mathbf{R}^n_+ containing the upper half of Q'. With these notations, the desired inequality is proved from

$$\inf_{d \in \mathbf{R}} \frac{1}{|Q|} \int_{Q} |E[f] - d| \, \mathrm{d}y \le c \inf_{d \in \mathbf{R}} \frac{1}{|Q^*|} \int_{Q^*} |f - d| \, \mathrm{d}y.$$

2.2. Sharp maximal operator. For the proof of Theorem 1.3, we make use of the sharp maximal operator M^{\sharp} due to Fefferman and Stein ([18]). We define for $x \in \mathbf{R}^n$ and $f \in L^1_{loc}(\mathbf{R}^n)$ the function $M^{\sharp}f$ by

$$M^{\sharp}f(x) := \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y) - f_Q| \mathrm{d}y$$

It is immediate from the definition that $[f : BMO^{\infty}(\mathbf{R}^n)] = ||M^{\sharp}f||_{L^{\infty}(\mathbf{R}^n)}$. It is well-known that if $f \in L^{p_0}(\mathbf{R}^n)$ for some $p_0 \in (1, \infty)$, then for $p \in [p_0, \infty)$

(2.2)
$$||f||_{L^p(\mathbf{R}^n)} \le c ||M^{\sharp}f||_{L^p(\mathbf{R}^n)},$$

which is applied below. (Both sides of (2.2) may be infinite.) This follows from $||f||_{L^p(\mathbf{R}^n)} \leq ||Mf||_{L^p(\mathbf{R}^n)}$ and $||Mf||_{L^p(\mathbf{R}^n)} \leq c ||M^{\sharp}f||_{L^p(\mathbf{R}^n)}$, where M is the Hardy-Littlewood maximal operator [18].

2.3. Marcinkiewicz interpolation. Here, we give a variant of the Marcinkiewicz interpolation theorem.

Proposition 2.3. Let D be an open subset of \mathbb{R}^n and S a sublinear operator from $C_c(D)$ to $L^2(\mathbb{R}^n)$. If

$$||S[f]||_{L^{2}(\mathbf{R}^{n})} \leq c||f||_{L^{2}(D)}$$
$$||S[f]||_{L^{\infty}(\mathbf{R}^{n})} \leq c||f||_{L^{\infty}(D)}$$

for $f \in C_c(D)$, then $||S[f]||_{L^p(\mathbf{R}^n)} \leq C ||f||_{L^p(D)}$ for $f \in C_c(D)$ with C depending only on c and $p \in (2, \infty)$.

Proof. For $\lambda > 0$ and $\alpha > 0$, we decompose f into two parts; $f = f_2 + f_{\infty}$ where

$$f_2(x) = \begin{cases} 0 & \text{if } |f(x)| \le \alpha \lambda \\ f(x) - \alpha \lambda \text{sign}(f(x)) & \text{if } |f(x)| > \alpha \lambda, \end{cases}$$

where sign $\xi = \xi/|\xi|$ for $\xi \neq 0$ and sign $\xi = 0$ for $\xi = 0$. Observe that $f_2, f_\infty \in BC(D)$, and then $f_2, f_\infty \in C_c(D)$. Therefore, the two inequalities of our assumption hold for f_2 and f_∞ , respectively. We set $\alpha = \left(2||S||_{L^\infty(D)\to L^\infty(\mathbf{R}^n)}\right)^{-1}$ and observe that $|\{x \in \mathbf{R}^n \mid S[f_\infty](x) > \lambda/2\}| = 0$. We now conclude that

$$\begin{split} \int_{\mathbf{R}^n} |S[f]|^p \, dx &\leq p \int_0^\infty \lambda^{p-1} \left| \{x \in \mathbf{R}^n \mid |S[f](x)| > \lambda \} \right| d\lambda \\ &\leq p \int_0^\infty \lambda^{p-1} \left| \{x \in \mathbf{R}^n \mid |S[f_2](x)| > \lambda/2 \} \right| d\lambda \\ &\leq p \int_0^\infty \lambda^{p-1} \left(\frac{2}{\lambda} \|S\|_{L^2(D) \to L^2(\mathbf{R}^n)} \|f_2\|_{L^2(D)} \right)^2 d\lambda \\ &\leq c \int_0^\infty \lambda^{p-3} \int_{\{|f| > \alpha\lambda\}} |f(x)|^2 \, dx \, d\lambda \\ &= 2c \int_0^\infty \lambda^{p-3} \left(\int_{\alpha\lambda}^\infty t \left| \{x \in \mathbf{R}^n \mid |f(x)| > t\} \right| \, dt \right) d\lambda \\ &= 2c \int_0^\infty t \left| \{x \in \mathbf{R}^n \mid |f(x)| > t\} \right| \left(\int_0^{t/\alpha} \lambda^{p-3} d\lambda \right) dt \\ &\leq c \|f\|_{L^p(D)}^p. \end{split}$$

2.4. **Proof of Theorem 1.3.** For simplicity, we write g := Tf. By changing variables, one obtains

$$\int_{\Omega} |g|^{p} \mathrm{d}x \leq c \int_{\mathbf{R}^{n}_{+}} |(F^{-1})^{*}g|^{p} \mathrm{d}y \leq c \int_{\mathbf{R}^{n}} |E[(F^{-1})^{*}g]|^{p} \mathrm{d}y \leq c \int_{\mathbf{R}^{n}} |\Phi[f]|^{p} \mathrm{d}y,$$

where $\Phi[f] := M^{\sharp} \left(E[(F^{-1})^*g] \right)$. Here, because $E[(F^{-1})^*g] \in L^2(\mathbf{R}^n)$, we have applied (2.2) in the third inequality. With the help of Proposition 2.3, it is enough to see $L^2(\Omega) - L^2(\mathbf{R}^n)$ and $L^{\infty}(\Omega) - L^{\infty}(\mathbf{R}^n)$ estimates for Φ . The former estimate can be seen by L^2 -boundedness of Hardy-Littlewood maximal operator and (ii) of Lemma 2.1. The later one follows from (i) of Lemma 2.1 and Lemma 2.2. Then the proof of Theorem 1.3 is completed.

3. Non-Helmholtz projection

Our goal in this section is to prove Theorem 1.4.

3.1. A solution operator to the divergence problem. As in Section 2, let $\Omega = \{(x', x_n) \in \mathbf{R}^n \mid x' \in \mathbf{R}^{n-1}, x_n > h(x')\}$ be a Lipschitz half-space in \mathbf{R}^n with a Lipschitz continuous function h on \mathbf{R}^{n-1} . Then, there is a closed cone of the form

$$C_1 = \{ x = (x', x_n) \in \mathbf{R}^n \mid x' \in \mathbf{R}^{n-1}, \, -x_n \ge |x| \cos(2\theta) \}$$

with an angle $\theta \in (0, \pi/4)$ (depending on the Lipschitz constant of h) such that

$$x + C_1 = \{ y \in \mathbf{R}^n \mid y - x \in C_1 \} \subset \Omega^c (:= \mathbf{R}^n \setminus \Omega) \text{ for all } x \in \Omega^c \}$$

In the notion of the introduction $C_1 = C(4\theta)$ so that the opening angle equals 4θ . With this angle we define a closed cone $C_0 = C(2\theta)$, i.e.,

$$C_0 = \{ x = (x', x_n) \in \mathbf{R}^n \mid x' \in \mathbf{R}^{n-1}, \ -x_n \ge |x| \cos \theta \}.$$

The closed cone C_0 also satisfies

(3.1)
$$x + C_0 \subset \Omega^c \quad \text{for all} \quad x \in \Omega^c.$$

Let $L \in C_c^{\infty}(\mathbf{R}^n)$ be a function such that

(3.2)
$$\operatorname{supp} L \subset (B_2(0) \setminus B_{1/2}(0)) \cap (-C_0), \quad \int_{S^{n-1}} L(\sigma) \, \mathrm{d}\mathcal{H}^{n-1}(\sigma) = 1.$$

Here $-C_0 = \{-y \mid y \in C_0\}$ and S^{n-1} is the unit sphere in \mathbb{R}^n . Then we define a vector field $K = (K_1, \ldots, K_n)$ as

(3.3)
$$K(x) := \frac{x}{|x|^n} L\left(\frac{x}{|x|}\right), \quad x \in \mathbf{R}^n \setminus \{0\}.$$

Definition 3.1. For $f \in C_c^{\infty}(\Omega)$, we define a vector field u = Sf as

$$u(x) = Sf(x) := (K * \overline{f})(x) = \int_{\mathbf{R}^n} K(x - y)\overline{f}(y) \,\mathrm{d}y, \quad x \in \mathbf{R}^n.$$

Here \overline{f} denotes the zero extension of f to \mathbb{R}^n given by

$$\bar{f}(x) := \begin{cases} f(x), & x \in \Omega, \\ 0, & x \in \Omega^c. \end{cases}$$

This operator was introduced by Solonnikov [36]. For a fixed $x \in \mathbf{R}^n$, since

$$\frac{x-y}{|x-y|} \in \operatorname{supp} L|_{S^{n-1}} \subset S^{n-1} \cap (-C_0)$$

implies $y \in x + C_0$, we can write

$$u(x) = \int_{x+C_0} K(x-y)\bar{f}(y) \,\mathrm{d}y.$$

This formula and the property (3.1) of Ω imply that u(x) = 0 for all $x \in \Omega^c$. In particular, u vanishes on $\partial \Omega$. However, the support of u may become unbounded although f is compactly supported in Ω .

By the change of variables $x - y = r\sigma$ with r > 0 and $\sigma \in S^{n-1}$ we have

$$u(x) = \int_0^\infty \int_{S^{n-1}} L(\sigma) \bar{f}(x - r\sigma) r^{n-1} \mathrm{d}\mathcal{H}^{n-1}(\sigma) \,\mathrm{d}r.$$

Hence if $f \in C_c^{\infty}(\Omega)$ is supported in $B_R(0)$ and $x \in B_a(0)$ (R, a > 0), then

$$u(x) = \int_0^{R+a} \int_{S^{n-1}} L(\sigma) \bar{f}(x-r\sigma) r^{n-1} \mathrm{d}\mathcal{H}^{n-1}(\sigma) \,\mathrm{d}r,$$

which implies that u = Sf is smooth in Ω . Moreover, u = Sf vanishes near $\partial \Omega$ and thus it is smooth in the whole space \mathbb{R}^n , since f is compactly supported in Ω .

Lemma 3.2. Let $p \in (1, \infty)$. There exists a constant c > 0 such that

$$\|\nabla u\|_{L^p(\Omega)} \le c \|f\|_{L^p(\Omega)}$$

for all $f \in C_c^{\infty}(\Omega)$ and u = Sf.

Proof. Let u_i be the *i*-th component of u:

$$u_i(x) = (K_i * \overline{f})(x) = \int_{\mathbf{R}^n} K_i(z)\overline{f}(x-z) \,\mathrm{d}z.$$

Differentiating both sides with respect to the j-th variable, we have

$$\partial_j u_i(x) = \int_{\mathbf{R}^n} K_i(z) (\partial_j \bar{f})(x-z) \, \mathrm{d}z = \lim_{\varepsilon \to 0} \int_{\mathbf{R}^n \setminus B_\varepsilon(0)} K_i(z) (\partial_j \bar{f})(x-z) \, \mathrm{d}z$$

and, by changing variables y = x - z and integrating by parts,

$$\partial_j u_i(x) =$$

$$\lim_{\varepsilon \to 0} \left(\int_{\partial B_{\varepsilon}(x)} K_i(x-y) \frac{x_j - y_j}{|x-y|} \bar{f}(y) \, \mathrm{d}\mathcal{H}^{n-1}(y) + \int_{\mathbf{R}^n \setminus B_{\varepsilon}(x)} (\partial_j K_i)(x-y) \bar{f}(y) \, \mathrm{d}y \right).$$

On the one hand, we change variables $x - y = \varepsilon \sigma$ with $\sigma \in S^{n-1}$ to get

$$\begin{split} &\lim_{\varepsilon \to 0} \int_{|x-y|=\varepsilon} K_i(x-y) \frac{x_j - y_j}{|x-y|} \bar{f}(y) \, \mathrm{d}\mathcal{H}^{n-1}(y) \\ &= \lim_{\varepsilon \to 0} \int_{|x-y|=\varepsilon} \frac{x_i - y_i}{|x-y|} \frac{x_j - y_j}{|x-y|} L\left(\frac{x-y}{|x-y|}\right) \bar{f}(y) \frac{1}{|x-y|^{n-1}} \, \mathrm{d}\mathcal{H}^{n-1}(y) \\ &= \lim_{\varepsilon \to 0} \int_{S^{n-1}} \sigma_i \sigma_j L(\sigma) \bar{f}(x-\varepsilon\sigma) \, \mathrm{d}\mathcal{H}^{n-1}(\sigma) \\ &= \bar{f}(x) \int_{S^{n-1}} \sigma_i \sigma_j L(\sigma) \, \mathrm{d}\mathcal{H}^{n-1}(\sigma), \end{split}$$

where the last equality follows from the fact that L is integrable on S^{n-1} and \bar{f} is continuous at x. On the other hand, we differentiate K_i to obtain

(3.4)

$$K_{ij}(z) := \partial_j K_i(z) = \frac{k_{ij}(z/|z|)}{|z|^n},$$

$$k_{ij}(z) := (\delta_{ij} - nz_i z_j)L(z) + z_i(\partial_j L)(z) - z_i z_j \sum_{\ell=1}^n z_\ell(\partial_\ell L)(z)$$

for $z \in \mathbf{R}^n \setminus \{0\}$. Then K_{ij} is homogeneous of degree -n and there is a constant c > 0 such that

$$|K_{ij}(z)| \le \frac{c}{|z|^n}$$
 for all $z \in \mathbf{R}^n \setminus \{0\}$

by the smoothness of L on S^{n-1} . Moreover, for every R_1 and R_2 with $0 < R_1 < R_2$,

$$\begin{split} &\int_{R_1 < |z| < R_2} K_{ij}(z) \, \mathrm{d}z = \int_{R_1 < |z| < R_2} \partial_j K_i(z) \, \mathrm{d}z \\ &= \int_{|z| = R_2} K_i(z) \frac{z_j}{|z|} \, \mathrm{d}\mathcal{H}^{n-1}(z) - \int_{|z| = R_1} K_i(z) \frac{z_j}{|z|} \, \mathrm{d}\mathcal{H}^{n-1}(z) \\ &= \int_{|z| = R_2} \frac{z_i}{|z|} \frac{z_j}{|z|} L\left(\frac{z}{|z|}\right) \frac{1}{|z|^{n-1}} \, \mathrm{d}\mathcal{H}^{n-1}(z) - \int_{|z| = R_1} \frac{z_i}{|z|} \frac{z_j}{|z|} L\left(\frac{z}{|z|}\right) \frac{1}{|z|^{n-1}} \, \mathrm{d}\mathcal{H}^{n-1}(z) \\ &= \int_{S^{n-1}} \sigma_i \sigma_j L(\sigma) \, \mathrm{d}\mathcal{H}^{n-1}(\sigma) - \int_{S^{n-1}} \sigma_i \sigma_j L(\sigma) \, \mathrm{d}\mathcal{H}^{n-1}(\sigma) = 0. \end{split}$$

In the fourth equality we changed variables $z = R_2 \sigma$ and $z = R_1 \sigma$ with $\sigma \in S^{n-1}$, respectively. This equality is equivalent to

(3.5)
$$\int_{S^{n-1}} k_{ij}(\sigma) \,\mathrm{d}\mathcal{H}^{n-1}(\sigma) = 0.$$

Thus we can apply the Calderón-Zygmund theory (see eg. [23, Theorem 5.2.7 and Theorem 5.2.10]) of singular integral operators to the kernel K_{ij} and obtain the formula

(3.6)
$$\partial_j u_i(x) = \bar{f}(x) \int_{S^{n-1}} \sigma_i \sigma_j L(\sigma) \, \mathrm{d}\mathcal{H}^{n-1}(\sigma) + \int_{\mathbf{R}^n} K_{ij}(x-y) \bar{f}(y) \, \mathrm{d}y,$$

where the second integral is considered in the sense of the Cauchy principal value. Finally, the inequality

$$\left|\bar{f}(x)\int_{S^{n-1}}\sigma_i\sigma_j L(\sigma)\,\mathrm{d}\mathcal{H}^{n-1}(\sigma)\right| \le |\bar{f}(x)|\int_{S^{n-1}}L(\sigma)\,\mathrm{d}\mathcal{H}^{n-1}(\sigma) = |\bar{f}(x)|$$

and the Calderón-Zygmund theory imply that

$$\|\partial_j u_i\|_{L^p(\Omega)} \le c \|\bar{f}\|_{L^p(\mathbf{R}^n)} = c \|f\|_{L^p(\Omega)}$$

with a positive constant c independent of f. Hence the lemma follows.

Lemma 3.3. For every $f \in C_c^{\infty}(\Omega)$ the vector field u = Sf satisfies

div u = f in Ω , u = 0 on $\partial \Omega$.

Proof. We have already observed that u vanishes on the boundary. Let us compute div $u = \sum_{i=1}^{n} \partial_i u_i$ in Ω . By the formula (3.6) in the proof of Lemma 3.2,

$$\operatorname{div} u(x) = \bar{f}(x) \int_{S^{n-1}} \sum_{i=1}^{n} \sigma_i^2 L(\sigma) \, \mathrm{d}\mathcal{H}^{n-1}(\sigma) + \int_{\mathbf{R}^n} \sum_{i=1}^{n} K_{ii}(x-y) \bar{f}(y) \, \mathrm{d}y.$$

In this formula, we have

$$\int_{S^{n-1}} \sum_{i=1}^n \sigma_i^2 L(\sigma) \, \mathrm{d}\mathcal{H}^{n-1}(\sigma) = \int_{S^{n-1}} L(\sigma) \, \mathrm{d}\mathcal{H}^{n-1}(\sigma) = 1$$

by (3.2) and, for all $z \in \mathbf{R}^n \setminus \{0\}$,

$$\sum_{i=1}^{n} K_{ii}(z) = \frac{1}{|z|^n} L\left(\frac{z}{|z|}\right) \sum_{i=1}^{n} \left(1 - n\frac{z_i^2}{|z|^2}\right) \\ + \frac{1}{|z|^n} \sum_{i=1}^{n} \frac{z_i}{|z|} (\partial_i L) \left(\frac{z}{|z|}\right) - \sum_{i=1}^{n} \frac{z_i^2}{|z|^{n+2}} \sum_{k=1}^{n} \frac{z_k}{|z|} (\partial_k L) \left(\frac{z}{|z|}\right) = 0.$$

Hence div $u(x) = \overline{f}(x) = f(x)$ for all $x \in \Omega$.

Lemma 3.3 means that the operator S is a solution operator to the divergence problem with Dirichlet boundary condition. Note that S is not a unique solution operator because a solution to the divergence problem is not unique.

Next we define a linear operator that plays a main role in this section.

Definition 3.4. For a vector field $u \in C_c^{\infty}(\Omega)$, we define a vector field Tu as

$$Tu(x) := \int_{\mathbf{R}^n} K(x-y) \overline{\operatorname{div} u}(y) \, \mathrm{d}y, \quad x \in \mathbf{R}^n.$$

Here K is given by (3.3) and $\overline{\operatorname{div} u}$ denotes the zero extension of $\operatorname{div} u$ to \mathbb{R}^n .

The above definition means that T is given by $T = S \circ \text{div}$. Since $u \in C_c^{\infty}(\Omega)$, its divergence is in $C_c^{\infty}(\Omega)$ and thus Tu is smooth in the whole space \mathbb{R}^n and vanishes outside of Ω , as discussed right after Definition 3.1. Also, by Lemma 3.3 we have

 $\operatorname{div} T u = \operatorname{div} u \quad \text{in} \quad \Omega, \quad T u = 0 \quad \text{on} \quad \partial \Omega.$

Clearly Tu = 0 in \mathbb{R}^n for $u \in C^{\infty}_{c,\sigma}(\Omega)$. Note that, as in the case of the operator S, the support of Tu may be unbounded.

Theorem 3.5. Let Ω be a Lipschitz half-space. Let $p \in (1, \infty)$. There exists a constant c > 0 such that

$$||Tu||_{L^p(\Omega)} \le c ||u||_{L^p(\Omega)}$$

for all $u \in C_c^{\infty}(\Omega)$.

Proof. Let us compute the *i*-th component $(Tu)_i$ of Tu with i = 1, ..., n for compactly supported vector field u in Ω . As in the proof of Lemma 3.2, we integrate

by parts to get

$$(Tu)_{i}(x) = \lim_{\varepsilon \to 0} \int_{\partial B_{\varepsilon}(x)} K_{i}(x-y) \frac{x-y}{|x-y|} \cdot \bar{u}(y) \, \mathrm{d}\mathcal{H}^{n-1}(y) + \lim_{\varepsilon \to 0} \int_{\mathbf{R}^{n} \setminus B_{\varepsilon}(x)} (\nabla K_{i})(x-y) \cdot \bar{u}(y) \, \mathrm{d}y = \int_{S^{n-1}} \sigma_{i} L(\sigma) \{\sigma \cdot \bar{u}(x)\} \, \mathrm{d}\mathcal{H}^{n-1}(\sigma) + \int_{\mathbf{R}^{n}} (\nabla K_{i})(x-y) \cdot \bar{u}(y) \, \mathrm{d}y,$$

or equivalently,

(3.7)
$$(Tu)_i(x) = \sum_{j=1}^n \{a_{ij}\bar{u}_j(x) + S_{ij}\bar{u}_j(x)\}, \quad x \in \mathbf{R}^n.$$

Here u_j is the *j*-th component of u and

$$a_{ij} = \int_{S^{n-1}} \sigma_i \sigma_j L(\sigma) \, \mathrm{d}\mathcal{H}^{n-1}(\sigma), \quad S_{ij} \bar{u}_j(x) = \int_{\mathbf{R}^n} K_{ij}(x-y) \bar{u}_j(y) \, \mathrm{d}y,$$

where $K_{ij} = \partial_j K_i$ is given by (3.4). Since a_{ij} is a constant satisfying

(3.8)
$$|a_{ij}| \le \int_{S^{n-1}} L(\sigma) \, \mathrm{d}\mathcal{H}^{n-1}(\sigma) = 1$$

and $S_{ij}\bar{u} = K_{ij}*\bar{u}$ is a singular integral (see the proof of Lemma 3.2), the Calderón-Zygmund theory yields the boundedness of the operator T on $L^p(\Omega)$.

By Theorem 3.5, the operator T extends uniquely to a bounded linear operator on $L^p(\Omega)$ with each $p \in (1, \infty)$, which we again refer to as T.

Our next goal is to estimate the $BMO_b^{\infty,\nu}(\Omega)$ -norm of Tu for $u \in C_c^{\infty}(\Omega)$ and $\nu \in (0,\infty]$. To this end, we estimate each term of the right-hand side in (3.7) for $u = (u_1, \ldots, u_n) \in C_c^{\infty}(\Omega)$. By (3.8) we have

$$[a_{ij}\bar{u}_j:BMO^{\infty}(\Omega)] \le [u_j:BMO^{\infty}(\Omega)], \quad [a_{ij}\bar{u}_j:b^{\nu}(\Omega)] \le [u_j:b^{\nu}(\Omega)]$$

and thus

$$\|a_{ij}\bar{u}_j:BMO_b^{\infty,\nu}(\Omega)\| \le \|u_j:BMO_b^{\infty,\nu}(\Omega)\|.$$

Moreover, since

$$[u_j: BMO^{\infty}(\Omega)] \le 2 \|u_j\|_{L^{\infty}(\Omega)}, \quad [u_j: b^{\nu}(\Omega)] \le \omega_n \|u_j\|_{L^{\infty}(\Omega)}$$

where $\omega_n = 2\pi^{n/2}/n\Gamma(n/2)$ is the volume of the unit ball $B_1(0)$ in \mathbf{R}^n with the Gamma function $\Gamma(z) := \int_0^\infty x^{z-1} e^{-x} dx$, we have

(3.9)
$$\|a_{ij}\bar{u}_j:BMO_b^{\infty,\nu}(\Omega)\| \le (2+\omega_n)\|u_j\|_{L^{\infty}(\Omega)}$$

Let us estimate $S_{ij}\bar{u}_j = K_{ij} * \bar{u}_j$, i, j = 1, ..., n in $BMO_b^{\infty,\nu}(\Omega)$. Recall that the integral kernel K_{ij} is of the form

$$K_{ij}(x) = \frac{k_{ij}(x/|x|)}{|x|^n}, \quad x \in \mathbf{R}^n \setminus \{0\},$$

where $k_{ij} \in C_c^{\infty}(\mathbf{R}^n)$ is given by (3.4) and satisfies

supp
$$k_{ij} \subset (B_2(0) \setminus B_{1/2}(0)) \cap (-C_0), \quad \int_{S^{n-1}} k_{ij}(\sigma) \, \mathrm{d}\mathcal{H}^{n-1} = 0,$$

see (3.2) and (3.5). We first estimate the BMO^{∞} -seminorm of $S_{ij}\bar{u}_j$.

Lemma 3.6. Let K be a function defined on $\mathbb{R}^n \setminus \{0\}$ such that

(3.10) $|K(x-y) - K(x)| \le A|y|^{\delta}|x|^{-n-\delta} \text{ whenever } |x| \ge 2|y| > 0$

for some $A, \delta > 0$. Suppose that a convolution operator S with K is bounded on $L^2(\mathbf{R}^n)$ with a norm B. Then, there exists a dimensional constant c_n such that

$$[Sf: BMO^{\infty}(\mathbf{R}^n)] \le c_n(A+B) \|f\|_{L^{\infty}(\mathbf{R}^n)}$$

for all $f \in L^2(\mathbf{R}^n) \cap L^\infty(\mathbf{R}^n)$.

Proof. See [24, Theorem 3.4.9 and Corollary 3.4.10].

Lemma 3.7. There exists a constant c > 0 such that

$$(3.11) \qquad \qquad [S_{ij}\bar{u}_j:BMO^{\infty}(\Omega)] \le c \|u_j\|_{L^{\infty}(\Omega)}$$

for all $u = (u_1, \ldots, u_n) \in C_c^{\infty}(\Omega)$ and $i, j = 1, \ldots, n$.

Proof. We shall apply Lemma 3.6 to $S = S_{ij}$. For this purpose it is sufficient to show that the function $K = K_{ij}$ satisfies (3.10), since we already know that the convolution operator S_{ij} is bounded on $L^2(\mathbf{R}^n)$, see the proof of Lemma 3.2. To this end, we differentiate K_{ij} to get

$$\nabla K_{ij}(x) = -\frac{nk_{ij}(x/|x|)}{|x|^{n+1}} \frac{x}{|x|} + \frac{1}{|x|^{n+1}} \left(I_n - \frac{1}{|x|^2} x \otimes x \right) \nabla k_{ij} \left(\frac{x}{|x|} \right)$$

for $x \in \mathbf{R}^n \setminus \{0\}$, where I_n is the identity matrix of size n and $x \otimes x := (x_i x_j)_{i,j}$ is the tensor product of x. Since k_{ij} is smooth on S^{n-1} , we have

$$|\nabla K_{ij}(x)| \le \frac{c}{|x|^{n+1}}, \quad x \in \mathbf{R}^n \setminus \{0\}.$$

Hence, for all $x, y \in \mathbf{R}^n \setminus \{0\}$ with $|x| \ge 2|y| > 0$,

$$\begin{aligned} |K(x-y) - K(x)| &= \left| \int_0^1 \frac{d}{dt} (K(x-ty)) \, \mathrm{d}t \right| = \left| \int_0^1 (-y) \cdot \nabla K(x-ty) \, \mathrm{d}t \right| \\ &\leq |y| \int_0^1 \frac{c}{|x-ty|^{n+1}} \, \mathrm{d}t \leq |y| \int_0^1 \frac{c}{(|x|-|y|)^{n+1}} \, \mathrm{d}t \\ &\leq \frac{c|y|}{(|x|-|x|/2)^{n+1}} = \frac{2^{n+1}c|y|}{|x|^{n+1}}. \end{aligned}$$

Thus K_{ij} satisfies (3.10) with $\delta = 1$ and we can apply Lemma 3.6 to obtain (3.12) $[S_{ij}\bar{u}_j : BMO^{\infty}(\mathbf{R}^n)] \leq c \|\bar{u}_j\|_{L^{\infty}(\mathbf{R}^n)} = c \|u_j\|_{L^{\infty}(\Omega)}$

with some constant c > 0.

By definition of the $BMO^\infty\text{-seminorm},$ we have

$$[S_{ij}\bar{u}_j:BMO^{\infty}(\Omega)] \leq [S_{ij}\bar{u}_j:BMO^{\infty}(\mathbf{R}^n)].$$

Hence the inequality (3.11) follows from (3.12).

Next, let us estimate the b^{ν} -part of $S_{ij}\bar{u}_j$. Recall the two closed cones

$$C_{j} = \{x = (x', x_{n}) \in \mathbf{R}^{n} \mid x' \in \mathbf{R}^{n-1}, \ -x_{n} \ge |x| \cos(2^{j}\theta)\}, \quad j = 0, 1$$

with opening angle $\theta \in (0, \pi/4)$. For r > 0 and $x_0 \in \mathbf{R}^n$, we define

(3.13)
$$A_r(x_0) := \bigcup_{x \in B_r(x_0) \cap (x_0 + C_1)^c} (x + C_0) \cap (x_0 + C_1)^c \subset \mathbf{R}^n.$$

Here $x_0 + C_1 = \{y \in \mathbf{R}^n \mid y - x_0 \in C_1\}$ and $x + C_0$ is defined similarly.

13

Lemma 3.8. For all r > 0 and $x_0 \in \mathbb{R}^n$ we have $A_r(x_0) \subset B_{r/\sin\theta}(x_0)$.

Proof. By translation, we may assume that $x_0 = 0$. Let $a := (0, \ldots, 0, r/\sin\theta) \in \mathbb{R}^n$. Suppose that

- (1) $B_r(0) \subset a + C_0$,
- (2) $x + C_0 \subset a + C_0$ for all $x \in a + C_0$,
- (3) $(a + C_0) \cap C_1^c \subset B_{r/\sin\theta}(0).$

Then, the statements (1) and (2) imply

$$A_r(0) = \bigcup_{x \in B_r(0) \cap C_1^c} (x + C_0) \cap C_1^c \subset (a + C_0) \cap C_1^c.$$

Hence the statement (3) yields $A_r(0) \subset B_{r/\sin\theta}(0)$. Now let us prove the statements (1)-(3). Note that, since $\theta \in (0, \pi/4)$, the cones C_0 and C_1 are represented as

$$C_j = \{x = (x', x_n) \in \mathbf{R}^n \mid x' \in \mathbf{R}^{n-1}, x_n \le 0, |x'| \le (-x_n) \tan(2^j \theta)\}, \quad j = 0, 1.$$

(1) Let $x = (x', x_n) \in B_r(0)$. Then, $x - a = (x', x_n - r/\sin\theta)$ satisfies

$$(x-a)_n = x_n - \frac{r}{\sin\theta} \le r - \frac{r}{\sin\theta} < 0$$

and

$$\left(\frac{r}{\sin\theta} - x_n\right)^2 \tan^2\theta - |x'|^2 \ge \frac{(r - x_n \sin\theta)^2}{\cos^2\theta} - (r^2 - x_n^2) = \frac{(r\sin\theta - x_n)^2}{\cos^2\theta} \ge 0,$$

or equivalently,

$$|x'| \le \left(\frac{r}{\sin\theta} - x_n\right) \tan\theta = -(x-a)_n \tan\theta.$$

Hence $x - a \in C_0$, that is, $x \in a + C_0$ and the statement (1) holds.

(2) Let $x \in a + C_0$. If $y \in x + C_0$, then $(y - a)_n = (y - x)_n + (x - a)_n \le 0$ and

$$|y'| \le |x'| + |y' - x'| \le -(x - a)_n \tan \theta - (y - x)_n \tan \theta = -(y - a)_n \tan \theta,$$

which means that $y \in a + C_0$. Hence the statement (2) holds.

(3) Let $x \in (a + C_0) \cap C_1^c$. Then we have

(3.14)
$$(x-a)_n = x_n - r/\sin\theta \le 0, \quad |x'| \le \left(\frac{r}{\sin\theta} - x_n\right)\tan\theta.$$

Hence

$$|x|^{2} \leq \left(\frac{r}{\sin\theta} - x_{n}\right)^{2} \tan^{2}\theta + x_{n}^{2} =: f(x_{n}).$$

To estimate the right-hand side in the above inequality for $x \in (a + C_0) \cap C_1^c$, we derive the range of x_n for $x \in (a + C_0) \cap C_1^c$. If $x_n \ge 0$, then $x \in (a + C_0) \cap C_1^c$ holds if and only if the condition (3.14) is satisfied. Thus x_n must satisfy

$$0 \le x_n \le \frac{r}{\sin \theta}$$

On the other hand, if $x_n < 0$, then $x \in (a + C_0) \cap C_1^c$ holds if and only if

$$(-x_n)\tan(2\theta) < |x'| \le \left(\frac{r}{\sin\theta} - x_n\right)\tan\theta.$$

Hence, in particular, if $x \in (a + C_0) \cap C_1^c$ and $x_n < 0$, then x_n must satisfy

$$(-x_n)\tan(2\theta) < \left(\frac{r}{\sin\theta} - x_n\right)\tan\theta,$$

which yields the inequality

$$-\frac{r}{\cos\theta} < \left(\tan(2\theta) - \tan\theta\right) x_n$$

Since

$$\tan(2\theta) - \tan\theta = \tan(2\theta) - \frac{1}{2}\tan(2\theta)(1 - \tan^2\theta)$$
$$= \frac{1}{2}\tan(2\theta)(1 + \tan^2\theta) = \frac{\tan(2\theta)}{2\cos^2\theta} > 0 \quad \left(0 < \theta < \frac{\pi}{4}\right)$$

the above inequality is equivalent to

$$-\frac{2r\cos\theta}{\tan(2\theta)} < x_n (<0)$$

In summary, the range of x_n for $x \in (a + C_0) \cap C_1^c$ is

$$\alpha := -\frac{2r\cos\theta}{\tan(2\theta)} < x_n \le \frac{r}{\sin\theta} =: \beta$$

and thus we obtain

$$|x|^2 \le f(x_n) \le \sup_{s \in (\alpha,\beta]} f(s) = \max\{f(\alpha), f(\beta)\},\$$

where the last equality follows from the fact that $f(x_n)$ is a concave parabola. On the one hand, we have $f(\beta) = \beta^2 = r^2 / \sin^2 \theta$. On the other hand, since

$$\alpha = -\frac{2r\cos\theta\cos(2\theta)}{\sin(2\theta)} = -\frac{r\cos(2\theta)}{\sin\theta} = \frac{r(1-2\cos^2\theta)}{\sin\theta}$$

we have

$$f(\alpha) = \left(\frac{r}{\sin\theta} - \frac{r(1 - 2\cos^2\theta)}{\sin\theta}\right)^2 \tan^2\theta + \frac{r^2\cos^2(2\theta)}{\sin^2\theta}$$
$$= \frac{r^2}{\sin^2\theta} \{4\tan^2\theta\cos^4\theta + \cos^2(2\theta)\} = \frac{r^2}{\sin^2\theta}.$$

Hence $|x|^2 \leq r^2 / \sin^2 \theta$ and thus $x \in B_{r/\sin \theta}(0)$ for every $x \in (a + C_0) \cap C_1^c$. Therefore, the statement (3) holds and the lemma follows.

Now we can estimate the b^{ν} -part of $S_{ij}\bar{u}_j$.

Lemma 3.9. Let $\nu \in (0, \infty]$. There exists a constant c > 0 such that

(3.15)
$$[S_{ij}\bar{u}_j:b^{\nu}(\Omega)] \le \frac{c}{\sin^{n/2}\theta} \|u_j\|_{L^{\infty}(\Omega)}$$

for all $u = (u_1, \ldots, u_n) \in C_c^{\infty}(\Omega)$ and $i, j = 1, \ldots, n$.

Proof. First we note that for all $f \in L^1_{loc}(\Omega)$ the inequality

$$[f:b^{\nu}(\Omega)] \le \omega_n^{1/2} \left[f:b_2^{\nu}(\Omega)\right]$$

holds by Hölder's inequality. Hence, to prove (3.15), it is sufficient to show the inequality

(3.16)
$$[S_{ij}\bar{u}_j: b_2^{\nu}(\Omega)] \le \frac{c}{\sin^{n/2}\theta} \left[u_j: b_2^{\nu/\sin\theta}(\Omega) \right] \le \frac{c\omega_n^{1/2}}{\sin^{n/2}\theta} \|u_j\|_{L^{\infty}}.$$

The second inequality of (3.16) follows from the definition of $[\cdot : b_2^{\nu/\sin\theta}(\Omega)]$. Let us show the first inequality. The singular integral $S_{ij}\bar{u}_j$ is of the form

$$S_{ij}\bar{u}_j(x) = (K_{ij} * \bar{u}_j)(x) = \int_{\mathbf{R}^n} K_{ij}(x-y)\bar{u}_j(y) \,\mathrm{d}y, \quad x \in \mathbf{R}^n.$$

Since supp $K_{ij} \subset -C_0$ (see (3.4) and (3.2)) and supp $u \subset \Omega$, we can write

$$S_{ij}\bar{u}_j(x) = \int_{(x+C_0)\cap\Omega} K_{ij}(x-y)\bar{u}_j(y)\,\mathrm{d}y, \quad x \in \mathbf{R}^n.$$

Hence, if we set

$$W_r(x_0) := \bigcup_{x \in B_r(x_0) \cap \Omega} (x + C_0) \cap \Omega$$

for each $x_0 \in \partial \Omega$ and r > 0 with $B_r(x_0) \subset U_{\nu}(\partial \Omega)$, then we have

$$S_{ij}\bar{u}_j(x) = \int_{(x+C_0)\cap\Omega} K_{ij}(x-y)(\bar{u}_j|_{W_r(x_0)})(y) \, dy = [K_{ij} * (\bar{u}_j|_{W_r(x_0)})](x)$$

for all $x \in B_r(x_0) \cap \Omega$, where

$$(\bar{u}_j|_{W_r(x_0)})(x) := \begin{cases} \bar{u}_j(x), & x \in W_r(x_0) \\ 0, & x \notin W_r(x_0) \end{cases}$$

Since K_{ij} is a singular kernel (see the proof of Lemma 3.2), the Calderón-Zygmund theory implies that

$$\int_{B_r(x_0)\cap\Omega} |S_{ij}\bar{u}_j(x)|^2 \,\mathrm{d}x = \int_{B_r(x_0)\cap\Omega} |[K_{ij}*(\bar{u}_j|_{W_r(x_0)})](x)|^2 \,\mathrm{d}x$$
$$\leq c \int_{\mathbf{R}^n} |(\bar{u}_j|_{W_r(x_0)})(x)|^2 \,\mathrm{d}x = c \int_{W_r(x_0)} |\bar{u}_j(x)|^2 \,\mathrm{d}x$$

with some constant c > 0. Now we recall the property of the infinite cone C_1 :

 $x + C_1 \subset \Omega^c \Leftrightarrow \Omega \subset (x + C_1)^c$ for all $x \in \Omega^c$.

By this property we have

$$W_r(x_0) \subset \bigcup_{x \in B_r(x_0) \cap (x_0 + C_1)^c} (x + C_0) \cap ((x_0 + C_1)^c \cap \Omega) = A_r(x_0) \cap \Omega,$$

where $A_r(x_0)$ is given by (3.13), and thus Lemma 3.8 yields

 $W_r(x_0) \subset A_r(x_0) \cap \Omega \subset B_{r/\sin\theta}(x_0) \cap \Omega.$

Hence we have

$$\frac{1}{r^n} \int_{B_r(x_0)\cap\Omega} |S_{ij}\bar{u}_j(x)|^2 \,\mathrm{d}x \le \frac{c}{r^n} \int_{W_r(x_0)} |\bar{u}_j(x)|^2 \,\mathrm{d}x$$

$$\le \frac{c}{r^n} \int_{B_{r/\sin\theta}(x_0)\cap\Omega} |\bar{u}_j(x)|^2 \,\mathrm{d}x = \frac{c}{\sin^n\theta} \left(\frac{\sin\theta}{r}\right)^n \int_{B_{r/\sin\theta}(x_0)\cap\Omega} |u_j(x)|^2 \,\mathrm{d}x$$

$$\le \frac{c}{\sin^n\theta} \left[u_j : b_2^{\nu/\sin\theta}(\Omega)\right]^2$$

for every $x_0 \in \partial \Omega$ and r > 0 with $B_r(x_0) \subset U_{\nu}(\partial \Omega)$, which yields

$$[S_{ij}\bar{u}_j:b_2^{\nu}(\Omega)]^2 \le \frac{c}{\sin^n \theta} \left[u_j:b_2^{\nu/\sin \theta}(\Omega) \right]^2$$

The proof is complete.

Now we obtain an estimate for the $BMO_{b}^{\infty,\nu}(\Omega)$ -norm of Tu.

Theorem 3.10. Let $\nu \in (0, \infty]$. There exists a constant c > 0 such that

 $||Tu: BMO_b^{\infty,\nu}(\Omega)|| \le c ||u||_{L^{\infty}(\Omega)}$

for all $u \in C_c^{\infty}(\Omega)$.

Proof. Since the *i*-th component of Tu, i = 1, ..., n, is of the form (3.7), we have by (3.9), (3.11) and (3.15) that

$$\begin{aligned} \|Tu: BMO_b^{\infty,\nu}(\Omega)\| \\ &\leq c \sum_{i,j=1}^n (\|a_{ij}\bar{u}_j: BMO_b^{\infty,\nu}(\Omega)\| + [S_{ij}\bar{u}_j: BMO^{\infty}(\Omega)] + [S_{ij}\bar{u}_j: b^{\nu}(\Omega)]) \\ &\leq c \sum_{j=1}^n \|u_j\|_{L^{\infty}(\Omega)} \leq c \|u\|_{L^{\infty}(\Omega)} \end{aligned}$$

with a positive constant c.

3.2. Non-Helmholtz projection. As in the previous subsection, let Ω denote a Lipschitz half-space in \mathbb{R}^n .

Definition 3.11. For a vector field $u \in C_c^{\infty}(\Omega)$, we define a vector field Q'u on \mathbf{R}^n as Q'u := u - Tu. Here the operator T is given in Definition 3.4.

For a vector field $u \in C_c^{\infty}(\Omega)$, the vector field Tu is smooth in \mathbb{R}^n and

div $Tu = \operatorname{div} u$ in Ω , Tu = 0 on $\partial \Omega$.

Moreover, Tu = 0 for all $u \in C^{\infty}_{c,\sigma}(\Omega)$, see the argument after Definition 3.4. Thus Q'u = u - Tu is also smooth in \mathbf{R}^n and

(3.17)
$$\operatorname{div} Q'u = 0 \quad \text{in} \quad \Omega, \quad Q'u = 0 \quad \text{on} \quad \partial \Omega$$

for all $u \in C_c^{\infty}(\Omega)$, and Q'u = u for all $u \in C_{c,\sigma}^{\infty}(\Omega)$. Note that Q' is not a projection from $C_c^{\infty}(\Omega)$ onto $C_{c,\sigma}^{\infty}(\Omega)$, since the support of Tu may be unbounded and thus Q'u is not in $C_{c,\sigma}^{\infty}(\Omega)$ in general. However, Q' maps $C_c^{\infty}(\Omega)$ into $L_{\sigma}^p(\Omega)$.

Lemma 3.12. For all $u \in C_c^{\infty}(\Omega)$ and $p \in (1, \infty)$, we have $Q'u \in L_{\sigma}^p(\Omega)$.

We shall first prove an auxiliary proposition for the above lemma. For $p \in (1, \infty)$, let $G_p(\Omega) = \{\nabla q \in L^p(\Omega) \mid q \in L^1_{loc}(\Omega)\}.$

Proposition 3.13. Let $p \in (1, \infty)$. For every $\nabla q \in G_p(\Omega)$, there exists a sequence $\{q_k\}_{k=1}^{\infty}$ of functions in $C_c^{\infty}(\mathbf{R}^n)$ such that

(3.18)
$$\lim_{k \to \infty} \|\nabla q - \nabla q_k\|_{L^p(\Omega)} = 0.$$

Proof. Since the restriction of $C_c^{\infty}(\mathbf{R}^n)$ on Ω is dense in $W^{1,p}(\Omega)$, it is sufficient to show that for every $\nabla q \in G_p(\Omega)$ there is a sequence $\{q_k\}_{k=1}^{\infty}$ of functions in $W^{1,p}(\Omega)$ such that (3.18) holds. Let us prove this claim.

(1) First we assume that the claim is valid for the half space \mathbf{R}_{+}^{n} and show the claim for general Lipschitz half-spaces $\Omega = \{(x', x_n) \in \mathbf{R}^n \mid x_n > h(x')\}$. As in Section 2, let $F(x) := (x', x_n - h(x'))$ be a bi-Lipschitz map from Ω to \mathbf{R}_{+}^{n} . Let $\nabla q \in G_p(\Omega)$ and $\tilde{q} := q \circ F^{-1}$, where $F^{-1}(y) := (y', y_n + h(y'))$ is the inverse mapping of F. Then, since $\nabla \tilde{q}(y) = \nabla F^{-1}(y) \nabla q(F^{-1}(y))$ for $y \in \mathbf{R}_{+}^{n}$ and each component

of ∇F^{-1} is bounded (because *h* is Lipschitz continuous), we have $\nabla \tilde{q} \in G_p(\mathbf{R}^n_+)$. Hence, by our assumption that the claim is valid for \mathbf{R}^n_+ , there is a sequence $\{\tilde{q}_k\}_{k=1}^{\infty}$ of functions in $W^{1,p}(\mathbf{R}^n_+)$ such that $\lim_{k\to\infty} \|\nabla \tilde{q} - \nabla \tilde{q}_k\|_{L^p(\mathbf{R}^n_+)} = 0$.

Let $q_k := \widetilde{q}_k \circ F$ for each $k \in \mathbf{N}$. Then, since

$$\nabla q(x) = \nabla F(x) \nabla \widetilde{q}(F(x)), \quad \nabla q_k(x) = \nabla F(x) \nabla \widetilde{q}_k(F(x)), \quad x \in \Omega$$

and each component of ∇F is bounded, we have $q_k \in W^{1,p}(\Omega)$ and

$$\|\nabla q - \nabla q_k\|_{L^p(\Omega)} \le c \|\nabla \widetilde{q} - \nabla \widetilde{q}_k\|_{L^p(\mathbf{R}^n_+)} \to 0$$

as $k \to \infty$. Thus the claim is valid for general Lipschitz half-spaces Ω .

(2) Now we prove the claim for $\Omega = \mathbf{R}^n_+$. We follow the idea of the proof of the claim in the case $\Omega = \mathbf{R}^n$, see [34, Lemma 2.5.4]. Let $\varphi \in C_c^{\infty}(\mathbf{R}^n)$ be a function such that

$$0 \le \varphi \le 1$$
 in \mathbf{R}^n , $\varphi = 1$ in $B_1(0)$, $\varphi = 0$ in $\mathbf{R}^n \setminus B_2(0)$

and $\varphi_k(x) := \varphi(k^{-1}x)$ for $k \in \mathbf{N}$ and $x \in \mathbf{R}^n$. Then, $\lim_{k\to\infty} \varphi_k(x) = 1$ for all $x \in \mathbf{R}^n$ and $\operatorname{supp} \varphi_k \subset B_{2k}(0)$, $\operatorname{supp} \nabla \varphi_k \subset B_{2k}(0) \setminus B_k(0)$ for $k \in \mathbf{N}$.

Let $\nabla q \in G_p(\mathbf{R}^n_+)$. Then $q \in W^{1,p}_{loc}(\overline{\mathbf{R}^n_+})$, that is, $q \in W^{1,p}(U)$ for every bounded subset U of \mathbf{R}^n_+ ; see the proof of [31, Theorem 7.6 in Chapter 2]. Hence by setting $G_k := \mathbf{R}^n_+ \cap (B_{2k}(0) \setminus B_k(0))$ for $k \in \mathbf{N}$, we have $q \in W^{1,p}(G_k)$ and thus there is a constant a_k such that $\int_{G_k} (q - a_k) dx = 0$ for each $k \in \mathbf{N}$. From this equality and the change of variables x = ky for $x \in G_k$ and $y \in G_1$ we have

$$\int_{G_1} (q(ky) - a_k) \, \mathrm{d}y = k^{-n} \int_{G_k} (q(x) - a_k) \, \mathrm{d}x = 0.$$

Hence we can apply Poincaré's inequality to $q(ky) - a_k$ on G_1 and get

$$\left(\int_{G_1} |q(ky) - a_k|^p \,\mathrm{d}y\right)^{1/p} \le c \left(\int_{G_1} |\nabla(q(ky))|^p \,\mathrm{d}y\right)^{1/p}$$

with a constant c > 0 independent of k. In this inequality, we observe that

$$\int_{G_1} |q(ky) - a_k|^p \, \mathrm{d}y = k^{-n} \int_{G_k} |q(x) - a_k|^p \, \mathrm{d}x,$$
$$\int_{G_1} |\nabla(q(ky))|^p \, \mathrm{d}y = k^p \int_{G_1} |(\nabla q)(ky)|^p \, \mathrm{d}y = k^{p-n} \int_{G_k} |\nabla q(x)|^p \, \mathrm{d}x$$

by the change of variables x = ky and thus

(3.19)
$$\|q - a_k\|_{L^p(G_k)} \le ck \|\nabla q\|_{L^p(G_k)}, \quad k \in \mathbf{N}.$$

For each $k \in \mathbf{N}$, let $q_k := \varphi_k(q - a_k)$ on \mathbf{R}^n_+ . Then since $\operatorname{supp} q_k \subset \mathbf{R}^n_+ \cap B_{2k}(0)$ holds by the relation $\operatorname{supp} \varphi_k \subset B_{2k}(0)$, it follows that $q_k \in W^{1,p}(\mathbf{R}^n_+)$ and

$$(3.20) \|\nabla q - \nabla q_k\|_{L^p(\mathbf{R}^n_+)} \le \|\nabla q - \varphi_k \nabla q\|_{L^p(\mathbf{R}^n_+)} + \|(\nabla \varphi_k)(q - a_k)\|_{L^p(\mathbf{R}^n_+)}.$$

Since $0 \leq \varphi_k(x) \leq 1$ and $\lim_{k\to\infty} \varphi_k(x) = 1$ for all $x \in \mathbf{R}^n_+$ and $\nabla q \in L^p(\mathbf{R}^n_+)$, the dominated convergence theorem yields

(3.21)
$$\lim_{k \to \infty} \|\nabla q - \varphi_k \nabla q\|_{L^p(\mathbf{R}^n_+)} = 0.$$

On the other hand, since $\nabla \varphi_k = k^{-1} (\nabla \varphi)_k$ and $\operatorname{supp} \nabla \varphi_k |_{\mathbf{R}^n_+} \subset \overline{G_k}$ for each $k \in \mathbf{N}$, it follows from (3.19) and the dominated convergence theorem that

$$(3.22) \qquad \|(\nabla\varphi_k)(q-a_k)\|_{L^p(\mathbf{R}^n_+)} \le ck^{-1}\|q-a_k\|_{L^p(G_k)} \le c\|\nabla q\|_{L^p(G_k)} \to 0$$

as $k \to \infty$. Applying (3.21) and (3.22) to (3.20) we have

$$\lim_{k \to \infty} \|\nabla q - \nabla q_k\|_{L^p(\mathbf{R}^n_+)} = 0,$$

where $q_k \in W^{1,p}(\mathbf{R}^n_+)$ for all $k \in \mathbf{N}$. Hence the claim is valid when $\Omega = \mathbf{R}^n_+$ and the proposition follows.

Proof of Lemma 3.12. Let $u \in C_c^{\infty}(\Omega)$ and $p \in (1, \infty)$. Then, since $Tu \in L_p(\Omega)$ by Theorem 3.5, we have $Q'u = u - Tu \in L^p(\Omega)$. To show $Q'u \in L^p_{\sigma}(\Omega)$, we employ a characterization of elements of $L^p_{\sigma}(\Omega)$ ([19, Lemma II.2.1]): a vector field $v \in L^p(\Omega)$ is in $L^p_{\sigma}(\Omega)$ if and only if

$$\int_{\Omega} v \cdot \nabla q \, \mathrm{d}x = 0 \quad \text{for all} \quad \nabla q \in G_{p'}(\Omega) \ \left(p' := \frac{p}{p-1}\right).$$

Let ∇q be any element of $G_{p'}(\Omega)$. From Proposition 3.13, there is a sequence $\{q_k\}_{k=1}^{\infty}$ of functions in $C_c^{\infty}(\mathbf{R}^n)$ such that the equality (3.18) with p replaced by p' holds. Since Q'u is defined and smooth in \mathbf{R}^n for $u \in C_c^{\infty}(\Omega)$ and $q_k \in C_c^{\infty}(\mathbf{R}^n)$, integration by parts yields

$$\int_{\Omega} Q' u \cdot \nabla q_k \, \mathrm{d}x = -\int_{\Omega} q_k \operatorname{div} Q' u \, \mathrm{d}x + \int_{\partial \Omega} q_k \, Q' u \cdot \nu \, \mathrm{d}\mathcal{H}^{n-1}$$

for all $k \in \mathbf{N}$, where ν denotes the unit outer normal vector field of $\partial\Omega$. We apply (3.17) to the right-hand side of this equality to get $\int_{\Omega} Q' u \cdot \nabla q_k dx = 0$ for all $k \in \mathbf{N}$. Since $Q' u \in L^p(\Omega)$ and (3.18) with p replaced by p' holds, the above equality implies that

$$\int_{\Omega} Q' u \cdot \nabla q \, \mathrm{d}x = \lim_{k \to \infty} \int_{\Omega} Q' u \cdot \nabla q_k \, \mathrm{d}x = 0$$

Hence by the characterization of elements of $L^p_{\sigma}(\Omega)$ we conclude that $Q'u \in L^p_{\sigma}(\Omega)$ for all $u \in C^{\infty}_{c}(\Omega)$. The proof is complete.

Remark 3.14.

- (1) Let $p \in (1, \infty)$. By Theorem 3.5 and Lemma 3.12, we have $Q'u \in L^p_{\sigma}(\Omega)$ and $\|Q'u\|_{L^p(\Omega)} \leq c \|u\|_{L^p(\Omega)}$ for all $u \in C^{\infty}_c(\Omega)$. Moreover, Q'u = u holds for all $u \in C^{\infty}_{c,\sigma}(\Omega)$. Hence, by the density argument, Q' extends uniquely to a bounded linear operator on $L^p(\Omega)$ that is a projection onto $L^p_{\sigma}(\Omega)$.
- (2) The projection onto $L^p_{\sigma}(\Omega)$ given as above is NOT the Helmholtz projection. Indeed, if it were the Helmholtz projection, then for each $u \in C^{\infty}_{c}(\Omega)$ there would exist $\pi \in L^1_{loc}(\Omega)$ such that $(I - Q')u = \nabla \pi$ holds. Since $(I - Q')u = Tu = K * \operatorname{div} u$ for $u \in C^{\infty}_{c}(\Omega)$, the existence of such π would imply that $\partial_j(K_i * \operatorname{div} u) = \partial_i(K_j * \operatorname{div} u)$ for all $i, j = 1, \ldots, n$. For each $f \in C^{\infty}_{c}(\Omega)$ with $\int_{\Omega} f dx = 0$ there is $u \in C^{\infty}_{c}(\Omega)$ satisfying $f = \operatorname{div} u$. This is possible since we are able to apply Bogovskii's lemma to a bounded Lipschitz domain $D \subset \Omega$ containing the support of f (see [19, Theorem III.3.3]). Thus the above equality would imply that $\partial_j K_i = \partial_i K_j + c$ with some constant c for all $i, j = 1, \ldots, n$ as a distribution. This contradicts the fact that $\partial_j K_i \neq \partial_i K_j + c$ for $i \neq j$ as observed in (3.4).
- (3) It is possible to prove the characterization

$$L^p_{\sigma}(\Omega) = \{ u \in L^p(\Omega) \mid \text{div}\, u = 0 \text{ in } \Omega, \ u \cdot \nu = 0 \text{ on } \partial\Omega \}$$

if we use Proposition 3.13 and an integration by parts formula. This characterization is well-known for bounded ([17]), exterior and other domains

(see [19, Section $\blacksquare.2$]). However, for a Lipschitz half-space, it is less popular. A proof can be found in [30, Lemma 2.1].

The linear operator Q' also maps $C_c^{\infty}(\Omega)$ into $VMO_{b,0,\sigma}^{\infty,\nu}(\Omega)$.

Lemma 3.15. Let Ω be a Lipschitz half-space. For all $u \in C_c^{\infty}(\Omega)$ and $\nu \in (0, \infty]$, we have $Q'u \in VMO_{b,0,\sigma}^{\infty,\nu}(\Omega)$.

We shall prove two auxiliary propositions for the above lemma. For $p \in (1, \infty)$, let $W_{0,\sigma}^{1,p}(\Omega)$ be the $W^{1,p}$ -closure of $C_{c,\sigma}^{\infty}(\Omega)$.

Proposition 3.16. Let Ω be a Lipschitz half-space. For all $p \in (1, \infty)$ we have $L^p_{\sigma}(\Omega) \cap W^{1,p}_0(\Omega) \subset W^{1,p}_{0,\sigma}(\Omega)$. Thus $L^p_{\sigma}(\Omega) \cap W^{1,p}_0(\Omega) = W^{1,p}_{0,\sigma}(\Omega)$.

Proof. Let $\rho \in C_c^{\infty}(\mathbf{R}^n)$ be a function such that

$$0 \le \rho \le 1$$
 in \mathbf{R}^n , supp $\rho \subset B_1(0)$, $\int_{B_1(0)} \rho \, \mathrm{d}x = 1$

and $\rho_{\delta}(x) := \delta^{-n} \rho(\delta^{-1}x)$ for $\delta > 0, x \in \mathbf{R}^n$. Let $u \in L^p_{\sigma}(\Omega) \cap W^{1,p}_0(\Omega)$. Then there is a sequence $\{u_k\}_{k=1}^{\infty}$ of functions in $C^{\infty}_{c,\sigma}(\Omega)$ such that $\lim_{k\to\infty} \|u - u_k\|_{L^p(\Omega)} = 0$. For a > 0, we define a vector field u^a on Ω as

$$u^{a}(x) := \begin{cases} u(x', x_{n} - a), & x_{n} > h(x') + a, \\ 0, & h(x') < x_{n} \le h(x') + a \end{cases}$$

and $u_k^a = (u_k)^a$ similarly. Then it is clear that $u^a \in W_0^{1,p}(\Omega)$ and $u_k^a \in C_{c,\sigma}^{\infty}(\Omega)$ for all a > 0. Moreover, we have

$$||u^{a} - u_{k}^{a}||_{L^{p}(\Omega)} = ||u - u_{k}||_{L^{p}(\Omega)} \text{ for all } a > 0, \quad \lim_{a \to 0} ||u - u^{a}||_{W^{1,p}(\Omega)} = 0.$$

By the second equality and the fact that $W_{0,\sigma}^{1,p}(\Omega)$ is closed in $W^{1,p}(\Omega)$, it is sufficient for showing $u \in W_{0,\sigma}^{1,p}(\Omega)$ to prove $u^a \in W_{0,\sigma}^{1,p}(\Omega)$ for all a > 0.

For each a > 0, there is a constant d = d(a) > 0 such that dist(supp $u_k^a, \partial \Omega) \ge d$ for all $k \in \mathbf{N}$. Then, for a given $\varepsilon > 0$, we can take $\delta \in (0, d/2)$ so small that

$$\|u^a - u^a * \rho_\delta\|_{W^{1,p}(\Omega)} < \frac{\varepsilon}{2},$$

since $u^a \in W_0^{1,p}(\Omega)$. Also, since $\nabla \rho_{\delta} = \delta^{-1}(\nabla \rho)_{\delta}$, we have

$$\begin{aligned} & |u^{a} * \rho_{\delta} - u^{a}_{k} * \rho_{\delta}||_{W^{1,p}(\Omega)} \\ & \leq c(||u^{a} * \rho_{\delta} - u^{a}_{k} * \rho_{\delta}||_{L^{p}(\Omega)} + ||u^{a} * \nabla \rho_{\delta} - u^{a}_{k} * \nabla \rho_{\delta}||_{L^{p}(\Omega)}) \\ & = c(||(u^{a} - u^{a}_{k}) * \rho_{\delta}||_{L^{p}(\Omega)} + \delta^{-1}||(u^{a} - u^{a}_{k}) * (\nabla \rho)_{\delta}||_{L^{p}(\Omega)}) \\ & \leq c(1 + \delta^{-1})||u^{a} - u^{a}_{k}||_{L^{p}(\Omega)} = c(1 + \delta^{-1})||u - u_{k}||_{L^{p}(\Omega)} \end{aligned}$$

with a constant c > 0 independent of ε and δ . Hence by taking $k \in \mathbf{N}$ so large that

$$\|u - u_k\|_{L^p(\Omega)} < \frac{\varepsilon}{2c(1+\delta^{-1})}$$

we have $||u^a * \rho_{\delta} - u^a_k * \rho_{\delta}||_{W^{1,p}(\Omega)} < \varepsilon/2$ and thus

$$\|u^{a} - u^{a}_{k} * \rho_{\delta}\|_{W^{1,p}(\Omega)} \le \|u^{a} - u^{a} * \rho_{\delta}\|_{W^{1,p}(\Omega)} + \|u^{a} * \rho_{\delta} - u^{a}_{k} * \rho_{\delta}\|_{W^{1,p}(\Omega)} < \varepsilon.$$

On the other hand, since dist(supp $u_k^a, \partial \Omega$) > d and $\delta \in (0, d/2)$, the function $u_k^a * \rho_\delta$ is smooth and compactly supported in Ω . Moreover, we have

$$\operatorname{div}(u_k^a * \rho_\delta) = (\operatorname{div} u_k^a) * \rho_\delta = 0 \quad \text{in} \quad \Omega.$$

Thus $u_k^a * \rho_\delta \in C^{\infty}_{c,\sigma}(\Omega)$ and u^a is approximated by elements of $C^{\infty}_{c,\sigma}(\Omega)$ in $W^{1,p}(\Omega)$, which means that $u^a \in W^{1,p}_{0,\sigma}(\Omega)$. Hence $u \in W^{1,p}_{0,\sigma}(\Omega)$ and the proof is now complete.

Proposition 3.17. Let $\nu \in (0, \infty]$. If p > n, then $W^{1,p}_{0,\sigma}(\Omega) \subset VMO^{\infty,\nu}_{b,0,\sigma}(\Omega)$.

Proof. Let $u \in W_{0,\sigma}^{1,p}(\Omega)$ and $u_k \in C_{c,\sigma}^{\infty}(\Omega)$ such that $\lim_{k\to\infty} ||u-u_k||_{W^{1,p}(\Omega)} = 0$. Since p > n and $u, u_k \in W_0^{1,p}(\Omega)$, Morrey's inequality (see e.g. [7, Theorem 4.12]) implies

$$||u - u_k||_{L^{\infty}(\Omega)} \le c ||u - u_k||_{W^{1,p}(\Omega)}$$

with a positive constant c independent of u and u_k . Thus we have

 $||u - u_k : BMO_b^{\infty,\nu}(\Omega)|| \le (2 + \omega_n) ||u - u_k||_{L^{\infty}(\Omega)} \le c ||u - u_k||_{W^{1,p}(\Omega)} \to 0$

as $k \to \infty$. Hence $u \in VMO_{b,0,\sigma}^{\infty,\nu}(\Omega)$ and the proof is now complete.

Proof of Lemma 3.15. Since $u \in C_c^{\infty}(\Omega)$ and thus $\partial_i u \in C_c^{\infty}(\Omega)$ for all $i = 1, \ldots, n$, it follows from Lemma 3.12 that $Q'u \in L_{\sigma}^r(\Omega)$ and $\partial_i Q'u = Q'(\partial_i u) \in L^r(\Omega)$ for all $r \in (1, \infty)$ and $i = 1, \ldots, n$. From this fact and the equality (3.17), we have $Q'u \in L_{\sigma}^r(\Omega) \cap W_0^{1,r}(\Omega)$ for all $r \in (1, \infty)$. Hence, by taking r > n, we can apply Proposition 3.16 and Proposition 3.17 to obtain $Q'u \in VMO_{b,0,\sigma}^{\infty,\nu}(\Omega)$.

Remark 3.18. Let $\nu \in (0, \infty]$. Theorem 3.10 and Lemma 3.15 imply that $Q'u \in VMO_{b,0,\sigma}^{\infty,\nu}(\Omega)$ and $||Q'u: BMO_b^{\infty,\nu}(\Omega)|| \leq c||u||_{L^{\infty}(\Omega)}$ for all $u \in C_c^{\infty}(\Omega)$. Also, we have Q'u = u for all $u \in C_{c,\sigma}^{\infty}(\Omega)$. Hence Q' extends uniquely to a bounded linear operator (again referred to as Q') from $C_0(\Omega)$, which is the L^{∞} -closure of $C_c^{\infty}(\Omega)$, into $VMO_{b,0,\sigma}^{\infty,\nu}(\Omega)$ that satisfies Q'u = u for all $u \in C_{0,\sigma}(\Omega)$.

Now let us extend Q' to a linear operator that gives the projection mentioned in Theorem 1.4. For $p \in (1, \infty)$, we define a Banach space X_p and its norm as

$$X_p := L^p(\Omega) \cap C_0(\Omega), \quad \|u\|_{X_p} := \max\{\|u\|_{L^p(\Omega)}, \|u\|_{L^{\infty}(\Omega)}\}.$$

Note that the Banach space $C_0(\Omega)$ consists of all continuous functions f on Ω such that the set $\{x \in \Omega \mid |f(x)| \geq \varepsilon\}$ is compact in Ω for every $\varepsilon > 0$ (see e.g. [32, Theorem 3.17]).

Lemma 3.19. For each $p \in (1, \infty)$, the linear subspace $C_c^{\infty}(\Omega)$ is dense in X_p .

Proof. The proof is more or less standard (see e.g. [27, Corollary 19.24]). We give it for completeness. Let $u \in X_p$ and $\Omega_k := \{x \in \Omega \mid |x| \le k, \operatorname{dist}(x, \partial \Omega) \ge 1/k\}$ for $k \in \mathbf{N}$. For any given $\varepsilon > 0$, the set $\{x \in \Omega \mid |u(x)| \ge \varepsilon/2\}$ is compact in Ω since $u \in C_0(\Omega)$. Moreover, since $u \in L^p(\Omega)$, we can take $k \in \mathbf{N}$ so large that

(3.23)
$$\|u\|_{L^p(\Omega\setminus\Omega_k)} < \frac{\varepsilon}{2}, \quad \|u\|_{L^\infty(\Omega\setminus\Omega_k)} < \frac{\varepsilon}{2}.$$

Let $\varphi \in C_c^{\infty}(\Omega)$ be a continuous cut-off function such that

 $0 \le \varphi \le 1$ in Ω , $\varphi = 1$ in Ω_k , $\varphi = 0$ in $\Omega \setminus \Omega_{2k}$.

Since $u - \varphi u = 0$ in Ω_k and $|u - \varphi u| \le |u|$ in $\Omega \setminus \Omega_k$, it follows from (3.23) that

$$(3.24) \quad \|u - \varphi u\|_{L^p(\Omega)} \le \|u\|_{L^p(\Omega \setminus \Omega_k)} < \frac{\varepsilon}{2}, \quad \|u - \varphi u\|_{L^\infty(\Omega)} \le \|u\|_{L^\infty(\Omega \setminus \Omega_k)} < \frac{\varepsilon}{2}$$

Let ρ_{δ} be a mollifier as in the beginning of the proof of Proposition 3.16. Since

$$\varphi u \in L^p(\Omega), \quad \operatorname{dist}(\operatorname{supp}(\varphi u), \partial \Omega) \ge \frac{1}{2k},$$

we can take $\delta \in (0, 1/4k)$ so small that

(3.25)
$$u_{\delta} := \rho_{\delta} * (\varphi u) \in C_c^{\infty}(\Omega), \quad \|\varphi u - u_{\delta}\|_{L^p(\Omega)} < \frac{\varepsilon}{2}.$$

On the other hand, since φu is uniformly continuous on Ω_{4k} , we can again choose $\delta \in (0, 1/4k)$ so small that $\|\varphi u - u_{\delta}\|_{L^{\infty}(\Omega_{4k})} < \varepsilon/2$. Moreover, since supp $(\varphi u) \subset \Omega_{2k}$ and $\delta \in (0, 1/4k)$, we have $\varphi u = u_{\delta} = 0$ outside of Ω_{4k} and thus

(3.26)
$$\|\varphi u - u_{\delta}\|_{L^{\infty}(\Omega)} = \|\varphi u - u_{\delta}\|_{L^{\infty}(\Omega_{4k})} < \frac{\varepsilon}{2}$$

Combining (3.24), (3.25) and (3.26), we obtain $u_{\delta} \in C_c^{\infty}(\Omega)$ and

$$\|u-u_{\delta}\|_{X_p} = \max\{\|u-u_{\delta}\|_{L^p(\Omega)}, \|u-u_{\delta}\|_{L^{\infty}(\Omega)}\} < \varepsilon.$$

Hence the lemma follows.

Let $Y_p := L^p_{\sigma}(\Omega) \cap VMO^{\infty,\nu}_{b,0,\sigma}(\Omega)$ for $p \in (1,\infty)$, $\nu \in (0,\infty]$. Since $L^p_{\sigma}(\Omega)$ and $VMO^{\infty,\nu}_{b,0,\sigma}(\Omega)$ are closed in $L^p(\Omega)$ and $BMO^{\infty,\nu}_b(\Omega)$, respectively, Y_p becomes a Banach space under the norm $\|v\|_{Y_p} := \max\{\|v\|_{L^p(\Omega)}, \|v: BMO^{\infty,\nu}_b(\Omega)\|\}.$

Theorem 3.20. Let $p \in (1, \infty)$ and $\nu \in (0, \infty]$. The linear operator Q' given in Definition 3.11 extends uniquely to a bounded linear operator Q_p from X_p into Y_p . Moreover, there exists a constant c > 0 such that

(3.27)
$$\|Q_p u\|_{L^p(\Omega)} \le c \|u\|_{L^p(\Omega)}, \quad \|Q_p u: BMO_b^{\infty,\nu}(\Omega)\| \le c \|u\|_{L^\infty(\Omega)}$$

for all $u \in X_p$ and $Q_p u = u$ holds for all u in the X_p -closure of $C^{\infty}_{c,\sigma}(\Omega)$.

Proof. Let $u \in C_c^{\infty}(\Omega)$. Then we have $Q'u \in Y_p$ by Lemma 3.12 and Lemma 3.15. Moreover, by Theorem 3.5 and Theorem 3.10, there is a constant c > 0 independent of u such that

(3.28)
$$\|Q'u\|_{L^{p}(\Omega)} \leq c \|u\|_{L^{p}(\Omega)}, \quad \|Q'u: BMO_{b}^{\infty,\nu}(\Omega)\| \leq c \|u\|_{L^{\infty}(\Omega)}.$$

Hence we have $Q'u \in Y_p$ and $\|Q'u\|_{Y_p} \leq c\|u\|_{X_p}$ for all $u \in C_c^{\infty}(\Omega)$. Since $C_c^{\infty}(\Omega)$ is dense in X_p by Lemma 3.19, the operator Q' extends uniquely to a bounded linear operator Q_p from X_p into Y_p . Also, it follows from (3.28) that the inequality (3.27) holds for all $u \in X_p$. Since Q'u = u holds for all $u \in C_{c,\sigma}^{\infty}(\Omega)$ as observed after Definition 3.11, by the density argument we have $Q_pu = u$ for all u in the X_p -closure of $C_{c,\sigma}^{\infty}(\Omega)$. The proof is complete.

Finally, Theorem 1.4 follows from Theorem 3.20 with p = 2, that is, the linear operator Q in Theorem 1.4 is given by $Q = Q_2$.

4. Analyticity in L^p

In this section we shall give a complete proof of Theorem 1.1.

Proof of Theorem 1.1. Let S(t) be the Stokes semigroup in \tilde{L}^p_{σ} constructed by [14], [16]. To show that S(t) forms an analytic semigroup in L^p_{σ} $(2 \le p < \infty)$ it suffices to prove that there exists a constant C that

(4.1)
$$||S(t)v_0||_p \le C ||v_0||_p$$

(4.2)
$$\left\| t \frac{\mathrm{d}}{\mathrm{d}t} S(t) v_0 \right\|_p \le C \| v_0 \|_p$$

for all $v_0 \in C^{\infty}_{c,\sigma}(\Omega)$ and for all $t \in (0,1)$. Let Q be the operator in Theorem 1.4. Since Q is bounded in L^2 and maps L^2 to L^2_{σ} and S(t) fulfills (4.1) and (4.2) for p = 2, we have

(4.3)
$$||S(t)Qu||_2 \le C||u||_2$$

(4.4)
$$\left\| t \frac{\mathrm{d}}{\mathrm{d}t} S(t) Q u \right\|_2 \le C \|u\|_2$$

for all $u \in C_c(\Omega)$ and $t \in (0,1)$. Since Ω is admissible as proved in [5], S(t) forms an analytic semigroup in $VMO_{b,0,\sigma}^{\infty,\nu}$ by Theorem 1.2. We conclude that

(4.5)
$$\|S(t)Qu: BMO_b^{\infty,\nu}(\Omega)\| \le C \|u\|_{\infty}$$

(4.6)
$$\left\| t \frac{\mathrm{d}}{\mathrm{d}t} S(t) Q u : BMO_b^{\infty,\nu}(\Omega) \right\| \le C \|u\|_{\infty}$$

for all $u \in C_c(\Omega)$ and $t \in (0, 1)$ since Q fulfills

$$\|Qu: BMO_b^{\infty,\nu}(\Omega)\| \le C \|u\|_{\infty}, \ Qu \in VMO_{b,0,\sigma}^{\infty,\nu}$$

for all $u \in C_c(\Omega)$ by Theorem 1.4. (Note that we have a stronger statement than (4.6) by replacing the BMO_b type norm by the L^{∞} norm since we have the regularizing estimate (1.3).) We apply an interpolation result (Theorem 1.3) to (4.3) and (4.5) and to (4.4) and (4.6) to get, respectively

$$(4.7) ||S(t)Qu||_p \le C||u||_p$$

(4.8)
$$\left\| t \frac{\mathrm{d}}{\mathrm{d}t} S(t) Q u \right\|_p \le C \|u\|_p$$

for all $u \in C_c(\Omega)$ and for all $t \in (0,1)$. Since Qu = u for $u \in C_{c,\sigma}^{\infty}(\Omega)$ this yields (4.1) and (4.2).

It remains to prove that S(t) is a C_0 -semigroup in L^p_{σ} . Since $C^{\infty}_{c,\sigma}(\Omega)$ is dense in L^p_{σ} , for $v_0 \in L^p_{\sigma}$ there is $v_{0m} \in C^{\infty}_{c,\sigma}$ such that $||v_0 - v_{0m}||_p \to 0$ as $m \to \infty$. By (4.1) we observe that

$$||S(t)v_0 - v_0||_p \le ||S(t)(v_0 - v_{0m})||_p + ||S(t)v_{0m} - v_{0m}||_p + ||v_{0m} - v_0||_p$$

$$\le C||v_0 - v_{0m}||_p + ||S(t)v_{0m} - v_{0m}||_p.$$

Sending $t \downarrow 0$, we get

$$\overline{\lim_{t \downarrow 0}} \|S(t)v_0 - v_0\|_p \le C \|v - v_{0m}\|_p,$$

since $S(t)v_{0m} \to v_{0m}$ in \tilde{L}^p_{σ} as $t \downarrow 0$ by [14], [16]. Sending $m \to \infty$, we conclude that $S(t)v_0 \to v_0$ in L^p_{σ} as $t \downarrow 0$.

Remark 4.1. In a similar way as we derived (4.5) and (4.6) we are able to derive from the L^{∞} -BMO estimates in [10] that

$$t \left\| \nabla^2 S(t) Qu : BMO_b^{\infty,\nu}(\Omega) \right\| \le C \|u\|_{\infty}$$
$$t^{1/2} \left\| \nabla S(t) Qu : BMO_b^{\infty,\nu}(\Omega) \right\| \le C \|u\|_{\infty}$$

for all $u \in C_c(\Omega)$ and $t \in (0, 1)$.

Note that L^2 results

$$t \|\nabla^2 S(t) Q u\|_2 \le C \|u\|_2$$
$$t^{1/2} \|\nabla S(t) Q u\|_2 \le C \|u\|_2$$

easily follow from the analyticity of S(t) in L^2_{σ} and L^2 -boundedness of Q if one observes that $\|\nabla u\|_2^2 = (Au, u)_{L^2}$ and

$$\|\nabla^2 u\|_2 \le C \left(\|Au\|_2 + \|\nabla u\|_2 + \|u\|_2\right)$$

(see e.g. [34, Chapter III, Theorem 2.1.1 (d)]), where A is the Stokes operator in L^2_{σ} .

Interpolating the L^2 results and the above L^{∞} -BMO results, we are able to prove that there is $C_p > 0$ satisfying

$$t \left\| \nabla^2 S(t) v_0 \right\|_p \le C_p \|v_0\|_p$$
$$t^{1/2} \left\| \nabla S(t) v_0 \right\|_p \le C_p \|v_0\|_p$$

for all $v_0 \in L^p_{\sigma}(\Omega)$ and $t \in (0,1)$ with $p \in (2,\infty)$.

References

- K. Abe, The Stokes semigroup on non-decaying spaces, PhD thesis, The University of Tokyo, 2014.
- [2] K. Abe and Y. Giga, Analyticity of the Stokes semigroup in spaces of bounded functions, Acta Math. 211 (2013), 1–46.
- [3] _____, The L^{∞} -Stokes semigroup in exterior domains, J. Evol. Equ. **14** (2014), no. 1, 1–28.
- [4] K. Abe, Y. Giga, and M. Hieber, Stokes resolvent estimates in space of bounded functions, Annales scientifiques de l'ENS 48 (2015), 537–559.
- K. Abe, Y. Giga, K. Schade, and T. Suzuki, On the Stokes semigroup in some non-Helmholtz domains, Arch. Math. (Basel) 104 (2015), 177–187.
- [6] _____, On the Stokes resolvent estimates for cylindrical domains, in preparation.
- [7] R. A. Adams and J. J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003.
- [8] L. von Below, The Stokes and Navier-Stokes equations in layer domains with and without a free surface, PhD thesis, Technische Universität Darmstadt, 2014.
- [9] M. E. Bogovskiĭ, Decomposition of L^p(Ω; Rⁿ) into a direct sum of subspaces of solenoidal and potential vector fields, Dokl. Akad. Nauk SSSR 286 (1986), no. 4, 781–786 (Russian); English transl., Soviet Math. Dokl. 33 (1986), 161–165.
- [10] M. Bolkart and Y. Giga, On L[∞]-BMO estimates for derivatives of the Stokes semigroup, Hokkaido University Preprint Series in Math. (2015), no. 1067.
- [11] M. Bolkart, Y. Giga, and T. Suzuki, Analyticity of the Stokes semigroup in BMO type spaces, Hokkaido University Preprint Series in Math. (2015), no. 1078.
- [12] M. Bolkart, Y. Giga, T. Suzuki, and Y. Tsutsui, Equivalence of BMO type norm with applications to the heat semigroup, in preparation.
- [13] X. T. Duong and L. Yan, New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications, Comm. Pure Appl. Math. 58 (2005), 1375–1420.
- [14] R. Farwig, H. Kozono, and H. Sohr, An L^q-approach to Stokes and Navier-Stokes equations in general domains, Acta Math. 195 (2005), 21–53.
- [15] _____, On the Helmholtz decomposition in general unbounded domains, Arch. Math. (Basel) 88 (2007), 239–248.
- [16] _____, On the Stokes operator in general unbounded domains, Hokkaido Math. J. 38 (2009), no. 1, 111–136.
- [17] D. Fujiwara and H. Morimoto, An L_r-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 3, 685–700.
- [18] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137– 193.

- [19] G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems, 2nd ed., Springer Monographs in Mathematics, Springer, New York, 2011.
- [20] M. Geissert, H. Heck, M. Hieber, and O. Sawada, Weak Neumann implies Stokes, J. Reine Angew. Math. 669 (2012), 75–100.
- [21] Y. Giga, Analyticity of the semigroup generated by the Stokes operator in L_r spaces, Math. Z. **178** (1981), 297–329.
- [22] E. Giusti, Direct methods in the calculus of variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003.
- [23] L. Grafakos, *Classical Fourier analysis*, 3rd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2014.
- [24] _____, Modern Fourier analysis, 3rd ed., Graduate Texts in Mathematics, vol. 250, Springer, New York, 2014.
- [25] S. Janson and P. W. Jones, Interpolation between H^p spaces: the complex method, J. Funct. Anal. 48 (1982), 58–80.
- [26] P. W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), 41-66.
- [27] J. Jost, Postmodern analysis, 3rd ed., Universitext, Springer-Verlag, Berlin, 2005.
- [28] V. N. Maslennikova and M. E. Bogovskii, Elliptic boundary value problems in unbounded domains with noncompact and non smooth boundaries, Rend. Sem. Mat. Fis. Milano 56 (1986), 125–138.
- [29] A. Miyachi, H^p spaces over open subsets of \mathbb{R}^n , Studia Math. 95 (1990), 205–228.
- [30] Y. Maekawa and H. Miura, On isomorphism for the space of solenoidal vector fields and its application to the Stokes problem, Hokkaido University Preprint Series in Math. (2015), no. 1076.
- [31] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French).
- [32] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987.
- [33] Y. Shibata, Generalized resolvent estimates of the Stokes equations with first order boundary condition in a general domain, J. Math. Fluid Mech. 15 (2013), 1–40.
- [34] H. Sohr, The Navier-Stokes equations: An elementary functional analytic approach, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2001.
- [35] V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math. 8 (1977), 467–529.
- [36] _____, Stokes and Navier-Stokes equations in domains with noncompact boundaries, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. IV (Paris, 1981/1982), Res. Notes in Math. 84 (1983), 240–349. Pitman, Boston, MA.
- [37] S. G. Staples, L^p-averaging domains and the Poincaré inequality, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 103–127.

FACHBEREICH MATHEMATIK, TECHNISCHE UNIVERSITÄT DARMSTADT, SCHLOSSGARTENSTRASSE 7, 64289 DARMSTADT, GERMANY

 $E\text{-}mail\ address: \texttt{bolkartQmathematik.tu-darmstadt.de}$

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914, Japan

 $E\text{-}mail\ address: \texttt{labgiga@ms.u-tokyo.ac.jp}$

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914, Japan

E-mail address: thmiura@ms.u-tokyo.ac.jp

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914, Japan

E-mail address: tsuzuki@ms.u-tokyo.ac.jp

DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE, SHINSHU UNIVERSITY, ASAHI 3-1-1 MATSUMOTO NAGANO 390-8621, JAPAN

E-mail address: tsutsui@shinshu-u.ac.jp